aboutsummaryrefslogtreecommitdiff
path: root/fs/xfs/xfs_inode.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/xfs/xfs_inode.c')
-rw-r--r--fs/xfs/xfs_inode.c3876
1 files changed, 3876 insertions, 0 deletions
diff --git a/fs/xfs/xfs_inode.c b/fs/xfs/xfs_inode.c
new file mode 100644
index 00000000000..43c632ab86a
--- /dev/null
+++ b/fs/xfs/xfs_inode.c
@@ -0,0 +1,3876 @@
+/*
+ * Copyright (c) 2000-2003 Silicon Graphics, Inc. All Rights Reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of version 2 of the GNU General Public License as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it would be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+ *
+ * Further, this software is distributed without any warranty that it is
+ * free of the rightful claim of any third person regarding infringement
+ * or the like. Any license provided herein, whether implied or
+ * otherwise, applies only to this software file. Patent licenses, if
+ * any, provided herein do not apply to combinations of this program with
+ * other software, or any other product whatsoever.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write the Free Software Foundation, Inc., 59
+ * Temple Place - Suite 330, Boston MA 02111-1307, USA.
+ *
+ * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
+ * Mountain View, CA 94043, or:
+ *
+ * http://www.sgi.com
+ *
+ * For further information regarding this notice, see:
+ *
+ * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
+ */
+
+#include "xfs.h"
+#include "xfs_macros.h"
+#include "xfs_types.h"
+#include "xfs_inum.h"
+#include "xfs_log.h"
+#include "xfs_trans.h"
+#include "xfs_trans_priv.h"
+#include "xfs_sb.h"
+#include "xfs_ag.h"
+#include "xfs_dir.h"
+#include "xfs_dir2.h"
+#include "xfs_dmapi.h"
+#include "xfs_mount.h"
+#include "xfs_alloc_btree.h"
+#include "xfs_bmap_btree.h"
+#include "xfs_ialloc_btree.h"
+#include "xfs_btree.h"
+#include "xfs_imap.h"
+#include "xfs_alloc.h"
+#include "xfs_ialloc.h"
+#include "xfs_attr_sf.h"
+#include "xfs_dir_sf.h"
+#include "xfs_dir2_sf.h"
+#include "xfs_dinode.h"
+#include "xfs_inode_item.h"
+#include "xfs_inode.h"
+#include "xfs_bmap.h"
+#include "xfs_buf_item.h"
+#include "xfs_rw.h"
+#include "xfs_error.h"
+#include "xfs_bit.h"
+#include "xfs_utils.h"
+#include "xfs_dir2_trace.h"
+#include "xfs_quota.h"
+#include "xfs_mac.h"
+#include "xfs_acl.h"
+
+
+kmem_zone_t *xfs_ifork_zone;
+kmem_zone_t *xfs_inode_zone;
+kmem_zone_t *xfs_chashlist_zone;
+
+/*
+ * Used in xfs_itruncate(). This is the maximum number of extents
+ * freed from a file in a single transaction.
+ */
+#define XFS_ITRUNC_MAX_EXTENTS 2
+
+STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
+STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
+STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
+STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
+
+
+#ifdef DEBUG
+/*
+ * Make sure that the extents in the given memory buffer
+ * are valid.
+ */
+STATIC void
+xfs_validate_extents(
+ xfs_bmbt_rec_t *ep,
+ int nrecs,
+ int disk,
+ xfs_exntfmt_t fmt)
+{
+ xfs_bmbt_irec_t irec;
+ xfs_bmbt_rec_t rec;
+ int i;
+
+ for (i = 0; i < nrecs; i++) {
+ rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
+ rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
+ if (disk)
+ xfs_bmbt_disk_get_all(&rec, &irec);
+ else
+ xfs_bmbt_get_all(&rec, &irec);
+ if (fmt == XFS_EXTFMT_NOSTATE)
+ ASSERT(irec.br_state == XFS_EXT_NORM);
+ ep++;
+ }
+}
+#else /* DEBUG */
+#define xfs_validate_extents(ep, nrecs, disk, fmt)
+#endif /* DEBUG */
+
+/*
+ * Check that none of the inode's in the buffer have a next
+ * unlinked field of 0.
+ */
+#if defined(DEBUG)
+void
+xfs_inobp_check(
+ xfs_mount_t *mp,
+ xfs_buf_t *bp)
+{
+ int i;
+ int j;
+ xfs_dinode_t *dip;
+
+ j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
+
+ for (i = 0; i < j; i++) {
+ dip = (xfs_dinode_t *)xfs_buf_offset(bp,
+ i * mp->m_sb.sb_inodesize);
+ if (!dip->di_next_unlinked) {
+ xfs_fs_cmn_err(CE_ALERT, mp,
+ "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
+ bp);
+ ASSERT(dip->di_next_unlinked);
+ }
+ }
+}
+#endif
+
+/*
+ * called from bwrite on xfs inode buffers
+ */
+void
+xfs_inobp_bwcheck(xfs_buf_t *bp)
+{
+ xfs_mount_t *mp;
+ int i;
+ int j;
+ xfs_dinode_t *dip;
+
+ ASSERT(XFS_BUF_FSPRIVATE3(bp, void *) != NULL);
+
+ mp = XFS_BUF_FSPRIVATE3(bp, xfs_mount_t *);
+
+
+ j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
+
+ for (i = 0; i < j; i++) {
+ dip = (xfs_dinode_t *) xfs_buf_offset(bp,
+ i * mp->m_sb.sb_inodesize);
+ if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
+ cmn_err(CE_WARN,
+"Bad magic # 0x%x in XFS inode buffer 0x%Lx, starting blockno %Ld, offset 0x%x",
+ INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
+ (__uint64_t)(__psunsigned_t) bp,
+ (__int64_t) XFS_BUF_ADDR(bp),
+ xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
+ xfs_fs_cmn_err(CE_WARN, mp,
+ "corrupt, unmount and run xfs_repair");
+ }
+ if (!dip->di_next_unlinked) {
+ cmn_err(CE_WARN,
+"Bad next_unlinked field (0) in XFS inode buffer 0x%p, starting blockno %Ld, offset 0x%x",
+ (__uint64_t)(__psunsigned_t) bp,
+ (__int64_t) XFS_BUF_ADDR(bp),
+ xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
+ xfs_fs_cmn_err(CE_WARN, mp,
+ "corrupt, unmount and run xfs_repair");
+ }
+ }
+
+ return;
+}
+
+/*
+ * This routine is called to map an inode number within a file
+ * system to the buffer containing the on-disk version of the
+ * inode. It returns a pointer to the buffer containing the
+ * on-disk inode in the bpp parameter, and in the dip parameter
+ * it returns a pointer to the on-disk inode within that buffer.
+ *
+ * If a non-zero error is returned, then the contents of bpp and
+ * dipp are undefined.
+ *
+ * Use xfs_imap() to determine the size and location of the
+ * buffer to read from disk.
+ */
+int
+xfs_inotobp(
+ xfs_mount_t *mp,
+ xfs_trans_t *tp,
+ xfs_ino_t ino,
+ xfs_dinode_t **dipp,
+ xfs_buf_t **bpp,
+ int *offset)
+{
+ int di_ok;
+ xfs_imap_t imap;
+ xfs_buf_t *bp;
+ int error;
+ xfs_dinode_t *dip;
+
+ /*
+ * Call the space managment code to find the location of the
+ * inode on disk.
+ */
+ imap.im_blkno = 0;
+ error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
+ if (error != 0) {
+ cmn_err(CE_WARN,
+ "xfs_inotobp: xfs_imap() returned an "
+ "error %d on %s. Returning error.", error, mp->m_fsname);
+ return error;
+ }
+
+ /*
+ * If the inode number maps to a block outside the bounds of the
+ * file system then return NULL rather than calling read_buf
+ * and panicing when we get an error from the driver.
+ */
+ if ((imap.im_blkno + imap.im_len) >
+ XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
+ cmn_err(CE_WARN,
+ "xfs_inotobp: inode number (%d + %d) maps to a block outside the bounds "
+ "of the file system %s. Returning EINVAL.",
+ imap.im_blkno, imap.im_len,mp->m_fsname);
+ return XFS_ERROR(EINVAL);
+ }
+
+ /*
+ * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
+ * default to just a read_buf() call.
+ */
+ error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
+ (int)imap.im_len, XFS_BUF_LOCK, &bp);
+
+ if (error) {
+ cmn_err(CE_WARN,
+ "xfs_inotobp: xfs_trans_read_buf() returned an "
+ "error %d on %s. Returning error.", error, mp->m_fsname);
+ return error;
+ }
+ dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
+ di_ok =
+ INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
+ XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
+ if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
+ XFS_RANDOM_ITOBP_INOTOBP))) {
+ XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
+ xfs_trans_brelse(tp, bp);
+ cmn_err(CE_WARN,
+ "xfs_inotobp: XFS_TEST_ERROR() returned an "
+ "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+
+ xfs_inobp_check(mp, bp);
+
+ /*
+ * Set *dipp to point to the on-disk inode in the buffer.
+ */
+ *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
+ *bpp = bp;
+ *offset = imap.im_boffset;
+ return 0;
+}
+
+
+/*
+ * This routine is called to map an inode to the buffer containing
+ * the on-disk version of the inode. It returns a pointer to the
+ * buffer containing the on-disk inode in the bpp parameter, and in
+ * the dip parameter it returns a pointer to the on-disk inode within
+ * that buffer.
+ *
+ * If a non-zero error is returned, then the contents of bpp and
+ * dipp are undefined.
+ *
+ * If the inode is new and has not yet been initialized, use xfs_imap()
+ * to determine the size and location of the buffer to read from disk.
+ * If the inode has already been mapped to its buffer and read in once,
+ * then use the mapping information stored in the inode rather than
+ * calling xfs_imap(). This allows us to avoid the overhead of looking
+ * at the inode btree for small block file systems (see xfs_dilocate()).
+ * We can tell whether the inode has been mapped in before by comparing
+ * its disk block address to 0. Only uninitialized inodes will have
+ * 0 for the disk block address.
+ */
+int
+xfs_itobp(
+ xfs_mount_t *mp,
+ xfs_trans_t *tp,
+ xfs_inode_t *ip,
+ xfs_dinode_t **dipp,
+ xfs_buf_t **bpp,
+ xfs_daddr_t bno)
+{
+ xfs_buf_t *bp;
+ int error;
+ xfs_imap_t imap;
+#ifdef __KERNEL__
+ int i;
+ int ni;
+#endif
+
+ if (ip->i_blkno == (xfs_daddr_t)0) {
+ /*
+ * Call the space management code to find the location of the
+ * inode on disk.
+ */
+ imap.im_blkno = bno;
+ error = xfs_imap(mp, tp, ip->i_ino, &imap, XFS_IMAP_LOOKUP);
+ if (error != 0) {
+ return error;
+ }
+
+ /*
+ * If the inode number maps to a block outside the bounds
+ * of the file system then return NULL rather than calling
+ * read_buf and panicing when we get an error from the
+ * driver.
+ */
+ if ((imap.im_blkno + imap.im_len) >
+ XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
+#ifdef DEBUG
+ xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
+ "(imap.im_blkno (0x%llx) "
+ "+ imap.im_len (0x%llx)) > "
+ " XFS_FSB_TO_BB(mp, "
+ "mp->m_sb.sb_dblocks) (0x%llx)",
+ (unsigned long long) imap.im_blkno,
+ (unsigned long long) imap.im_len,
+ XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
+#endif /* DEBUG */
+ return XFS_ERROR(EINVAL);
+ }
+
+ /*
+ * Fill in the fields in the inode that will be used to
+ * map the inode to its buffer from now on.
+ */
+ ip->i_blkno = imap.im_blkno;
+ ip->i_len = imap.im_len;
+ ip->i_boffset = imap.im_boffset;
+ } else {
+ /*
+ * We've already mapped the inode once, so just use the
+ * mapping that we saved the first time.
+ */
+ imap.im_blkno = ip->i_blkno;
+ imap.im_len = ip->i_len;
+ imap.im_boffset = ip->i_boffset;
+ }
+ ASSERT(bno == 0 || bno == imap.im_blkno);
+
+ /*
+ * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
+ * default to just a read_buf() call.
+ */
+ error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
+ (int)imap.im_len, XFS_BUF_LOCK, &bp);
+
+ if (error) {
+#ifdef DEBUG
+ xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
+ "xfs_trans_read_buf() returned error %d, "
+ "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
+ error, (unsigned long long) imap.im_blkno,
+ (unsigned long long) imap.im_len);
+#endif /* DEBUG */
+ return error;
+ }
+#ifdef __KERNEL__
+ /*
+ * Validate the magic number and version of every inode in the buffer
+ * (if DEBUG kernel) or the first inode in the buffer, otherwise.
+ */
+#ifdef DEBUG
+ ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
+#else
+ ni = 1;
+#endif
+ for (i = 0; i < ni; i++) {
+ int di_ok;
+ xfs_dinode_t *dip;
+
+ dip = (xfs_dinode_t *)xfs_buf_offset(bp,
+ (i << mp->m_sb.sb_inodelog));
+ di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
+ XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
+ if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
+ XFS_RANDOM_ITOBP_INOTOBP))) {
+#ifdef DEBUG
+ prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)",
+ mp->m_ddev_targp,
+ (unsigned long long)imap.im_blkno, i,
+ INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
+#endif
+ XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
+ mp, dip);
+ xfs_trans_brelse(tp, bp);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+ }
+#endif /* __KERNEL__ */
+
+ xfs_inobp_check(mp, bp);
+
+ /*
+ * Mark the buffer as an inode buffer now that it looks good
+ */
+ XFS_BUF_SET_VTYPE(bp, B_FS_INO);
+
+ /*
+ * Set *dipp to point to the on-disk inode in the buffer.
+ */
+ *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
+ *bpp = bp;
+ return 0;
+}
+
+/*
+ * Move inode type and inode format specific information from the
+ * on-disk inode to the in-core inode. For fifos, devs, and sockets
+ * this means set if_rdev to the proper value. For files, directories,
+ * and symlinks this means to bring in the in-line data or extent
+ * pointers. For a file in B-tree format, only the root is immediately
+ * brought in-core. The rest will be in-lined in if_extents when it
+ * is first referenced (see xfs_iread_extents()).
+ */
+STATIC int
+xfs_iformat(
+ xfs_inode_t *ip,
+ xfs_dinode_t *dip)
+{
+ xfs_attr_shortform_t *atp;
+ int size;
+ int error;
+ xfs_fsize_t di_size;
+ ip->i_df.if_ext_max =
+ XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
+ error = 0;
+
+ if (unlikely(
+ INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
+ INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
+ INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
+ xfs_fs_cmn_err(CE_WARN, ip->i_mount,
+ "corrupt dinode %Lu, extent total = %d, nblocks = %Lu."
+ " Unmount and run xfs_repair.",
+ (unsigned long long)ip->i_ino,
+ (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
+ + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
+ (unsigned long long)
+ INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
+ XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
+ ip->i_mount, dip);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+
+ if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
+ xfs_fs_cmn_err(CE_WARN, ip->i_mount,
+ "corrupt dinode %Lu, forkoff = 0x%x."
+ " Unmount and run xfs_repair.",
+ (unsigned long long)ip->i_ino,
+ (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
+ XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
+ ip->i_mount, dip);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+
+ switch (ip->i_d.di_mode & S_IFMT) {
+ case S_IFIFO:
+ case S_IFCHR:
+ case S_IFBLK:
+ case S_IFSOCK:
+ if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
+ XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
+ ip->i_mount, dip);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+ ip->i_d.di_size = 0;
+ ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
+ break;
+
+ case S_IFREG:
+ case S_IFLNK:
+ case S_IFDIR:
+ switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
+ case XFS_DINODE_FMT_LOCAL:
+ /*
+ * no local regular files yet
+ */
+ if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
+ xfs_fs_cmn_err(CE_WARN, ip->i_mount,
+ "corrupt inode (local format for regular file) %Lu. Unmount and run xfs_repair.",
+ (unsigned long long) ip->i_ino);
+ XFS_CORRUPTION_ERROR("xfs_iformat(4)",
+ XFS_ERRLEVEL_LOW,
+ ip->i_mount, dip);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+
+ di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
+ if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
+ xfs_fs_cmn_err(CE_WARN, ip->i_mount,
+ "corrupt inode %Lu (bad size %Ld for local inode). Unmount and run xfs_repair.",
+ (unsigned long long) ip->i_ino,
+ (long long) di_size);
+ XFS_CORRUPTION_ERROR("xfs_iformat(5)",
+ XFS_ERRLEVEL_LOW,
+ ip->i_mount, dip);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+
+ size = (int)di_size;
+ error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
+ break;
+ case XFS_DINODE_FMT_EXTENTS:
+ error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
+ break;
+ case XFS_DINODE_FMT_BTREE:
+ error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
+ break;
+ default:
+ XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
+ ip->i_mount);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+ break;
+
+ default:
+ XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+ if (error) {
+ return error;
+ }
+ if (!XFS_DFORK_Q(dip))
+ return 0;
+ ASSERT(ip->i_afp == NULL);
+ ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
+ ip->i_afp->if_ext_max =
+ XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
+ switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
+ case XFS_DINODE_FMT_LOCAL:
+ atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
+ size = (int)INT_GET(atp->hdr.totsize, ARCH_CONVERT);
+ error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
+ break;
+ case XFS_DINODE_FMT_EXTENTS:
+ error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
+ break;
+ case XFS_DINODE_FMT_BTREE:
+ error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
+ break;
+ default:
+ error = XFS_ERROR(EFSCORRUPTED);
+ break;
+ }
+ if (error) {
+ kmem_zone_free(xfs_ifork_zone, ip->i_afp);
+ ip->i_afp = NULL;
+ xfs_idestroy_fork(ip, XFS_DATA_FORK);
+ }
+ return error;
+}
+
+/*
+ * The file is in-lined in the on-disk inode.
+ * If it fits into if_inline_data, then copy
+ * it there, otherwise allocate a buffer for it
+ * and copy the data there. Either way, set
+ * if_data to point at the data.
+ * If we allocate a buffer for the data, make
+ * sure that its size is a multiple of 4 and
+ * record the real size in i_real_bytes.
+ */
+STATIC int
+xfs_iformat_local(
+ xfs_inode_t *ip,
+ xfs_dinode_t *dip,
+ int whichfork,
+ int size)
+{
+ xfs_ifork_t *ifp;
+ int real_size;
+
+ /*
+ * If the size is unreasonable, then something
+ * is wrong and we just bail out rather than crash in
+ * kmem_alloc() or memcpy() below.
+ */
+ if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
+ xfs_fs_cmn_err(CE_WARN, ip->i_mount,
+ "corrupt inode %Lu (bad size %d for local fork, size = %d). Unmount and run xfs_repair.",
+ (unsigned long long) ip->i_ino, size,
+ XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
+ XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
+ ip->i_mount, dip);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+ ifp = XFS_IFORK_PTR(ip, whichfork);
+ real_size = 0;
+ if (size == 0)
+ ifp->if_u1.if_data = NULL;
+ else if (size <= sizeof(ifp->if_u2.if_inline_data))
+ ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
+ else {
+ real_size = roundup(size, 4);
+ ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
+ }
+ ifp->if_bytes = size;
+ ifp->if_real_bytes = real_size;
+ if (size)
+ memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
+ ifp->if_flags &= ~XFS_IFEXTENTS;
+ ifp->if_flags |= XFS_IFINLINE;
+ return 0;
+}
+
+/*
+ * The file consists of a set of extents all
+ * of which fit into the on-disk inode.
+ * If there are few enough extents to fit into
+ * the if_inline_ext, then copy them there.
+ * Otherwise allocate a buffer for them and copy
+ * them into it. Either way, set if_extents
+ * to point at the extents.
+ */
+STATIC int
+xfs_iformat_extents(
+ xfs_inode_t *ip,
+ xfs_dinode_t *dip,
+ int whichfork)
+{
+ xfs_bmbt_rec_t *ep, *dp;
+ xfs_ifork_t *ifp;
+ int nex;
+ int real_size;
+ int size;
+ int i;
+
+ ifp = XFS_IFORK_PTR(ip, whichfork);
+ nex = XFS_DFORK_NEXTENTS(dip, whichfork);
+ size = nex * (uint)sizeof(xfs_bmbt_rec_t);
+
+ /*
+ * If the number of extents is unreasonable, then something
+ * is wrong and we just bail out rather than crash in
+ * kmem_alloc() or memcpy() below.
+ */
+ if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
+ xfs_fs_cmn_err(CE_WARN, ip->i_mount,
+ "corrupt inode %Lu ((a)extents = %d). Unmount and run xfs_repair.",
+ (unsigned long long) ip->i_ino, nex);
+ XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
+ ip->i_mount, dip);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+
+ real_size = 0;
+ if (nex == 0)
+ ifp->if_u1.if_extents = NULL;
+ else if (nex <= XFS_INLINE_EXTS)
+ ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
+ else {
+ ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
+ ASSERT(ifp->if_u1.if_extents != NULL);
+ real_size = size;
+ }
+ ifp->if_bytes = size;
+ ifp->if_real_bytes = real_size;
+ if (size) {
+ dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
+ xfs_validate_extents(dp, nex, 1, XFS_EXTFMT_INODE(ip));
+ ep = ifp->if_u1.if_extents;
+ for (i = 0; i < nex; i++, ep++, dp++) {
+ ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
+ ARCH_CONVERT);
+ ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
+ ARCH_CONVERT);
+ }
+ xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
+ whichfork);
+ if (whichfork != XFS_DATA_FORK ||
+ XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
+ if (unlikely(xfs_check_nostate_extents(
+ ifp->if_u1.if_extents, nex))) {
+ XFS_ERROR_REPORT("xfs_iformat_extents(2)",
+ XFS_ERRLEVEL_LOW,
+ ip->i_mount);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+ }
+ ifp->if_flags |= XFS_IFEXTENTS;
+ return 0;
+}
+
+/*
+ * The file has too many extents to fit into
+ * the inode, so they are in B-tree format.
+ * Allocate a buffer for the root of the B-tree
+ * and copy the root into it. The i_extents
+ * field will remain NULL until all of the
+ * extents are read in (when they are needed).
+ */
+STATIC int
+xfs_iformat_btree(
+ xfs_inode_t *ip,
+ xfs_dinode_t *dip,
+ int whichfork)
+{
+ xfs_bmdr_block_t *dfp;
+ xfs_ifork_t *ifp;
+ /* REFERENCED */
+ int nrecs;
+ int size;
+
+ ifp = XFS_IFORK_PTR(ip, whichfork);
+ dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
+ size = XFS_BMAP_BROOT_SPACE(dfp);
+ nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
+
+ /*
+ * blow out if -- fork has less extents than can fit in
+ * fork (fork shouldn't be a btree format), root btree
+ * block has more records than can fit into the fork,
+ * or the number of extents is greater than the number of
+ * blocks.
+ */
+ if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
+ || XFS_BMDR_SPACE_CALC(nrecs) >
+ XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
+ || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
+ xfs_fs_cmn_err(CE_WARN, ip->i_mount,
+ "corrupt inode %Lu (btree). Unmount and run xfs_repair.",
+ (unsigned long long) ip->i_ino);
+ XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
+ ip->i_mount);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+
+ ifp->if_broot_bytes = size;
+ ifp->if_broot = kmem_alloc(size, KM_SLEEP);
+ ASSERT(ifp->if_broot != NULL);
+ /*
+ * Copy and convert from the on-disk structure
+ * to the in-memory structure.
+ */
+ xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
+ ifp->if_broot, size);
+ ifp->if_flags &= ~XFS_IFEXTENTS;
+ ifp->if_flags |= XFS_IFBROOT;
+
+ return 0;
+}
+
+/*
+ * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
+ * and native format
+ *
+ * buf = on-disk representation
+ * dip = native representation
+ * dir = direction - +ve -> disk to native
+ * -ve -> native to disk
+ */
+void
+xfs_xlate_dinode_core(
+ xfs_caddr_t buf,
+ xfs_dinode_core_t *dip,
+ int dir)
+{
+ xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
+ xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
+ xfs_arch_t arch = ARCH_CONVERT;
+
+ ASSERT(dir);
+
+ INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
+ INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
+ INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
+ INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
+ INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
+ INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
+ INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
+ INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
+ INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
+
+ if (dir > 0) {
+ memcpy(mem_core->di_pad, buf_core->di_pad,
+ sizeof(buf_core->di_pad));
+ } else {
+ memcpy(buf_core->di_pad, mem_core->di_pad,
+ sizeof(buf_core->di_pad));
+ }
+
+ INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
+
+ INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
+ dir, arch);
+ INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
+ dir, arch);
+ INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
+ dir, arch);
+ INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
+ dir, arch);
+ INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
+ dir, arch);
+ INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
+ dir, arch);
+ INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
+ INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
+ INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
+ INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
+ INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
+ INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
+ INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
+ INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
+ INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
+ INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
+ INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
+}
+
+STATIC uint
+_xfs_dic2xflags(
+ xfs_dinode_core_t *dic,
+ __uint16_t di_flags)
+{
+ uint flags = 0;
+
+ if (di_flags & XFS_DIFLAG_ANY) {
+ if (di_flags & XFS_DIFLAG_REALTIME)
+ flags |= XFS_XFLAG_REALTIME;
+ if (di_flags & XFS_DIFLAG_PREALLOC)
+ flags |= XFS_XFLAG_PREALLOC;
+ if (di_flags & XFS_DIFLAG_IMMUTABLE)
+ flags |= XFS_XFLAG_IMMUTABLE;
+ if (di_flags & XFS_DIFLAG_APPEND)
+ flags |= XFS_XFLAG_APPEND;
+ if (di_flags & XFS_DIFLAG_SYNC)
+ flags |= XFS_XFLAG_SYNC;
+ if (di_flags & XFS_DIFLAG_NOATIME)
+ flags |= XFS_XFLAG_NOATIME;
+ if (di_flags & XFS_DIFLAG_NODUMP)
+ flags |= XFS_XFLAG_NODUMP;
+ if (di_flags & XFS_DIFLAG_RTINHERIT)
+ flags |= XFS_XFLAG_RTINHERIT;
+ if (di_flags & XFS_DIFLAG_PROJINHERIT)
+ flags |= XFS_XFLAG_PROJINHERIT;
+ if (di_flags & XFS_DIFLAG_NOSYMLINKS)
+ flags |= XFS_XFLAG_NOSYMLINKS;
+ }
+
+ return flags;
+}
+
+uint
+xfs_ip2xflags(
+ xfs_inode_t *ip)
+{
+ xfs_dinode_core_t *dic = &ip->i_d;
+
+ return _xfs_dic2xflags(dic, dic->di_flags) |
+ (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
+}
+
+uint
+xfs_dic2xflags(
+ xfs_dinode_core_t *dic)
+{
+ return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) |
+ (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
+}
+
+/*
+ * Given a mount structure and an inode number, return a pointer
+ * to a newly allocated in-core inode coresponding to the given
+ * inode number.
+ *
+ * Initialize the inode's attributes and extent pointers if it
+ * already has them (it will not if the inode has no links).
+ */
+int
+xfs_iread(
+ xfs_mount_t *mp,
+ xfs_trans_t *tp,
+ xfs_ino_t ino,
+ xfs_inode_t **ipp,
+ xfs_daddr_t bno)
+{
+ xfs_buf_t *bp;
+ xfs_dinode_t *dip;
+ xfs_inode_t *ip;
+ int error;
+
+ ASSERT(xfs_inode_zone != NULL);
+
+ ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
+ ip->i_ino = ino;
+ ip->i_mount = mp;
+
+ /*
+ * Get pointer's to the on-disk inode and the buffer containing it.
+ * If the inode number refers to a block outside the file system
+ * then xfs_itobp() will return NULL. In this case we should
+ * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
+ * know that this is a new incore inode.
+ */
+ error = xfs_itobp(mp, tp, ip, &dip, &bp, bno);
+
+ if (error != 0) {
+ kmem_zone_free(xfs_inode_zone, ip);
+ return error;
+ }
+
+ /*
+ * Initialize inode's trace buffers.
+ * Do this before xfs_iformat in case it adds entries.
+ */
+#ifdef XFS_BMAP_TRACE
+ ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
+#endif
+#ifdef XFS_BMBT_TRACE
+ ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
+#endif
+#ifdef XFS_RW_TRACE
+ ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
+#endif
+#ifdef XFS_ILOCK_TRACE
+ ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
+#endif
+#ifdef XFS_DIR2_TRACE
+ ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
+#endif
+
+ /*
+ * If we got something that isn't an inode it means someone
+ * (nfs or dmi) has a stale handle.
+ */
+ if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
+ kmem_zone_free(xfs_inode_zone, ip);
+ xfs_trans_brelse(tp, bp);
+#ifdef DEBUG
+ xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
+ "dip->di_core.di_magic (0x%x) != "
+ "XFS_DINODE_MAGIC (0x%x)",
+ INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
+ XFS_DINODE_MAGIC);
+#endif /* DEBUG */
+ return XFS_ERROR(EINVAL);
+ }
+
+ /*
+ * If the on-disk inode is already linked to a directory
+ * entry, copy all of the inode into the in-core inode.
+ * xfs_iformat() handles copying in the inode format
+ * specific information.
+ * Otherwise, just get the truly permanent information.
+ */
+ if (dip->di_core.di_mode) {
+ xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
+ &(ip->i_d), 1);
+ error = xfs_iformat(ip, dip);
+ if (error) {
+ kmem_zone_free(xfs_inode_zone, ip);
+ xfs_trans_brelse(tp, bp);
+#ifdef DEBUG
+ xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
+ "xfs_iformat() returned error %d",
+ error);
+#endif /* DEBUG */
+ return error;
+ }
+ } else {
+ ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
+ ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
+ ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
+ ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
+ /*
+ * Make sure to pull in the mode here as well in
+ * case the inode is released without being used.
+ * This ensures that xfs_inactive() will see that
+ * the inode is already free and not try to mess
+ * with the uninitialized part of it.
+ */
+ ip->i_d.di_mode = 0;
+ /*
+ * Initialize the per-fork minima and maxima for a new
+ * inode here. xfs_iformat will do it for old inodes.
+ */
+ ip->i_df.if_ext_max =
+ XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
+ }
+
+ INIT_LIST_HEAD(&ip->i_reclaim);
+
+ /*
+ * The inode format changed when we moved the link count and
+ * made it 32 bits long. If this is an old format inode,
+ * convert it in memory to look like a new one. If it gets
+ * flushed to disk we will convert back before flushing or
+ * logging it. We zero out the new projid field and the old link
+ * count field. We'll handle clearing the pad field (the remains
+ * of the old uuid field) when we actually convert the inode to
+ * the new format. We don't change the version number so that we
+ * can distinguish this from a real new format inode.
+ */
+ if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
+ ip->i_d.di_nlink = ip->i_d.di_onlink;
+ ip->i_d.di_onlink = 0;
+ ip->i_d.di_projid = 0;
+ }
+
+ ip->i_delayed_blks = 0;
+
+ /*
+ * Mark the buffer containing the inode as something to keep
+ * around for a while. This helps to keep recently accessed
+ * meta-data in-core longer.
+ */
+ XFS_BUF_SET_REF(bp, XFS_INO_REF);
+
+ /*
+ * Use xfs_trans_brelse() to release the buffer containing the
+ * on-disk inode, because it was acquired with xfs_trans_read_buf()
+ * in xfs_itobp() above. If tp is NULL, this is just a normal
+ * brelse(). If we're within a transaction, then xfs_trans_brelse()
+ * will only release the buffer if it is not dirty within the
+ * transaction. It will be OK to release the buffer in this case,
+ * because inodes on disk are never destroyed and we will be
+ * locking the new in-core inode before putting it in the hash
+ * table where other processes can find it. Thus we don't have
+ * to worry about the inode being changed just because we released
+ * the buffer.
+ */
+ xfs_trans_brelse(tp, bp);
+ *ipp = ip;
+ return 0;
+}
+
+/*
+ * Read in extents from a btree-format inode.
+ * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
+ */
+int
+xfs_iread_extents(
+ xfs_trans_t *tp,
+ xfs_inode_t *ip,
+ int whichfork)
+{
+ int error;
+ xfs_ifork_t *ifp;
+ size_t size;
+
+ if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
+ XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
+ ip->i_mount);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+ size = XFS_IFORK_NEXTENTS(ip, whichfork) * (uint)sizeof(xfs_bmbt_rec_t);
+ ifp = XFS_IFORK_PTR(ip, whichfork);
+ /*
+ * We know that the size is valid (it's checked in iformat_btree)
+ */
+ ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
+ ASSERT(ifp->if_u1.if_extents != NULL);
+ ifp->if_lastex = NULLEXTNUM;
+ ifp->if_bytes = ifp->if_real_bytes = (int)size;
+ ifp->if_flags |= XFS_IFEXTENTS;
+ error = xfs_bmap_read_extents(tp, ip, whichfork);
+ if (error) {
+ kmem_free(ifp->if_u1.if_extents, size);
+ ifp->if_u1.if_extents = NULL;
+ ifp->if_bytes = ifp->if_real_bytes = 0;
+ ifp->if_flags &= ~XFS_IFEXTENTS;
+ return error;
+ }
+ xfs_validate_extents((xfs_bmbt_rec_t *)ifp->if_u1.if_extents,
+ XFS_IFORK_NEXTENTS(ip, whichfork), 0, XFS_EXTFMT_INODE(ip));
+ return 0;
+}
+
+/*
+ * Allocate an inode on disk and return a copy of its in-core version.
+ * The in-core inode is locked exclusively. Set mode, nlink, and rdev
+ * appropriately within the inode. The uid and gid for the inode are
+ * set according to the contents of the given cred structure.
+ *
+ * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
+ * has a free inode available, call xfs_iget()
+ * to obtain the in-core version of the allocated inode. Finally,
+ * fill in the inode and log its initial contents. In this case,
+ * ialloc_context would be set to NULL and call_again set to false.
+ *
+ * If xfs_dialloc() does not have an available inode,
+ * it will replenish its supply by doing an allocation. Since we can
+ * only do one allocation within a transaction without deadlocks, we
+ * must commit the current transaction before returning the inode itself.
+ * In this case, therefore, we will set call_again to true and return.
+ * The caller should then commit the current transaction, start a new
+ * transaction, and call xfs_ialloc() again to actually get the inode.
+ *
+ * To ensure that some other process does not grab the inode that
+ * was allocated during the first call to xfs_ialloc(), this routine
+ * also returns the [locked] bp pointing to the head of the freelist
+ * as ialloc_context. The caller should hold this buffer across
+ * the commit and pass it back into this routine on the second call.
+ */
+int
+xfs_ialloc(
+ xfs_trans_t *tp,
+ xfs_inode_t *pip,
+ mode_t mode,
+ nlink_t nlink,
+ xfs_dev_t rdev,
+ cred_t *cr,
+ xfs_prid_t prid,
+ int okalloc,
+ xfs_buf_t **ialloc_context,
+ boolean_t *call_again,
+ xfs_inode_t **ipp)
+{
+ xfs_ino_t ino;
+ xfs_inode_t *ip;
+ vnode_t *vp;
+ uint flags;
+ int error;
+
+ /*
+ * Call the space management code to pick
+ * the on-disk inode to be allocated.
+ */
+ error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
+ ialloc_context, call_again, &ino);
+ if (error != 0) {
+ return error;
+ }
+ if (*call_again || ino == NULLFSINO) {
+ *ipp = NULL;
+ return 0;
+ }
+ ASSERT(*ialloc_context == NULL);
+
+ /*
+ * Get the in-core inode with the lock held exclusively.
+ * This is because we're setting fields here we need
+ * to prevent others from looking at until we're done.
+ */
+ error = xfs_trans_iget(tp->t_mountp, tp, ino,
+ IGET_CREATE, XFS_ILOCK_EXCL, &ip);
+ if (error != 0) {
+ return error;
+ }
+ ASSERT(ip != NULL);
+
+ vp = XFS_ITOV(ip);
+ vp->v_type = IFTOVT(mode);
+ ip->i_d.di_mode = (__uint16_t)mode;
+ ip->i_d.di_onlink = 0;
+ ip->i_d.di_nlink = nlink;
+ ASSERT(ip->i_d.di_nlink == nlink);
+ ip->i_d.di_uid = current_fsuid(cr);
+ ip->i_d.di_gid = current_fsgid(cr);
+ ip->i_d.di_projid = prid;
+ memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
+
+ /*
+ * If the superblock version is up to where we support new format
+ * inodes and this is currently an old format inode, then change
+ * the inode version number now. This way we only do the conversion
+ * here rather than here and in the flush/logging code.
+ */
+ if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
+ ip->i_d.di_version == XFS_DINODE_VERSION_1) {
+ ip->i_d.di_version = XFS_DINODE_VERSION_2;
+ /*
+ * We've already zeroed the old link count, the projid field,
+ * and the pad field.
+ */
+ }
+
+ /*
+ * Project ids won't be stored on disk if we are using a version 1 inode.
+ */
+ if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
+ xfs_bump_ino_vers2(tp, ip);
+
+ if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
+ ip->i_d.di_gid = pip->i_d.di_gid;
+ if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
+ ip->i_d.di_mode |= S_ISGID;
+ }
+ }
+
+ /*
+ * If the group ID of the new file does not match the effective group
+ * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
+ * (and only if the irix_sgid_inherit compatibility variable is set).
+ */
+ if ((irix_sgid_inherit) &&
+ (ip->i_d.di_mode & S_ISGID) &&
+ (!in_group_p((gid_t)ip->i_d.di_gid))) {
+ ip->i_d.di_mode &= ~S_ISGID;
+ }
+
+ ip->i_d.di_size = 0;
+ ip->i_d.di_nextents = 0;
+ ASSERT(ip->i_d.di_nblocks == 0);
+ xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
+ /*
+ * di_gen will have been taken care of in xfs_iread.
+ */
+ ip->i_d.di_extsize = 0;
+ ip->i_d.di_dmevmask = 0;
+ ip->i_d.di_dmstate = 0;
+ ip->i_d.di_flags = 0;
+ flags = XFS_ILOG_CORE;
+ switch (mode & S_IFMT) {
+ case S_IFIFO:
+ case S_IFCHR:
+ case S_IFBLK:
+ case S_IFSOCK:
+ ip->i_d.di_format = XFS_DINODE_FMT_DEV;
+ ip->i_df.if_u2.if_rdev = rdev;
+ ip->i_df.if_flags = 0;
+ flags |= XFS_ILOG_DEV;
+ break;
+ case S_IFREG:
+ case S_IFDIR:
+ if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
+ if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
+ if ((mode & S_IFMT) == S_IFDIR) {
+ ip->i_d.di_flags |= XFS_DIFLAG_RTINHERIT;
+ } else {
+ ip->i_d.di_flags |= XFS_DIFLAG_REALTIME;
+ ip->i_iocore.io_flags |= XFS_IOCORE_RT;
+ }
+ }
+ if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
+ xfs_inherit_noatime)
+ ip->i_d.di_flags |= XFS_DIFLAG_NOATIME;
+ if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
+ xfs_inherit_nodump)
+ ip->i_d.di_flags |= XFS_DIFLAG_NODUMP;
+ if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
+ xfs_inherit_sync)
+ ip->i_d.di_flags |= XFS_DIFLAG_SYNC;
+ if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
+ xfs_inherit_nosymlinks)
+ ip->i_d.di_flags |= XFS_DIFLAG_NOSYMLINKS;
+ }
+ /* FALLTHROUGH */
+ case S_IFLNK:
+ ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
+ ip->i_df.if_flags = XFS_IFEXTENTS;
+ ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
+ ip->i_df.if_u1.if_extents = NULL;
+ break;
+ default:
+ ASSERT(0);
+ }
+ /*
+ * Attribute fork settings for new inode.
+ */
+ ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
+ ip->i_d.di_anextents = 0;
+
+ /*
+ * Log the new values stuffed into the inode.
+ */
+ xfs_trans_log_inode(tp, ip, flags);
+
+ /* now that we have a v_type we can set Linux inode ops (& unlock) */
+ VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
+
+ *ipp = ip;
+ return 0;
+}
+
+/*
+ * Check to make sure that there are no blocks allocated to the
+ * file beyond the size of the file. We don't check this for
+ * files with fixed size extents or real time extents, but we
+ * at least do it for regular files.
+ */
+#ifdef DEBUG
+void
+xfs_isize_check(
+ xfs_mount_t *mp,
+ xfs_inode_t *ip,
+ xfs_fsize_t isize)
+{
+ xfs_fileoff_t map_first;
+ int nimaps;
+ xfs_bmbt_irec_t imaps[2];
+
+ if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
+ return;
+
+ if ( ip->i_d.di_flags & XFS_DIFLAG_REALTIME )
+ return;
+
+ nimaps = 2;
+ map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
+ /*
+ * The filesystem could be shutting down, so bmapi may return
+ * an error.
+ */
+ if (xfs_bmapi(NULL, ip, map_first,
+ (XFS_B_TO_FSB(mp,
+ (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
+ map_first),
+ XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
+ NULL))
+ return;
+ ASSERT(nimaps == 1);
+ ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
+}
+#endif /* DEBUG */
+
+/*
+ * Calculate the last possible buffered byte in a file. This must
+ * include data that was buffered beyond the EOF by the write code.
+ * This also needs to deal with overflowing the xfs_fsize_t type
+ * which can happen for sizes near the limit.
+ *
+ * We also need to take into account any blocks beyond the EOF. It
+ * may be the case that they were buffered by a write which failed.
+ * In that case the pages will still be in memory, but the inode size
+ * will never have been updated.
+ */
+xfs_fsize_t
+xfs_file_last_byte(
+ xfs_inode_t *ip)
+{
+ xfs_mount_t *mp;
+ xfs_fsize_t last_byte;
+ xfs_fileoff_t last_block;
+ xfs_fileoff_t size_last_block;
+ int error;
+
+ ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
+
+ mp = ip->i_mount;
+ /*
+ * Only check for blocks beyond the EOF if the extents have
+ * been read in. This eliminates the need for the inode lock,
+ * and it also saves us from looking when it really isn't
+ * necessary.
+ */
+ if (ip->i_df.if_flags & XFS_IFEXTENTS) {
+ error = xfs_bmap_last_offset(NULL, ip, &last_block,
+ XFS_DATA_FORK);
+ if (error) {
+ last_block = 0;
+ }
+ } else {
+ last_block = 0;
+ }
+ size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
+ last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
+
+ last_byte = XFS_FSB_TO_B(mp, last_block);
+ if (last_byte < 0) {
+ return XFS_MAXIOFFSET(mp);
+ }
+ last_byte += (1 << mp->m_writeio_log);
+ if (last_byte < 0) {
+ return XFS_MAXIOFFSET(mp);
+ }
+ return last_byte;
+}
+
+#if defined(XFS_RW_TRACE)
+STATIC void
+xfs_itrunc_trace(
+ int tag,
+ xfs_inode_t *ip,
+ int flag,
+ xfs_fsize_t new_size,
+ xfs_off_t toss_start,
+ xfs_off_t toss_finish)
+{
+ if (ip->i_rwtrace == NULL) {
+ return;
+ }
+
+ ktrace_enter(ip->i_rwtrace,
+ (void*)((long)tag),
+ (void*)ip,
+ (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
+ (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
+ (void*)((long)flag),
+ (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
+ (void*)(unsigned long)(new_size & 0xffffffff),
+ (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
+ (void*)(unsigned long)(toss_start & 0xffffffff),
+ (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
+ (void*)(unsigned long)(toss_finish & 0xffffffff),
+ (void*)(unsigned long)current_cpu(),
+ (void*)0,
+ (void*)0,
+ (void*)0,
+ (void*)0);
+}
+#else
+#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
+#endif
+
+/*
+ * Start the truncation of the file to new_size. The new size
+ * must be smaller than the current size. This routine will
+ * clear the buffer and page caches of file data in the removed
+ * range, and xfs_itruncate_finish() will remove the underlying
+ * disk blocks.
+ *
+ * The inode must have its I/O lock locked EXCLUSIVELY, and it
+ * must NOT have the inode lock held at all. This is because we're
+ * calling into the buffer/page cache code and we can't hold the
+ * inode lock when we do so.
+ *
+ * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
+ * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
+ * in the case that the caller is locking things out of order and
+ * may not be able to call xfs_itruncate_finish() with the inode lock
+ * held without dropping the I/O lock. If the caller must drop the
+ * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
+ * must be called again with all the same restrictions as the initial
+ * call.
+ */
+void
+xfs_itruncate_start(
+ xfs_inode_t *ip,
+ uint flags,
+ xfs_fsize_t new_size)
+{
+ xfs_fsize_t last_byte;
+ xfs_off_t toss_start;
+ xfs_mount_t *mp;
+ vnode_t *vp;
+
+ ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
+ ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
+ ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
+ (flags == XFS_ITRUNC_MAYBE));
+
+ mp = ip->i_mount;
+ vp = XFS_ITOV(ip);
+ /*
+ * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers
+ * overlapping the region being removed. We have to use
+ * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the
+ * caller may not be able to finish the truncate without
+ * dropping the inode's I/O lock. Make sure
+ * to catch any pages brought in by buffers overlapping
+ * the EOF by searching out beyond the isize by our
+ * block size. We round new_size up to a block boundary
+ * so that we don't toss things on the same block as
+ * new_size but before it.
+ *
+ * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to
+ * call remapf() over the same region if the file is mapped.
+ * This frees up mapped file references to the pages in the
+ * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures
+ * that we get the latest mapped changes flushed out.
+ */
+ toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
+ toss_start = XFS_FSB_TO_B(mp, toss_start);
+ if (toss_start < 0) {
+ /*
+ * The place to start tossing is beyond our maximum
+ * file size, so there is no way that the data extended
+ * out there.
+ */
+ return;
+ }
+ last_byte = xfs_file_last_byte(ip);
+ xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
+ last_byte);
+ if (last_byte > toss_start) {
+ if (flags & XFS_ITRUNC_DEFINITE) {
+ VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
+ } else {
+ VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
+ }
+ }
+
+#ifdef DEBUG
+ if (new_size == 0) {
+ ASSERT(VN_CACHED(vp) == 0);
+ }
+#endif
+}
+
+/*
+ * Shrink the file to the given new_size. The new
+ * size must be smaller than the current size.
+ * This will free up the underlying blocks
+ * in the removed range after a call to xfs_itruncate_start()
+ * or xfs_atruncate_start().
+ *
+ * The transaction passed to this routine must have made
+ * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
+ * This routine may commit the given transaction and
+ * start new ones, so make sure everything involved in
+ * the transaction is tidy before calling here.
+ * Some transaction will be returned to the caller to be
+ * committed. The incoming transaction must already include
+ * the inode, and both inode locks must be held exclusively.
+ * The inode must also be "held" within the transaction. On
+ * return the inode will be "held" within the returned transaction.
+ * This routine does NOT require any disk space to be reserved
+ * for it within the transaction.
+ *
+ * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
+ * and it indicates the fork which is to be truncated. For the
+ * attribute fork we only support truncation to size 0.
+ *
+ * We use the sync parameter to indicate whether or not the first
+ * transaction we perform might have to be synchronous. For the attr fork,
+ * it needs to be so if the unlink of the inode is not yet known to be
+ * permanent in the log. This keeps us from freeing and reusing the
+ * blocks of the attribute fork before the unlink of the inode becomes
+ * permanent.
+ *
+ * For the data fork, we normally have to run synchronously if we're
+ * being called out of the inactive path or we're being called
+ * out of the create path where we're truncating an existing file.
+ * Either way, the truncate needs to be sync so blocks don't reappear
+ * in the file with altered data in case of a crash. wsync filesystems
+ * can run the first case async because anything that shrinks the inode
+ * has to run sync so by the time we're called here from inactive, the
+ * inode size is permanently set to 0.
+ *
+ * Calls from the truncate path always need to be sync unless we're
+ * in a wsync filesystem and the file has already been unlinked.
+ *
+ * The caller is responsible for correctly setting the sync parameter.
+ * It gets too hard for us to guess here which path we're being called
+ * out of just based on inode state.
+ */
+int
+xfs_itruncate_finish(
+ xfs_trans_t **tp,
+ xfs_inode_t *ip,
+ xfs_fsize_t new_size,
+ int fork,
+ int sync)
+{
+ xfs_fsblock_t first_block;
+ xfs_fileoff_t first_unmap_block;
+ xfs_fileoff_t last_block;
+ xfs_filblks_t unmap_len=0;
+ xfs_mount_t *mp;
+ xfs_trans_t *ntp;
+ int done;
+ int committed;
+ xfs_bmap_free_t free_list;
+ int error;
+
+ ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
+ ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
+ ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
+ ASSERT(*tp != NULL);
+ ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
+ ASSERT(ip->i_transp == *tp);
+ ASSERT(ip->i_itemp != NULL);
+ ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
+
+
+ ntp = *tp;
+ mp = (ntp)->t_mountp;
+ ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
+
+ /*
+ * We only support truncating the entire attribute fork.
+ */
+ if (fork == XFS_ATTR_FORK) {
+ new_size = 0LL;
+ }
+ first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
+ xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
+ /*
+ * The first thing we do is set the size to new_size permanently
+ * on disk. This way we don't have to worry about anyone ever
+ * being able to look at the data being freed even in the face
+ * of a crash. What we're getting around here is the case where
+ * we free a block, it is allocated to another file, it is written
+ * to, and then we crash. If the new data gets written to the
+ * file but the log buffers containing the free and reallocation
+ * don't, then we'd end up with garbage in the blocks being freed.
+ * As long as we make the new_size permanent before actually
+ * freeing any blocks it doesn't matter if they get writtten to.
+ *
+ * The callers must signal into us whether or not the size
+ * setting here must be synchronous. There are a few cases
+ * where it doesn't have to be synchronous. Those cases
+ * occur if the file is unlinked and we know the unlink is
+ * permanent or if the blocks being truncated are guaranteed
+ * to be beyond the inode eof (regardless of the link count)
+ * and the eof value is permanent. Both of these cases occur
+ * only on wsync-mounted filesystems. In those cases, we're
+ * guaranteed that no user will ever see the data in the blocks
+ * that are being truncated so the truncate can run async.
+ * In the free beyond eof case, the file may wind up with
+ * more blocks allocated to it than it needs if we crash
+ * and that won't get fixed until the next time the file
+ * is re-opened and closed but that's ok as that shouldn't
+ * be too many blocks.
+ *
+ * However, we can't just make all wsync xactions run async
+ * because there's one call out of the create path that needs
+ * to run sync where it's truncating an existing file to size
+ * 0 whose size is > 0.
+ *
+ * It's probably possible to come up with a test in this
+ * routine that would correctly distinguish all the above
+ * cases from the values of the function parameters and the
+ * inode state but for sanity's sake, I've decided to let the
+ * layers above just tell us. It's simpler to correctly figure
+ * out in the layer above exactly under what conditions we
+ * can run async and I think it's easier for others read and
+ * follow the logic in case something has to be changed.
+ * cscope is your friend -- rcc.
+ *
+ * The attribute fork is much simpler.
+ *
+ * For the attribute fork we allow the caller to tell us whether
+ * the unlink of the inode that led to this call is yet permanent
+ * in the on disk log. If it is not and we will be freeing extents
+ * in this inode then we make the first transaction synchronous
+ * to make sure that the unlink is permanent by the time we free
+ * the blocks.
+ */
+ if (fork == XFS_DATA_FORK) {
+ if (ip->i_d.di_nextents > 0) {
+ ip->i_d.di_size = new_size;
+ xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
+ }
+ } else if (sync) {
+ ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
+ if (ip->i_d.di_anextents > 0)
+ xfs_trans_set_sync(ntp);
+ }
+ ASSERT(fork == XFS_DATA_FORK ||
+ (fork == XFS_ATTR_FORK &&
+ ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
+ (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
+
+ /*
+ * Since it is possible for space to become allocated beyond
+ * the end of the file (in a crash where the space is allocated
+ * but the inode size is not yet updated), simply remove any
+ * blocks which show up between the new EOF and the maximum
+ * possible file size. If the first block to be removed is
+ * beyond the maximum file size (ie it is the same as last_block),
+ * then there is nothing to do.
+ */
+ last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
+ ASSERT(first_unmap_block <= last_block);
+ done = 0;
+ if (last_block == first_unmap_block) {
+ done = 1;
+ } else {
+ unmap_len = last_block - first_unmap_block + 1;
+ }
+ while (!done) {
+ /*
+ * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
+ * will tell us whether it freed the entire range or
+ * not. If this is a synchronous mount (wsync),
+ * then we can tell bunmapi to keep all the
+ * transactions asynchronous since the unlink
+ * transaction that made this inode inactive has
+ * already hit the disk. There's no danger of
+ * the freed blocks being reused, there being a
+ * crash, and the reused blocks suddenly reappearing
+ * in this file with garbage in them once recovery
+ * runs.
+ */
+ XFS_BMAP_INIT(&free_list, &first_block);
+ error = xfs_bunmapi(ntp, ip, first_unmap_block,
+ unmap_len,
+ XFS_BMAPI_AFLAG(fork) |
+ (sync ? 0 : XFS_BMAPI_ASYNC),
+ XFS_ITRUNC_MAX_EXTENTS,
+ &first_block, &free_list, &done);
+ if (error) {
+ /*
+ * If the bunmapi call encounters an error,
+ * return to the caller where the transaction
+ * can be properly aborted. We just need to
+ * make sure we're not holding any resources
+ * that we were not when we came in.
+ */
+ xfs_bmap_cancel(&free_list);
+ return error;
+ }
+
+ /*
+ * Duplicate the transaction that has the permanent
+ * reservation and commit the old transaction.
+ */
+ error = xfs_bmap_finish(tp, &free_list, first_block,
+ &committed);
+ ntp = *tp;
+ if (error) {
+ /*
+ * If the bmap finish call encounters an error,
+ * return to the caller where the transaction
+ * can be properly aborted. We just need to
+ * make sure we're not holding any resources
+ * that we were not when we came in.
+ *
+ * Aborting from this point might lose some
+ * blocks in the file system, but oh well.
+ */
+ xfs_bmap_cancel(&free_list);
+ if (committed) {
+ /*
+ * If the passed in transaction committed
+ * in xfs_bmap_finish(), then we want to
+ * add the inode to this one before returning.
+ * This keeps things simple for the higher
+ * level code, because it always knows that
+ * the inode is locked and held in the
+ * transaction that returns to it whether
+ * errors occur or not. We don't mark the
+ * inode dirty so that this transaction can
+ * be easily aborted if possible.
+ */
+ xfs_trans_ijoin(ntp, ip,
+ XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
+ xfs_trans_ihold(ntp, ip);
+ }
+ return error;
+ }
+
+ if (committed) {
+ /*
+ * The first xact was committed,
+ * so add the inode to the new one.
+ * Mark it dirty so it will be logged
+ * and moved forward in the log as
+ * part of every commit.
+ */
+ xfs_trans_ijoin(ntp, ip,
+ XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
+ xfs_trans_ihold(ntp, ip);
+ xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
+ }
+ ntp = xfs_trans_dup(ntp);
+ (void) xfs_trans_commit(*tp, 0, NULL);
+ *tp = ntp;
+ error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
+ XFS_TRANS_PERM_LOG_RES,
+ XFS_ITRUNCATE_LOG_COUNT);
+ /*
+ * Add the inode being truncated to the next chained
+ * transaction.
+ */
+ xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
+ xfs_trans_ihold(ntp, ip);
+ if (error)
+ return (error);
+ }
+ /*
+ * Only update the size in the case of the data fork, but
+ * always re-log the inode so that our permanent transaction
+ * can keep on rolling it forward in the log.
+ */
+ if (fork == XFS_DATA_FORK) {
+ xfs_isize_check(mp, ip, new_size);
+ ip->i_d.di_size = new_size;
+ }
+ xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
+ ASSERT((new_size != 0) ||
+ (fork == XFS_ATTR_FORK) ||
+ (ip->i_delayed_blks == 0));
+ ASSERT((new_size != 0) ||
+ (fork == XFS_ATTR_FORK) ||
+ (ip->i_d.di_nextents == 0));
+ xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
+ return 0;
+}
+
+
+/*
+ * xfs_igrow_start
+ *
+ * Do the first part of growing a file: zero any data in the last
+ * block that is beyond the old EOF. We need to do this before
+ * the inode is joined to the transaction to modify the i_size.
+ * That way we can drop the inode lock and call into the buffer
+ * cache to get the buffer mapping the EOF.
+ */
+int
+xfs_igrow_start(
+ xfs_inode_t *ip,
+ xfs_fsize_t new_size,
+ cred_t *credp)
+{
+ xfs_fsize_t isize;
+ int error;
+
+ ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
+ ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
+ ASSERT(new_size > ip->i_d.di_size);
+
+ error = 0;
+ isize = ip->i_d.di_size;
+ /*
+ * Zero any pages that may have been created by
+ * xfs_write_file() beyond the end of the file
+ * and any blocks between the old and new file sizes.
+ */
+ error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, isize,
+ new_size);
+ return error;
+}
+
+/*
+ * xfs_igrow_finish
+ *
+ * This routine is called to extend the size of a file.
+ * The inode must have both the iolock and the ilock locked
+ * for update and it must be a part of the current transaction.
+ * The xfs_igrow_start() function must have been called previously.
+ * If the change_flag is not zero, the inode change timestamp will
+ * be updated.
+ */
+void
+xfs_igrow_finish(
+ xfs_trans_t *tp,
+ xfs_inode_t *ip,
+ xfs_fsize_t new_size,
+ int change_flag)
+{
+ ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
+ ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
+ ASSERT(ip->i_transp == tp);
+ ASSERT(new_size > ip->i_d.di_size);
+
+ /*
+ * Update the file size. Update the inode change timestamp
+ * if change_flag set.
+ */
+ ip->i_d.di_size = new_size;
+ if (change_flag)
+ xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
+ xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
+
+}
+
+
+/*
+ * This is called when the inode's link count goes to 0.
+ * We place the on-disk inode on a list in the AGI. It
+ * will be pulled from this list when the inode is freed.
+ */
+int
+xfs_iunlink(
+ xfs_trans_t *tp,
+ xfs_inode_t *ip)
+{
+ xfs_mount_t *mp;
+ xfs_agi_t *agi;
+ xfs_dinode_t *dip;
+ xfs_buf_t *agibp;
+ xfs_buf_t *ibp;
+ xfs_agnumber_t agno;
+ xfs_daddr_t agdaddr;
+ xfs_agino_t agino;
+ short bucket_index;
+ int offset;
+ int error;
+ int agi_ok;
+
+ ASSERT(ip->i_d.di_nlink == 0);
+ ASSERT(ip->i_d.di_mode != 0);
+ ASSERT(ip->i_transp == tp);
+
+ mp = tp->t_mountp;
+
+ agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
+ agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
+
+ /*
+ * Get the agi buffer first. It ensures lock ordering
+ * on the list.
+ */
+ error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
+ XFS_FSS_TO_BB(mp, 1), 0, &agibp);
+ if (error) {
+ return error;
+ }
+ /*
+ * Validate the magic number of the agi block.
+ */
+ agi = XFS_BUF_TO_AGI(agibp);
+ agi_ok =
+ INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC &&
+ XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT));
+ if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
+ XFS_RANDOM_IUNLINK))) {
+ XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
+ xfs_trans_brelse(tp, agibp);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+ /*
+ * Get the index into the agi hash table for the
+ * list this inode will go on.
+ */
+ agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
+ ASSERT(agino != 0);
+ bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
+ ASSERT(agi->agi_unlinked[bucket_index]);
+ ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != agino);
+
+ if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO) {
+ /*
+ * There is already another inode in the bucket we need
+ * to add ourselves to. Add us at the front of the list.
+ * Here we put the head pointer into our next pointer,
+ * and then we fall through to point the head at us.
+ */
+ error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
+ if (error) {
+ return error;
+ }
+ ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
+ ASSERT(dip->di_next_unlinked);
+ /* both on-disk, don't endian flip twice */
+ dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
+ offset = ip->i_boffset +
+ offsetof(xfs_dinode_t, di_next_unlinked);
+ xfs_trans_inode_buf(tp, ibp);
+ xfs_trans_log_buf(tp, ibp, offset,
+ (offset + sizeof(xfs_agino_t) - 1));
+ xfs_inobp_check(mp, ibp);
+ }
+
+ /*
+ * Point the bucket head pointer at the inode being inserted.
+ */
+ ASSERT(agino != 0);
+ INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, agino);
+ offset = offsetof(xfs_agi_t, agi_unlinked) +
+ (sizeof(xfs_agino_t) * bucket_index);
+ xfs_trans_log_buf(tp, agibp, offset,
+ (offset + sizeof(xfs_agino_t) - 1));
+ return 0;
+}
+
+/*
+ * Pull the on-disk inode from the AGI unlinked list.
+ */
+STATIC int
+xfs_iunlink_remove(
+ xfs_trans_t *tp,
+ xfs_inode_t *ip)
+{
+ xfs_ino_t next_ino;
+ xfs_mount_t *mp;
+ xfs_agi_t *agi;
+ xfs_dinode_t *dip;
+ xfs_buf_t *agibp;
+ xfs_buf_t *ibp;
+ xfs_agnumber_t agno;
+ xfs_daddr_t agdaddr;
+ xfs_agino_t agino;
+ xfs_agino_t next_agino;
+ xfs_buf_t *last_ibp;
+ xfs_dinode_t *last_dip;
+ short bucket_index;
+ int offset, last_offset;
+ int error;
+ int agi_ok;
+
+ /*
+ * First pull the on-disk inode from the AGI unlinked list.
+ */
+ mp = tp->t_mountp;
+
+ agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
+ agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
+
+ /*
+ * Get the agi buffer first. It ensures lock ordering
+ * on the list.
+ */
+ error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
+ XFS_FSS_TO_BB(mp, 1), 0, &agibp);
+ if (error) {
+ cmn_err(CE_WARN,
+ "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
+ error, mp->m_fsname);
+ return error;
+ }
+ /*
+ * Validate the magic number of the agi block.
+ */
+ agi = XFS_BUF_TO_AGI(agibp);
+ agi_ok =
+ INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC &&
+ XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT));
+ if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
+ XFS_RANDOM_IUNLINK_REMOVE))) {
+ XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
+ mp, agi);
+ xfs_trans_brelse(tp, agibp);
+ cmn_err(CE_WARN,
+ "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
+ mp->m_fsname);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+ /*
+ * Get the index into the agi hash table for the
+ * list this inode will go on.
+ */
+ agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
+ ASSERT(agino != 0);
+ bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
+ ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO);
+ ASSERT(agi->agi_unlinked[bucket_index]);
+
+ if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) == agino) {
+ /*
+ * We're at the head of the list. Get the inode's
+ * on-disk buffer to see if there is anyone after us
+ * on the list. Only modify our next pointer if it
+ * is not already NULLAGINO. This saves us the overhead
+ * of dealing with the buffer when there is no need to
+ * change it.
+ */
+ error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
+ if (error) {
+ cmn_err(CE_WARN,
+ "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
+ error, mp->m_fsname);
+ return error;
+ }
+ next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
+ ASSERT(next_agino != 0);
+ if (next_agino != NULLAGINO) {
+ INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
+ offset = ip->i_boffset +
+ offsetof(xfs_dinode_t, di_next_unlinked);
+ xfs_trans_inode_buf(tp, ibp);
+ xfs_trans_log_buf(tp, ibp, offset,
+ (offset + sizeof(xfs_agino_t) - 1));
+ xfs_inobp_check(mp, ibp);
+ } else {
+ xfs_trans_brelse(tp, ibp);
+ }
+ /*
+ * Point the bucket head pointer at the next inode.
+ */
+ ASSERT(next_agino != 0);
+ ASSERT(next_agino != agino);
+ INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, next_agino);
+ offset = offsetof(xfs_agi_t, agi_unlinked) +
+ (sizeof(xfs_agino_t) * bucket_index);
+ xfs_trans_log_buf(tp, agibp, offset,
+ (offset + sizeof(xfs_agino_t) - 1));
+ } else {
+ /*
+ * We need to search the list for the inode being freed.
+ */
+ next_agino = INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT);
+ last_ibp = NULL;
+ while (next_agino != agino) {
+ /*
+ * If the last inode wasn't the one pointing to
+ * us, then release its buffer since we're not
+ * going to do anything with it.
+ */
+ if (last_ibp != NULL) {
+ xfs_trans_brelse(tp, last_ibp);
+ }
+ next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
+ error = xfs_inotobp(mp, tp, next_ino, &last_dip,
+ &last_ibp, &last_offset);
+ if (error) {
+ cmn_err(CE_WARN,
+ "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
+ error, mp->m_fsname);
+ return error;
+ }
+ next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
+ ASSERT(next_agino != NULLAGINO);
+ ASSERT(next_agino != 0);
+ }
+ /*
+ * Now last_ibp points to the buffer previous to us on
+ * the unlinked list. Pull us from the list.
+ */
+ error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
+ if (error) {
+ cmn_err(CE_WARN,
+ "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
+ error, mp->m_fsname);
+ return error;
+ }
+ next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
+ ASSERT(next_agino != 0);
+ ASSERT(next_agino != agino);
+ if (next_agino != NULLAGINO) {
+ INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
+ offset = ip->i_boffset +
+ offsetof(xfs_dinode_t, di_next_unlinked);
+ xfs_trans_inode_buf(tp, ibp);
+ xfs_trans_log_buf(tp, ibp, offset,
+ (offset + sizeof(xfs_agino_t) - 1));
+ xfs_inobp_check(mp, ibp);
+ } else {
+ xfs_trans_brelse(tp, ibp);
+ }
+ /*
+ * Point the previous inode on the list to the next inode.
+ */
+ INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
+ ASSERT(next_agino != 0);
+ offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
+ xfs_trans_inode_buf(tp, last_ibp);
+ xfs_trans_log_buf(tp, last_ibp, offset,
+ (offset + sizeof(xfs_agino_t) - 1));
+ xfs_inobp_check(mp, last_ibp);
+ }
+ return 0;
+}
+
+static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
+{
+ return (((ip->i_itemp == NULL) ||
+ !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
+ (ip->i_update_core == 0));
+}
+
+void
+xfs_ifree_cluster(
+ xfs_inode_t *free_ip,
+ xfs_trans_t *tp,
+ xfs_ino_t inum)
+{
+ xfs_mount_t *mp = free_ip->i_mount;
+ int blks_per_cluster;
+ int nbufs;
+ int ninodes;
+ int i, j, found, pre_flushed;
+ xfs_daddr_t blkno;
+ xfs_buf_t *bp;
+ xfs_ihash_t *ih;
+ xfs_inode_t *ip, **ip_found;
+ xfs_inode_log_item_t *iip;
+ xfs_log_item_t *lip;
+ SPLDECL(s);
+
+ if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
+ blks_per_cluster = 1;
+ ninodes = mp->m_sb.sb_inopblock;
+ nbufs = XFS_IALLOC_BLOCKS(mp);
+ } else {
+ blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
+ mp->m_sb.sb_blocksize;
+ ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
+ nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
+ }
+
+ ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
+
+ for (j = 0; j < nbufs; j++, inum += ninodes) {
+ blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
+ XFS_INO_TO_AGBNO(mp, inum));
+
+
+ /*
+ * Look for each inode in memory and attempt to lock it,
+ * we can be racing with flush and tail pushing here.
+ * any inode we get the locks on, add to an array of
+ * inode items to process later.
+ *
+ * The get the buffer lock, we could beat a flush
+ * or tail pushing thread to the lock here, in which
+ * case they will go looking for the inode buffer
+ * and fail, we need some other form of interlock
+ * here.
+ */
+ found = 0;
+ for (i = 0; i < ninodes; i++) {
+ ih = XFS_IHASH(mp, inum + i);
+ read_lock(&ih->ih_lock);
+ for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
+ if (ip->i_ino == inum + i)
+ break;
+ }
+
+ /* Inode not in memory or we found it already,
+ * nothing to do
+ */
+ if (!ip || (ip->i_flags & XFS_ISTALE)) {
+ read_unlock(&ih->ih_lock);
+ continue;
+ }
+
+ if (xfs_inode_clean(ip)) {
+ read_unlock(&ih->ih_lock);
+ continue;
+ }
+
+ /* If we can get the locks then add it to the
+ * list, otherwise by the time we get the bp lock
+ * below it will already be attached to the
+ * inode buffer.
+ */
+
+ /* This inode will already be locked - by us, lets
+ * keep it that way.
+ */
+
+ if (ip == free_ip) {
+ if (xfs_iflock_nowait(ip)) {
+ ip->i_flags |= XFS_ISTALE;
+
+ if (xfs_inode_clean(ip)) {
+ xfs_ifunlock(ip);
+ } else {
+ ip_found[found++] = ip;
+ }
+ }
+ read_unlock(&ih->ih_lock);
+ continue;
+ }
+
+ if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
+ if (xfs_iflock_nowait(ip)) {
+ ip->i_flags |= XFS_ISTALE;
+
+ if (xfs_inode_clean(ip)) {
+ xfs_ifunlock(ip);
+ xfs_iunlock(ip, XFS_ILOCK_EXCL);
+ } else {
+ ip_found[found++] = ip;
+ }
+ } else {
+ xfs_iunlock(ip, XFS_ILOCK_EXCL);
+ }
+ }
+
+ read_unlock(&ih->ih_lock);
+ }
+
+ bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
+ mp->m_bsize * blks_per_cluster,
+ XFS_BUF_LOCK);
+
+ pre_flushed = 0;
+ lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
+ while (lip) {
+ if (lip->li_type == XFS_LI_INODE) {
+ iip = (xfs_inode_log_item_t *)lip;
+ ASSERT(iip->ili_logged == 1);
+ lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
+ AIL_LOCK(mp,s);
+ iip->ili_flush_lsn = iip->ili_item.li_lsn;
+ AIL_UNLOCK(mp, s);
+ iip->ili_inode->i_flags |= XFS_ISTALE;
+ pre_flushed++;
+ }
+ lip = lip->li_bio_list;
+ }
+
+ for (i = 0; i < found; i++) {
+ ip = ip_found[i];
+ iip = ip->i_itemp;
+
+ if (!iip) {
+ ip->i_update_core = 0;
+ xfs_ifunlock(ip);
+ xfs_iunlock(ip, XFS_ILOCK_EXCL);
+ continue;
+ }
+
+ iip->ili_last_fields = iip->ili_format.ilf_fields;
+ iip->ili_format.ilf_fields = 0;
+ iip->ili_logged = 1;
+ AIL_LOCK(mp,s);
+ iip->ili_flush_lsn = iip->ili_item.li_lsn;
+ AIL_UNLOCK(mp, s);
+
+ xfs_buf_attach_iodone(bp,
+ (void(*)(xfs_buf_t*,xfs_log_item_t*))
+ xfs_istale_done, (xfs_log_item_t *)iip);
+ if (ip != free_ip) {
+ xfs_iunlock(ip, XFS_ILOCK_EXCL);
+ }
+ }
+
+ if (found || pre_flushed)
+ xfs_trans_stale_inode_buf(tp, bp);
+ xfs_trans_binval(tp, bp);
+ }
+
+ kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
+}
+
+/*
+ * This is called to return an inode to the inode free list.
+ * The inode should already be truncated to 0 length and have
+ * no pages associated with it. This routine also assumes that
+ * the inode is already a part of the transaction.
+ *
+ * The on-disk copy of the inode will have been added to the list
+ * of unlinked inodes in the AGI. We need to remove the inode from
+ * that list atomically with respect to freeing it here.
+ */
+int
+xfs_ifree(
+ xfs_trans_t *tp,
+ xfs_inode_t *ip,
+ xfs_bmap_free_t *flist)
+{
+ int error;
+ int delete;
+ xfs_ino_t first_ino;
+
+ ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
+ ASSERT(ip->i_transp == tp);
+ ASSERT(ip->i_d.di_nlink == 0);
+ ASSERT(ip->i_d.di_nextents == 0);
+ ASSERT(ip->i_d.di_anextents == 0);
+ ASSERT((ip->i_d.di_size == 0) ||
+ ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
+ ASSERT(ip->i_d.di_nblocks == 0);
+
+ /*
+ * Pull the on-disk inode from the AGI unlinked list.
+ */
+ error = xfs_iunlink_remove(tp, ip);
+ if (error != 0) {
+ return error;
+ }
+
+ error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
+ if (error != 0) {
+ return error;
+ }
+ ip->i_d.di_mode = 0; /* mark incore inode as free */
+ ip->i_d.di_flags = 0;
+ ip->i_d.di_dmevmask = 0;
+ ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
+ ip->i_df.if_ext_max =
+ XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
+ ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
+ ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
+ /*
+ * Bump the generation count so no one will be confused
+ * by reincarnations of this inode.
+ */
+ ip->i_d.di_gen++;
+ xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
+
+ if (delete) {
+ xfs_ifree_cluster(ip, tp, first_ino);
+ }
+
+ return 0;
+}
+
+/*
+ * Reallocate the space for if_broot based on the number of records
+ * being added or deleted as indicated in rec_diff. Move the records
+ * and pointers in if_broot to fit the new size. When shrinking this
+ * will eliminate holes between the records and pointers created by
+ * the caller. When growing this will create holes to be filled in
+ * by the caller.
+ *
+ * The caller must not request to add more records than would fit in
+ * the on-disk inode root. If the if_broot is currently NULL, then
+ * if we adding records one will be allocated. The caller must also
+ * not request that the number of records go below zero, although
+ * it can go to zero.
+ *
+ * ip -- the inode whose if_broot area is changing
+ * ext_diff -- the change in the number of records, positive or negative,
+ * requested for the if_broot array.
+ */
+void
+xfs_iroot_realloc(
+ xfs_inode_t *ip,
+ int rec_diff,
+ int whichfork)
+{
+ int cur_max;
+ xfs_ifork_t *ifp;
+ xfs_bmbt_block_t *new_broot;
+ int new_max;
+ size_t new_size;
+ char *np;
+ char *op;
+
+ /*
+ * Handle the degenerate case quietly.
+ */
+ if (rec_diff == 0) {
+ return;
+ }
+
+ ifp = XFS_IFORK_PTR(ip, whichfork);
+ if (rec_diff > 0) {
+ /*
+ * If there wasn't any memory allocated before, just
+ * allocate it now and get out.
+ */
+ if (ifp->if_broot_bytes == 0) {
+ new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
+ ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
+ KM_SLEEP);
+ ifp->if_broot_bytes = (int)new_size;
+ return;
+ }
+
+ /*
+ * If there is already an existing if_broot, then we need
+ * to realloc() it and shift the pointers to their new
+ * location. The records don't change location because
+ * they are kept butted up against the btree block header.
+ */
+ cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
+ new_max = cur_max + rec_diff;
+ new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
+ ifp->if_broot = (xfs_bmbt_block_t *)
+ kmem_realloc(ifp->if_broot,
+ new_size,
+ (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
+ KM_SLEEP);
+ op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
+ ifp->if_broot_bytes);
+ np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
+ (int)new_size);
+ ifp->if_broot_bytes = (int)new_size;
+ ASSERT(ifp->if_broot_bytes <=
+ XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
+ memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
+ return;
+ }
+
+ /*
+ * rec_diff is less than 0. In this case, we are shrinking the
+ * if_broot buffer. It must already exist. If we go to zero
+ * records, just get rid of the root and clear the status bit.
+ */
+ ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
+ cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
+ new_max = cur_max + rec_diff;
+ ASSERT(new_max >= 0);
+ if (new_max > 0)
+ new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
+ else
+ new_size = 0;
+ if (new_size > 0) {
+ new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
+ /*
+ * First copy over the btree block header.
+ */
+ memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
+ } else {
+ new_broot = NULL;
+ ifp->if_flags &= ~XFS_IFBROOT;
+ }
+
+ /*
+ * Only copy the records and pointers if there are any.
+ */
+ if (new_max > 0) {
+ /*
+ * First copy the records.
+ */
+ op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
+ ifp->if_broot_bytes);
+ np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
+ (int)new_size);
+ memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
+
+ /*
+ * Then copy the pointers.
+ */
+ op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
+ ifp->if_broot_bytes);
+ np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
+ (int)new_size);
+ memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
+ }
+ kmem_free(ifp->if_broot, ifp->if_broot_bytes);
+ ifp->if_broot = new_broot;
+ ifp->if_broot_bytes = (int)new_size;
+ ASSERT(ifp->if_broot_bytes <=
+ XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
+ return;
+}
+
+
+/*
+ * This is called when the amount of space needed for if_extents
+ * is increased or decreased. The change in size is indicated by
+ * the number of extents that need to be added or deleted in the
+ * ext_diff parameter.
+ *
+ * If the amount of space needed has decreased below the size of the
+ * inline buffer, then switch to using the inline buffer. Otherwise,
+ * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
+ * to what is needed.
+ *
+ * ip -- the inode whose if_extents area is changing
+ * ext_diff -- the change in the number of extents, positive or negative,
+ * requested for the if_extents array.
+ */
+void
+xfs_iext_realloc(
+ xfs_inode_t *ip,
+ int ext_diff,
+ int whichfork)
+{
+ int byte_diff;
+ xfs_ifork_t *ifp;
+ int new_size;
+ uint rnew_size;
+
+ if (ext_diff == 0) {
+ return;
+ }
+
+ ifp = XFS_IFORK_PTR(ip, whichfork);
+ byte_diff = ext_diff * (uint)sizeof(xfs_bmbt_rec_t);
+ new_size = (int)ifp->if_bytes + byte_diff;
+ ASSERT(new_size >= 0);
+
+ if (new_size == 0) {
+ if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
+ ASSERT(ifp->if_real_bytes != 0);
+ kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
+ }
+ ifp->if_u1.if_extents = NULL;
+ rnew_size = 0;
+ } else if (new_size <= sizeof(ifp->if_u2.if_inline_ext)) {
+ /*
+ * If the valid extents can fit in if_inline_ext,
+ * copy them from the malloc'd vector and free it.
+ */
+ if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
+ /*
+ * For now, empty files are format EXTENTS,
+ * so the if_extents pointer is null.
+ */
+ if (ifp->if_u1.if_extents) {
+ memcpy(ifp->if_u2.if_inline_ext,
+ ifp->if_u1.if_extents, new_size);
+ kmem_free(ifp->if_u1.if_extents,
+ ifp->if_real_bytes);
+ }
+ ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
+ }
+ rnew_size = 0;
+ } else {
+ rnew_size = new_size;
+ if ((rnew_size & (rnew_size - 1)) != 0)
+ rnew_size = xfs_iroundup(rnew_size);
+ /*
+ * Stuck with malloc/realloc.
+ */
+ if (ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext) {
+ ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
+ kmem_alloc(rnew_size, KM_SLEEP);
+ memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
+ sizeof(ifp->if_u2.if_inline_ext));
+ } else if (rnew_size != ifp->if_real_bytes) {
+ ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
+ kmem_realloc(ifp->if_u1.if_extents,
+ rnew_size,
+ ifp->if_real_bytes,
+ KM_NOFS);
+ }
+ }
+ ifp->if_real_bytes = rnew_size;
+ ifp->if_bytes = new_size;
+}
+
+
+/*
+ * This is called when the amount of space needed for if_data
+ * is increased or decreased. The change in size is indicated by
+ * the number of bytes that need to be added or deleted in the
+ * byte_diff parameter.
+ *
+ * If the amount of space needed has decreased below the size of the
+ * inline buffer, then switch to using the inline buffer. Otherwise,
+ * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
+ * to what is needed.
+ *
+ * ip -- the inode whose if_data area is changing
+ * byte_diff -- the change in the number of bytes, positive or negative,
+ * requested for the if_data array.
+ */
+void
+xfs_idata_realloc(
+ xfs_inode_t *ip,
+ int byte_diff,
+ int whichfork)
+{
+ xfs_ifork_t *ifp;
+ int new_size;
+ int real_size;
+
+ if (byte_diff == 0) {
+ return;
+ }
+
+ ifp = XFS_IFORK_PTR(ip, whichfork);
+ new_size = (int)ifp->if_bytes + byte_diff;
+ ASSERT(new_size >= 0);
+
+ if (new_size == 0) {
+ if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
+ kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
+ }
+ ifp->if_u1.if_data = NULL;
+ real_size = 0;
+ } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
+ /*
+ * If the valid extents/data can fit in if_inline_ext/data,
+ * copy them from the malloc'd vector and free it.
+ */
+ if (ifp->if_u1.if_data == NULL) {
+ ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
+ } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
+ ASSERT(ifp->if_real_bytes != 0);
+ memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
+ new_size);
+ kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
+ ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
+ }
+ real_size = 0;
+ } else {
+ /*
+ * Stuck with malloc/realloc.
+ * For inline data, the underlying buffer must be
+ * a multiple of 4 bytes in size so that it can be
+ * logged and stay on word boundaries. We enforce
+ * that here.
+ */
+ real_size = roundup(new_size, 4);
+ if (ifp->if_u1.if_data == NULL) {
+ ASSERT(ifp->if_real_bytes == 0);
+ ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
+ } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
+ /*
+ * Only do the realloc if the underlying size
+ * is really changing.
+ */
+ if (ifp->if_real_bytes != real_size) {
+ ifp->if_u1.if_data =
+ kmem_realloc(ifp->if_u1.if_data,
+ real_size,
+ ifp->if_real_bytes,
+ KM_SLEEP);
+ }
+ } else {
+ ASSERT(ifp->if_real_bytes == 0);
+ ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
+ memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
+ ifp->if_bytes);
+ }
+ }
+ ifp->if_real_bytes = real_size;
+ ifp->if_bytes = new_size;
+ ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
+}
+
+
+
+
+/*
+ * Map inode to disk block and offset.
+ *
+ * mp -- the mount point structure for the current file system
+ * tp -- the current transaction
+ * ino -- the inode number of the inode to be located
+ * imap -- this structure is filled in with the information necessary
+ * to retrieve the given inode from disk
+ * flags -- flags to pass to xfs_dilocate indicating whether or not
+ * lookups in the inode btree were OK or not
+ */
+int
+xfs_imap(
+ xfs_mount_t *mp,
+ xfs_trans_t *tp,
+ xfs_ino_t ino,
+ xfs_imap_t *imap,
+ uint flags)
+{
+ xfs_fsblock_t fsbno;
+ int len;
+ int off;
+ int error;
+
+ fsbno = imap->im_blkno ?
+ XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
+ error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
+ if (error != 0) {
+ return error;
+ }
+ imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
+ imap->im_len = XFS_FSB_TO_BB(mp, len);
+ imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
+ imap->im_ioffset = (ushort)off;
+ imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
+ return 0;
+}
+
+void
+xfs_idestroy_fork(
+ xfs_inode_t *ip,
+ int whichfork)
+{
+ xfs_ifork_t *ifp;
+
+ ifp = XFS_IFORK_PTR(ip, whichfork);
+ if (ifp->if_broot != NULL) {
+ kmem_free(ifp->if_broot, ifp->if_broot_bytes);
+ ifp->if_broot = NULL;
+ }
+
+ /*
+ * If the format is local, then we can't have an extents
+ * array so just look for an inline data array. If we're
+ * not local then we may or may not have an extents list,
+ * so check and free it up if we do.
+ */
+ if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
+ if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
+ (ifp->if_u1.if_data != NULL)) {
+ ASSERT(ifp->if_real_bytes != 0);
+ kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
+ ifp->if_u1.if_data = NULL;
+ ifp->if_real_bytes = 0;
+ }
+ } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
+ (ifp->if_u1.if_extents != NULL) &&
+ (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)) {
+ ASSERT(ifp->if_real_bytes != 0);
+ kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
+ ifp->if_u1.if_extents = NULL;
+ ifp->if_real_bytes = 0;
+ }
+ ASSERT(ifp->if_u1.if_extents == NULL ||
+ ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
+ ASSERT(ifp->if_real_bytes == 0);
+ if (whichfork == XFS_ATTR_FORK) {
+ kmem_zone_free(xfs_ifork_zone, ip->i_afp);
+ ip->i_afp = NULL;
+ }
+}
+
+/*
+ * This is called free all the memory associated with an inode.
+ * It must free the inode itself and any buffers allocated for
+ * if_extents/if_data and if_broot. It must also free the lock
+ * associated with the inode.
+ */
+void
+xfs_idestroy(
+ xfs_inode_t *ip)
+{
+
+ switch (ip->i_d.di_mode & S_IFMT) {
+ case S_IFREG:
+ case S_IFDIR:
+ case S_IFLNK:
+ xfs_idestroy_fork(ip, XFS_DATA_FORK);
+ break;
+ }
+ if (ip->i_afp)
+ xfs_idestroy_fork(ip, XFS_ATTR_FORK);
+ mrfree(&ip->i_lock);
+ mrfree(&ip->i_iolock);
+ freesema(&ip->i_flock);
+#ifdef XFS_BMAP_TRACE
+ ktrace_free(ip->i_xtrace);
+#endif
+#ifdef XFS_BMBT_TRACE
+ ktrace_free(ip->i_btrace);
+#endif
+#ifdef XFS_RW_TRACE
+ ktrace_free(ip->i_rwtrace);
+#endif
+#ifdef XFS_ILOCK_TRACE
+ ktrace_free(ip->i_lock_trace);
+#endif
+#ifdef XFS_DIR2_TRACE
+ ktrace_free(ip->i_dir_trace);
+#endif
+ if (ip->i_itemp) {
+ /* XXXdpd should be able to assert this but shutdown
+ * is leaving the AIL behind. */
+ ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
+ XFS_FORCED_SHUTDOWN(ip->i_mount));
+ xfs_inode_item_destroy(ip);
+ }
+ kmem_zone_free(xfs_inode_zone, ip);
+}
+
+
+/*
+ * Increment the pin count of the given buffer.
+ * This value is protected by ipinlock spinlock in the mount structure.
+ */
+void
+xfs_ipin(
+ xfs_inode_t *ip)
+{
+ ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
+
+ atomic_inc(&ip->i_pincount);
+}
+
+/*
+ * Decrement the pin count of the given inode, and wake up
+ * anyone in xfs_iwait_unpin() if the count goes to 0. The
+ * inode must have been previoulsy pinned with a call to xfs_ipin().
+ */
+void
+xfs_iunpin(
+ xfs_inode_t *ip)
+{
+ ASSERT(atomic_read(&ip->i_pincount) > 0);
+
+ if (atomic_dec_and_test(&ip->i_pincount)) {
+ vnode_t *vp = XFS_ITOV_NULL(ip);
+
+ /* make sync come back and flush this inode */
+ if (vp) {
+ struct inode *inode = LINVFS_GET_IP(vp);
+
+ if (!(inode->i_state & I_NEW))
+ mark_inode_dirty_sync(inode);
+ }
+
+ wake_up(&ip->i_ipin_wait);
+ }
+}
+
+/*
+ * This is called to wait for the given inode to be unpinned.
+ * It will sleep until this happens. The caller must have the
+ * inode locked in at least shared mode so that the buffer cannot
+ * be subsequently pinned once someone is waiting for it to be
+ * unpinned.
+ */
+void
+xfs_iunpin_wait(
+ xfs_inode_t *ip)
+{
+ xfs_inode_log_item_t *iip;
+ xfs_lsn_t lsn;
+
+ ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
+
+ if (atomic_read(&ip->i_pincount) == 0) {
+ return;
+ }
+
+ iip = ip->i_itemp;
+ if (iip && iip->ili_last_lsn) {
+ lsn = iip->ili_last_lsn;
+ } else {
+ lsn = (xfs_lsn_t)0;
+ }
+
+ /*
+ * Give the log a push so we don't wait here too long.
+ */
+ xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
+
+ wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
+}
+
+
+/*
+ * xfs_iextents_copy()
+ *
+ * This is called to copy the REAL extents (as opposed to the delayed
+ * allocation extents) from the inode into the given buffer. It
+ * returns the number of bytes copied into the buffer.
+ *
+ * If there are no delayed allocation extents, then we can just
+ * memcpy() the extents into the buffer. Otherwise, we need to
+ * examine each extent in turn and skip those which are delayed.
+ */
+int
+xfs_iextents_copy(
+ xfs_inode_t *ip,
+ xfs_bmbt_rec_t *buffer,
+ int whichfork)
+{
+ int copied;
+ xfs_bmbt_rec_t *dest_ep;
+ xfs_bmbt_rec_t *ep;
+#ifdef XFS_BMAP_TRACE
+ static char fname[] = "xfs_iextents_copy";
+#endif
+ int i;
+ xfs_ifork_t *ifp;
+ int nrecs;
+ xfs_fsblock_t start_block;
+
+ ifp = XFS_IFORK_PTR(ip, whichfork);
+ ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
+ ASSERT(ifp->if_bytes > 0);
+
+ nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
+ xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
+ ASSERT(nrecs > 0);
+
+ /*
+ * There are some delayed allocation extents in the
+ * inode, so copy the extents one at a time and skip
+ * the delayed ones. There must be at least one
+ * non-delayed extent.
+ */
+ ep = ifp->if_u1.if_extents;
+ dest_ep = buffer;
+ copied = 0;
+ for (i = 0; i < nrecs; i++) {
+ start_block = xfs_bmbt_get_startblock(ep);
+ if (ISNULLSTARTBLOCK(start_block)) {
+ /*
+ * It's a delayed allocation extent, so skip it.
+ */
+ ep++;
+ continue;
+ }
+
+ /* Translate to on disk format */
+ put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
+ (__uint64_t*)&dest_ep->l0);
+ put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
+ (__uint64_t*)&dest_ep->l1);
+ dest_ep++;
+ ep++;
+ copied++;
+ }
+ ASSERT(copied != 0);
+ xfs_validate_extents(buffer, copied, 1, XFS_EXTFMT_INODE(ip));
+
+ return (copied * (uint)sizeof(xfs_bmbt_rec_t));
+}
+
+/*
+ * Each of the following cases stores data into the same region
+ * of the on-disk inode, so only one of them can be valid at
+ * any given time. While it is possible to have conflicting formats
+ * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
+ * in EXTENTS format, this can only happen when the fork has
+ * changed formats after being modified but before being flushed.
+ * In these cases, the format always takes precedence, because the
+ * format indicates the current state of the fork.
+ */
+/*ARGSUSED*/
+STATIC int
+xfs_iflush_fork(
+ xfs_inode_t *ip,
+ xfs_dinode_t *dip,
+ xfs_inode_log_item_t *iip,
+ int whichfork,
+ xfs_buf_t *bp)
+{
+ char *cp;
+ xfs_ifork_t *ifp;
+ xfs_mount_t *mp;
+#ifdef XFS_TRANS_DEBUG
+ int first;
+#endif
+ static const short brootflag[2] =
+ { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
+ static const short dataflag[2] =
+ { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
+ static const short extflag[2] =
+ { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
+
+ if (iip == NULL)
+ return 0;
+ ifp = XFS_IFORK_PTR(ip, whichfork);
+ /*
+ * This can happen if we gave up in iformat in an error path,
+ * for the attribute fork.
+ */
+ if (ifp == NULL) {
+ ASSERT(whichfork == XFS_ATTR_FORK);
+ return 0;
+ }
+ cp = XFS_DFORK_PTR(dip, whichfork);
+ mp = ip->i_mount;
+ switch (XFS_IFORK_FORMAT(ip, whichfork)) {
+ case XFS_DINODE_FMT_LOCAL:
+ if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
+ (ifp->if_bytes > 0)) {
+ ASSERT(ifp->if_u1.if_data != NULL);
+ ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
+ memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
+ }
+ if (whichfork == XFS_DATA_FORK) {
+ if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) {
+ XFS_ERROR_REPORT("xfs_iflush_fork",
+ XFS_ERRLEVEL_LOW, mp);
+ return XFS_ERROR(EFSCORRUPTED);
+ }
+ }
+ break;
+
+ case XFS_DINODE_FMT_EXTENTS:
+ ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
+ !(iip->ili_format.ilf_fields & extflag[whichfork]));
+ ASSERT((ifp->if_u1.if_extents != NULL) || (ifp->if_bytes == 0));
+ ASSERT((ifp->if_u1.if_extents == NULL) || (ifp->if_bytes > 0));
+ if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
+ (ifp->if_bytes > 0)) {
+ ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
+ (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
+ whichfork);
+ }
+ break;
+
+ case XFS_DINODE_FMT_BTREE:
+ if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
+ (ifp->if_broot_bytes > 0)) {
+ ASSERT(ifp->if_broot != NULL);
+ ASSERT(ifp->if_broot_bytes <=
+ (XFS_IFORK_SIZE(ip, whichfork) +
+ XFS_BROOT_SIZE_ADJ));
+ xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
+ (xfs_bmdr_block_t *)cp,
+ XFS_DFORK_SIZE(dip, mp, whichfork));
+ }
+ break;
+
+ case XFS_DINODE_FMT_DEV:
+ if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
+ ASSERT(whichfork == XFS_DATA_FORK);
+ INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
+ }
+ break;
+
+ case XFS_DINODE_FMT_UUID:
+ if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
+ ASSERT(whichfork == XFS_DATA_FORK);
+ memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
+ sizeof(uuid_t));
+ }
+ break;
+
+ default:
+ ASSERT(0);
+ break;
+ }
+
+ return 0;
+}
+
+/*
+ * xfs_iflush() will write a modified inode's changes out to the
+ * inode's on disk home. The caller must have the inode lock held
+ * in at least shared mode and the inode flush semaphore must be
+ * held as well. The inode lock will still be held upon return from
+ * the call and the caller is free to unlock it.
+ * The inode flush lock will be unlocked when the inode reaches the disk.
+ * The flags indicate how the inode's buffer should be written out.
+ */
+int
+xfs_iflush(
+ xfs_inode_t *ip,
+ uint flags)
+{
+ xfs_inode_log_item_t *iip;
+ xfs_buf_t *bp;
+ xfs_dinode_t *dip;
+ xfs_mount_t *mp;
+ int error;
+ /* REFERENCED */
+ xfs_chash_t *ch;
+ xfs_inode_t *iq;
+ int clcount; /* count of inodes clustered */
+ int bufwasdelwri;
+ enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
+ SPLDECL(s);
+
+ XFS_STATS_INC(xs_iflush_count);
+
+ ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
+ ASSERT(valusema(&ip->i_flock) <= 0);
+ ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
+ ip->i_d.di_nextents > ip->i_df.if_ext_max);
+
+ iip = ip->i_itemp;
+ mp = ip->i_mount;
+
+ /*
+ * If the inode isn't dirty, then just release the inode
+ * flush lock and do nothing.
+ */
+ if ((ip->i_update_core == 0) &&
+ ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
+ ASSERT((iip != NULL) ?
+ !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
+ xfs_ifunlock(ip);
+ return 0;
+ }
+
+ /*
+ * We can't flush the inode until it is unpinned, so
+ * wait for it. We know noone new can pin it, because
+ * we are holding the inode lock shared and you need
+ * to hold it exclusively to pin the inode.
+ */
+ xfs_iunpin_wait(ip);
+
+ /*
+ * This may have been unpinned because the filesystem is shutting
+ * down forcibly. If that's the case we must not write this inode
+ * to disk, because the log record didn't make it to disk!
+ */
+ if (XFS_FORCED_SHUTDOWN(mp)) {
+ ip->i_update_core = 0;
+ if (iip)
+ iip->ili_format.ilf_fields = 0;
+ xfs_ifunlock(ip);
+ return XFS_ERROR(EIO);
+ }
+
+ /*
+ * Get the buffer containing the on-disk inode.
+ */
+ error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0);
+ if (error != 0) {
+ xfs_ifunlock(ip);
+ return error;
+ }
+
+ /*
+ * Decide how buffer will be flushed out. This is done before
+ * the call to xfs_iflush_int because this field is zeroed by it.
+ */
+ if (iip != NULL && iip->ili_format.ilf_fields != 0) {
+ /*
+ * Flush out the inode buffer according to the directions
+ * of the caller. In the cases where the caller has given
+ * us a choice choose the non-delwri case. This is because
+ * the inode is in the AIL and we need to get it out soon.
+ */
+ switch (flags) {
+ case XFS_IFLUSH_SYNC:
+ case XFS_IFLUSH_DELWRI_ELSE_SYNC:
+ flags = 0;
+ break;
+ case XFS_IFLUSH_ASYNC:
+ case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
+ flags = INT_ASYNC;
+ break;
+ case XFS_IFLUSH_DELWRI:
+ flags = INT_DELWRI;
+ break;
+ default:
+ ASSERT(0);
+ flags = 0;
+ break;
+ }
+ } else {
+ switch (flags) {
+ case XFS_IFLUSH_DELWRI_ELSE_SYNC:
+ case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
+ case XFS_IFLUSH_DELWRI:
+ flags = INT_DELWRI;
+ break;
+ case XFS_IFLUSH_ASYNC:
+ flags = INT_ASYNC;
+ break;
+ case XFS_IFLUSH_SYNC:
+ flags = 0;
+ break;
+ default:
+ ASSERT(0);
+ flags = 0;
+ break;
+ }
+ }
+
+ /*
+ * First flush out the inode that xfs_iflush was called with.
+ */
+ error = xfs_iflush_int(ip, bp);
+ if (error) {
+ goto corrupt_out;
+ }
+
+ /*
+ * inode clustering:
+ * see if other inodes can be gathered into this write
+ */
+
+ ip->i_chash->chl_buf = bp;
+
+ ch = XFS_CHASH(mp, ip->i_blkno);
+ s = mutex_spinlock(&ch->ch_lock);
+
+ clcount = 0;
+ for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
+ /*
+ * Do an un-protected check to see if the inode is dirty and
+ * is a candidate for flushing. These checks will be repeated
+ * later after the appropriate locks are acquired.
+ */
+ iip = iq->i_itemp;
+ if ((iq->i_update_core == 0) &&
+ ((iip == NULL) ||
+ !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
+ xfs_ipincount(iq) == 0) {
+ continue;
+ }
+
+ /*
+ * Try to get locks. If any are unavailable,
+ * then this inode cannot be flushed and is skipped.
+ */
+
+ /* get inode locks (just i_lock) */
+ if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
+ /* get inode flush lock */
+ if (xfs_iflock_nowait(iq)) {
+ /* check if pinned */
+ if (xfs_ipincount(iq) == 0) {
+ /* arriving here means that
+ * this inode can be flushed.
+ * first re-check that it's
+ * dirty
+ */
+ iip = iq->i_itemp;
+ if ((iq->i_update_core != 0)||
+ ((iip != NULL) &&
+ (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
+ clcount++;
+ error = xfs_iflush_int(iq, bp);
+ if (error) {
+ xfs_iunlock(iq,
+ XFS_ILOCK_SHARED);
+ goto cluster_corrupt_out;
+ }
+ } else {
+ xfs_ifunlock(iq);
+ }
+ } else {
+ xfs_ifunlock(iq);
+ }
+ }
+ xfs_iunlock(iq, XFS_ILOCK_SHARED);
+ }
+ }
+ mutex_spinunlock(&ch->ch_lock, s);
+
+ if (clcount) {
+ XFS_STATS_INC(xs_icluster_flushcnt);
+ XFS_STATS_ADD(xs_icluster_flushinode, clcount);
+ }
+
+ /*
+ * If the buffer is pinned then push on the log so we won't
+ * get stuck waiting in the write for too long.
+ */
+ if (XFS_BUF_ISPINNED(bp)){
+ xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
+ }
+
+ if (flags & INT_DELWRI) {
+ xfs_bdwrite(mp, bp);
+ } else if (flags & INT_ASYNC) {
+ xfs_bawrite(mp, bp);
+ } else {
+ error = xfs_bwrite(mp, bp);
+ }
+ return error;
+
+corrupt_out:
+ xfs_buf_relse(bp);
+ xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
+ xfs_iflush_abort(ip);
+ /*
+ * Unlocks the flush lock
+ */
+ return XFS_ERROR(EFSCORRUPTED);
+
+cluster_corrupt_out:
+ /* Corruption detected in the clustering loop. Invalidate the
+ * inode buffer and shut down the filesystem.
+ */
+ mutex_spinunlock(&ch->ch_lock, s);
+
+ /*
+ * Clean up the buffer. If it was B_DELWRI, just release it --
+ * brelse can handle it with no problems. If not, shut down the
+ * filesystem before releasing the buffer.
+ */
+ if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
+ xfs_buf_relse(bp);
+ }
+
+ xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
+
+ if(!bufwasdelwri) {
+ /*
+ * Just like incore_relse: if we have b_iodone functions,
+ * mark the buffer as an error and call them. Otherwise
+ * mark it as stale and brelse.
+ */
+ if (XFS_BUF_IODONE_FUNC(bp)) {
+ XFS_BUF_CLR_BDSTRAT_FUNC(bp);
+ XFS_BUF_UNDONE(bp);
+ XFS_BUF_STALE(bp);
+ XFS_BUF_SHUT(bp);
+ XFS_BUF_ERROR(bp,EIO);
+ xfs_biodone(bp);
+ } else {
+ XFS_BUF_STALE(bp);
+ xfs_buf_relse(bp);
+ }
+ }
+
+ xfs_iflush_abort(iq);
+ /*
+ * Unlocks the flush lock
+ */
+ return XFS_ERROR(EFSCORRUPTED);
+}
+
+
+STATIC int
+xfs_iflush_int(
+ xfs_inode_t *ip,
+ xfs_buf_t *bp)
+{
+ xfs_inode_log_item_t *iip;
+ xfs_dinode_t *dip;
+ xfs_mount_t *mp;
+#ifdef XFS_TRANS_DEBUG
+ int first;
+#endif
+ SPLDECL(s);
+
+ ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
+ ASSERT(valusema(&ip->i_flock) <= 0);
+ ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
+ ip->i_d.di_nextents > ip->i_df.if_ext_max);
+
+ iip = ip->i_itemp;
+ mp = ip->i_mount;
+
+
+ /*
+ * If the inode isn't dirty, then just release the inode
+ * flush lock and do nothing.
+ */
+ if ((ip->i_update_core == 0) &&
+ ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
+ xfs_ifunlock(ip);
+ return 0;
+ }
+
+ /* set *dip = inode's place in the buffer */
+ dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
+
+ /*
+ * Clear i_update_core before copying out the data.
+ * This is for coordination with our timestamp updates
+ * that don't hold the inode lock. They will always
+ * update the timestamps BEFORE setting i_update_core,
+ * so if we clear i_update_core after they set it we
+ * are guaranteed to see their updates to the timestamps.
+ * I believe that this depends on strongly ordered memory
+ * semantics, but we have that. We use the SYNCHRONIZE
+ * macro to make sure that the compiler does not reorder
+ * the i_update_core access below the data copy below.
+ */
+ ip->i_update_core = 0;
+ SYNCHRONIZE();
+
+ if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
+ mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
+ xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
+ "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
+ ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
+ goto corrupt_out;
+ }
+ if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
+ mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
+ xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
+ "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
+ ip->i_ino, ip, ip->i_d.di_magic);
+ goto corrupt_out;
+ }
+ if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
+ if (XFS_TEST_ERROR(
+ (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
+ (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
+ mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
+ xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
+ "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
+ ip->i_ino, ip);
+ goto corrupt_out;
+ }
+ } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
+ if (XFS_TEST_ERROR(
+ (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
+ (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
+ (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
+ mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
+ xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
+ "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
+ ip->i_ino, ip);
+ goto corrupt_out;
+ }
+ }
+ if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
+ ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
+ XFS_RANDOM_IFLUSH_5)) {
+ xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
+ "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
+ ip->i_ino,
+ ip->i_d.di_nextents + ip->i_d.di_anextents,
+ ip->i_d.di_nblocks,
+ ip);
+ goto corrupt_out;
+ }
+ if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
+ mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
+ xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
+ "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
+ ip->i_ino, ip->i_d.di_forkoff, ip);
+ goto corrupt_out;
+ }
+ /*
+ * bump the flush iteration count, used to detect flushes which
+ * postdate a log record during recovery.
+ */
+
+ ip->i_d.di_flushiter++;
+
+ /*
+ * Copy the dirty parts of the inode into the on-disk
+ * inode. We always copy out the core of the inode,
+ * because if the inode is dirty at all the core must
+ * be.
+ */
+ xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
+
+ /* Wrap, we never let the log put out DI_MAX_FLUSH */
+ if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
+ ip->i_d.di_flushiter = 0;
+
+ /*
+ * If this is really an old format inode and the superblock version
+ * has not been updated to support only new format inodes, then
+ * convert back to the old inode format. If the superblock version
+ * has been updated, then make the conversion permanent.
+ */
+ ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
+ XFS_SB_VERSION_HASNLINK(&mp->m_sb));
+ if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
+ if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
+ /*
+ * Convert it back.
+ */
+ ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
+ INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
+ } else {
+ /*
+ * The superblock version has already been bumped,
+ * so just make the conversion to the new inode
+ * format permanent.
+ */
+ ip->i_d.di_version = XFS_DINODE_VERSION_2;
+ INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
+ ip->i_d.di_onlink = 0;
+ dip->di_core.di_onlink = 0;
+ memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
+ memset(&(dip->di_core.di_pad[0]), 0,
+ sizeof(dip->di_core.di_pad));
+ ASSERT(ip->i_d.di_projid == 0);
+ }
+ }
+
+ if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
+ goto corrupt_out;
+ }
+
+ if (XFS_IFORK_Q(ip)) {
+ /*
+ * The only error from xfs_iflush_fork is on the data fork.
+ */
+ (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
+ }
+ xfs_inobp_check(mp, bp);
+
+ /*
+ * We've recorded everything logged in the inode, so we'd
+ * like to clear the ilf_fields bits so we don't log and
+ * flush things unnecessarily. However, we can't stop
+ * logging all this information until the data we've copied
+ * into the disk buffer is written to disk. If we did we might
+ * overwrite the copy of the inode in the log with all the
+ * data after re-logging only part of it, and in the face of
+ * a crash we wouldn't have all the data we need to recover.
+ *
+ * What we do is move the bits to the ili_last_fields field.
+ * When logging the inode, these bits are moved back to the
+ * ilf_fields field. In the xfs_iflush_done() routine we
+ * clear ili_last_fields, since we know that the information
+ * those bits represent is permanently on disk. As long as
+ * the flush completes before the inode is logged again, then
+ * both ilf_fields and ili_last_fields will be cleared.
+ *
+ * We can play with the ilf_fields bits here, because the inode
+ * lock must be held exclusively in order to set bits there
+ * and the flush lock protects the ili_last_fields bits.
+ * Set ili_logged so the flush done
+ * routine can tell whether or not to look in the AIL.
+ * Also, store the current LSN of the inode so that we can tell
+ * whether the item has moved in the AIL from xfs_iflush_done().
+ * In order to read the lsn we need the AIL lock, because
+ * it is a 64 bit value that cannot be read atomically.
+ */
+ if (iip != NULL && iip->ili_format.ilf_fields != 0) {
+ iip->ili_last_fields = iip->ili_format.ilf_fields;
+ iip->ili_format.ilf_fields = 0;
+ iip->ili_logged = 1;
+
+ ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
+ AIL_LOCK(mp,s);
+ iip->ili_flush_lsn = iip->ili_item.li_lsn;
+ AIL_UNLOCK(mp, s);
+
+ /*
+ * Attach the function xfs_iflush_done to the inode's
+ * buffer. This will remove the inode from the AIL
+ * and unlock the inode's flush lock when the inode is
+ * completely written to disk.
+ */
+ xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
+ xfs_iflush_done, (xfs_log_item_t *)iip);
+
+ ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
+ ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
+ } else {
+ /*
+ * We're flushing an inode which is not in the AIL and has
+ * not been logged but has i_update_core set. For this
+ * case we can use a B_DELWRI flush and immediately drop
+ * the inode flush lock because we can avoid the whole
+ * AIL state thing. It's OK to drop the flush lock now,
+ * because we've already locked the buffer and to do anything
+ * you really need both.
+ */
+ if (iip != NULL) {
+ ASSERT(iip->ili_logged == 0);
+ ASSERT(iip->ili_last_fields == 0);
+ ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
+ }
+ xfs_ifunlock(ip);
+ }
+
+ return 0;
+
+corrupt_out:
+ return XFS_ERROR(EFSCORRUPTED);
+}
+
+
+/*
+ * Flush all inactive inodes in mp. Return true if no user references
+ * were found, false otherwise.
+ */
+int
+xfs_iflush_all(
+ xfs_mount_t *mp,
+ int flag)
+{
+ int busy;
+ int done;
+ int purged;
+ xfs_inode_t *ip;
+ vmap_t vmap;
+ vnode_t *vp;
+
+ busy = done = 0;
+ while (!done) {
+ purged = 0;
+ XFS_MOUNT_ILOCK(mp);
+ ip = mp->m_inodes;
+ if (ip == NULL) {
+ break;
+ }
+ do {
+ /* Make sure we skip markers inserted by sync */
+ if (ip->i_mount == NULL) {
+ ip = ip->i_mnext;
+ continue;
+ }
+
+ /*
+ * It's up to our caller to purge the root
+ * and quota vnodes later.
+ */
+ vp = XFS_ITOV_NULL(ip);
+
+ if (!vp) {
+ XFS_MOUNT_IUNLOCK(mp);
+ xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
+ purged = 1;
+ break;
+ }
+
+ if (vn_count(vp) != 0) {
+ if (vn_count(vp) == 1 &&
+ (ip == mp->m_rootip ||
+ (mp->m_quotainfo &&
+ (ip->i_ino == mp->m_sb.sb_uquotino ||
+ ip->i_ino == mp->m_sb.sb_gquotino)))) {
+
+ ip = ip->i_mnext;
+ continue;
+ }
+ if (!(flag & XFS_FLUSH_ALL)) {
+ busy = 1;
+ done = 1;
+ break;
+ }
+ /*
+ * Ignore busy inodes but continue flushing
+ * others.
+ */
+ ip = ip->i_mnext;
+ continue;
+ }
+ /*
+ * Sample vp mapping while holding mp locked on MP
+ * systems, so we don't purge a reclaimed or
+ * nonexistent vnode. We break from the loop
+ * since we know that we modify
+ * it by pulling ourselves from it in xfs_reclaim()
+ * called via vn_purge() below. Set ip to the next
+ * entry in the list anyway so we'll know below
+ * whether we reached the end or not.
+ */
+ VMAP(vp, vmap);
+ XFS_MOUNT_IUNLOCK(mp);
+
+ vn_purge(vp, &vmap);
+
+ purged = 1;
+ break;
+ } while (ip != mp->m_inodes);
+ /*
+ * We need to distinguish between when we exit the loop
+ * after a purge and when we simply hit the end of the
+ * list. We can't use the (ip == mp->m_inodes) test,
+ * because when we purge an inode at the start of the list
+ * the next inode on the list becomes mp->m_inodes. That
+ * would cause such a test to bail out early. The purged
+ * variable tells us how we got out of the loop.
+ */
+ if (!purged) {
+ done = 1;
+ }
+ }
+ XFS_MOUNT_IUNLOCK(mp);
+ return !busy;
+}
+
+
+/*
+ * xfs_iaccess: check accessibility of inode for mode.
+ */
+int
+xfs_iaccess(
+ xfs_inode_t *ip,
+ mode_t mode,
+ cred_t *cr)
+{
+ int error;
+ mode_t orgmode = mode;
+ struct inode *inode = LINVFS_GET_IP(XFS_ITOV(ip));
+
+ if (mode & S_IWUSR) {
+ umode_t imode = inode->i_mode;
+
+ if (IS_RDONLY(inode) &&
+ (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
+ return XFS_ERROR(EROFS);
+
+ if (IS_IMMUTABLE(inode))
+ return XFS_ERROR(EACCES);
+ }
+
+ /*
+ * If there's an Access Control List it's used instead of
+ * the mode bits.
+ */
+ if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
+ return error ? XFS_ERROR(error) : 0;
+
+ if (current_fsuid(cr) != ip->i_d.di_uid) {
+ mode >>= 3;
+ if (!in_group_p((gid_t)ip->i_d.di_gid))
+ mode >>= 3;
+ }
+
+ /*
+ * If the DACs are ok we don't need any capability check.
+ */
+ if ((ip->i_d.di_mode & mode) == mode)
+ return 0;
+ /*
+ * Read/write DACs are always overridable.
+ * Executable DACs are overridable if at least one exec bit is set.
+ */
+ if (!(orgmode & S_IXUSR) ||
+ (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
+ if (capable_cred(cr, CAP_DAC_OVERRIDE))
+ return 0;
+
+ if ((orgmode == S_IRUSR) ||
+ (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
+ if (capable_cred(cr, CAP_DAC_READ_SEARCH))
+ return 0;
+#ifdef NOISE
+ cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
+#endif /* NOISE */
+ return XFS_ERROR(EACCES);
+ }
+ return XFS_ERROR(EACCES);
+}
+
+/*
+ * xfs_iroundup: round up argument to next power of two
+ */
+uint
+xfs_iroundup(
+ uint v)
+{
+ int i;
+ uint m;
+
+ if ((v & (v - 1)) == 0)
+ return v;
+ ASSERT((v & 0x80000000) == 0);
+ if ((v & (v + 1)) == 0)
+ return v + 1;
+ for (i = 0, m = 1; i < 31; i++, m <<= 1) {
+ if (v & m)
+ continue;
+ v |= m;
+ if ((v & (v + 1)) == 0)
+ return v + 1;
+ }
+ ASSERT(0);
+ return( 0 );
+}
+
+/*
+ * Change the requested timestamp in the given inode.
+ * We don't lock across timestamp updates, and we don't log them but
+ * we do record the fact that there is dirty information in core.
+ *
+ * NOTE -- callers MUST combine XFS_ICHGTIME_MOD or XFS_ICHGTIME_CHG
+ * with XFS_ICHGTIME_ACC to be sure that access time
+ * update will take. Calling first with XFS_ICHGTIME_ACC
+ * and then XFS_ICHGTIME_MOD may fail to modify the access
+ * timestamp if the filesystem is mounted noacctm.
+ */
+void
+xfs_ichgtime(xfs_inode_t *ip,
+ int flags)
+{
+ timespec_t tv;
+ vnode_t *vp = XFS_ITOV(ip);
+ struct inode *inode = LINVFS_GET_IP(vp);
+
+ /*
+ * We're not supposed to change timestamps in readonly-mounted
+ * filesystems. Throw it away if anyone asks us.
+ */
+ if (unlikely(vp->v_vfsp->vfs_flag & VFS_RDONLY))
+ return;
+
+ /*
+ * Don't update access timestamps on reads if mounted "noatime"
+ * Throw it away if anyone asks us.
+ */
+ if ((ip->i_mount->m_flags & XFS_MOUNT_NOATIME || IS_NOATIME(inode)) &&
+ ((flags & (XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD|XFS_ICHGTIME_CHG))
+ == XFS_ICHGTIME_ACC))
+ return;
+
+ nanotime(&tv);
+ if (flags & XFS_ICHGTIME_MOD) {
+ VN_MTIMESET(vp, &tv);
+ ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
+ ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
+ }
+ if (flags & XFS_ICHGTIME_ACC) {
+ VN_ATIMESET(vp, &tv);
+ ip->i_d.di_atime.t_sec = (__int32_t)tv.tv_sec;
+ ip->i_d.di_atime.t_nsec = (__int32_t)tv.tv_nsec;
+ }
+ if (flags & XFS_ICHGTIME_CHG) {
+ VN_CTIMESET(vp, &tv);
+ ip->i_d.di_ctime.t_sec = (__int32_t)tv.tv_sec;
+ ip->i_d.di_ctime.t_nsec = (__int32_t)tv.tv_nsec;
+ }
+
+ /*
+ * We update the i_update_core field _after_ changing
+ * the timestamps in order to coordinate properly with
+ * xfs_iflush() so that we don't lose timestamp updates.
+ * This keeps us from having to hold the inode lock
+ * while doing this. We use the SYNCHRONIZE macro to
+ * ensure that the compiler does not reorder the update
+ * of i_update_core above the timestamp updates above.
+ */
+ SYNCHRONIZE();
+ ip->i_update_core = 1;
+ if (!(inode->i_state & I_LOCK))
+ mark_inode_dirty_sync(inode);
+}
+
+#ifdef XFS_ILOCK_TRACE
+ktrace_t *xfs_ilock_trace_buf;
+
+void
+xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
+{
+ ktrace_enter(ip->i_lock_trace,
+ (void *)ip,
+ (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
+ (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
+ (void *)ra, /* caller of ilock */
+ (void *)(unsigned long)current_cpu(),
+ (void *)(unsigned long)current_pid(),
+ NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
+}
+#endif