aboutsummaryrefslogtreecommitdiff
path: root/drivers/video/kyro
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/video/kyro')
-rw-r--r--drivers/video/kyro/Makefile8
-rw-r--r--drivers/video/kyro/STG4000InitDevice.c326
-rw-r--r--drivers/video/kyro/STG4000Interface.h60
-rw-r--r--drivers/video/kyro/STG4000OverlayDevice.c600
-rw-r--r--drivers/video/kyro/STG4000Ramdac.c163
-rw-r--r--drivers/video/kyro/STG4000Reg.h283
-rw-r--r--drivers/video/kyro/STG4000VTG.c170
-rw-r--r--drivers/video/kyro/fbdev.c820
8 files changed, 2430 insertions, 0 deletions
diff --git a/drivers/video/kyro/Makefile b/drivers/video/kyro/Makefile
new file mode 100644
index 00000000000..2fd66f551ba
--- /dev/null
+++ b/drivers/video/kyro/Makefile
@@ -0,0 +1,8 @@
+#
+# Makefile for the Kyro framebuffer driver
+#
+
+obj-$(CONFIG_FB_KYRO) += kyrofb.o
+
+kyrofb-objs := STG4000Ramdac.o STG4000VTG.o STG4000OverlayDevice.o \
+ STG4000InitDevice.o fbdev.o
diff --git a/drivers/video/kyro/STG4000InitDevice.c b/drivers/video/kyro/STG4000InitDevice.c
new file mode 100644
index 00000000000..7e33cd307d4
--- /dev/null
+++ b/drivers/video/kyro/STG4000InitDevice.c
@@ -0,0 +1,326 @@
+/*
+ * linux/drivers/video/kyro/STG4000InitDevice.c
+ *
+ * Copyright (C) 2000 Imagination Technologies Ltd
+ * Copyright (C) 2002 STMicroelectronics
+ *
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file COPYING in the main directory of this archive
+ * for more details.
+ */
+
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/types.h>
+#include <linux/pci.h>
+
+#include "STG4000Reg.h"
+
+/* SDRAM fixed settings */
+#define SDRAM_CFG_0 0x49A1
+#define SDRAM_CFG_1 0xA732
+#define SDRAM_CFG_2 0x31
+#define SDRAM_ARB_CFG 0xA0
+#define SDRAM_REFRESH 0x20
+
+/* Reset values */
+#define PMX2_SOFTRESET_DAC_RST 0x0001
+#define PMX2_SOFTRESET_C1_RST 0x0004
+#define PMX2_SOFTRESET_C2_RST 0x0008
+#define PMX2_SOFTRESET_3D_RST 0x0010
+#define PMX2_SOFTRESET_VIDIN_RST 0x0020
+#define PMX2_SOFTRESET_TLB_RST 0x0040
+#define PMX2_SOFTRESET_SD_RST 0x0080
+#define PMX2_SOFTRESET_VGA_RST 0x0100
+#define PMX2_SOFTRESET_ROM_RST 0x0200 /* reserved bit, do not reset */
+#define PMX2_SOFTRESET_TA_RST 0x0400
+#define PMX2_SOFTRESET_REG_RST 0x4000
+#define PMX2_SOFTRESET_ALL 0x7fff
+
+/* Core clock freq */
+#define CORE_PLL_FREQ 1000000
+
+/* Reference Clock freq */
+#define REF_FREQ 14318
+
+/* PCI Registers */
+static u16 CorePllControl = 0x70;
+
+#define PCI_CONFIG_SUBSYS_ID 0x2e
+
+/* Misc */
+#define CORE_PLL_MODE_REG_0_7 3
+#define CORE_PLL_MODE_REG_8_15 2
+#define CORE_PLL_MODE_CONFIG_REG 1
+#define DAC_PLL_CONFIG_REG 0
+
+#define STG_MAX_VCO 500000
+#define STG_MIN_VCO 100000
+
+/* PLL Clock */
+#define STG4K3_PLL_SCALER 8 /* scale numbers by 2^8 for fixed point calc */
+#define STG4K3_PLL_MIN_R 2 /* Minimum multiplier */
+#define STG4K3_PLL_MAX_R 33 /* Max */
+#define STG4K3_PLL_MIN_F 2 /* Minimum divisor */
+#define STG4K3_PLL_MAX_F 513 /* Max */
+#define STG4K3_PLL_MIN_OD 0 /* Min output divider (shift) */
+#define STG4K3_PLL_MAX_OD 2 /* Max */
+#define STG4K3_PLL_MIN_VCO_SC (100000000 >> STG4K3_PLL_SCALER) /* Min VCO rate */
+#define STG4K3_PLL_MAX_VCO_SC (500000000 >> STG4K3_PLL_SCALER) /* Max VCO rate */
+#define STG4K3_PLL_MINR_VCO_SC (100000000 >> STG4K3_PLL_SCALER) /* Min VCO rate (restricted) */
+#define STG4K3_PLL_MAXR_VCO_SC (500000000 >> STG4K3_PLL_SCALER) /* Max VCO rate (restricted) */
+#define STG4K3_PLL_MINR_VCO 100000000 /* Min VCO rate (restricted) */
+#define STG4K3_PLL_MAX_VCO 500000000 /* Max VCO rate */
+#define STG4K3_PLL_MAXR_VCO 500000000 /* Max VCO rate (restricted) */
+
+#define OS_DELAY(X) \
+{ \
+volatile u32 i,count=0; \
+ for(i=0;i<X;i++) count++; \
+}
+
+static u32 InitSDRAMRegisters(volatile STG4000REG __iomem *pSTGReg,
+ u32 dwSubSysID, u32 dwRevID)
+{
+ u32 adwSDRAMArgCfg0[] = { 0xa0, 0x80, 0xa0, 0xa0, 0xa0 };
+ u32 adwSDRAMCfg1[] = { 0x8732, 0x8732, 0xa732, 0xa732, 0x8732 };
+ u32 adwSDRAMCfg2[] = { 0x87d2, 0x87d2, 0xa7d2, 0x87d2, 0xa7d2 };
+ u32 adwSDRAMRsh[] = { 36, 39, 40 };
+ u32 adwChipSpeed[] = { 110, 120, 125 };
+ u32 dwMemTypeIdx;
+ u32 dwChipSpeedIdx;
+
+ /* Get memory tpye and chip speed indexs from the SubSysDevID */
+ dwMemTypeIdx = (dwSubSysID & 0x70) >> 4;
+ dwChipSpeedIdx = (dwSubSysID & 0x180) >> 7;
+
+ if (dwMemTypeIdx > 4 || dwChipSpeedIdx > 2)
+ return 0;
+
+ /* Program SD-RAM interface */
+ STG_WRITE_REG(SDRAMArbiterConf, adwSDRAMArgCfg0[dwMemTypeIdx]);
+ if (dwRevID < 5) {
+ STG_WRITE_REG(SDRAMConf0, 0x49A1);
+ STG_WRITE_REG(SDRAMConf1, adwSDRAMCfg1[dwMemTypeIdx]);
+ } else {
+ STG_WRITE_REG(SDRAMConf0, 0x4DF1);
+ STG_WRITE_REG(SDRAMConf1, adwSDRAMCfg2[dwMemTypeIdx]);
+ }
+
+ STG_WRITE_REG(SDRAMConf2, 0x31);
+ STG_WRITE_REG(SDRAMRefresh, adwSDRAMRsh[dwChipSpeedIdx]);
+
+ return adwChipSpeed[dwChipSpeedIdx] * 10000;
+}
+
+u32 ProgramClock(u32 refClock,
+ u32 coreClock,
+ u32 * FOut, u32 * ROut, u32 * POut)
+{
+ u32 R = 0, F = 0, OD = 0, ODIndex = 0;
+ u32 ulBestR = 0, ulBestF = 0, ulBestOD = 0;
+ u32 ulBestVCO = 0, ulBestClk = 0, ulBestScore = 0;
+ u32 ulScore, ulPhaseScore, ulVcoScore;
+ u32 ulTmp = 0, ulVCO;
+ u32 ulScaleClockReq, ulMinClock, ulMaxClock;
+ u32 ODValues[] = { 1, 2, 0 };
+
+ /* Translate clock in Hz */
+ coreClock *= 100; /* in Hz */
+ refClock *= 1000; /* in Hz */
+
+ /* Work out acceptable clock
+ * The method calculates ~ +- 0.4% (1/256)
+ */
+ ulMinClock = coreClock - (coreClock >> 8);
+ ulMaxClock = coreClock + (coreClock >> 8);
+
+ /* Scale clock required for use in calculations */
+ ulScaleClockReq = coreClock >> STG4K3_PLL_SCALER;
+
+ /* Iterate through post divider values */
+ for (ODIndex = 0; ODIndex < 3; ODIndex++) {
+ OD = ODValues[ODIndex];
+ R = STG4K3_PLL_MIN_R;
+
+ /* loop for pre-divider from min to max */
+ while (R <= STG4K3_PLL_MAX_R) {
+ /* estimate required feedback multiplier */
+ ulTmp = R * (ulScaleClockReq << OD);
+
+ /* F = ClkRequired * R * (2^OD) / Fref */
+ F = (u32)(ulTmp / (refClock >> STG4K3_PLL_SCALER));
+
+ /* compensate for accuracy */
+ if (F > STG4K3_PLL_MIN_F)
+ F--;
+
+
+ /*
+ * We should be close to our target frequency (if it's
+ * achievable with current OD & R) let's iterate
+ * through F for best fit
+ */
+ while ((F >= STG4K3_PLL_MIN_F) &&
+ (F <= STG4K3_PLL_MAX_F)) {
+ /* Calc VCO at full accuracy */
+ ulVCO = refClock / R;
+ ulVCO = F * ulVCO;
+
+ /*
+ * Check it's within restricted VCO range
+ * unless of course the desired frequency is
+ * above the restricted range, then test
+ * against VCO limit
+ */
+ if ((ulVCO >= STG4K3_PLL_MINR_VCO) &&
+ ((ulVCO <= STG4K3_PLL_MAXR_VCO) ||
+ ((coreClock > STG4K3_PLL_MAXR_VCO)
+ && (ulVCO <= STG4K3_PLL_MAX_VCO)))) {
+ ulTmp = (ulVCO >> OD); /* Clock = VCO / (2^OD) */
+
+ /* Is this clock good enough? */
+ if ((ulTmp >= ulMinClock)
+ && (ulTmp <= ulMaxClock)) {
+ ulPhaseScore = (((refClock / R) - (refClock / STG4K3_PLL_MAX_R))) / ((refClock - (refClock / STG4K3_PLL_MAX_R)) >> 10);
+
+ ulVcoScore = ((ulVCO - STG4K3_PLL_MINR_VCO)) / ((STG4K3_PLL_MAXR_VCO - STG4K3_PLL_MINR_VCO) >> 10);
+ ulScore = ulPhaseScore + ulVcoScore;
+
+ if (!ulBestScore) {
+ ulBestVCO = ulVCO;
+ ulBestOD = OD;
+ ulBestF = F;
+ ulBestR = R;
+ ulBestClk = ulTmp;
+ ulBestScore =
+ ulScore;
+ }
+ /* is this better, ( aim for highest Score) */
+ /*--------------------------------------------------------------------------
+ Here we want to use a scoring system which will take account of both the
+ value at the phase comparater and the VCO output
+ to do this we will use a cumulative score between the two
+ The way this ends up is that we choose the first value in the loop anyway
+ but we shall keep this code in case new restrictions come into play
+ --------------------------------------------------------------------------*/
+ if ((ulScore >= ulBestScore) && (OD > 0)) {
+ ulBestVCO = ulVCO;
+ ulBestOD = OD;
+ ulBestF = F;
+ ulBestR = R;
+ ulBestClk = ulTmp;
+ ulBestScore =
+ ulScore;
+ }
+ }
+ }
+ F++;
+ }
+ R++;
+ }
+ }
+
+ /*
+ did we find anything?
+ Then return RFOD
+ */
+ if (ulBestScore) {
+ *ROut = ulBestR;
+ *FOut = ulBestF;
+
+ if ((ulBestOD == 2) || (ulBestOD == 3)) {
+ *POut = 3;
+ } else
+ *POut = ulBestOD;
+
+ }
+
+ return (ulBestClk);
+}
+
+int SetCoreClockPLL(volatile STG4000REG __iomem *pSTGReg, struct pci_dev *pDev)
+{
+ u32 F, R, P;
+ u16 core_pll = 0, sub;
+ u32 ulCoreClock;
+ u32 tmp;
+ u32 ulChipSpeed;
+ u8 rev;
+
+ STG_WRITE_REG(IntMask, 0xFFFF);
+
+ /* Disable Primary Core Thread0 */
+ tmp = STG_READ_REG(Thread0Enable);
+ CLEAR_BIT(0);
+ STG_WRITE_REG(Thread0Enable, tmp);
+
+ /* Disable Primary Core Thread1 */
+ tmp = STG_READ_REG(Thread1Enable);
+ CLEAR_BIT(0);
+ STG_WRITE_REG(Thread1Enable, tmp);
+
+ STG_WRITE_REG(SoftwareReset,
+ PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_ROM_RST);
+ STG_WRITE_REG(SoftwareReset,
+ PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_TA_RST |
+ PMX2_SOFTRESET_ROM_RST);
+
+ /* Need to play around to reset TA */
+ STG_WRITE_REG(TAConfiguration, 0);
+ STG_WRITE_REG(SoftwareReset,
+ PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_ROM_RST);
+ STG_WRITE_REG(SoftwareReset,
+ PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_TA_RST |
+ PMX2_SOFTRESET_ROM_RST);
+
+ pci_read_config_word(pDev, PCI_CONFIG_SUBSYS_ID, &sub);
+ pci_read_config_byte(pDev, PCI_REVISION_ID, &rev);
+
+ ulChipSpeed = InitSDRAMRegisters(pSTGReg, (u32)sub, (u32)rev);
+
+ if (ulChipSpeed == 0)
+ return -EINVAL;
+
+ ulCoreClock = ProgramClock(REF_FREQ, CORE_PLL_FREQ, &F, &R, &P);
+
+ core_pll |= ((P) | ((F - 2) << 2) | ((R - 2) << 11));
+
+ /* Set Core PLL Control to Core PLL Mode */
+
+ /* Send bits 0:7 of the Core PLL Mode register */
+ tmp = ((CORE_PLL_MODE_REG_0_7 << 8) | (core_pll & 0x00FF));
+ pci_write_config_word(pDev, CorePllControl, tmp);
+ /* Without some delay between the PCI config writes the clock does
+ not reliably set when the code is compiled -O3
+ */
+ OS_DELAY(1000000);
+
+ tmp |= SET_BIT(14);
+ pci_write_config_word(pDev, CorePllControl, tmp);
+ OS_DELAY(1000000);
+
+ /* Send bits 8:15 of the Core PLL Mode register */
+ tmp =
+ ((CORE_PLL_MODE_REG_8_15 << 8) | ((core_pll & 0xFF00) >> 8));
+ pci_write_config_word(pDev, CorePllControl, tmp);
+ OS_DELAY(1000000);
+
+ tmp |= SET_BIT(14);
+ pci_write_config_word(pDev, CorePllControl, tmp);
+ OS_DELAY(1000000);
+
+ STG_WRITE_REG(SoftwareReset, PMX2_SOFTRESET_ALL);
+
+#if 0
+ /* Enable Primary Core Thread0 */
+ tmp = ((STG_READ_REG(Thread0Enable)) | SET_BIT(0));
+ STG_WRITE_REG(Thread0Enable, tmp);
+
+ /* Enable Primary Core Thread1 */
+ tmp = ((STG_READ_REG(Thread1Enable)) | SET_BIT(0));
+ STG_WRITE_REG(Thread1Enable, tmp);
+#endif
+
+ return 0;
+}
diff --git a/drivers/video/kyro/STG4000Interface.h b/drivers/video/kyro/STG4000Interface.h
new file mode 100644
index 00000000000..e75b3b4a4aa
--- /dev/null
+++ b/drivers/video/kyro/STG4000Interface.h
@@ -0,0 +1,60 @@
+/*
+ * linux/drivers/video/kyro/STG4000Interface.h
+ *
+ * Copyright (C) 2002 STMicroelectronics
+ *
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file COPYING in the main directory of this archive
+ * for more details.
+ */
+
+#ifndef _STG4000INTERFACE_H
+#define _STG4000INTERFACE_H
+
+struct pci_dev;
+
+/*
+ * Ramdac Setup
+ */
+extern int InitialiseRamdac(volatile STG4000REG __iomem *pSTGReg, u32 displayDepth,
+ u32 displayWidth, u32 displayHeight,
+ s32 HSyncPolarity, s32 VSyncPolarity,
+ u32 *pixelClock);
+
+extern void DisableRamdacOutput(volatile STG4000REG __iomem *pSTGReg);
+extern void EnableRamdacOutput(volatile STG4000REG __iomem *pSTGReg);
+
+/*
+ * Timing generator setup
+ */
+extern void DisableVGA(volatile STG4000REG __iomem *pSTGReg);
+extern void StopVTG(volatile STG4000REG __iomem *pSTGReg);
+extern void StartVTG(volatile STG4000REG __iomem *pSTGReg);
+extern void SetupVTG(volatile STG4000REG __iomem *pSTGReg,
+ const struct kyrofb_info * pTiming);
+
+extern u32 ProgramClock(u32 refClock, u32 coreClock, u32 *FOut, u32 *ROut, u32 *POut);
+extern int SetCoreClockPLL(volatile STG4000REG __iomem *pSTGReg, struct pci_dev *pDev);
+
+/*
+ * Overlay setup
+ */
+extern void ResetOverlayRegisters(volatile STG4000REG __iomem *pSTGReg);
+
+extern int CreateOverlaySurface(volatile STG4000REG __iomem *pSTGReg,
+ u32 ulWidth, u32 ulHeight,
+ int bLinear,
+ u32 ulOverlayOffset,
+ u32 * retStride, u32 * retUVStride);
+
+extern int SetOverlayBlendMode(volatile STG4000REG __iomem *pSTGReg,
+ OVRL_BLEND_MODE mode,
+ u32 ulAlpha, u32 ulColorKey);
+
+extern int SetOverlayViewPort(volatile STG4000REG __iomem *pSTGReg,
+ u32 left, u32 top,
+ u32 right, u32 bottom);
+
+extern void EnableOverlayPlane(volatile STG4000REG __iomem *pSTGReg);
+
+#endif /* _STG4000INTERFACE_H */
diff --git a/drivers/video/kyro/STG4000OverlayDevice.c b/drivers/video/kyro/STG4000OverlayDevice.c
new file mode 100644
index 00000000000..2ae9bafacdd
--- /dev/null
+++ b/drivers/video/kyro/STG4000OverlayDevice.c
@@ -0,0 +1,600 @@
+/*
+ * linux/drivers/video/kyro/STG4000OverlayDevice.c
+ *
+ * Copyright (C) 2000 Imagination Technologies Ltd
+ * Copyright (C) 2002 STMicroelectronics
+ *
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file COPYING in the main directory of this archive
+ * for more details.
+ */
+
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/types.h>
+
+#include "STG4000Reg.h"
+
+/* HW Defines */
+
+#define STG4000_NO_SCALING 0x800
+#define STG4000_NO_DECIMATION 0xFFFFFFFF
+
+/* Primary surface */
+#define STG4000_PRIM_NUM_PIX 5
+#define STG4000_PRIM_ALIGN 4
+#define STG4000_PRIM_ADDR_BITS 20
+
+#define STG4000_PRIM_MIN_WIDTH 640
+#define STG4000_PRIM_MAX_WIDTH 1600
+#define STG4000_PRIM_MIN_HEIGHT 480
+#define STG4000_PRIM_MAX_HEIGHT 1200
+
+/* Overlay surface */
+#define STG4000_OVRL_NUM_PIX 4
+#define STG4000_OVRL_ALIGN 2
+#define STG4000_OVRL_ADDR_BITS 20
+#define STG4000_OVRL_NUM_MODES 5
+
+#define STG4000_OVRL_MIN_WIDTH 0
+#define STG4000_OVRL_MAX_WIDTH 720
+#define STG4000_OVRL_MIN_HEIGHT 0
+#define STG4000_OVRL_MAX_HEIGHT 576
+
+/* Decimation and Scaling */
+static u32 adwDecim8[33] = {
+ 0xffffffff, 0xfffeffff, 0xffdffbff, 0xfefefeff, 0xfdf7efbf,
+ 0xfbdf7bdf, 0xf7bbddef, 0xeeeeeeef, 0xeeddbb77, 0xedb76db7,
+ 0xdb6db6db, 0xdb5b5b5b, 0xdab5ad6b, 0xd5ab55ab, 0xd555aaab,
+ 0xaaaaaaab, 0xaaaa5555, 0xaa952a55, 0xa94a5295, 0xa5252525,
+ 0xa4924925, 0x92491249, 0x91224489, 0x91111111, 0x90884211,
+ 0x88410821, 0x88102041, 0x81010101, 0x80800801, 0x80010001,
+ 0x80000001, 0x00000001, 0x00000000
+};
+
+typedef struct _OVRL_SRC_DEST {
+ /*clipped on-screen pixel position of overlay */
+ u32 ulDstX1;
+ u32 ulDstY1;
+ u32 ulDstX2;
+ u32 ulDstY2;
+
+ /*clipped pixel pos of source data within buffer thses need to be 128 bit word aligned */
+ u32 ulSrcX1;
+ u32 ulSrcY1;
+ u32 ulSrcX2;
+ u32 ulSrcY2;
+
+ /* on-screen pixel position of overlay */
+ s32 lDstX1;
+ s32 lDstY1;
+ s32 lDstX2;
+ s32 lDstY2;
+} OVRL_SRC_DEST;
+
+static u32 ovlWidth, ovlHeight, ovlStride;
+static int ovlLinear;
+
+void ResetOverlayRegisters(volatile STG4000REG __iomem *pSTGReg)
+{
+ u32 tmp;
+
+ /* Set Overlay address to default */
+ tmp = STG_READ_REG(DACOverlayAddr);
+ CLEAR_BITS_FRM_TO(0, 20);
+ CLEAR_BIT(31);
+ STG_WRITE_REG(DACOverlayAddr, tmp);
+
+ /* Set Overlay U address */
+ tmp = STG_READ_REG(DACOverlayUAddr);
+ CLEAR_BITS_FRM_TO(0, 20);
+ STG_WRITE_REG(DACOverlayUAddr, tmp);
+
+ /* Set Overlay V address */
+ tmp = STG_READ_REG(DACOverlayVAddr);
+ CLEAR_BITS_FRM_TO(0, 20);
+ STG_WRITE_REG(DACOverlayVAddr, tmp);
+
+ /* Set Overlay Size */
+ tmp = STG_READ_REG(DACOverlaySize);
+ CLEAR_BITS_FRM_TO(0, 10);
+ CLEAR_BITS_FRM_TO(12, 31);
+ STG_WRITE_REG(DACOverlaySize, tmp);
+
+ /* Set Overlay Vt Decimation */
+ tmp = STG4000_NO_DECIMATION;
+ STG_WRITE_REG(DACOverlayVtDec, tmp);
+
+ /* Set Overlay format to default value */
+ tmp = STG_READ_REG(DACPixelFormat);
+ CLEAR_BITS_FRM_TO(4, 7);
+ CLEAR_BITS_FRM_TO(16, 22);
+ STG_WRITE_REG(DACPixelFormat, tmp);
+
+ /* Set Vertical scaling to default */
+ tmp = STG_READ_REG(DACVerticalScal);
+ CLEAR_BITS_FRM_TO(0, 11);
+ CLEAR_BITS_FRM_TO(16, 22);
+ tmp |= STG4000_NO_SCALING; /* Set to no scaling */
+ STG_WRITE_REG(DACVerticalScal, tmp);
+
+ /* Set Horizontal Scaling to default */
+ tmp = STG_READ_REG(DACHorizontalScal);
+ CLEAR_BITS_FRM_TO(0, 11);
+ CLEAR_BITS_FRM_TO(16, 17);
+ tmp |= STG4000_NO_SCALING; /* Set to no scaling */
+ STG_WRITE_REG(DACHorizontalScal, tmp);
+
+ /* Set Blend mode to Alpha Blend */
+ /* ????? SG 08/11/2001 Surely this isn't the alpha blend mode,
+ hopefully its overwrite
+ */
+ tmp = STG_READ_REG(DACBlendCtrl);
+ CLEAR_BITS_FRM_TO(0, 30);
+ tmp = (GRAPHICS_MODE << 28);
+ STG_WRITE_REG(DACBlendCtrl, tmp);
+
+}
+
+int CreateOverlaySurface(volatile STG4000REG __iomem *pSTGReg,
+ u32 inWidth,
+ u32 inHeight,
+ int bLinear,
+ u32 ulOverlayOffset,
+ u32 * retStride, u32 * retUVStride)
+{
+ u32 tmp;
+ u32 ulStride;
+
+ if (inWidth > STG4000_OVRL_MAX_WIDTH ||
+ inHeight > STG4000_OVRL_MAX_HEIGHT) {
+ return -EINVAL;
+ }
+
+ /* Stride in 16 byte words - 16Bpp */
+ if (bLinear) {
+ /* Format is 16bits so num 16 byte words is width/8 */
+ if ((inWidth & 0x7) == 0) { /* inWidth % 8 */
+ ulStride = (inWidth / 8);
+ } else {
+ /* Round up to next 16byte boundary */
+ ulStride = ((inWidth + 8) / 8);
+ }
+ } else {
+ /* Y component is 8bits so num 16 byte words is width/16 */
+ if ((inWidth & 0xf) == 0) { /* inWidth % 16 */
+ ulStride = (inWidth / 16);
+ } else {
+ /* Round up to next 16byte boundary */
+ ulStride = ((inWidth + 16) / 16);
+ }
+ }
+
+
+ /* Set Overlay address and Format mode */
+ tmp = STG_READ_REG(DACOverlayAddr);
+ CLEAR_BITS_FRM_TO(0, 20);
+ if (bLinear) {
+ CLEAR_BIT(31); /* Overlay format to Linear */
+ } else {
+ tmp |= SET_BIT(31); /* Overlay format to Planer */
+ }
+
+ /* Only bits 24:4 of the Overlay address */
+ tmp |= (ulOverlayOffset >> 4);
+ STG_WRITE_REG(DACOverlayAddr, tmp);
+
+ if (!bLinear) {
+ u32 uvSize =
+ (inWidth & 0x1) ? (inWidth + 1 / 2) : (inWidth / 2);
+ u32 uvStride;
+ u32 ulOffset;
+ /* Y component is 8bits so num 32 byte words is width/32 */
+ if ((uvSize & 0xf) == 0) { /* inWidth % 16 */
+ uvStride = (uvSize / 16);
+ } else {
+ /* Round up to next 32byte boundary */
+ uvStride = ((uvSize + 16) / 16);
+ }
+
+ ulOffset = ulOverlayOffset + (inHeight * (ulStride * 16));
+ /* Align U,V data to 32byte boundary */
+ if ((ulOffset & 0x1f) != 0)
+ ulOffset = (ulOffset + 32L) & 0xffffffE0L;
+
+ tmp = STG_READ_REG(DACOverlayUAddr);
+ CLEAR_BITS_FRM_TO(0, 20);
+ tmp |= (ulOffset >> 4);
+ STG_WRITE_REG(DACOverlayUAddr, tmp);
+
+ ulOffset += (inHeight / 2) * (uvStride * 16);
+ /* Align U,V data to 32byte boundary */
+ if ((ulOffset & 0x1f) != 0)
+ ulOffset = (ulOffset + 32L) & 0xffffffE0L;
+
+ tmp = STG_READ_REG(DACOverlayVAddr);
+ CLEAR_BITS_FRM_TO(0, 20);
+ tmp |= (ulOffset >> 4);
+ STG_WRITE_REG(DACOverlayVAddr, tmp);
+
+ *retUVStride = uvStride * 16;
+ }
+
+
+ /* Set Overlay YUV pixel format
+ * Make sure that LUT not used - ??????
+ */
+ tmp = STG_READ_REG(DACPixelFormat);
+ /* Only support Planer or UYVY linear formats */
+ CLEAR_BITS_FRM_TO(4, 9);
+ STG_WRITE_REG(DACPixelFormat, tmp);
+
+ ovlWidth = inWidth;
+ ovlHeight = inHeight;
+ ovlStride = ulStride;
+ ovlLinear = bLinear;
+ *retStride = ulStride << 4; /* In bytes */
+
+ return 0;
+}
+
+int SetOverlayBlendMode(volatile STG4000REG __iomem *pSTGReg,
+ OVRL_BLEND_MODE mode,
+ u32 ulAlpha, u32 ulColorKey)
+{
+ u32 tmp;
+
+ tmp = STG_READ_REG(DACBlendCtrl);
+ CLEAR_BITS_FRM_TO(28, 30);
+ tmp |= (mode << 28);
+
+ switch (mode) {
+ case COLOR_KEY:
+ CLEAR_BITS_FRM_TO(0, 23);
+ tmp |= (ulColorKey & 0x00FFFFFF);
+ break;
+
+ case GLOBAL_ALPHA:
+ CLEAR_BITS_FRM_TO(24, 27);
+ tmp |= ((ulAlpha & 0xF) << 24);
+ break;
+
+ case CK_PIXEL_ALPHA:
+ CLEAR_BITS_FRM_TO(0, 23);
+ tmp |= (ulColorKey & 0x00FFFFFF);
+ break;
+
+ case CK_GLOBAL_ALPHA:
+ CLEAR_BITS_FRM_TO(0, 23);
+ tmp |= (ulColorKey & 0x00FFFFFF);
+ CLEAR_BITS_FRM_TO(24, 27);
+ tmp |= ((ulAlpha & 0xF) << 24);
+ break;
+
+ case GRAPHICS_MODE:
+ case PER_PIXEL_ALPHA:
+ break;
+
+ default:
+ return -EINVAL;
+ }
+
+ STG_WRITE_REG(DACBlendCtrl, tmp);
+
+ return 0;
+}
+
+void EnableOverlayPlane(volatile STG4000REG __iomem *pSTGReg)
+{
+ u32 tmp;
+ /* Enable Overlay */
+ tmp = STG_READ_REG(DACPixelFormat);
+ tmp |= SET_BIT(7);
+ STG_WRITE_REG(DACPixelFormat, tmp);
+
+ /* Set video stream control */
+ tmp = STG_READ_REG(DACStreamCtrl);
+ tmp |= SET_BIT(1); /* video stream */
+ STG_WRITE_REG(DACStreamCtrl, tmp);
+}
+
+static u32 Overlap(u32 ulBits, u32 ulPattern)
+{
+ u32 ulCount = 0;
+
+ while (ulBits) {
+ if (!(ulPattern & 1))
+ ulCount++;
+ ulBits--;
+ ulPattern = ulPattern >> 1;
+ }
+
+ return ulCount;
+
+}
+
+int SetOverlayViewPort(volatile STG4000REG __iomem *pSTGReg,
+ u32 left, u32 top,
+ u32 right, u32 bottom)
+{
+ OVRL_SRC_DEST srcDest;
+
+ u32 ulSrcTop, ulSrcBottom;
+ u32 ulSrc, ulDest;
+ u32 ulFxScale, ulFxOffset;
+ u32 ulHeight, ulWidth;
+ u32 ulPattern;
+ u32 ulDecimate, ulDecimated;
+ u32 ulApplied;
+ u32 ulDacXScale, ulDacYScale;
+ u32 ulScale;
+ u32 ulLeft, ulRight;
+ u32 ulSrcLeft, ulSrcRight;
+ u32 ulScaleLeft, ulScaleRight;
+ u32 ulhDecim;
+ u32 ulsVal;
+ u32 ulVertDecFactor;
+ int bResult;
+ u32 ulClipOff = 0;
+ u32 ulBits = 0;
+ u32 ulsAdd = 0;
+ u32 tmp, ulStride;
+ u32 ulExcessPixels, ulClip, ulExtraLines;
+
+
+ srcDest.ulSrcX1 = 0;
+ srcDest.ulSrcY1 = 0;
+ srcDest.ulSrcX2 = ovlWidth - 1;
+ srcDest.ulSrcY2 = ovlHeight - 1;
+
+ srcDest.ulDstX1 = left;
+ srcDest.ulDstY1 = top;
+ srcDest.ulDstX2 = right;
+ srcDest.ulDstY2 = bottom;
+
+ srcDest.lDstX1 = srcDest.ulDstX1;
+ srcDest.lDstY1 = srcDest.ulDstY1;
+ srcDest.lDstX2 = srcDest.ulDstX2;
+ srcDest.lDstY2 = srcDest.ulDstY2;
+
+ /************* Vertical decimation/scaling ******************/
+
+ /* Get Src Top and Bottom */
+ ulSrcTop = srcDest.ulSrcY1;
+ ulSrcBottom = srcDest.ulSrcY2;
+
+ ulSrc = ulSrcBottom - ulSrcTop;
+ ulDest = srcDest.lDstY2 - srcDest.lDstY1; /* on-screen overlay */
+
+ if (ulSrc <= 1)
+ return -EINVAL;
+
+ /* First work out the position we are to display as offset from the
+ * source of the buffer
+ */
+ ulFxScale = (ulDest << 11) / ulSrc; /* fixed point scale factor */
+ ulFxOffset = (srcDest.lDstY2 - srcDest.ulDstY2) << 11;
+
+ ulSrcBottom = ulSrcBottom - (ulFxOffset / ulFxScale);
+ ulSrc = ulSrcBottom - ulSrcTop;
+ ulHeight = ulSrc;
+
+ ulDest = srcDest.ulDstY2 - (srcDest.ulDstY1 - 1);
+ ulPattern = adwDecim8[ulBits];
+
+ /* At this point ulSrc represents the input decimator */
+ if (ulSrc > ulDest) {
+ ulDecimate = ulSrc - ulDest;
+ ulBits = 0;
+ ulApplied = ulSrc / 32;
+
+ while (((ulBits * ulApplied) +
+ Overlap((ulSrc % 32),
+ adwDecim8[ulBits])) < ulDecimate)
+ ulBits++;
+
+ ulPattern = adwDecim8[ulBits];
+ ulDecimated =
+ (ulBits * ulApplied) + Overlap((ulSrc % 32),
+ ulPattern);
+ ulSrc = ulSrc - ulDecimated; /* the number number of lines that will go into the scaler */
+ }
+
+ if (ulBits && (ulBits != 32)) {
+ ulVertDecFactor = (63 - ulBits) / (32 - ulBits); /* vertical decimation factor scaled up to nearest integer */
+ } else {
+ ulVertDecFactor = 1;
+ }
+
+ ulDacYScale = ((ulSrc - 1) * 2048) / (ulDest + 1);
+
+ tmp = STG_READ_REG(DACOverlayVtDec); /* Decimation */
+ CLEAR_BITS_FRM_TO(0, 31);
+ tmp = ulPattern;
+ STG_WRITE_REG(DACOverlayVtDec, tmp);
+
+ /***************** Horizontal decimation/scaling ***************************/
+
+ /*
+ * Now we handle the horizontal case, this is a simplified verison of
+ * the vertical case in that we decimate by factors of 2. as we are
+ * working in words we should always be able to decimate by these
+ * factors. as we always have to have a buffer which is aligned to a
+ * whole number of 128 bit words, we must align the left side to the
+ * lowest to the next lowest 128 bit boundary, and the right hand edge
+ * to the next largets boundary, (in a similar way to how we didi it in
+ * PMX1) as the left and right hand edges are aligned to these
+ * boundaries normally this only becomes an issue when we are chopping
+ * of one of the sides We shall work out vertical stuff first
+ */
+ ulSrc = srcDest.ulSrcX2 - srcDest.ulSrcX1;
+ ulDest = srcDest.lDstX2 - srcDest.lDstX1;
+#ifdef _OLDCODE
+ ulLeft = srcDest.ulDstX1;
+ ulRight = srcDest.ulDstX2;
+#else
+ if (srcDest.ulDstX1 > 2) {
+ ulLeft = srcDest.ulDstX1 + 2;
+ ulRight = srcDest.ulDstX2 + 1;
+ } else {
+ ulLeft = srcDest.ulDstX1;
+ ulRight = srcDest.ulDstX2 + 1;
+ }
+#endif
+ /* first work out the position we are to display as offset from the source of the buffer */
+ bResult = 1;
+
+ do {
+ if (ulDest == 0)
+ return -EINVAL;
+
+ /* source pixels per dest pixel <<11 */
+ ulFxScale = ((ulSrc - 1) << 11) / (ulDest);
+
+ /* then number of destination pixels out we are */
+ ulFxOffset = ulFxScale * ((srcDest.ulDstX1 - srcDest.lDstX1) + ulClipOff);
+ ulFxOffset >>= 11;
+
+ /* this replaces the code which was making a decision as to use either ulFxOffset or ulSrcX1 */
+ ulSrcLeft = srcDest.ulSrcX1 + ulFxOffset;
+
+ /* then number of destination pixels out we are */
+ ulFxOffset = ulFxScale * (srcDest.lDstX2 - srcDest.ulDstX2);
+ ulFxOffset >>= 11;
+
+ ulSrcRight = srcDest.ulSrcX2 - ulFxOffset;
+
+ /*
+ * we must align these to our 128 bit boundaries. we shall
+ * round down the pixel pos to the nearest 8 pixels.
+ */
+ ulScaleLeft = ulSrcLeft;
+ ulScaleRight = ulSrcRight;
+
+ /* shift fxscale until it is in the range of the scaler */
+ ulhDecim = 0;
+ ulScale = (((ulSrcRight - ulSrcLeft) - 1) << (11 - ulhDecim)) / (ulRight - ulLeft + 2);
+
+ while (ulScale > 0x800) {
+ ulhDecim++;
+ ulScale = (((ulSrcRight - ulSrcLeft) - 1) << (11 - ulhDecim)) / (ulRight - ulLeft + 2);
+ }
+
+ /*
+ * to try and get the best values We first try and use
+ * src/dwdest for the scale factor, then we move onto src-1
+ *
+ * we want to check to see if we will need to clip data, if so
+ * then we should clip our source so that we don't need to
+ */
+ if (!ovlLinear) {
+ ulSrcLeft &= ~0x1f;
+
+ /*
+ * we must align the right hand edge to the next 32
+ * pixel` boundary, must be on a 256 boundary so u, and
+ * v are 128 bit aligned
+ */
+ ulSrcRight = (ulSrcRight + 0x1f) & ~0x1f;
+ } else {
+ ulSrcLeft &= ~0x7;
+
+ /*
+ * we must align the right hand edge to the next
+ * 8pixel` boundary
+ */
+ ulSrcRight = (ulSrcRight + 0x7) & ~0x7;
+ }
+
+ /* this is the input size line store needs to cope with */
+ ulWidth = ulSrcRight - ulSrcLeft;
+
+ /*
+ * use unclipped value to work out scale factror this is the
+ * scale factor we want we shall now work out the horizonal
+ * decimation and scaling
+ */
+ ulsVal = ((ulWidth / 8) >> ulhDecim);
+
+ if ((ulWidth != (ulsVal << ulhDecim) * 8))
+ ulsAdd = 1;
+
+ /* input pixels to scaler; */
+ ulSrc = ulWidth >> ulhDecim;
+
+ if (ulSrc <= 2)
+ return -EINVAL;
+
+ ulExcessPixels = ((((ulScaleLeft - ulSrcLeft)) << (11 - ulhDecim)) / ulScale);
+
+ ulClip = (ulSrc << 11) / ulScale;
+ ulClip -= (ulRight - ulLeft);
+ ulClip += ulExcessPixels;
+
+ if (ulClip)
+ ulClip--;
+
+ /* We may need to do more here if we really have a HW rev < 5 */
+ } while (!bResult);
+
+ ulExtraLines = (1 << ulhDecim) * ulVertDecFactor;
+ ulExtraLines += 64;
+ ulHeight += ulExtraLines;
+
+ ulDacXScale = ulScale;
+
+
+ tmp = STG_READ_REG(DACVerticalScal);
+ CLEAR_BITS_FRM_TO(0, 11);
+ CLEAR_BITS_FRM_TO(16, 22); /* Vertical Scaling */
+
+ /* Calculate new output line stride, this is always the number of 422
+ words in the line buffer, so it doesn't matter if the
+ mode is 420. Then set the vertical scale register.
+ */
+ ulStride = (ulWidth >> (ulhDecim + 3)) + ulsAdd;
+ tmp |= ((ulStride << 16) | (ulDacYScale)); /* DAC_LS_CTRL = stride */
+ STG_WRITE_REG(DACVerticalScal, tmp);
+
+ /* Now set up the overlay size using the modified width and height
+ from decimate and scaling calculations
+ */
+ tmp = STG_READ_REG(DACOverlaySize);
+ CLEAR_BITS_FRM_TO(0, 10);
+ CLEAR_BITS_FRM_TO(12, 31);
+
+ if (ovlLinear) {
+ tmp |=
+ (ovlStride | ((ulHeight + 1) << 12) |
+ (((ulWidth / 8) - 1) << 23));
+ } else {
+ tmp |=
+ (ovlStride | ((ulHeight + 1) << 12) |
+ (((ulWidth / 32) - 1) << 23));
+ }
+
+ STG_WRITE_REG(DACOverlaySize, tmp);
+
+ /* Set Video Window Start */
+ tmp = ((ulLeft << 16)) | (srcDest.ulDstY1);
+ STG_WRITE_REG(DACVidWinStart, tmp);
+
+ /* Set Video Window End */
+ tmp = ((ulRight) << 16) | (srcDest.ulDstY2);
+ STG_WRITE_REG(DACVidWinEnd, tmp);
+
+ /* Finally set up the rest of the overlay regs in the order
+ done in the IMG driver
+ */
+ tmp = STG_READ_REG(DACPixelFormat);
+ tmp = ((ulExcessPixels << 16) | tmp) & 0x7fffffff;
+ STG_WRITE_REG(DACPixelFormat, tmp);
+
+ tmp = STG_READ_REG(DACHorizontalScal);
+ CLEAR_BITS_FRM_TO(0, 11);
+ CLEAR_BITS_FRM_TO(16, 17);
+ tmp |= ((ulhDecim << 16) | (ulDacXScale));
+ STG_WRITE_REG(DACHorizontalScal, tmp);
+
+ return 0;
+}
diff --git a/drivers/video/kyro/STG4000Ramdac.c b/drivers/video/kyro/STG4000Ramdac.c
new file mode 100644
index 00000000000..e6ad037e439
--- /dev/null
+++ b/drivers/video/kyro/STG4000Ramdac.c
@@ -0,0 +1,163 @@
+/*
+ * linux/drivers/video/kyro/STG4000Ramdac.c
+ *
+ * Copyright (C) 2002 STMicroelectronics
+ *
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file COPYING in the main directory of this archive
+ * for more details.
+ */
+
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/types.h>
+#include <video/kyro.h>
+
+#include "STG4000Reg.h"
+#include "STG4000Interface.h"
+
+static u32 STG_PIXEL_BUS_WIDTH = 128; /* 128 bit bus width */
+static u32 REF_CLOCK = 14318;
+
+int InitialiseRamdac(volatile STG4000REG __iomem * pSTGReg,
+ u32 displayDepth,
+ u32 displayWidth,
+ u32 displayHeight,
+ s32 HSyncPolarity,
+ s32 VSyncPolarity, u32 * pixelClock)
+{
+ u32 tmp = 0;
+ u32 F = 0, R = 0, P = 0;
+ u32 stride = 0;
+ u32 ulPdiv = 0;
+ u32 physicalPixelDepth = 0;
+ /* Make sure DAC is in Reset */
+ tmp = STG_READ_REG(SoftwareReset);
+
+ if (tmp & 0x1) {
+ CLEAR_BIT(1);
+ STG_WRITE_REG(SoftwareReset, tmp);
+ }
+
+ /* Set Pixel Format */
+ tmp = STG_READ_REG(DACPixelFormat);
+ CLEAR_BITS_FRM_TO(0, 2);
+
+ /* Set LUT not used from 16bpp to 32 bpp ??? */
+ CLEAR_BITS_FRM_TO(8, 9);
+
+ switch (displayDepth) {
+ case 16:
+ {
+ physicalPixelDepth = 16;
+ tmp |= _16BPP;
+ break;
+ }
+ case 32:
+ {
+ /* Set for 32 bits per pixel */
+ physicalPixelDepth = 32;
+ tmp |= _32BPP;
+ break;
+ }
+ default:
+ return -EINVAL;
+ }
+
+ STG_WRITE_REG(DACPixelFormat, tmp);
+
+ /* Workout Bus transfer bandwidth according to pixel format */
+ ulPdiv = STG_PIXEL_BUS_WIDTH / physicalPixelDepth;
+
+ /* Get Screen Stride in pixels */
+ stride = displayWidth;
+
+ /* Set Primary size info */
+ tmp = STG_READ_REG(DACPrimSize);
+ CLEAR_BITS_FRM_TO(0, 10);
+ CLEAR_BITS_FRM_TO(12, 31);
+ tmp |=
+ ((((displayHeight - 1) << 12) | (((displayWidth / ulPdiv) -
+ 1) << 23))
+ | (stride / ulPdiv));
+ STG_WRITE_REG(DACPrimSize, tmp);
+
+
+ /* Set Pixel Clock */
+ *pixelClock = ProgramClock(REF_CLOCK, *pixelClock, &F, &R, &P);
+
+ /* Set DAC PLL Mode */
+ tmp = STG_READ_REG(DACPLLMode);
+ CLEAR_BITS_FRM_TO(0, 15);
+ /* tmp |= ((P-1) | ((F-2) << 2) | ((R-2) << 11)); */
+ tmp |= ((P) | ((F - 2) << 2)