diff options
Diffstat (limited to 'drivers/mtd/nand')
-rw-r--r-- | drivers/mtd/nand/Kconfig | 33 | ||||
-rw-r--r-- | drivers/mtd/nand/atmel_nand.c | 2 | ||||
-rw-r--r-- | drivers/mtd/nand/bf5xx_nand.c | 117 | ||||
-rw-r--r-- | drivers/mtd/nand/davinci_nand.c | 17 | ||||
-rw-r--r-- | drivers/mtd/nand/denali.c | 1240 | ||||
-rw-r--r-- | drivers/mtd/nand/denali.h | 140 | ||||
-rw-r--r-- | drivers/mtd/nand/diskonchip.c | 6 | ||||
-rw-r--r-- | drivers/mtd/nand/mxc_nand.c | 600 | ||||
-rw-r--r-- | drivers/mtd/nand/nand_base.c | 79 | ||||
-rw-r--r-- | drivers/mtd/nand/nand_bbt.c | 103 | ||||
-rw-r--r-- | drivers/mtd/nand/nand_ids.c | 4 | ||||
-rw-r--r-- | drivers/mtd/nand/nandsim.c | 14 | ||||
-rw-r--r-- | drivers/mtd/nand/plat_nand.c | 2 | ||||
-rw-r--r-- | drivers/mtd/nand/r852.c | 6 | ||||
-rw-r--r-- | drivers/mtd/nand/rtc_from4.c | 1 | ||||
-rw-r--r-- | drivers/mtd/nand/s3c2410.c | 15 | ||||
-rw-r--r-- | drivers/mtd/nand/sm_common.c | 2 |
17 files changed, 1216 insertions, 1165 deletions
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index 362d177efe1..8b4b67c8a39 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig @@ -37,7 +37,6 @@ config MTD_SM_COMMON config MTD_NAND_MUSEUM_IDS bool "Enable chip ids for obsolete ancient NAND devices" - depends on MTD_NAND default n help Enable this option only when your board has first generation @@ -61,6 +60,7 @@ config MTD_NAND_DENALI config MTD_NAND_DENALI_SCRATCH_REG_ADDR hex "Denali NAND size scratch register address" default "0xFF108018" + depends on MTD_NAND_DENALI help Some platforms place the NAND chip size in a scratch register because (some versions of) the driver aren't able to automatically @@ -101,13 +101,13 @@ config MTD_NAND_AMS_DELTA config MTD_NAND_OMAP2 tristate "NAND Flash device on OMAP2 and OMAP3" - depends on ARM && MTD_NAND && (ARCH_OMAP2 || ARCH_OMAP3) + depends on ARM && (ARCH_OMAP2 || ARCH_OMAP3) help Support for NAND flash on Texas Instruments OMAP2 and OMAP3 platforms. config MTD_NAND_OMAP_PREFETCH bool "GPMC prefetch support for NAND Flash device" - depends on MTD_NAND && MTD_NAND_OMAP2 + depends on MTD_NAND_OMAP2 default y help The NAND device can be accessed for Read/Write using GPMC PREFETCH engine @@ -146,7 +146,7 @@ config MTD_NAND_AU1550 config MTD_NAND_BF5XX tristate "Blackfin on-chip NAND Flash Controller driver" - depends on (BF54x || BF52x) && MTD_NAND + depends on BF54x || BF52x help This enables the Blackfin on-chip NAND flash controller @@ -236,7 +236,7 @@ config MTD_NAND_S3C2410_CLKSTOP config MTD_NAND_BCM_UMI tristate "NAND Flash support for BCM Reference Boards" - depends on ARCH_BCMRING && MTD_NAND + depends on ARCH_BCMRING help This enables the NAND flash controller on the BCM UMI block. @@ -395,7 +395,7 @@ endchoice config MTD_NAND_PXA3xx tristate "Support for NAND flash devices on PXA3xx" - depends on MTD_NAND && (PXA3xx || ARCH_MMP) + depends on PXA3xx || ARCH_MMP help This enables the driver for the NAND flash device found on PXA3xx processors @@ -409,18 +409,18 @@ config MTD_NAND_PXA3xx_BUILTIN config MTD_NAND_CM_X270 tristate "Support for NAND Flash on CM-X270 modules" - depends on MTD_NAND && MACH_ARMCORE + depends on MACH_ARMCORE config MTD_NAND_PASEMI tristate "NAND support for PA Semi PWRficient" - depends on MTD_NAND && PPC_PASEMI + depends on PPC_PASEMI help Enables support for NAND Flash interface on PA Semi PWRficient based boards config MTD_NAND_TMIO tristate "NAND Flash device on Toshiba Mobile IO Controller" - depends on MTD_NAND && MFD_TMIO + depends on MFD_TMIO help Support for NAND flash connected to a Toshiba Mobile IO Controller in some PDAs, including the Sharp SL6000x. @@ -434,7 +434,6 @@ config MTD_NAND_NANDSIM config MTD_NAND_PLATFORM tristate "Support for generic platform NAND driver" - depends on MTD_NAND help This implements a generic NAND driver for on-SOC platform devices. You will need to provide platform-specific functions @@ -442,14 +441,14 @@ config MTD_NAND_PLATFORM config MTD_ALAUDA tristate "MTD driver for Olympus MAUSB-10 and Fujifilm DPC-R1" - depends on MTD_NAND && USB + depends on USB help These two (and possibly other) Alauda-based cardreaders for SmartMedia and xD allow raw flash access. config MTD_NAND_ORION tristate "NAND Flash support for Marvell Orion SoC" - depends on PLAT_ORION && MTD_NAND + depends on PLAT_ORION help This enables the NAND flash controller on Orion machines. @@ -458,7 +457,7 @@ config MTD_NAND_ORION config MTD_NAND_FSL_ELBC tristate "NAND support for Freescale eLBC controllers" - depends on MTD_NAND && PPC_OF + depends on PPC_OF help Various Freescale chips, including the 8313, include a NAND Flash Controller Module with built-in hardware ECC capabilities. @@ -467,7 +466,7 @@ config MTD_NAND_FSL_ELBC config MTD_NAND_FSL_UPM tristate "Support for NAND on Freescale UPM" - depends on MTD_NAND && (PPC_83xx || PPC_85xx) + depends on PPC_83xx || PPC_85xx select FSL_LBC help Enables support for NAND Flash chips wired onto Freescale PowerPC @@ -482,7 +481,7 @@ config MTD_NAND_MPC5121_NFC config MTD_NAND_MXC tristate "MXC NAND support" - depends on ARCH_MX2 || ARCH_MX25 || ARCH_MX3 + depends on ARCH_MX2 || ARCH_MX25 || ARCH_MX3 || ARCH_MX51 help This enables the driver for the NAND flash controller on the MXC processors. @@ -495,7 +494,7 @@ config MTD_NAND_NOMADIK config MTD_NAND_SH_FLCTL tristate "Support for NAND on Renesas SuperH FLCTL" - depends on MTD_NAND && (SUPERH || ARCH_SHMOBILE) + depends on SUPERH || ARCH_SHMOBILE help Several Renesas SuperH CPU has FLCTL. This option enables support for NAND Flash using FLCTL. @@ -515,7 +514,7 @@ config MTD_NAND_TXX9NDFMC config MTD_NAND_SOCRATES tristate "Support for NAND on Socrates board" - depends on MTD_NAND && SOCRATES + depends on SOCRATES help Enables support for NAND Flash chips wired onto Socrates board. diff --git a/drivers/mtd/nand/atmel_nand.c b/drivers/mtd/nand/atmel_nand.c index 04d30887ca7..ccce0f03b5d 100644 --- a/drivers/mtd/nand/atmel_nand.c +++ b/drivers/mtd/nand/atmel_nand.c @@ -364,7 +364,7 @@ static void atmel_nand_hwctl(struct mtd_info *mtd, int mode) } } -#ifdef CONFIG_MTD_PARTITIONS +#ifdef CONFIG_MTD_CMDLINE_PARTS static const char *part_probes[] = { "cmdlinepart", NULL }; #endif diff --git a/drivers/mtd/nand/bf5xx_nand.c b/drivers/mtd/nand/bf5xx_nand.c index 2974995e194..a382e3dd0a5 100644 --- a/drivers/mtd/nand/bf5xx_nand.c +++ b/drivers/mtd/nand/bf5xx_nand.c @@ -20,9 +20,6 @@ * - DMA supported in ECC_HW * - YAFFS tested as rootfs in both ECC_HW and ECC_SW * - * TODO: - * Enable JFFS2 over NAND as rootfs - * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or @@ -206,7 +203,7 @@ static void bf5xx_nand_hwcontrol(struct mtd_info *mtd, int cmd, if (ctrl & NAND_CLE) bfin_write_NFC_CMD(cmd); - else + else if (ctrl & NAND_ALE) bfin_write_NFC_ADDR(cmd); SSYNC(); } @@ -218,9 +215,9 @@ static void bf5xx_nand_hwcontrol(struct mtd_info *mtd, int cmd, */ static int bf5xx_nand_devready(struct mtd_info *mtd) { - unsigned short val = bfin_read_NFC_IRQSTAT(); + unsigned short val = bfin_read_NFC_STAT(); - if ((val & NBUSYIRQ) == NBUSYIRQ) + if ((val & NBUSY) == NBUSY) return 1; else return 0; @@ -317,18 +314,16 @@ static int bf5xx_nand_correct_data_256(struct mtd_info *mtd, u_char *dat, static int bf5xx_nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { - struct bf5xx_nand_info *info = mtd_to_nand_info(mtd); - struct bf5xx_nand_platform *plat = info->platform; - unsigned short page_size = (plat->page_size ? 512 : 256); + struct nand_chip *chip = mtd->priv; int ret; ret = bf5xx_nand_correct_data_256(mtd, dat, read_ecc, calc_ecc); - /* If page size is 512, correct second 256 bytes */ - if (page_size == 512) { + /* If ecc size is 512, correct second 256 bytes */ + if (chip->ecc.size == 512) { dat += 256; - read_ecc += 8; - calc_ecc += 8; + read_ecc += 3; + calc_ecc += 3; ret |= bf5xx_nand_correct_data_256(mtd, dat, read_ecc, calc_ecc); } @@ -344,13 +339,12 @@ static int bf5xx_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { struct bf5xx_nand_info *info = mtd_to_nand_info(mtd); - struct bf5xx_nand_platform *plat = info->platform; - u16 page_size = (plat->page_size ? 512 : 256); + struct nand_chip *chip = mtd->priv; u16 ecc0, ecc1; u32 code[2]; u8 *p; - /* first 4 bytes ECC code for 256 page size */ + /* first 3 bytes ECC code for 256 page size */ ecc0 = bfin_read_NFC_ECC0(); ecc1 = bfin_read_NFC_ECC1(); @@ -358,12 +352,11 @@ static int bf5xx_nand_calculate_ecc(struct mtd_info *mtd, dev_dbg(info->device, "returning ecc 0x%08x\n", code[0]); - /* first 3 bytes in ecc_code for 256 page size */ p = (u8 *) code; memcpy(ecc_code, p, 3); - /* second 4 bytes ECC code for 512 page size */ - if (page_size == 512) { + /* second 3 bytes ECC code for 512 ecc size */ + if (chip->ecc.size == 512) { ecc0 = bfin_read_NFC_ECC2(); ecc1 = bfin_read_NFC_ECC3(); code[1] = (ecc0 & 0x7ff) | ((ecc1 & 0x7ff) << 11); @@ -483,8 +476,7 @@ static void bf5xx_nand_dma_rw(struct mtd_info *mtd, uint8_t *buf, int is_read) { struct bf5xx_nand_info *info = mtd_to_nand_info(mtd); - struct bf5xx_nand_platform *plat = info->platform; - unsigned short page_size = (plat->page_size ? 512 : 256); + struct nand_chip *chip = mtd->priv; unsigned short val; dev_dbg(info->device, " mtd->%p, buf->%p, is_read %d\n", @@ -498,10 +490,10 @@ static void bf5xx_nand_dma_rw(struct mtd_info *mtd, */ if (is_read) invalidate_dcache_range((unsigned int)buf, - (unsigned int)(buf + page_size)); + (unsigned int)(buf + chip->ecc.size)); else flush_dcache_range((unsigned int)buf, - (unsigned int)(buf + page_size)); + (unsigned int)(buf + chip->ecc.size)); /* * This register must be written before each page is @@ -510,6 +502,8 @@ static void bf5xx_nand_dma_rw(struct mtd_info *mtd, */ bfin_write_NFC_RST(ECC_RST); SSYNC(); + while (bfin_read_NFC_RST() & ECC_RST) + cpu_relax(); disable_dma(CH_NFC); clear_dma_irqstat(CH_NFC); @@ -520,13 +514,13 @@ static void bf5xx_nand_dma_rw(struct mtd_info *mtd, /* The DMAs have different size on BF52x and BF54x */ #ifdef CONFIG_BF52x - set_dma_x_count(CH_NFC, (page_size >> 1)); + set_dma_x_count(CH_NFC, (chip->ecc.size >> 1)); set_dma_x_modify(CH_NFC, 2); val = DI_EN | WDSIZE_16; #endif #ifdef CONFIG_BF54x - set_dma_x_count(CH_NFC, (page_size >> 2)); + set_dma_x_count(CH_NFC, (chip->ecc.size >> 2)); set_dma_x_modify(CH_NFC, 4); val = DI_EN | WDSIZE_32; #endif @@ -548,12 +542,11 @@ static void bf5xx_nand_dma_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { struct bf5xx_nand_info *info = mtd_to_nand_info(mtd); - struct bf5xx_nand_platform *plat = info->platform; - unsigned short page_size = (plat->page_size ? 512 : 256); + struct nand_chip *chip = mtd->priv; dev_dbg(info->device, "mtd->%p, buf->%p, int %d\n", mtd, buf, len); - if (len == page_size) + if (len == chip->ecc.size) bf5xx_nand_dma_rw(mtd, buf, 1); else bf5xx_nand_read_buf(mtd, buf, len); @@ -563,17 +556,32 @@ static void bf5xx_nand_dma_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { struct bf5xx_nand_info *info = mtd_to_nand_info(mtd); - struct bf5xx_nand_platform *plat = info->platform; - unsigned short page_size = (plat->page_size ? 512 : 256); + struct nand_chip *chip = mtd->priv; dev_dbg(info->device, "mtd->%p, buf->%p, len %d\n", mtd, buf, len); - if (len == page_size) + if (len == chip->ecc.size) bf5xx_nand_dma_rw(mtd, (uint8_t *)buf, 0); else bf5xx_nand_write_buf(mtd, buf, len); } +static int bf5xx_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int page) +{ + bf5xx_nand_read_buf(mtd, buf, mtd->writesize); + bf5xx_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; +} + +static void bf5xx_nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf) +{ + bf5xx_nand_write_buf(mtd, buf, mtd->writesize); + bf5xx_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize); +} + /* * System initialization functions */ @@ -627,15 +635,14 @@ static int bf5xx_nand_hw_init(struct bf5xx_nand_info *info) /* setup NFC_CTL register */ dev_info(info->device, - "page_size=%d, data_width=%d, wr_dly=%d, rd_dly=%d\n", - (plat->page_size ? 512 : 256), + "data_width=%d, wr_dly=%d, rd_dly=%d\n", (plat->data_width ? 16 : 8), plat->wr_dly, plat->rd_dly); - val = (plat->page_size << NFC_PG_SIZE_OFFSET) | + val = (1 << NFC_PG_SIZE_OFFSET) | (plat->data_width << NFC_NWIDTH_OFFSET) | (plat->rd_dly << NFC_RDDLY_OFFSET) | - (plat->rd_dly << NFC_WRDLY_OFFSET); + (plat->wr_dly << NFC_WRDLY_OFFSET); dev_dbg(info->device, "NFC_CTL is 0x%04x\n", val); bfin_write_NFC_CTL(val); @@ -698,6 +705,33 @@ static int __devexit bf5xx_nand_remove(struct platform_device *pdev) return 0; } +static int bf5xx_nand_scan(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + int ret; + + ret = nand_scan_ident(mtd, 1); + if (ret) + return ret; + + if (hardware_ecc) { + /* + * for nand with page size > 512B, think it as several sections with 512B + */ + if (likely(mtd->writesize >= 512)) { + chip->ecc.size = 512; + chip->ecc.bytes = 6; + } else { + chip->ecc.size = 256; + chip->ecc.bytes = 3; + bfin_write_NFC_CTL(bfin_read_NFC_CTL() & ~(1 << NFC_PG_SIZE_OFFSET)); + SSYNC(); + } + } + + return nand_scan_tail(mtd); +} + /* * bf5xx_nand_probe * @@ -783,27 +817,20 @@ static int __devinit bf5xx_nand_probe(struct platform_device *pdev) chip->badblock_pattern = &bootrom_bbt; chip->ecc.layout = &bootrom_ecclayout; #endif - - if (plat->page_size == NFC_PG_SIZE_256) { - chip->ecc.bytes = 3; - chip->ecc.size = 256; - } else if (plat->page_size == NFC_PG_SIZE_512) { - chip->ecc.bytes = 6; - chip->ecc.size = 512; - } - chip->read_buf = bf5xx_nand_dma_read_buf; chip->write_buf = bf5xx_nand_dma_write_buf; chip->ecc.calculate = bf5xx_nand_calculate_ecc; chip->ecc.correct = bf5xx_nand_correct_data; chip->ecc.mode = NAND_ECC_HW; chip->ecc.hwctl = bf5xx_nand_enable_hwecc; + chip->ecc.read_page_raw = bf5xx_nand_read_page_raw; + chip->ecc.write_page_raw = bf5xx_nand_write_page_raw; } else { chip->ecc.mode = NAND_ECC_SOFT; } /* scan hardware nand chip and setup mtd info data struct */ - if (nand_scan(mtd, 1)) { + if (bf5xx_nand_scan(mtd)) { err = -ENXIO; goto out_err_nand_scan; } diff --git a/drivers/mtd/nand/davinci_nand.c b/drivers/mtd/nand/davinci_nand.c index 9c9d893affe..2ac7367afe7 100644 --- a/drivers/mtd/nand/davinci_nand.c +++ b/drivers/mtd/nand/davinci_nand.c @@ -311,7 +311,9 @@ static int nand_davinci_correct_4bit(struct mtd_info *mtd, unsigned short ecc10[8]; unsigned short *ecc16; u32 syndrome[4]; + u32 ecc_state; unsigned num_errors, corrected; + unsigned long timeo = jiffies + msecs_to_jiffies(100); /* All bytes 0xff? It's an erased page; ignore its ECC. */ for (i = 0; i < 10; i++) { @@ -361,6 +363,21 @@ compare: */ davinci_nand_writel(info, NANDFCR_OFFSET, davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13)); + + /* + * ECC_STATE field reads 0x3 (Error correction complete) immediately + * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately + * begin trying to poll for the state, you may fall right out of your + * loop without any of the correction calculations having taken place. + * The recommendation from the hardware team is to wait till ECC_STATE + * reads less than 4, which means ECC HW has entered correction state. + */ + do { + ecc_state = (davinci_nand_readl(info, + NANDFSR_OFFSET) >> 8) & 0x0f; + cpu_relax(); + } while ((ecc_state < 4) && time_before(jiffies, timeo)); + for (;;) { u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET); diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c index 3dfda9cc677..618fb42b86b 100644 --- a/drivers/mtd/nand/denali.c +++ b/drivers/mtd/nand/denali.c @@ -21,6 +21,7 @@ #include <linux/delay.h> #include <linux/wait.h> #include <linux/mutex.h> +#include <linux/slab.h> #include <linux/pci.h> #include <linux/mtd/mtd.h> #include <linux/module.h> @@ -29,15 +30,15 @@ MODULE_LICENSE("GPL"); -/* We define a module parameter that allows the user to override +/* We define a module parameter that allows the user to override * the hardware and decide what timing mode should be used. */ #define NAND_DEFAULT_TIMINGS -1 static int onfi_timing_mode = NAND_DEFAULT_TIMINGS; module_param(onfi_timing_mode, int, S_IRUGO); -MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates" - " use default timings"); +MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting." + " -1 indicates use default timings"); #define DENALI_NAND_NAME "denali-nand" @@ -54,13 +55,13 @@ MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates INTR_STATUS0__RST_COMP | \ INTR_STATUS0__ERASE_COMP) -/* indicates whether or not the internal value for the flash bank is +/* indicates whether or not the internal value for the flash bank is valid or not */ -#define CHIP_SELECT_INVALID -1 +#define CHIP_SELECT_INVALID -1 #define SUPPORT_8BITECC 1 -/* This macro divides two integers and rounds fractional values up +/* This macro divides two integers and rounds fractional values up * to the nearest integer value. */ #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y))) @@ -83,7 +84,7 @@ MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates #define ADDR_CYCLE 1 #define STATUS_CYCLE 2 -/* this is a helper macro that allows us to +/* this is a helper macro that allows us to * format the bank into the proper bits for the controller */ #define BANK(x) ((x) << 24) @@ -95,59 +96,64 @@ static const struct pci_device_id denali_pci_ids[] = { }; -/* these are static lookup tables that give us easy access to - registers in the NAND controller. +/* these are static lookup tables that give us easy access to + registers in the NAND controller. */ -static const uint32_t intr_status_addresses[4] = {INTR_STATUS0, - INTR_STATUS1, - INTR_STATUS2, +static const uint32_t intr_status_addresses[4] = {INTR_STATUS0, + INTR_STATUS1, + INTR_STATUS2, INTR_STATUS3}; static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0, - DEVICE_RESET__BANK1, - DEVICE_RESET__BANK2, - DEVICE_RESET__BANK3}; + DEVICE_RESET__BANK1, + DEVICE_RESET__BANK2, + DEVICE_RESET__BANK3}; static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT, - INTR_STATUS1__TIME_OUT, - INTR_STATUS2__TIME_OUT, - INTR_STATUS3__TIME_OUT}; + INTR_STATUS1__TIME_OUT, + INTR_STATUS2__TIME_OUT, + INTR_STATUS3__TIME_OUT}; static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP, - INTR_STATUS1__RST_COMP, - INTR_STATUS2__RST_COMP, - INTR_STATUS3__RST_COMP}; + INTR_STATUS1__RST_COMP, + INTR_STATUS2__RST_COMP, + INTR_STATUS3__RST_COMP}; /* specifies the debug level of the driver */ -static int nand_debug_level = 0; +static int nand_debug_level; /* forward declarations */ static void clear_interrupts(struct denali_nand_info *denali); -static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask); -static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask); +static uint32_t wait_for_irq(struct denali_nand_info *denali, + uint32_t irq_mask); +static void denali_irq_enable(struct denali_nand_info *denali, + uint32_t int_mask); static uint32_t read_interrupt_status(struct denali_nand_info *denali); #define DEBUG_DENALI 0 /* This is a wrapper for writing to the denali registers. * this allows us to create debug information so we can - * observe how the driver is programming the device. + * observe how the driver is programming the device. * it uses standard linux convention for (val, addr) */ static void denali_write32(uint32_t value, void *addr) { - iowrite32(value, addr); + iowrite32(value, addr); #if DEBUG_DENALI - printk(KERN_ERR "wrote: 0x%x -> 0x%x\n", value, (uint32_t)((uint32_t)addr & 0x1fff)); + printk(KERN_INFO "wrote: 0x%x -> 0x%x\n", value, + (uint32_t)((uint32_t)addr & 0x1fff)); #endif -} +} -/* Certain operations for the denali NAND controller use an indexed mode to read/write - data. The operation is performed by writing the address value of the command to - the device memory followed by the data. This function abstracts this common - operation. +/* Certain operations for the denali NAND controller use + * an indexed mode to read/write data. The operation is + * performed by writing the address value of the command + * to the device memory followed by the data. This function + * abstracts this common operation. */ -static void index_addr(struct denali_nand_info *denali, uint32_t address, uint32_t data) +static void index_addr(struct denali_nand_info *denali, + uint32_t address, uint32_t data) { denali_write32(address, denali->flash_mem); denali_write32(data, denali->flash_mem + 0x10); @@ -161,7 +167,7 @@ static void index_addr_read_data(struct denali_nand_info *denali, *pdata = ioread32(denali->flash_mem + 0x10); } -/* We need to buffer some data for some of the NAND core routines. +/* We need to buffer some data for some of the NAND core routines. * The operations manage buffering that data. */ static void reset_buf(struct denali_nand_info *denali) { @@ -183,7 +189,7 @@ static void read_status(struct denali_nand_info *denali) reset_buf(denali); /* initiate a device status read */ - cmd = MODE_11 | BANK(denali->flash_bank); + cmd = MODE_11 | BANK(denali->flash_bank); index_addr(denali, cmd | COMMAND_CYCLE, 0x70); denali_write32(cmd | STATUS_CYCLE, denali->flash_mem); @@ -191,7 +197,8 @@ static void read_status(struct denali_nand_info *denali) write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10)); #if DEBUG_DENALI - printk("device reporting status value of 0x%2x\n", denali->buf.buf[0]); + printk(KERN_INFO "device reporting status value of 0x%2x\n", + denali->buf.buf[0]); #endif } @@ -199,7 +206,7 @@ static void read_status(struct denali_nand_info *denali) static void reset_bank(struct denali_nand_info *denali) { uint32_t irq_status = 0; - uint32_t irq_mask = reset_complete[denali->flash_bank] | + uint32_t irq_mask = reset_complete[denali->flash_bank] | operation_timeout[denali->flash_bank]; int bank = 0; @@ -209,15 +216,13 @@ static void reset_bank(struct denali_nand_info *denali) denali_write32(bank, denali->flash_reg + DEVICE_RESET); irq_status = wait_for_irq(denali, irq_mask); - + if (irq_status & operation_timeout[denali->flash_bank]) - { printk(KERN_ERR "reset bank failed.\n"); - } } /* Reset the flash controller */ -static uint16_t NAND_Flash_Reset(struct denali_nand_info *denali) +static uint16_t denali_nand_reset(struct denali_nand_info *denali) { uint32_t i; @@ -229,8 +234,10 @@ static uint16_t NAND_Flash_Reset(struct denali_nand_info *denali) denali->flash_reg + intr_status_addresses[i]); for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) { - denali_write32(device_reset_banks[i], denali->flash_reg + DEVICE_RESET); - while (!(ioread32(denali->flash_reg + intr_status_addresses[i]) & + denali_write32(device_reset_banks[i], + denali->flash_reg + DEVICE_RESET); + while (!(ioread32(denali->flash_reg + + intr_status_addresses[i]) & (reset_complete[i] | operation_timeout[i]))) ; if (ioread32(denali->flash_reg + intr_status_addresses[i]) & @@ -246,11 +253,12 @@ static uint16_t NAND_Flash_Reset(struct denali_nand_info *denali) return PASS; } -/* this routine calculates the ONFI timing values for a given mode and programs - * the clocking register accordingly. The mode is determined by the get_onfi_nand_para - routine. +/* this routine calculates the ONFI timing values for a given mode and + * programs the clocking register accordingly. The mode is determined by + * the get_onfi_nand_para routine. */ -static void NAND_ONFi_Timing_Mode(struct denali_nand_info *denali, uint16_t mode) +static void nand_onfi_timing_set(struct denali_nand_info *denali, + uint16_t mode) { uint16_t Trea[6] = {40, 30, 25, 20, 20, 16}; uint16_t Trp[6] = {50, 25, 17, 15, 12, 10}; @@ -347,136 +355,24 @@ static void NAND_ONFi_Timing_Mode(struct denali_nand_info *denali, uint16_t mode denali_write32(cs_cnt, denali->flash_reg + CS_SETUP_CNT); } -/* configures the initial ECC settings for the controller */ -static void set_ecc_config(struct denali_nand_info *denali) -{ -#if SUPPORT_8BITECC - if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) < 4096) || - (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) <= 128)) - denali_write32(8, denali->flash_reg + ECC_CORRECTION); -#endif - - if ((ioread32(denali->flash_reg + ECC_CORRECTION) & ECC_CORRECTION__VALUE) - == 1) { - denali->dev_info.wECCBytesPerSector = 4; - denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected; - denali->dev_info.wNumPageSpareFlag = - denali->dev_info.wPageSpareSize - - denali->dev_info.wPageDataSize / - (ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) * - denali->dev_info.wECCBytesPerSector - - denali->dev_info.wSpareSkipBytes; - } else { - denali->dev_info.wECCBytesPerSector = - (ioread32(denali->flash_reg + ECC_CORRECTION) & - ECC_CORRECTION__VALUE) * 13 / 8; - if ((denali->dev_info.wECCBytesPerSector) % 2 == 0) - denali->dev_info.wECCBytesPerSector += 2; - else - denali->dev_info.wECCBytesPerSector += 1; - - denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected; - denali->dev_info.wNumPageSpareFlag = denali->dev_info.wPageSpareSize - - denali->dev_info.wPageDataSize / - (ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) * - denali->dev_info.wECCBytesPerSector - - denali->dev_info.wSpareSkipBytes; - } -} - /* queries the NAND device to see what ONFI modes it supports. */ static uint16_t get_onfi_nand_para(struct denali_nand_info *denali) { int i; - uint16_t blks_lun_l, blks_lun_h, n_of_luns; - uint32_t blockperlun, id; - - denali_write32(DEVICE_RESET__BANK0, denali->flash_reg + DEVICE_RESET); - - while (!((ioread32(denali->flash_reg + INTR_STATUS0) & - INTR_STATUS0__RST_COMP) | - (ioread32(denali->flash_reg + INTR_STATUS0) & - INTR_STATUS0__TIME_OUT))) - ; - - if (ioread32(denali->flash_reg + INTR_STATUS0) & INTR_STATUS0__RST_COMP) { - denali_write32(DEVICE_RESET__BANK1, denali->flash_reg + DEVICE_RESET); - while (!((ioread32(denali->flash_reg + INTR_STATUS1) & - INTR_STATUS1__RST_COMP) | - (ioread32(denali->flash_reg + INTR_STATUS1) & - INTR_STATUS1__TIME_OUT))) - ; - - if (ioread32(denali->flash_reg + INTR_STATUS1) & - INTR_STATUS1__RST_COMP) { - denali_write32(DEVICE_RESET__BANK2, - denali->flash_reg + DEVICE_RESET); - while (!((ioread32(denali->flash_reg + INTR_STATUS2) & - INTR_STATUS2__RST_COMP) | - (ioread32(denali->flash_reg + INTR_STATUS2) & - INTR_STATUS2__TIME_OUT))) - ; - - if (ioread32(denali->flash_reg + INTR_STATUS2) & - INTR_STATUS2__RST_COMP) { - denali_write32(DEVICE_RESET__BANK3, - denali->flash_reg + DEVICE_RESET); - while (!((ioread32(denali->flash_reg + INTR_STATUS3) & - INTR_STATUS3__RST_COMP) | - (ioread32(denali->flash_reg + INTR_STATUS3) & - INTR_STATUS3__TIME_OUT))) - ; - } else { - printk(KERN_ERR "Getting a time out for bank 2!\n"); - } - } else { - printk(KERN_ERR "Getting a time out for bank 1!\n"); - } - } - - denali_write32(INTR_STATUS0__TIME_OUT, denali->flash_reg + INTR_STATUS0); - denali_write32(INTR_STATUS1__TIME_OUT, denali->flash_reg + INTR_STATUS1); - denali_write32(INTR_STATUS2__TIME_OUT, denali->flash_reg + INTR_STATUS2); - denali_write32(INTR_STATUS3__TIME_OUT, denali->flash_reg + INTR_STATUS3); - - denali->dev_info.wONFIDevFeatures = - ioread32(denali->flash_reg + ONFI_DEVICE_FEATURES); - denali->dev_info.wONFIOptCommands = - ioread32(denali->flash_reg + ONFI_OPTIONAL_COMMANDS); - denali->dev_info.wONFITimingMode = - ioread32(denali->flash_reg + ONFI_TIMING_MODE); - denali->dev_info.wONFIPgmCacheTimingMode = - ioread32(denali->flash_reg + ONFI_PGM_CACHE_TIMING_MODE); - - n_of_luns = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) & - ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS; - blks_lun_l = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L); - blks_lun_h = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U); - - blockperlun = (blks_lun_h << 16) | blks_lun_l; - - denali->dev_info.wTotalBlocks = n_of_luns * blockperlun; - + /* we needn't to do a reset here because driver has already + * reset all the banks before + * */ if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) & ONFI_TIMING_MODE__VALUE)) return FAIL; for (i = 5; i > 0; i--) { - if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) & (0x01 << i)) + if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) & + (0x01 << i)) break; } - NAND_ONFi_Timing_Mode(denali, i); - - index_addr(denali, MODE_11 | 0, 0x90); - index_addr(denali, MODE_11 | 1, 0); - - for (i = 0; i < 3; i++) - index_addr_read_data(denali, MODE_11 | 2, &id); - - nand_dbg_print(NAND_DBG_DEBUG, "3rd ID: 0x%x\n", id); - - denali->dev_info.MLCDevice = id & 0x0C; + nand_onfi_timing_set(denali, i); /* By now, all the ONFI devices we know support the page cache */ /* rw feature. So here we enable the pipeline_rw_ahead feature */ @@ -486,25 +382,10 @@ static uint16_t get_onfi_nand_para(struct denali_nand_info *denali) return PASS; } -static void get_samsung_nand_para(struct denali_nand_info *denali) +static void get_samsung_nand_para(struct denali_nand_info *denali, + uint8_t device_id) { - uint8_t no_of_planes; - uint32_t blk_size; - uint64_t plane_size, capacity; - uint32_t id_bytes[5]; - int i; - - index_addr(denali, (uint32_t)(MODE_11 | 0), 0x90); - index_addr(denali, (uint32_t)(MODE_11 | 1), 0); - for (i = 0; i < 5; i++) - index_addr_read_data(denali, (uint32_t)(MODE_11 | 2), &id_bytes[i]); - - nand_dbg_print(NAND_DBG_DEBUG, - "ID bytes: 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", - id_bytes[0], id_bytes[1], id_bytes[2], - id_bytes[3], id_bytes[4]); - - if ((id_bytes[1] & 0xff) == 0xd3) { /* Samsung K9WAG08U1A */ + if (device_id == 0xd3) { /* Samsung K9WAG08U1A */ /* Set timing register values according to datasheet */ denali_write32(5, denali->flash_reg + ACC_CLKS); denali_write32(20, denali->flash_reg + RE_2_WE); @@ -514,19 +395,10 @@ static void get_samsung_nand_para(struct denali_nand_info *denali) denali_write32(2, denali->flash_reg + RDWR_EN_HI_CNT); denali_write32(2, denali->flash_reg + CS_SETUP_CNT); } - - no_of_planes = 1 << ((id_bytes[4] & 0x0c) >> 2); - plane_size = (uint64_t)64 << ((id_bytes[4] & 0x70) >> 4); - blk_size = 64 << ((ioread32(denali->flash_reg + DEVICE_PARAM_1) & 0x30) >> 4); - capacity = (uint64_t)128 * plane_size * no_of_planes; - - do_div(capacity, blk_size); - denali->dev_info.wTotalBlocks = capacity; } static void get_toshiba_nand_para(struct denali_nand_info *denali) { - void __iomem *scratch_reg; uint32_t tmp; /* Workaround to fix a controller bug which reports a wrong */ @@ -536,81 +408,52 @@ static void get_toshiba_nand_para(struct denali_nand_info *denali) denali_write32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) * ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE); - denali_write32(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); |