aboutsummaryrefslogtreecommitdiff
path: root/drivers/mtd/nand
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/nand')
-rw-r--r--drivers/mtd/nand/Kconfig33
-rw-r--r--drivers/mtd/nand/atmel_nand.c2
-rw-r--r--drivers/mtd/nand/bf5xx_nand.c117
-rw-r--r--drivers/mtd/nand/davinci_nand.c17
-rw-r--r--drivers/mtd/nand/denali.c1240
-rw-r--r--drivers/mtd/nand/denali.h140
-rw-r--r--drivers/mtd/nand/diskonchip.c6
-rw-r--r--drivers/mtd/nand/mxc_nand.c600
-rw-r--r--drivers/mtd/nand/nand_base.c79
-rw-r--r--drivers/mtd/nand/nand_bbt.c103
-rw-r--r--drivers/mtd/nand/nand_ids.c4
-rw-r--r--drivers/mtd/nand/nandsim.c14
-rw-r--r--drivers/mtd/nand/plat_nand.c2
-rw-r--r--drivers/mtd/nand/r852.c6
-rw-r--r--drivers/mtd/nand/rtc_from4.c1
-rw-r--r--drivers/mtd/nand/s3c2410.c15
-rw-r--r--drivers/mtd/nand/sm_common.c2
17 files changed, 1216 insertions, 1165 deletions
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index 362d177efe1..8b4b67c8a39 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -37,7 +37,6 @@ config MTD_SM_COMMON
config MTD_NAND_MUSEUM_IDS
bool "Enable chip ids for obsolete ancient NAND devices"
- depends on MTD_NAND
default n
help
Enable this option only when your board has first generation
@@ -61,6 +60,7 @@ config MTD_NAND_DENALI
config MTD_NAND_DENALI_SCRATCH_REG_ADDR
hex "Denali NAND size scratch register address"
default "0xFF108018"
+ depends on MTD_NAND_DENALI
help
Some platforms place the NAND chip size in a scratch register
because (some versions of) the driver aren't able to automatically
@@ -101,13 +101,13 @@ config MTD_NAND_AMS_DELTA
config MTD_NAND_OMAP2
tristate "NAND Flash device on OMAP2 and OMAP3"
- depends on ARM && MTD_NAND && (ARCH_OMAP2 || ARCH_OMAP3)
+ depends on ARM && (ARCH_OMAP2 || ARCH_OMAP3)
help
Support for NAND flash on Texas Instruments OMAP2 and OMAP3 platforms.
config MTD_NAND_OMAP_PREFETCH
bool "GPMC prefetch support for NAND Flash device"
- depends on MTD_NAND && MTD_NAND_OMAP2
+ depends on MTD_NAND_OMAP2
default y
help
The NAND device can be accessed for Read/Write using GPMC PREFETCH engine
@@ -146,7 +146,7 @@ config MTD_NAND_AU1550
config MTD_NAND_BF5XX
tristate "Blackfin on-chip NAND Flash Controller driver"
- depends on (BF54x || BF52x) && MTD_NAND
+ depends on BF54x || BF52x
help
This enables the Blackfin on-chip NAND flash controller
@@ -236,7 +236,7 @@ config MTD_NAND_S3C2410_CLKSTOP
config MTD_NAND_BCM_UMI
tristate "NAND Flash support for BCM Reference Boards"
- depends on ARCH_BCMRING && MTD_NAND
+ depends on ARCH_BCMRING
help
This enables the NAND flash controller on the BCM UMI block.
@@ -395,7 +395,7 @@ endchoice
config MTD_NAND_PXA3xx
tristate "Support for NAND flash devices on PXA3xx"
- depends on MTD_NAND && (PXA3xx || ARCH_MMP)
+ depends on PXA3xx || ARCH_MMP
help
This enables the driver for the NAND flash device found on
PXA3xx processors
@@ -409,18 +409,18 @@ config MTD_NAND_PXA3xx_BUILTIN
config MTD_NAND_CM_X270
tristate "Support for NAND Flash on CM-X270 modules"
- depends on MTD_NAND && MACH_ARMCORE
+ depends on MACH_ARMCORE
config MTD_NAND_PASEMI
tristate "NAND support for PA Semi PWRficient"
- depends on MTD_NAND && PPC_PASEMI
+ depends on PPC_PASEMI
help
Enables support for NAND Flash interface on PA Semi PWRficient
based boards
config MTD_NAND_TMIO
tristate "NAND Flash device on Toshiba Mobile IO Controller"
- depends on MTD_NAND && MFD_TMIO
+ depends on MFD_TMIO
help
Support for NAND flash connected to a Toshiba Mobile IO
Controller in some PDAs, including the Sharp SL6000x.
@@ -434,7 +434,6 @@ config MTD_NAND_NANDSIM
config MTD_NAND_PLATFORM
tristate "Support for generic platform NAND driver"
- depends on MTD_NAND
help
This implements a generic NAND driver for on-SOC platform
devices. You will need to provide platform-specific functions
@@ -442,14 +441,14 @@ config MTD_NAND_PLATFORM
config MTD_ALAUDA
tristate "MTD driver for Olympus MAUSB-10 and Fujifilm DPC-R1"
- depends on MTD_NAND && USB
+ depends on USB
help
These two (and possibly other) Alauda-based cardreaders for
SmartMedia and xD allow raw flash access.
config MTD_NAND_ORION
tristate "NAND Flash support for Marvell Orion SoC"
- depends on PLAT_ORION && MTD_NAND
+ depends on PLAT_ORION
help
This enables the NAND flash controller on Orion machines.
@@ -458,7 +457,7 @@ config MTD_NAND_ORION
config MTD_NAND_FSL_ELBC
tristate "NAND support for Freescale eLBC controllers"
- depends on MTD_NAND && PPC_OF
+ depends on PPC_OF
help
Various Freescale chips, including the 8313, include a NAND Flash
Controller Module with built-in hardware ECC capabilities.
@@ -467,7 +466,7 @@ config MTD_NAND_FSL_ELBC
config MTD_NAND_FSL_UPM
tristate "Support for NAND on Freescale UPM"
- depends on MTD_NAND && (PPC_83xx || PPC_85xx)
+ depends on PPC_83xx || PPC_85xx
select FSL_LBC
help
Enables support for NAND Flash chips wired onto Freescale PowerPC
@@ -482,7 +481,7 @@ config MTD_NAND_MPC5121_NFC
config MTD_NAND_MXC
tristate "MXC NAND support"
- depends on ARCH_MX2 || ARCH_MX25 || ARCH_MX3
+ depends on ARCH_MX2 || ARCH_MX25 || ARCH_MX3 || ARCH_MX51
help
This enables the driver for the NAND flash controller on the
MXC processors.
@@ -495,7 +494,7 @@ config MTD_NAND_NOMADIK
config MTD_NAND_SH_FLCTL
tristate "Support for NAND on Renesas SuperH FLCTL"
- depends on MTD_NAND && (SUPERH || ARCH_SHMOBILE)
+ depends on SUPERH || ARCH_SHMOBILE
help
Several Renesas SuperH CPU has FLCTL. This option enables support
for NAND Flash using FLCTL.
@@ -515,7 +514,7 @@ config MTD_NAND_TXX9NDFMC
config MTD_NAND_SOCRATES
tristate "Support for NAND on Socrates board"
- depends on MTD_NAND && SOCRATES
+ depends on SOCRATES
help
Enables support for NAND Flash chips wired onto Socrates board.
diff --git a/drivers/mtd/nand/atmel_nand.c b/drivers/mtd/nand/atmel_nand.c
index 04d30887ca7..ccce0f03b5d 100644
--- a/drivers/mtd/nand/atmel_nand.c
+++ b/drivers/mtd/nand/atmel_nand.c
@@ -364,7 +364,7 @@ static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
}
}
-#ifdef CONFIG_MTD_PARTITIONS
+#ifdef CONFIG_MTD_CMDLINE_PARTS
static const char *part_probes[] = { "cmdlinepart", NULL };
#endif
diff --git a/drivers/mtd/nand/bf5xx_nand.c b/drivers/mtd/nand/bf5xx_nand.c
index 2974995e194..a382e3dd0a5 100644
--- a/drivers/mtd/nand/bf5xx_nand.c
+++ b/drivers/mtd/nand/bf5xx_nand.c
@@ -20,9 +20,6 @@
* - DMA supported in ECC_HW
* - YAFFS tested as rootfs in both ECC_HW and ECC_SW
*
- * TODO:
- * Enable JFFS2 over NAND as rootfs
- *
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
@@ -206,7 +203,7 @@ static void bf5xx_nand_hwcontrol(struct mtd_info *mtd, int cmd,
if (ctrl & NAND_CLE)
bfin_write_NFC_CMD(cmd);
- else
+ else if (ctrl & NAND_ALE)
bfin_write_NFC_ADDR(cmd);
SSYNC();
}
@@ -218,9 +215,9 @@ static void bf5xx_nand_hwcontrol(struct mtd_info *mtd, int cmd,
*/
static int bf5xx_nand_devready(struct mtd_info *mtd)
{
- unsigned short val = bfin_read_NFC_IRQSTAT();
+ unsigned short val = bfin_read_NFC_STAT();
- if ((val & NBUSYIRQ) == NBUSYIRQ)
+ if ((val & NBUSY) == NBUSY)
return 1;
else
return 0;
@@ -317,18 +314,16 @@ static int bf5xx_nand_correct_data_256(struct mtd_info *mtd, u_char *dat,
static int bf5xx_nand_correct_data(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *calc_ecc)
{
- struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
- struct bf5xx_nand_platform *plat = info->platform;
- unsigned short page_size = (plat->page_size ? 512 : 256);
+ struct nand_chip *chip = mtd->priv;
int ret;
ret = bf5xx_nand_correct_data_256(mtd, dat, read_ecc, calc_ecc);
- /* If page size is 512, correct second 256 bytes */
- if (page_size == 512) {
+ /* If ecc size is 512, correct second 256 bytes */
+ if (chip->ecc.size == 512) {
dat += 256;
- read_ecc += 8;
- calc_ecc += 8;
+ read_ecc += 3;
+ calc_ecc += 3;
ret |= bf5xx_nand_correct_data_256(mtd, dat, read_ecc, calc_ecc);
}
@@ -344,13 +339,12 @@ static int bf5xx_nand_calculate_ecc(struct mtd_info *mtd,
const u_char *dat, u_char *ecc_code)
{
struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
- struct bf5xx_nand_platform *plat = info->platform;
- u16 page_size = (plat->page_size ? 512 : 256);
+ struct nand_chip *chip = mtd->priv;
u16 ecc0, ecc1;
u32 code[2];
u8 *p;
- /* first 4 bytes ECC code for 256 page size */
+ /* first 3 bytes ECC code for 256 page size */
ecc0 = bfin_read_NFC_ECC0();
ecc1 = bfin_read_NFC_ECC1();
@@ -358,12 +352,11 @@ static int bf5xx_nand_calculate_ecc(struct mtd_info *mtd,
dev_dbg(info->device, "returning ecc 0x%08x\n", code[0]);
- /* first 3 bytes in ecc_code for 256 page size */
p = (u8 *) code;
memcpy(ecc_code, p, 3);
- /* second 4 bytes ECC code for 512 page size */
- if (page_size == 512) {
+ /* second 3 bytes ECC code for 512 ecc size */
+ if (chip->ecc.size == 512) {
ecc0 = bfin_read_NFC_ECC2();
ecc1 = bfin_read_NFC_ECC3();
code[1] = (ecc0 & 0x7ff) | ((ecc1 & 0x7ff) << 11);
@@ -483,8 +476,7 @@ static void bf5xx_nand_dma_rw(struct mtd_info *mtd,
uint8_t *buf, int is_read)
{
struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
- struct bf5xx_nand_platform *plat = info->platform;
- unsigned short page_size = (plat->page_size ? 512 : 256);
+ struct nand_chip *chip = mtd->priv;
unsigned short val;
dev_dbg(info->device, " mtd->%p, buf->%p, is_read %d\n",
@@ -498,10 +490,10 @@ static void bf5xx_nand_dma_rw(struct mtd_info *mtd,
*/
if (is_read)
invalidate_dcache_range((unsigned int)buf,
- (unsigned int)(buf + page_size));
+ (unsigned int)(buf + chip->ecc.size));
else
flush_dcache_range((unsigned int)buf,
- (unsigned int)(buf + page_size));
+ (unsigned int)(buf + chip->ecc.size));
/*
* This register must be written before each page is
@@ -510,6 +502,8 @@ static void bf5xx_nand_dma_rw(struct mtd_info *mtd,
*/
bfin_write_NFC_RST(ECC_RST);
SSYNC();
+ while (bfin_read_NFC_RST() & ECC_RST)
+ cpu_relax();
disable_dma(CH_NFC);
clear_dma_irqstat(CH_NFC);
@@ -520,13 +514,13 @@ static void bf5xx_nand_dma_rw(struct mtd_info *mtd,
/* The DMAs have different size on BF52x and BF54x */
#ifdef CONFIG_BF52x
- set_dma_x_count(CH_NFC, (page_size >> 1));
+ set_dma_x_count(CH_NFC, (chip->ecc.size >> 1));
set_dma_x_modify(CH_NFC, 2);
val = DI_EN | WDSIZE_16;
#endif
#ifdef CONFIG_BF54x
- set_dma_x_count(CH_NFC, (page_size >> 2));
+ set_dma_x_count(CH_NFC, (chip->ecc.size >> 2));
set_dma_x_modify(CH_NFC, 4);
val = DI_EN | WDSIZE_32;
#endif
@@ -548,12 +542,11 @@ static void bf5xx_nand_dma_read_buf(struct mtd_info *mtd,
uint8_t *buf, int len)
{
struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
- struct bf5xx_nand_platform *plat = info->platform;
- unsigned short page_size = (plat->page_size ? 512 : 256);
+ struct nand_chip *chip = mtd->priv;
dev_dbg(info->device, "mtd->%p, buf->%p, int %d\n", mtd, buf, len);
- if (len == page_size)
+ if (len == chip->ecc.size)
bf5xx_nand_dma_rw(mtd, buf, 1);
else
bf5xx_nand_read_buf(mtd, buf, len);
@@ -563,17 +556,32 @@ static void bf5xx_nand_dma_write_buf(struct mtd_info *mtd,
const uint8_t *buf, int len)
{
struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
- struct bf5xx_nand_platform *plat = info->platform;
- unsigned short page_size = (plat->page_size ? 512 : 256);
+ struct nand_chip *chip = mtd->priv;
dev_dbg(info->device, "mtd->%p, buf->%p, len %d\n", mtd, buf, len);
- if (len == page_size)
+ if (len == chip->ecc.size)
bf5xx_nand_dma_rw(mtd, (uint8_t *)buf, 0);
else
bf5xx_nand_write_buf(mtd, buf, len);
}
+static int bf5xx_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf, int page)
+{
+ bf5xx_nand_read_buf(mtd, buf, mtd->writesize);
+ bf5xx_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+ return 0;
+}
+
+static void bf5xx_nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf)
+{
+ bf5xx_nand_write_buf(mtd, buf, mtd->writesize);
+ bf5xx_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+}
+
/*
* System initialization functions
*/
@@ -627,15 +635,14 @@ static int bf5xx_nand_hw_init(struct bf5xx_nand_info *info)
/* setup NFC_CTL register */
dev_info(info->device,
- "page_size=%d, data_width=%d, wr_dly=%d, rd_dly=%d\n",
- (plat->page_size ? 512 : 256),
+ "data_width=%d, wr_dly=%d, rd_dly=%d\n",
(plat->data_width ? 16 : 8),
plat->wr_dly, plat->rd_dly);
- val = (plat->page_size << NFC_PG_SIZE_OFFSET) |
+ val = (1 << NFC_PG_SIZE_OFFSET) |
(plat->data_width << NFC_NWIDTH_OFFSET) |
(plat->rd_dly << NFC_RDDLY_OFFSET) |
- (plat->rd_dly << NFC_WRDLY_OFFSET);
+ (plat->wr_dly << NFC_WRDLY_OFFSET);
dev_dbg(info->device, "NFC_CTL is 0x%04x\n", val);
bfin_write_NFC_CTL(val);
@@ -698,6 +705,33 @@ static int __devexit bf5xx_nand_remove(struct platform_device *pdev)
return 0;
}
+static int bf5xx_nand_scan(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ int ret;
+
+ ret = nand_scan_ident(mtd, 1);
+ if (ret)
+ return ret;
+
+ if (hardware_ecc) {
+ /*
+ * for nand with page size > 512B, think it as several sections with 512B
+ */
+ if (likely(mtd->writesize >= 512)) {
+ chip->ecc.size = 512;
+ chip->ecc.bytes = 6;
+ } else {
+ chip->ecc.size = 256;
+ chip->ecc.bytes = 3;
+ bfin_write_NFC_CTL(bfin_read_NFC_CTL() & ~(1 << NFC_PG_SIZE_OFFSET));
+ SSYNC();
+ }
+ }
+
+ return nand_scan_tail(mtd);
+}
+
/*
* bf5xx_nand_probe
*
@@ -783,27 +817,20 @@ static int __devinit bf5xx_nand_probe(struct platform_device *pdev)
chip->badblock_pattern = &bootrom_bbt;
chip->ecc.layout = &bootrom_ecclayout;
#endif
-
- if (plat->page_size == NFC_PG_SIZE_256) {
- chip->ecc.bytes = 3;
- chip->ecc.size = 256;
- } else if (plat->page_size == NFC_PG_SIZE_512) {
- chip->ecc.bytes = 6;
- chip->ecc.size = 512;
- }
-
chip->read_buf = bf5xx_nand_dma_read_buf;
chip->write_buf = bf5xx_nand_dma_write_buf;
chip->ecc.calculate = bf5xx_nand_calculate_ecc;
chip->ecc.correct = bf5xx_nand_correct_data;
chip->ecc.mode = NAND_ECC_HW;
chip->ecc.hwctl = bf5xx_nand_enable_hwecc;
+ chip->ecc.read_page_raw = bf5xx_nand_read_page_raw;
+ chip->ecc.write_page_raw = bf5xx_nand_write_page_raw;
} else {
chip->ecc.mode = NAND_ECC_SOFT;
}
/* scan hardware nand chip and setup mtd info data struct */
- if (nand_scan(mtd, 1)) {
+ if (bf5xx_nand_scan(mtd)) {
err = -ENXIO;
goto out_err_nand_scan;
}
diff --git a/drivers/mtd/nand/davinci_nand.c b/drivers/mtd/nand/davinci_nand.c
index 9c9d893affe..2ac7367afe7 100644
--- a/drivers/mtd/nand/davinci_nand.c
+++ b/drivers/mtd/nand/davinci_nand.c
@@ -311,7 +311,9 @@ static int nand_davinci_correct_4bit(struct mtd_info *mtd,
unsigned short ecc10[8];
unsigned short *ecc16;
u32 syndrome[4];
+ u32 ecc_state;
unsigned num_errors, corrected;
+ unsigned long timeo = jiffies + msecs_to_jiffies(100);
/* All bytes 0xff? It's an erased page; ignore its ECC. */
for (i = 0; i < 10; i++) {
@@ -361,6 +363,21 @@ compare:
*/
davinci_nand_writel(info, NANDFCR_OFFSET,
davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
+
+ /*
+ * ECC_STATE field reads 0x3 (Error correction complete) immediately
+ * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
+ * begin trying to poll for the state, you may fall right out of your
+ * loop without any of the correction calculations having taken place.
+ * The recommendation from the hardware team is to wait till ECC_STATE
+ * reads less than 4, which means ECC HW has entered correction state.
+ */
+ do {
+ ecc_state = (davinci_nand_readl(info,
+ NANDFSR_OFFSET) >> 8) & 0x0f;
+ cpu_relax();
+ } while ((ecc_state < 4) && time_before(jiffies, timeo));
+
for (;;) {
u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c
index 3dfda9cc677..618fb42b86b 100644
--- a/drivers/mtd/nand/denali.c
+++ b/drivers/mtd/nand/denali.c
@@ -21,6 +21,7 @@
#include <linux/delay.h>
#include <linux/wait.h>
#include <linux/mutex.h>
+#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/mtd/mtd.h>
#include <linux/module.h>
@@ -29,15 +30,15 @@
MODULE_LICENSE("GPL");
-/* We define a module parameter that allows the user to override
+/* We define a module parameter that allows the user to override
* the hardware and decide what timing mode should be used.
*/
#define NAND_DEFAULT_TIMINGS -1
static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
-MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates"
- " use default timings");
+MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
+ " -1 indicates use default timings");
#define DENALI_NAND_NAME "denali-nand"
@@ -54,13 +55,13 @@ MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates
INTR_STATUS0__RST_COMP | \
INTR_STATUS0__ERASE_COMP)
-/* indicates whether or not the internal value for the flash bank is
+/* indicates whether or not the internal value for the flash bank is
valid or not */
-#define CHIP_SELECT_INVALID -1
+#define CHIP_SELECT_INVALID -1
#define SUPPORT_8BITECC 1
-/* This macro divides two integers and rounds fractional values up
+/* This macro divides two integers and rounds fractional values up
* to the nearest integer value. */
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
@@ -83,7 +84,7 @@ MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates
#define ADDR_CYCLE 1
#define STATUS_CYCLE 2
-/* this is a helper macro that allows us to
+/* this is a helper macro that allows us to
* format the bank into the proper bits for the controller */
#define BANK(x) ((x) << 24)
@@ -95,59 +96,64 @@ static const struct pci_device_id denali_pci_ids[] = {
};
-/* these are static lookup tables that give us easy access to
- registers in the NAND controller.
+/* these are static lookup tables that give us easy access to
+ registers in the NAND controller.
*/
-static const uint32_t intr_status_addresses[4] = {INTR_STATUS0,
- INTR_STATUS1,
- INTR_STATUS2,
+static const uint32_t intr_status_addresses[4] = {INTR_STATUS0,
+ INTR_STATUS1,
+ INTR_STATUS2,
INTR_STATUS3};
static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0,
- DEVICE_RESET__BANK1,
- DEVICE_RESET__BANK2,
- DEVICE_RESET__BANK3};
+ DEVICE_RESET__BANK1,
+ DEVICE_RESET__BANK2,
+ DEVICE_RESET__BANK3};
static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT,
- INTR_STATUS1__TIME_OUT,
- INTR_STATUS2__TIME_OUT,
- INTR_STATUS3__TIME_OUT};
+ INTR_STATUS1__TIME_OUT,
+ INTR_STATUS2__TIME_OUT,
+ INTR_STATUS3__TIME_OUT};
static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP,
- INTR_STATUS1__RST_COMP,
- INTR_STATUS2__RST_COMP,
- INTR_STATUS3__RST_COMP};
+ INTR_STATUS1__RST_COMP,
+ INTR_STATUS2__RST_COMP,
+ INTR_STATUS3__RST_COMP};
/* specifies the debug level of the driver */
-static int nand_debug_level = 0;
+static int nand_debug_level;
/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
-static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask);
-static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask);
+static uint32_t wait_for_irq(struct denali_nand_info *denali,
+ uint32_t irq_mask);
+static void denali_irq_enable(struct denali_nand_info *denali,
+ uint32_t int_mask);
static uint32_t read_interrupt_status(struct denali_nand_info *denali);
#define DEBUG_DENALI 0
/* This is a wrapper for writing to the denali registers.
* this allows us to create debug information so we can
- * observe how the driver is programming the device.
+ * observe how the driver is programming the device.
* it uses standard linux convention for (val, addr) */
static void denali_write32(uint32_t value, void *addr)
{
- iowrite32(value, addr);
+ iowrite32(value, addr);
#if DEBUG_DENALI
- printk(KERN_ERR "wrote: 0x%x -> 0x%x\n", value, (uint32_t)((uint32_t)addr & 0x1fff));
+ printk(KERN_INFO "wrote: 0x%x -> 0x%x\n", value,
+ (uint32_t)((uint32_t)addr & 0x1fff));
#endif
-}
+}
-/* Certain operations for the denali NAND controller use an indexed mode to read/write
- data. The operation is performed by writing the address value of the command to
- the device memory followed by the data. This function abstracts this common
- operation.
+/* Certain operations for the denali NAND controller use
+ * an indexed mode to read/write data. The operation is
+ * performed by writing the address value of the command
+ * to the device memory followed by the data. This function
+ * abstracts this common operation.
*/
-static void index_addr(struct denali_nand_info *denali, uint32_t address, uint32_t data)
+static void index_addr(struct denali_nand_info *denali,
+ uint32_t address, uint32_t data)
{
denali_write32(address, denali->flash_mem);
denali_write32(data, denali->flash_mem + 0x10);
@@ -161,7 +167,7 @@ static void index_addr_read_data(struct denali_nand_info *denali,
*pdata = ioread32(denali->flash_mem + 0x10);
}
-/* We need to buffer some data for some of the NAND core routines.
+/* We need to buffer some data for some of the NAND core routines.
* The operations manage buffering that data. */
static void reset_buf(struct denali_nand_info *denali)
{
@@ -183,7 +189,7 @@ static void read_status(struct denali_nand_info *denali)
reset_buf(denali);
/* initiate a device status read */
- cmd = MODE_11 | BANK(denali->flash_bank);
+ cmd = MODE_11 | BANK(denali->flash_bank);
index_addr(denali, cmd | COMMAND_CYCLE, 0x70);
denali_write32(cmd | STATUS_CYCLE, denali->flash_mem);
@@ -191,7 +197,8 @@ static void read_status(struct denali_nand_info *denali)
write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10));
#if DEBUG_DENALI
- printk("device reporting status value of 0x%2x\n", denali->buf.buf[0]);
+ printk(KERN_INFO "device reporting status value of 0x%2x\n",
+ denali->buf.buf[0]);
#endif
}
@@ -199,7 +206,7 @@ static void read_status(struct denali_nand_info *denali)
static void reset_bank(struct denali_nand_info *denali)
{
uint32_t irq_status = 0;
- uint32_t irq_mask = reset_complete[denali->flash_bank] |
+ uint32_t irq_mask = reset_complete[denali->flash_bank] |
operation_timeout[denali->flash_bank];
int bank = 0;
@@ -209,15 +216,13 @@ static void reset_bank(struct denali_nand_info *denali)
denali_write32(bank, denali->flash_reg + DEVICE_RESET);
irq_status = wait_for_irq(denali, irq_mask);
-
+
if (irq_status & operation_timeout[denali->flash_bank])
- {
printk(KERN_ERR "reset bank failed.\n");
- }
}
/* Reset the flash controller */
-static uint16_t NAND_Flash_Reset(struct denali_nand_info *denali)
+static uint16_t denali_nand_reset(struct denali_nand_info *denali)
{
uint32_t i;
@@ -229,8 +234,10 @@ static uint16_t NAND_Flash_Reset(struct denali_nand_info *denali)
denali->flash_reg + intr_status_addresses[i]);
for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) {
- denali_write32(device_reset_banks[i], denali->flash_reg + DEVICE_RESET);
- while (!(ioread32(denali->flash_reg + intr_status_addresses[i]) &
+ denali_write32(device_reset_banks[i],
+ denali->flash_reg + DEVICE_RESET);
+ while (!(ioread32(denali->flash_reg +
+ intr_status_addresses[i]) &
(reset_complete[i] | operation_timeout[i])))
;
if (ioread32(denali->flash_reg + intr_status_addresses[i]) &
@@ -246,11 +253,12 @@ static uint16_t NAND_Flash_Reset(struct denali_nand_info *denali)
return PASS;
}
-/* this routine calculates the ONFI timing values for a given mode and programs
- * the clocking register accordingly. The mode is determined by the get_onfi_nand_para
- routine.
+/* this routine calculates the ONFI timing values for a given mode and
+ * programs the clocking register accordingly. The mode is determined by
+ * the get_onfi_nand_para routine.
*/
-static void NAND_ONFi_Timing_Mode(struct denali_nand_info *denali, uint16_t mode)
+static void nand_onfi_timing_set(struct denali_nand_info *denali,
+ uint16_t mode)
{
uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
@@ -347,136 +355,24 @@ static void NAND_ONFi_Timing_Mode(struct denali_nand_info *denali, uint16_t mode
denali_write32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
}
-/* configures the initial ECC settings for the controller */
-static void set_ecc_config(struct denali_nand_info *denali)
-{
-#if SUPPORT_8BITECC
- if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) < 4096) ||
- (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) <= 128))
- denali_write32(8, denali->flash_reg + ECC_CORRECTION);
-#endif
-
- if ((ioread32(denali->flash_reg + ECC_CORRECTION) & ECC_CORRECTION__VALUE)
- == 1) {
- denali->dev_info.wECCBytesPerSector = 4;
- denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected;
- denali->dev_info.wNumPageSpareFlag =
- denali->dev_info.wPageSpareSize -
- denali->dev_info.wPageDataSize /
- (ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) *
- denali->dev_info.wECCBytesPerSector
- - denali->dev_info.wSpareSkipBytes;
- } else {
- denali->dev_info.wECCBytesPerSector =
- (ioread32(denali->flash_reg + ECC_CORRECTION) &
- ECC_CORRECTION__VALUE) * 13 / 8;
- if ((denali->dev_info.wECCBytesPerSector) % 2 == 0)
- denali->dev_info.wECCBytesPerSector += 2;
- else
- denali->dev_info.wECCBytesPerSector += 1;
-
- denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected;
- denali->dev_info.wNumPageSpareFlag = denali->dev_info.wPageSpareSize -
- denali->dev_info.wPageDataSize /
- (ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) *
- denali->dev_info.wECCBytesPerSector
- - denali->dev_info.wSpareSkipBytes;
- }
-}
-
/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
int i;
- uint16_t blks_lun_l, blks_lun_h, n_of_luns;
- uint32_t blockperlun, id;
-
- denali_write32(DEVICE_RESET__BANK0, denali->flash_reg + DEVICE_RESET);
-
- while (!((ioread32(denali->flash_reg + INTR_STATUS0) &
- INTR_STATUS0__RST_COMP) |
- (ioread32(denali->flash_reg + INTR_STATUS0) &
- INTR_STATUS0__TIME_OUT)))
- ;
-
- if (ioread32(denali->flash_reg + INTR_STATUS0) & INTR_STATUS0__RST_COMP) {
- denali_write32(DEVICE_RESET__BANK1, denali->flash_reg + DEVICE_RESET);
- while (!((ioread32(denali->flash_reg + INTR_STATUS1) &
- INTR_STATUS1__RST_COMP) |
- (ioread32(denali->flash_reg + INTR_STATUS1) &
- INTR_STATUS1__TIME_OUT)))
- ;
-
- if (ioread32(denali->flash_reg + INTR_STATUS1) &
- INTR_STATUS1__RST_COMP) {
- denali_write32(DEVICE_RESET__BANK2,
- denali->flash_reg + DEVICE_RESET);
- while (!((ioread32(denali->flash_reg + INTR_STATUS2) &
- INTR_STATUS2__RST_COMP) |
- (ioread32(denali->flash_reg + INTR_STATUS2) &
- INTR_STATUS2__TIME_OUT)))
- ;
-
- if (ioread32(denali->flash_reg + INTR_STATUS2) &
- INTR_STATUS2__RST_COMP) {
- denali_write32(DEVICE_RESET__BANK3,
- denali->flash_reg + DEVICE_RESET);
- while (!((ioread32(denali->flash_reg + INTR_STATUS3) &
- INTR_STATUS3__RST_COMP) |
- (ioread32(denali->flash_reg + INTR_STATUS3) &
- INTR_STATUS3__TIME_OUT)))
- ;
- } else {
- printk(KERN_ERR "Getting a time out for bank 2!\n");
- }
- } else {
- printk(KERN_ERR "Getting a time out for bank 1!\n");
- }
- }
-
- denali_write32(INTR_STATUS0__TIME_OUT, denali->flash_reg + INTR_STATUS0);
- denali_write32(INTR_STATUS1__TIME_OUT, denali->flash_reg + INTR_STATUS1);
- denali_write32(INTR_STATUS2__TIME_OUT, denali->flash_reg + INTR_STATUS2);
- denali_write32(INTR_STATUS3__TIME_OUT, denali->flash_reg + INTR_STATUS3);
-
- denali->dev_info.wONFIDevFeatures =
- ioread32(denali->flash_reg + ONFI_DEVICE_FEATURES);
- denali->dev_info.wONFIOptCommands =
- ioread32(denali->flash_reg + ONFI_OPTIONAL_COMMANDS);
- denali->dev_info.wONFITimingMode =
- ioread32(denali->flash_reg + ONFI_TIMING_MODE);
- denali->dev_info.wONFIPgmCacheTimingMode =
- ioread32(denali->flash_reg + ONFI_PGM_CACHE_TIMING_MODE);
-
- n_of_luns = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
- ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS;
- blks_lun_l = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L);
- blks_lun_h = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U);
-
- blockperlun = (blks_lun_h << 16) | blks_lun_l;
-
- denali->dev_info.wTotalBlocks = n_of_luns * blockperlun;
-
+ /* we needn't to do a reset here because driver has already
+ * reset all the banks before
+ * */
if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
ONFI_TIMING_MODE__VALUE))
return FAIL;
for (i = 5; i > 0; i--) {
- if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) & (0x01 << i))
+ if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
+ (0x01 << i))
break;
}
- NAND_ONFi_Timing_Mode(denali, i);
-
- index_addr(denali, MODE_11 | 0, 0x90);
- index_addr(denali, MODE_11 | 1, 0);
-
- for (i = 0; i < 3; i++)
- index_addr_read_data(denali, MODE_11 | 2, &id);
-
- nand_dbg_print(NAND_DBG_DEBUG, "3rd ID: 0x%x\n", id);
-
- denali->dev_info.MLCDevice = id & 0x0C;
+ nand_onfi_timing_set(denali, i);
/* By now, all the ONFI devices we know support the page cache */
/* rw feature. So here we enable the pipeline_rw_ahead feature */
@@ -486,25 +382,10 @@ static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
return PASS;
}
-static void get_samsung_nand_para(struct denali_nand_info *denali)
+static void get_samsung_nand_para(struct denali_nand_info *denali,
+ uint8_t device_id)
{
- uint8_t no_of_planes;
- uint32_t blk_size;
- uint64_t plane_size, capacity;
- uint32_t id_bytes[5];
- int i;
-
- index_addr(denali, (uint32_t)(MODE_11 | 0), 0x90);
- index_addr(denali, (uint32_t)(MODE_11 | 1), 0);
- for (i = 0; i < 5; i++)
- index_addr_read_data(denali, (uint32_t)(MODE_11 | 2), &id_bytes[i]);
-
- nand_dbg_print(NAND_DBG_DEBUG,
- "ID bytes: 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n",
- id_bytes[0], id_bytes[1], id_bytes[2],
- id_bytes[3], id_bytes[4]);
-
- if ((id_bytes[1] & 0xff) == 0xd3) { /* Samsung K9WAG08U1A */
+ if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
/* Set timing register values according to datasheet */
denali_write32(5, denali->flash_reg + ACC_CLKS);
denali_write32(20, denali->flash_reg + RE_2_WE);
@@ -514,19 +395,10 @@ static void get_samsung_nand_para(struct denali_nand_info *denali)
denali_write32(2, denali->flash_reg + RDWR_EN_HI_CNT);
denali_write32(2, denali->flash_reg + CS_SETUP_CNT);
}
-
- no_of_planes = 1 << ((id_bytes[4] & 0x0c) >> 2);
- plane_size = (uint64_t)64 << ((id_bytes[4] & 0x70) >> 4);
- blk_size = 64 << ((ioread32(denali->flash_reg + DEVICE_PARAM_1) & 0x30) >> 4);
- capacity = (uint64_t)128 * plane_size * no_of_planes;
-
- do_div(capacity, blk_size);
- denali->dev_info.wTotalBlocks = capacity;
}
static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
- void __iomem *scratch_reg;
uint32_t tmp;
/* Workaround to fix a controller bug which reports a wrong */
@@ -536,81 +408,52 @@ static void get_toshiba_nand_para(struct denali_nand_info *denali)
denali_write32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
- denali_write32(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);