aboutsummaryrefslogtreecommitdiff
path: root/drivers/cpufreq/powernow-k8.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/cpufreq/powernow-k8.c')
-rw-r--r--drivers/cpufreq/powernow-k8.c1607
1 files changed, 1607 insertions, 0 deletions
diff --git a/drivers/cpufreq/powernow-k8.c b/drivers/cpufreq/powernow-k8.c
new file mode 100644
index 00000000000..83479b6fb9a
--- /dev/null
+++ b/drivers/cpufreq/powernow-k8.c
@@ -0,0 +1,1607 @@
+/*
+ * (c) 2003-2010 Advanced Micro Devices, Inc.
+ * Your use of this code is subject to the terms and conditions of the
+ * GNU general public license version 2. See "COPYING" or
+ * http://www.gnu.org/licenses/gpl.html
+ *
+ * Support : mark.langsdorf@amd.com
+ *
+ * Based on the powernow-k7.c module written by Dave Jones.
+ * (C) 2003 Dave Jones on behalf of SuSE Labs
+ * (C) 2004 Dominik Brodowski <linux@brodo.de>
+ * (C) 2004 Pavel Machek <pavel@ucw.cz>
+ * Licensed under the terms of the GNU GPL License version 2.
+ * Based upon datasheets & sample CPUs kindly provided by AMD.
+ *
+ * Valuable input gratefully received from Dave Jones, Pavel Machek,
+ * Dominik Brodowski, Jacob Shin, and others.
+ * Originally developed by Paul Devriendt.
+ * Processor information obtained from Chapter 9 (Power and Thermal Management)
+ * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
+ * Opteron Processors" available for download from www.amd.com
+ *
+ * Tables for specific CPUs can be inferred from
+ * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
+ */
+
+#include <linux/kernel.h>
+#include <linux/smp.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/cpufreq.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/cpumask.h>
+#include <linux/sched.h> /* for current / set_cpus_allowed() */
+#include <linux/io.h>
+#include <linux/delay.h>
+
+#include <asm/msr.h>
+
+#include <linux/acpi.h>
+#include <linux/mutex.h>
+#include <acpi/processor.h>
+
+#define PFX "powernow-k8: "
+#define VERSION "version 2.20.00"
+#include "powernow-k8.h"
+#include "mperf.h"
+
+/* serialize freq changes */
+static DEFINE_MUTEX(fidvid_mutex);
+
+static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
+
+static int cpu_family = CPU_OPTERON;
+
+/* core performance boost */
+static bool cpb_capable, cpb_enabled;
+static struct msr __percpu *msrs;
+
+static struct cpufreq_driver cpufreq_amd64_driver;
+
+#ifndef CONFIG_SMP
+static inline const struct cpumask *cpu_core_mask(int cpu)
+{
+ return cpumask_of(0);
+}
+#endif
+
+/* Return a frequency in MHz, given an input fid */
+static u32 find_freq_from_fid(u32 fid)
+{
+ return 800 + (fid * 100);
+}
+
+/* Return a frequency in KHz, given an input fid */
+static u32 find_khz_freq_from_fid(u32 fid)
+{
+ return 1000 * find_freq_from_fid(fid);
+}
+
+static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
+ u32 pstate)
+{
+ return data[pstate].frequency;
+}
+
+/* Return the vco fid for an input fid
+ *
+ * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
+ * only from corresponding high fids. This returns "high" fid corresponding to
+ * "low" one.
+ */
+static u32 convert_fid_to_vco_fid(u32 fid)
+{
+ if (fid < HI_FID_TABLE_BOTTOM)
+ return 8 + (2 * fid);
+ else
+ return fid;
+}
+
+/*
+ * Return 1 if the pending bit is set. Unless we just instructed the processor
+ * to transition to a new state, seeing this bit set is really bad news.
+ */
+static int pending_bit_stuck(void)
+{
+ u32 lo, hi;
+
+ if (cpu_family == CPU_HW_PSTATE)
+ return 0;
+
+ rdmsr(MSR_FIDVID_STATUS, lo, hi);
+ return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
+}
+
+/*
+ * Update the global current fid / vid values from the status msr.
+ * Returns 1 on error.
+ */
+static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
+{
+ u32 lo, hi;
+ u32 i = 0;
+
+ if (cpu_family == CPU_HW_PSTATE) {
+ rdmsr(MSR_PSTATE_STATUS, lo, hi);
+ i = lo & HW_PSTATE_MASK;
+ data->currpstate = i;
+
+ /*
+ * a workaround for family 11h erratum 311 might cause
+ * an "out-of-range Pstate if the core is in Pstate-0
+ */
+ if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
+ data->currpstate = HW_PSTATE_0;
+
+ return 0;
+ }
+ do {
+ if (i++ > 10000) {
+ pr_debug("detected change pending stuck\n");
+ return 1;
+ }
+ rdmsr(MSR_FIDVID_STATUS, lo, hi);
+ } while (lo & MSR_S_LO_CHANGE_PENDING);
+
+ data->currvid = hi & MSR_S_HI_CURRENT_VID;
+ data->currfid = lo & MSR_S_LO_CURRENT_FID;
+
+ return 0;
+}
+
+/* the isochronous relief time */
+static void count_off_irt(struct powernow_k8_data *data)
+{
+ udelay((1 << data->irt) * 10);
+ return;
+}
+
+/* the voltage stabilization time */
+static void count_off_vst(struct powernow_k8_data *data)
+{
+ udelay(data->vstable * VST_UNITS_20US);
+ return;
+}
+
+/* need to init the control msr to a safe value (for each cpu) */
+static void fidvid_msr_init(void)
+{
+ u32 lo, hi;
+ u8 fid, vid;
+
+ rdmsr(MSR_FIDVID_STATUS, lo, hi);
+ vid = hi & MSR_S_HI_CURRENT_VID;
+ fid = lo & MSR_S_LO_CURRENT_FID;
+ lo = fid | (vid << MSR_C_LO_VID_SHIFT);
+ hi = MSR_C_HI_STP_GNT_BENIGN;
+ pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
+ wrmsr(MSR_FIDVID_CTL, lo, hi);
+}
+
+/* write the new fid value along with the other control fields to the msr */
+static int write_new_fid(struct powernow_k8_data *data, u32 fid)
+{
+ u32 lo;
+ u32 savevid = data->currvid;
+ u32 i = 0;
+
+ if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
+ printk(KERN_ERR PFX "internal error - overflow on fid write\n");
+ return 1;
+ }
+
+ lo = fid;
+ lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
+ lo |= MSR_C_LO_INIT_FID_VID;
+
+ pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
+ fid, lo, data->plllock * PLL_LOCK_CONVERSION);
+
+ do {
+ wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
+ if (i++ > 100) {
+ printk(KERN_ERR PFX
+ "Hardware error - pending bit very stuck - "
+ "no further pstate changes possible\n");
+ return 1;
+ }
+ } while (query_current_values_with_pending_wait(data));
+
+ count_off_irt(data);
+
+ if (savevid != data->currvid) {
+ printk(KERN_ERR PFX
+ "vid change on fid trans, old 0x%x, new 0x%x\n",
+ savevid, data->currvid);
+ return 1;
+ }
+
+ if (fid != data->currfid) {
+ printk(KERN_ERR PFX
+ "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
+ data->currfid);
+ return 1;
+ }
+
+ return 0;
+}
+
+/* Write a new vid to the hardware */
+static int write_new_vid(struct powernow_k8_data *data, u32 vid)
+{
+ u32 lo;
+ u32 savefid = data->currfid;
+ int i = 0;
+
+ if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
+ printk(KERN_ERR PFX "internal error - overflow on vid write\n");
+ return 1;
+ }
+
+ lo = data->currfid;
+ lo |= (vid << MSR_C_LO_VID_SHIFT);
+ lo |= MSR_C_LO_INIT_FID_VID;
+
+ pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
+ vid, lo, STOP_GRANT_5NS);
+
+ do {
+ wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
+ if (i++ > 100) {
+ printk(KERN_ERR PFX "internal error - pending bit "
+ "very stuck - no further pstate "
+ "changes possible\n");
+ return 1;
+ }
+ } while (query_current_values_with_pending_wait(data));
+
+ if (savefid != data->currfid) {
+ printk(KERN_ERR PFX "fid changed on vid trans, old "
+ "0x%x new 0x%x\n",
+ savefid, data->currfid);
+ return 1;
+ }
+
+ if (vid != data->currvid) {
+ printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
+ "curr 0x%x\n",
+ vid, data->currvid);
+ return 1;
+ }
+
+ return 0;
+}
+
+/*
+ * Reduce the vid by the max of step or reqvid.
+ * Decreasing vid codes represent increasing voltages:
+ * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
+ */
+static int decrease_vid_code_by_step(struct powernow_k8_data *data,
+ u32 reqvid, u32 step)
+{
+ if ((data->currvid - reqvid) > step)
+ reqvid = data->currvid - step;
+
+ if (write_new_vid(data, reqvid))
+ return 1;
+
+ count_off_vst(data);
+
+ return 0;
+}
+
+/* Change hardware pstate by single MSR write */
+static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
+{
+ wrmsr(MSR_PSTATE_CTRL, pstate, 0);
+ data->currpstate = pstate;
+ return 0;
+}
+
+/* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
+static int transition_fid_vid(struct powernow_k8_data *data,
+ u32 reqfid, u32 reqvid)
+{
+ if (core_voltage_pre_transition(data, reqvid, reqfid))
+ return 1;
+
+ if (core_frequency_transition(data, reqfid))
+ return 1;
+
+ if (core_voltage_post_transition(data, reqvid))
+ return 1;
+
+ if (query_current_values_with_pending_wait(data))
+ return 1;
+
+ if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
+ printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
+ "curr 0x%x 0x%x\n",
+ smp_processor_id(),
+ reqfid, reqvid, data->currfid, data->currvid);
+ return 1;
+ }
+
+ pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
+ smp_processor_id(), data->currfid, data->currvid);
+
+ return 0;
+}
+
+/* Phase 1 - core voltage transition ... setup voltage */
+static int core_voltage_pre_transition(struct powernow_k8_data *data,
+ u32 reqvid, u32 reqfid)
+{
+ u32 rvosteps = data->rvo;
+ u32 savefid = data->currfid;
+ u32 maxvid, lo, rvomult = 1;
+
+ pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
+ "reqvid 0x%x, rvo 0x%x\n",
+ smp_processor_id(),
+ data->currfid, data->currvid, reqvid, data->rvo);
+
+ if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
+ rvomult = 2;
+ rvosteps *= rvomult;
+ rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
+ maxvid = 0x1f & (maxvid >> 16);
+ pr_debug("ph1 maxvid=0x%x\n", maxvid);
+ if (reqvid < maxvid) /* lower numbers are higher voltages */
+ reqvid = maxvid;
+
+ while (data->currvid > reqvid) {
+ pr_debug("ph1: curr 0x%x, req vid 0x%x\n",
+ data->currvid, reqvid);
+ if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
+ return 1;
+ }
+
+ while ((rvosteps > 0) &&
+ ((rvomult * data->rvo + data->currvid) > reqvid)) {
+ if (data->currvid == maxvid) {
+ rvosteps = 0;
+ } else {
+ pr_debug("ph1: changing vid for rvo, req 0x%x\n",
+ data->currvid - 1);
+ if (decrease_vid_code_by_step(data, data->currvid-1, 1))
+ return 1;
+ rvosteps--;
+ }
+ }
+
+ if (query_current_values_with_pending_wait(data))
+ return 1;
+
+ if (savefid != data->currfid) {
+ printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
+ data->currfid);
+ return 1;
+ }
+
+ pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n",
+ data->currfid, data->currvid);
+
+ return 0;
+}
+
+/* Phase 2 - core frequency transition */
+static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
+{
+ u32 vcoreqfid, vcocurrfid, vcofiddiff;
+ u32 fid_interval, savevid = data->currvid;
+
+ if (data->currfid == reqfid) {
+ printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
+ data->currfid);
+ return 0;
+ }
+
+ pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
+ "reqfid 0x%x\n",
+ smp_processor_id(),
+ data->currfid, data->currvid, reqfid);
+
+ vcoreqfid = convert_fid_to_vco_fid(reqfid);
+ vcocurrfid = convert_fid_to_vco_fid(data->currfid);
+ vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
+ : vcoreqfid - vcocurrfid;
+
+ if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
+ vcofiddiff = 0;
+
+ while (vcofiddiff > 2) {
+ (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
+
+ if (reqfid > data->currfid) {
+ if (data->currfid > LO_FID_TABLE_TOP) {
+ if (write_new_fid(data,
+ data->currfid + fid_interval))
+ return 1;
+ } else {
+ if (write_new_fid
+ (data,
+ 2 + convert_fid_to_vco_fid(data->currfid)))
+ return 1;
+ }
+ } else {
+ if (write_new_fid(data, data->currfid - fid_interval))
+ return 1;
+ }
+
+ vcocurrfid = convert_fid_to_vco_fid(data->currfid);
+ vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
+ : vcoreqfid - vcocurrfid;
+ }
+
+ if (write_new_fid(data, reqfid))
+ return 1;
+
+ if (query_current_values_with_pending_wait(data))
+ return 1;
+
+ if (data->currfid != reqfid) {
+ printk(KERN_ERR PFX
+ "ph2: mismatch, failed fid transition, "
+ "curr 0x%x, req 0x%x\n",
+ data->currfid, reqfid);
+ return 1;
+ }
+
+ if (savevid != data->currvid) {
+ printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
+ savevid, data->currvid);
+ return 1;
+ }
+
+ pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n",
+ data->currfid, data->currvid);
+
+ return 0;
+}
+
+/* Phase 3 - core voltage transition flow ... jump to the final vid. */
+static int core_voltage_post_transition(struct powernow_k8_data *data,
+ u32 reqvid)
+{
+ u32 savefid = data->currfid;
+ u32 savereqvid = reqvid;
+
+ pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
+ smp_processor_id(),
+ data->currfid, data->currvid);
+
+ if (reqvid != data->currvid) {
+ if (write_new_vid(data, reqvid))
+ return 1;
+
+ if (savefid != data->currfid) {
+ printk(KERN_ERR PFX
+ "ph3: bad fid change, save 0x%x, curr 0x%x\n",
+ savefid, data->currfid);
+ return 1;
+ }
+
+ if (data->currvid != reqvid) {
+ printk(KERN_ERR PFX
+ "ph3: failed vid transition\n, "
+ "req 0x%x, curr 0x%x",
+ reqvid, data->currvid);
+ return 1;
+ }
+ }
+
+ if (query_current_values_with_pending_wait(data))
+ return 1;
+
+ if (savereqvid != data->currvid) {
+ pr_debug("ph3 failed, currvid 0x%x\n", data->currvid);
+ return 1;
+ }
+
+ if (savefid != data->currfid) {
+ pr_debug("ph3 failed, currfid changed 0x%x\n",
+ data->currfid);
+ return 1;
+ }
+
+ pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n",
+ data->currfid, data->currvid);
+
+ return 0;
+}
+
+static void check_supported_cpu(void *_rc)
+{
+ u32 eax, ebx, ecx, edx;
+ int *rc = _rc;
+
+ *rc = -ENODEV;
+
+ if (__this_cpu_read(cpu_info.x86_vendor) != X86_VENDOR_AMD)
+ return;
+
+ eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
+ if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
+ ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
+ return;
+
+ if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
+ if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
+ ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
+ printk(KERN_INFO PFX
+ "Processor cpuid %x not supported\n", eax);
+ return;
+ }
+
+ eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
+ if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
+ printk(KERN_INFO PFX
+ "No frequency change capabilities detected\n");
+ return;
+ }
+
+ cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
+ if ((edx & P_STATE_TRANSITION_CAPABLE)
+ != P_STATE_TRANSITION_CAPABLE) {
+ printk(KERN_INFO PFX
+ "Power state transitions not supported\n");
+ return;
+ }
+ } else { /* must be a HW Pstate capable processor */
+ cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
+ if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
+ cpu_family = CPU_HW_PSTATE;
+ else
+ return;
+ }
+
+ *rc = 0;
+}
+
+static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
+ u8 maxvid)
+{
+ unsigned int j;
+ u8 lastfid = 0xff;
+
+ for (j = 0; j < data->numps; j++) {
+ if (pst[j].vid > LEAST_VID) {
+ printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
+ j, pst[j].vid);
+ return -EINVAL;
+ }
+ if (pst[j].vid < data->rvo) {
+ /* vid + rvo >= 0 */
+ printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
+ " %d\n", j);
+ return -ENODEV;
+ }
+ if (pst[j].vid < maxvid + data->rvo) {
+ /* vid + rvo >= maxvid */
+ printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
+ " %d\n", j);
+ return -ENODEV;
+ }
+ if (pst[j].fid > MAX_FID) {
+ printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
+ " %d\n", j);
+ return -ENODEV;
+ }
+ if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
+ /* Only first fid is allowed to be in "low" range */
+ printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
+ "0x%x\n", j, pst[j].fid);
+ return -EINVAL;
+ }
+ if (pst[j].fid < lastfid)
+ lastfid = pst[j].fid;
+ }
+ if (lastfid & 1) {
+ printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
+ return -EINVAL;
+ }
+ if (lastfid > LO_FID_TABLE_TOP)
+ printk(KERN_INFO FW_BUG PFX
+ "first fid not from lo freq table\n");
+
+ return 0;
+}
+
+static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
+ unsigned int entry)
+{
+ powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
+}
+
+static void print_basics(struct powernow_k8_data *data)
+{
+ int j;
+ for (j = 0; j < data->numps; j++) {
+ if (data->powernow_table[j].frequency !=
+ CPUFREQ_ENTRY_INVALID) {
+ if (cpu_family == CPU_HW_PSTATE) {
+ printk(KERN_INFO PFX
+ " %d : pstate %d (%d MHz)\n", j,
+ data->powernow_table[j].index,
+ data->powernow_table[j].frequency/1000);
+ } else {
+ printk(KERN_INFO PFX
+ "fid 0x%x (%d MHz), vid 0x%x\n",
+ data->powernow_table[j].index & 0xff,
+ data->powernow_table[j].frequency/1000,
+ data->powernow_table[j].index >> 8);
+ }
+ }
+ }
+ if (data->batps)
+ printk(KERN_INFO PFX "Only %d pstates on battery\n",
+ data->batps);
+}
+
+static u32 freq_from_fid_did(u32 fid, u32 did)
+{
+ u32 mhz = 0;
+
+ if (boot_cpu_data.x86 == 0x10)
+ mhz = (100 * (fid + 0x10)) >> did;
+ else if (boot_cpu_data.x86 == 0x11)
+ mhz = (100 * (fid + 8)) >> did;
+ else
+ BUG();
+
+ return mhz * 1000;
+}
+
+static int fill_powernow_table(struct powernow_k8_data *data,
+ struct pst_s *pst, u8 maxvid)
+{
+ struct cpufreq_frequency_table *powernow_table;
+ unsigned int j;
+
+ if (data->batps) {
+ /* use ACPI support to get full speed on mains power */
+ printk(KERN_WARNING PFX
+ "Only %d pstates usable (use ACPI driver for full "
+ "range\n", data->batps);
+ data->numps = data->batps;
+ }
+
+ for (j = 1; j < data->numps; j++) {
+ if (pst[j-1].fid >= pst[j].fid) {
+ printk(KERN_ERR PFX "PST out of sequence\n");
+ return -EINVAL;
+ }
+ }
+
+ if (data->numps < 2) {
+ printk(KERN_ERR PFX "no p states to transition\n");
+ return -ENODEV;
+ }
+
+ if (check_pst_table(data, pst, maxvid))
+ return -EINVAL;
+
+ powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
+ * (data->numps + 1)), GFP_KERNEL);
+ if (!powernow_table) {
+ printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
+ return -ENOMEM;
+ }
+
+ for (j = 0; j < data->numps; j++) {
+ int freq;
+ powernow_table[j].index = pst[j].fid; /* lower 8 bits */
+ powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
+ freq = find_khz_freq_from_fid(pst[j].fid);
+ powernow_table[j].frequency = freq;
+ }
+ powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
+ powernow_table[data->numps].index = 0;
+
+ if (query_current_values_with_pending_wait(data)) {
+ kfree(powernow_table);
+ return -EIO;
+ }
+
+ pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
+ data->powernow_table = powernow_table;
+ if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
+ print_basics(data);
+
+ for (j = 0; j < data->numps; j++)
+ if ((pst[j].fid == data->currfid) &&
+ (pst[j].vid == data->currvid))
+ return 0;
+
+ pr_debug("currfid/vid do not match PST, ignoring\n");
+ return 0;
+}
+
+/* Find and validate the PSB/PST table in BIOS. */
+static int find_psb_table(struct powernow_k8_data *data)
+{
+ struct psb_s *psb;
+ unsigned int i;
+ u32 mvs;
+ u8 maxvid;
+ u32 cpst = 0;
+ u32 thiscpuid;
+
+ for (i = 0xc0000; i < 0xffff0; i += 0x10) {
+ /* Scan BIOS looking for the signature. */
+ /* It can not be at ffff0 - it is too big. */
+
+ psb = phys_to_virt(i);
+ if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
+ continue;
+
+ pr_debug("found PSB header at 0x%p\n", psb);
+
+ pr_debug("table vers: 0x%x\n", psb->tableversion);
+ if (psb->tableversion != PSB_VERSION_1_4) {
+ printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
+ return -ENODEV;
+ }
+
+ pr_debug("flags: 0x%x\n", psb->flags1);
+ if (psb->flags1) {
+ printk(KERN_ERR FW_BUG PFX "unknown flags\n");
+ return -ENODEV;
+ }
+
+ data->vstable = psb->vstable;
+ pr_debug("voltage stabilization time: %d(*20us)\n",
+ data->vstable);
+
+ pr_debug("flags2: 0x%x\n", psb->flags2);
+ data->rvo = psb->flags2 & 3;
+ data->irt = ((psb->flags2) >> 2) & 3;
+ mvs = ((psb->flags2) >> 4) & 3;
+ data->vidmvs = 1 << mvs;
+ data->batps = ((psb->flags2) >> 6) & 3;
+
+ pr_debug("ramp voltage offset: %d\n", data->rvo);
+ pr_debug("isochronous relief time: %d\n", data->irt);
+ pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
+
+ pr_debug("numpst: 0x%x\n", psb->num_tables);
+ cpst = psb->num_tables;
+ if ((psb->cpuid == 0x00000fc0) ||
+ (psb->cpuid == 0x00000fe0)) {
+ thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
+ if ((thiscpuid == 0x00000fc0) ||
+ (thiscpuid == 0x00000fe0))
+ cpst = 1;
+ }
+ if (cpst != 1) {
+ printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
+ return -ENODEV;
+ }
+
+ data->plllock = psb->plllocktime;
+ pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
+ pr_debug("maxfid: 0x%x\n", psb->maxfid);
+ pr_debug("maxvid: 0x%x\n", psb->maxvid);
+ maxvid = psb->maxvid;
+
+ data->numps = psb->numps;
+ pr_debug("numpstates: 0x%x\n", data->numps);
+ return fill_powernow_table(data,
+ (struct pst_s *)(psb+1), maxvid);
+ }
+ /*
+ * If you see this message, complain to BIOS manufacturer. If
+ * he tells you "we do not support Linux" or some similar
+ * nonsense, remember that Windows 2000 uses the same legacy
+ * mechanism that the old Linux PSB driver uses. Tell them it
+ * is broken with Windows 2000.
+ *
+ * The reference to the AMD documentation is chapter 9 in the
+ * BIOS and Kernel Developer's Guide, which is available on
+ * www.amd.com
+ */
+ printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
+ printk(KERN_ERR PFX "Make sure that your BIOS is up to date"
+ " and Cool'N'Quiet support is enabled in BIOS setup\n");
+ return -ENODEV;
+}
+
+static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
+ unsigned int index)
+{
+ u64 control;
+
+ if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
+ return;
+
+ control = data->acpi_data.states[index].control;
+ data->irt = (control >> IRT_SHIFT) & IRT_MASK;
+ data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
+ data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
+ data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
+ data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
+ data->vstable = (control >> VST_SHIFT) & VST_MASK;
+}
+
+static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
+{
+ struct cpufreq_frequency_table *powernow_table;
+ int ret_val = -ENODEV;
+ u64 control, status;
+
+ if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
+ pr_debug("register performance failed: bad ACPI data\n");
+ return -EIO;
+ }
+
+ /* verify the data contained in the ACPI structures */
+ if (data->acpi_data.state_count <= 1) {
+ pr_debug("No ACPI P-States\n");
+ goto err_out;
+ }
+
+ control = data->acpi_data.control_register.space_id;
+ status = data->acpi_data.status_register.space_id;
+
+ if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
+ (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
+ pr_debug("Invalid control/status registers (%llx - %llx)\n",
+ control, status);
+ goto err_out;
+ }
+
+ /* fill in data->powernow_table */
+ powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
+ * (data->acpi_data.state_count + 1)), GFP_KERNEL);
+ if (!powernow_table) {
+ pr_debug("powernow_table memory alloc failure\n");
+ goto err_out;
+ }
+
+ /* fill in data */
+ data->numps = data->acpi_data.state_count;
+ powernow_k8_acpi_pst_values(data, 0);
+
+ if (cpu_family == CPU_HW_PSTATE)
+ ret_val = fill_powernow_table_pstate(data, powernow_table);
+ else
+ ret_val = fill_powernow_table_fidvid(data, powernow_table);
+ if (ret_val)
+ goto err_out_mem;
+
+ powernow_table[data->acpi_data.state_count].frequency =
+ CPUFREQ_TABLE_END;
+ powernow_table[data->acpi_data.state_count].index = 0;
+ data->powernow_table = powernow_table;
+
+ if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
+ print_basics(data);
+
+ /* notify BIOS that we exist */
+ acpi_processor_notify_smm(THIS_MODULE);
+
+ if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
+ printk(KERN_ERR PFX
+ "unable to alloc powernow_k8_data cpumask\n");
+ ret_val = -ENOMEM;
+ goto err_out_mem;
+ }
+
+ return 0;
+
+err_out_mem:
+ kfree(powernow_table);
+
+err_out:
+ acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
+
+ /* data->acpi_data.state_count informs us at ->exit()
+ * whether ACPI was used */
+ data->acpi_data.state_count = 0;
+
+ return ret_val;
+}
+
+static int fill_powernow_table_pstate(struct powernow_k8_data *data,
+ struct cpufreq_frequency_table *powernow_table)
+{
+ int i;
+ u32 hi = 0, lo = 0;
+ rdmsr(MSR_PSTATE_CUR_LIMIT, lo, hi);
+ data->max_hw_pstate = (lo & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
+
+ for (i = 0; i < data->acpi_data.state_count; i++) {
+ u32 index;
+
+ index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
+ if (index > data->max_hw_pstate) {
+ printk(KERN_ERR PFX "invalid pstate %d - "
+ "bad value %d.\n", i, index);
+ printk(KERN_ERR PFX "Please report to BIOS "
+ "manufacturer\n");
+ invalidate_entry(powernow_table, i);
+ continue;
+ }
+ rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
+ if (!(hi & HW_PSTATE_VALID_MASK)) {
+ pr_debug("invalid pstate %d, ignoring\n", index);
+ invalidate_entry(powernow_table, i);
+ continue;
+ }
+
+ powernow_table[i].index = index;
+
+ /* Frequency may be rounded for these */
+ if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10)
+ || boot_cpu_data.x86 == 0x11) {
+ powernow_table[i].frequency =
+ freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
+ } else
+ powernow_table[i].frequency =
+ data->acpi_data.states[i].core_frequency * 1000;
+ }
+ return 0;
+}
+
+static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
+ struct cpufreq_frequency_table *powernow_table)
+{
+ int i;
+
+ for (i = 0; i < data->acpi_data.state_count; i++) {
+ u32 fid;
+ u32 vid;
+ u32 freq, index;
+ u64 status, control;
+
+ if (data->exttype) {
+ status = data->acpi_data.states[i].status;
+ fid = status & EXT_FID_MASK;
+ vid = (status >> VID_SHIFT) & EXT_VID_MASK;
+ } else {
+ control = data->acpi_data.states[i].control;
+ fid = control & FID_MASK;
+ vid = (control >> VID_SHIFT) & VID_MASK;
+ }
+
+ pr_debug(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
+
+ index = fid | (vid<<8);
+ powernow_table[i].index = index;
+
+ freq = find_khz_freq_from_fid(fid);
+ powernow_table[i].frequency = freq;
+
+ /* verify frequency is OK */
+ if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
+ pr_debug("invalid freq %u kHz, ignoring\n", freq);
+ invalidate_entry(powernow_table, i);
+ continue;
+ }
+
+ /* verify voltage is OK -
+ * BIOSs are using "off" to indicate invalid */
+ if (vid == VID_OFF) {
+ pr_debug("invalid vid %u, ignoring\n", vid);
+ invalidate_entry(powernow_table, i);
+ continue;
+ }
+
+ if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
+ printk(KERN_INFO PFX "invalid freq entries "
+ "%u kHz vs. %u kHz\n", freq,
+ (unsigned int)
+ (data->acpi_data.states[i].core_frequency
+ * 1000));
+ invalidate_entry(powernow_table, i);
+ continue;
+ }
+ }
+ return 0;
+}
+
+static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
+{
+ if (data->acpi_data.state_count)
+ acpi_processor_unregister_performance(&data->acpi_data,
+ data->cpu);
+ free_cpumask_var(data->acpi_data.shared_cpu_map);
+}
+
+static int get_transition_latency(struct powernow_k8_data *data)
+{
+ int max_latency = 0;
+ int i;
+ for (i = 0; i < data->acpi_data.state_count; i++) {
+ int cur_latency = data->acpi_data.states[i].transition_latency
+ + data->acpi_data.states[i].bus_master_latency;
+ if (cur_latency > max_latency)
+ max_latency = cur_latency;
+ }
+ if (max_latency == 0) {
+ /*
+ * Fam 11h and later may return 0 as transition latency. This
+ * is intended and means "very fast". While cpufreq core and
+ * governors currently can handle that gracefully, better set it
+ * to 1 to avoid problems in the future.
+ */
+ if (boot_cpu_data.x86 < 0x11)
+ printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
+ "latency\n");
+ max_latency = 1;
+ }
+ /* value in usecs, needs to be in nanoseconds */
+ return 1000 * max_latency;
+}
+
+/* Take a frequency, and issue the fid/vid transition command */
+static int transition_frequency_fidvid(struct powernow_k8_data *data,
+ unsigned int index)
+{
+ u32 fid = 0;
+ u32 vid = 0;
+ int res, i;
+ struct cpufreq_freqs freqs;
+
+ pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
+
+ /* fid/vid correctness check for k8 */
+ /* fid are the lower 8 bits of the index we stored into
+ * the cpufreq frequency table in find_psb_table, vid
+ * are the upper 8 bits.
+ */
+ fid = data->powernow_table[index].index & 0xFF;
+ vid = (data->powernow_table[index].index & 0xFF00) >> 8;
+
+ pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
+
+ if (query_current_values_with_pending_wait(data))
+ return 1;
+
+ if ((data->currvid == vid) && (data->currfid == fid)) {
+ pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n",
+ fid, vid);
+ return 0;
+ }
+
+ pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n",
+ smp_processor_id(), fid, vid);
+ freqs.old = find_khz_freq_from_fid(data->currfid);
+ freqs.new = find_khz_freq_from_fid(fid);
+
+ for_each_cpu(i, data->available_cores) {
+ freqs.cpu = i;
+ cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
+ }
+
+ res = transition_fid_vid(data, fid, vid);
+ freqs.new = find_khz_freq_from_fid(data->currfid);
+
+ for_each_cpu(i, data->available_cores) {
+ freqs.cpu = i;
+ cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
+ }
+ return res;
+}
+
+/* Take a frequency, and issue the hardware pstate transition command */
+static int transition_frequency_pstate(struct powernow_k8_data *data,
+ unsigned int index)
+{
+ u32 pstate = 0;
+ int res, i;
+ struct cpufreq_freqs freqs;
+
+ pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
+
+ /* get MSR index for hardware pstate transition */
+ pstate = index & HW_PSTATE_MASK;
+ if (pstate > data->max_hw_pstate)
+ return 0;
+ freqs.old = find_khz_freq_from_pstate(data->powernow_table,
+ data->currpstate);
+ freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
+
+ for_each_cpu(i, data->available_cores) {
+ freqs.cpu = i;
+ cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
+ }
+
+ res = transition_pstate(data, pstate);
+ freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
+
+ for_each_cpu(i, data->available_cores) {
+ freqs.cpu = i;
+ cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
+ }
+ return res;
+}
+
+/* Driver entry point to switch to the target frequency */
+static int powernowk8_target(struct cpufreq_policy *pol,
+ unsigned targfreq, unsigned relation)
+{
+ cpumask_var_t oldmask;
+ struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
+ u32 checkfid;
+ u32 checkvid;
+ unsigned int newstate;
+ int ret = -EIO;
+
+ if (!data)
+ return -EINVAL;
+
+ checkfid = data->currfid;
+ checkvid = data->currvid;
+
+ /* only run on specific CPU from here on. */
+ /* This is poor form: use a workqueue or smp_call_function_single */
+ if (!alloc_cpumask_var(&oldmask, GFP_KERNEL))
+ return -ENOMEM;
+
+ cpumask_copy(oldmask, tsk_cpus_allowed(current));
+ set_cpus_allowed_ptr(current, cpumask_of(pol->cpu));
+
+ if (smp_processor_id() != pol->cpu) {
+ printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
+ goto err_out;
+ }
+
+ if (pending_bit_stuck()) {
+ printk(KERN_ERR PFX "failing targ, change pending bit set\n");
+ goto err_out;
+ }
+
+ pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
+ pol->cpu, targfreq, pol->min, pol->max, relation);
+
+ if (query_current_values_with_pending_wait(data))
+ goto err_out;
+
+ if (cpu_family != CPU_HW_PSTATE) {
+ pr_debug("targ: curr fid 0x%x, vid 0x%x\n",
+ data->currfid, data->currvid);
+
+ if ((checkvid != data->currvid) ||
+ (checkfid != data->currfid)) {
+ printk(KERN_INFO PFX
+ "error - out of sync, fix 0x%x 0x%x, "
+ "vid 0x%x 0x%x\n",
+ checkfid, data->currfid,
+ checkvid, data->currvid);
+ }
+ }
+
+ if (cpufreq_frequency_table_target(pol, data->powernow_table,
+ targfreq, relation, &newstate))
+ goto err_out;
+
+ mutex_lock(&fidvid_mutex);
+
+ powernow_k8_acpi_pst_values(data, newstate);
+
+ if (cpu_family == CPU_HW_PSTATE)
+ ret = transition_frequency_pstate(data, newstate);
+ else
+ ret = transition_frequency_fidvid(data, newstate);
+ if (ret) {
+ printk(KERN_ERR PFX "transition frequency failed\n");
+ ret = 1;
+ mutex_unlock(&fidvid_mutex);
+ goto err_out;
+ }
+ mutex_unlock(&fidvid_mutex);
+
+ if (cpu_family == CPU_HW_PSTATE)
+ pol->cur = find_khz_freq_from_pstate(data->powernow_table,
+ newstate);
+ else
+ pol->cur = find_khz_freq_from_fid(data->currfid);
+ ret = 0;
+
+err_out:
+ set_cpus_allowed_ptr(current, oldmask);
+ free_cpumask_var(oldmask);
+ return ret;
+}
+
+/* Driver entry point to verify the policy and range of frequencies */
+static int powernowk8_verify(struct cpufreq_policy *pol)
+{
+ struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
+
+ if (!data)
+ return -EINVAL;
+
+ return cpufreq_frequency_table_verify(pol, data->powernow_table);
+}
+
+struct init_on_cpu {
+ struct powernow_k8_data *data;
+ int rc;
+};
+
+static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
+{
+ struct init_on_cpu *init_on_cpu = _init_on_cpu;
+
+ if (pending_bit_stuck()) {
+ printk(KERN_ERR PFX "failing init, change pending bit set\n");
+ init_on_cpu->rc = -ENODEV;
+ return;
+ }
+
+ if (query_current_values_with_pending_wait(init_on_cpu->data)) {
+ init_on_cpu->rc = -ENODEV;
+ return;
+ }
+
+ if (cpu_family == CPU_OPTERON)
+ fidvid_msr_init();
+
+ init_on_cpu->rc = 0;
+}
+
+/* per CPU init entry point to the driver */
+static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
+{
+ static const char ACPI_PSS_BIOS_BUG_MSG[] =
+ KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
+ FW_BUG PFX "Try again with latest BIOS.\n";
+ struct powernow_k8_data *data;
+ struct init_on_cpu init_on_cpu;
+ int rc;
+ struct cpuinfo_x86 *c = &cpu_data(pol->cpu);
+
+ if (!cpu_online(pol->cpu))
+ return -ENODEV;
+
+ smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
+ if (rc)
+ return -ENODEV;
+
+ data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
+ if (!data) {
+ printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
+ return -ENOMEM;
+ }
+
+ data->cpu = pol->cpu;
+ data->currpstate = HW_PSTATE_INVALID;
+
+ if (powernow_k8_cpu_init_acpi(data)) {
+ /*
+ * Use the PSB BIOS structure. This is only available on
+ * an UP version, and is deprecated by AMD.
+ */
+ if (num_online_cpus() != 1) {
+ printk_once(ACPI_PSS_BIOS_BUG_MSG);
+ goto err_out;
+ }
+ if (pol->cpu != 0) {
+ printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
+ "CPU other than CPU0. Complain to your BIOS "
+ "vendor.\n");
+ goto err_out;
+ }
+ rc = find_psb_table(data);
+ if (rc)
+ goto err_out;
+
+ /* Take a crude guess here.
+ * That guess was in microseconds, so multiply with 1000 */
+ pol->cpuinfo.transition_latency = (
+ ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
+ ((1 << data->irt) * 30)) * 1000;
+ } else /* ACPI _PSS objects available */
+ pol->cpuinfo.transition_latency = get_transition_latency(data);
+
+ /* only run on specific CPU from here on */
+ init_on_cpu.data = data;
+ smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
+ &init_on_cpu, 1);
+ rc = init_on_cpu.rc;
+ if (rc != 0)
+ goto err_out_exit_acpi;
+
+ if (cpu_family == CPU_HW_PSTATE)
+ cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
+ else
+ cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
+ data->available_cores = pol->cpus;
+
+ if (cpu_family == CPU_HW_PSTATE)
+ pol->cur = find_khz_freq_from_pstate(data->powernow_table,
+ data->currpstate);
+ else
+ pol->cur = find_khz_freq_from_fid(data->currfid);
+ pr_debug("policy current frequency %d kHz\n", pol->cur);
+
+ /* min/max the cpu is capable of */
+ if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
+ printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
+ powernow_k8_cpu_exit_acpi(data);
+ kfree(data->powernow_table);
+ kfree(data);
+ return -EINVAL;
+ }
+
+ /* Check for APERF/MPERF support in hardware */
+ if (cpu_has(c, X86_FEATURE_APERFMPERF))
+ cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf;
+
+ cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
+
+ if (cpu_family == CPU_HW_PSTATE)
+ pr_debug("cpu_init done, current pstate 0x%x\n",
+ data->currpstate);
+ else
+ pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n",
+ data->currfid, data->currvid);
+
+ per_cpu(powernow_data, pol->cpu) = data;
+
+ return 0;
+
+err_out_exit_acpi:
+ powernow_k8_cpu_exit_acpi(data);
+
+err_out:
+ kfree(data);
+ return -ENODEV;
+}
+
+static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
+{
+ struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
+
+ if (!data)
+ return -EINVAL;
+
+ powernow_k8_cpu_exit_acpi(data);
+
+ cpufreq_frequency_table_put_attr(pol->cpu);
+
+ kfree(data->powernow_table);
+ kfree(data);
+ per_cpu(powernow_data, pol->cpu) = NULL;
+
+ return 0;
+}
+
+static void query_values_on_cpu(void *_err)
+{
+ int *err = _err;
+ struct powernow_k8_data *data = __this_cpu_read(powernow_data);
+
+ *err = query_current_values_with_pending_wait(data);
+}
+
+static unsigned int powernowk8_get(unsigned int cpu)
+{
+ struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
+ unsigned int khz = 0;
+ int err;
+
+ if (!data)
+ return 0;
+
+ smp_call_function_single(cpu, query_values_on_cpu, &err, true);
+ if (err)
+ goto out;
+
+ if (cpu_family == CPU_HW_PSTATE)
+ khz = find_khz_freq_from_pstate(data->powernow_table,
+ data->currpstate);
+ else
+ khz = find_khz_freq_from_fid(data->currfid);
+
+
+out:
+ return khz;
+}
+
+static void _cpb_toggle_msrs(bool t)
+{
+ int cpu;
+
+ get_online_cpus();
+
+ rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
+
+ for_each_cpu(cpu, cpu_online_mask) {
+ struct msr *reg = per_cpu_ptr(msrs, cpu);
+ if (t)
+ reg->l &= ~BIT(25);
+ else
+ reg->l |= BIT(25);
+ }
+ wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
+
+ put_online_cpus();
+}
+
+/*
+ * Switch on/off core performance boosting.
+ *
+ * 0=disable
+ * 1=enable.
+ */
+static void cpb_toggle(bool t)
+{
+ if (!cpb_capable)
+ return;
+
+ if (t && !cpb_enabled) {
+ cpb_enabled = true;
+ _cpb_toggle_msrs(t);
+ printk(KERN_INFO PFX "Core Boosting enabled.\n");
+ } else if (!t && cpb_enabled) {
+ cpb_enabled = false;
+ _cpb_toggle_msrs(t);
+ printk(KERN_INFO PFX "Core Boosting disabled.\n");
+ }
+}
+
+static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
+ size_t count)
+{
+ int ret = -EINVAL;
+ unsigned long val = 0;
+
+ ret = strict_strtoul(buf, 10, &val);
+ if (!ret && (val == 0 || val == 1) && cpb_capable)
+ cpb_toggle(val);
+ else
+ return -EINVAL;
+
+ return count;
+}
+
+static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
+{
+ return sprintf(buf, "%u\n", cpb_enabled);
+}
+
+#define define_one_rw(_name) \
+static struct freq_attr _name = \
+__ATTR(_name, 0644, show_##_name, store_##_name)
+
+define_one_rw(cpb);
+
+static struct freq_attr *powernow_k8_attr[] = {
+ &cpufreq_freq_attr_scaling_available_freqs,
+ &cpb,
+ NULL,
+};
+
+static struct cpufreq_driver cpufreq_amd64_driver = {
+ .verify = powernowk8_verify,
+ .target = powernowk8_target,
+ .bios_limit = acpi_processor_get_bios_limit,
+ .init = powernowk8_cpu_init,
+ .exit = __devexit_p(powernowk8_cpu_exit),
+ .get = powernowk8_get,
+ .name = "powernow-k8",
+ .owner = THIS_MODULE,
+ .attr = powernow_k8_attr,
+};
+
+/*
+ * Clear the boost-disable flag on the CPU_DOWN path so that this cpu
+ * cannot block the remaining ones from boosting. On the CPU_UP path we
+ * simply keep the boost-disable flag in sync with the current global
+ * state.
+ */
+static int cpb_notify(struct notifier_block *nb, unsigned long action,
+ void *hcpu)
+{
+ unsigned cpu = (long)hcpu;
+ u32 lo, hi;
+
+ switch (action) {
+ case CPU_UP_PREPARE:
+ case CPU_UP_PREPARE_FROZEN:
+
+ if (!cpb_enabled) {
+ rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
+ lo |= BIT(25);
+ wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
+ }
+ break;
+
+ case CPU_DOWN_PREPARE:
+ case CPU_DOWN_PREPARE_FROZEN:
+ rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
+ lo &= ~BIT(25);
+ wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
+ break;
+
+ default:
+ break;
+ }
+
+ return NOTIFY_OK;
+}
+
+static struct notifier_block cpb_nb = {
+ .notifier_call = cpb_notify,
+};
+
+/* driver entry point for init */
+static int __cpuinit powernowk8_init(void)
+{
+ unsigned int i, supported_cpus = 0, cpu;
+ int rv;
+
+ for_each_online_cpu(i) {
+ int rc;
+ smp_call_function_single(i, check_supported_cpu, &rc, 1);
+ if (rc == 0)
+ supported_cpus++;
+ }
+
+ if (supported_cpus != num_online_cpus())
+ return -ENODEV;
+
+ printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n",
+ num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
+
+ if (boot_cpu_has(X86_FEATURE_CPB)) {
+
+ cpb_capable = true;
+
+ msrs = msrs_alloc();
+ if (!msrs) {
+ printk(KERN_ERR "%s: Error allocating msrs!\n", __func__);
+ return -ENOMEM;
+ }
+
+ register_cpu_notifier(&cpb_nb);
+
+ rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
+
+ for_each_cpu(cpu, cpu_online_mask) {
+ struct msr *reg = per_cpu_ptr(msrs, cpu);
+ cpb_enabled |= !(!!(reg->l & BIT(25)));
+ }
+
+ printk(KERN_INFO PFX "Core Performance Boosting: %s.\n",
+ (cpb_enabled ? "on" : "off"));
+ }
+
+ rv = cpufreq_register_driver(&cpufreq_amd64_driver);
+ if (rv < 0 && boot_cpu_has(X86_FEATURE_CPB)) {
+ unregister_cpu_notifier(&cpb_nb);
+ msrs_free(msrs);
+ msrs = NULL;
+ }
+ return rv;
+}
+
+/* driver entry point for term */
+static void __exit powernowk8_exit(void)
+{
+ pr_debug("exit\n");
+
+ if (boot_cpu_has(X86_FEATURE_CPB)) {
+ msrs_free(msrs);
+ msrs = NULL;
+
+ unregister_cpu_notifier(&cpb_nb);
+ }
+
+ cpufreq_unregister_driver(&cpufreq_amd64_driver);
+}
+
+MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
+ "Mark Langsdorf <mark.langsdorf@amd.com>");
+MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
+MODULE_LICENSE("GPL");
+
+late_initcall(powernowk8_init);
+module_exit(powernowk8_exit);