aboutsummaryrefslogtreecommitdiff
path: root/drivers/char/mmtimer.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/char/mmtimer.c')
-rw-r--r--drivers/char/mmtimer.c725
1 files changed, 725 insertions, 0 deletions
diff --git a/drivers/char/mmtimer.c b/drivers/char/mmtimer.c
new file mode 100644
index 00000000000..58eddfdd311
--- /dev/null
+++ b/drivers/char/mmtimer.c
@@ -0,0 +1,725 @@
+/*
+ * Intel Multimedia Timer device implementation for SGI SN platforms.
+ *
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file "COPYING" in the main directory of this archive
+ * for more details.
+ *
+ * Copyright (c) 2001-2004 Silicon Graphics, Inc. All rights reserved.
+ *
+ * This driver exports an API that should be supportable by any HPET or IA-PC
+ * multimedia timer. The code below is currently specific to the SGI Altix
+ * SHub RTC, however.
+ *
+ * 11/01/01 - jbarnes - initial revision
+ * 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion
+ * 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE
+ * 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt
+ * support via the posix timer interface
+ */
+
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/ioctl.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/errno.h>
+#include <linux/mm.h>
+#include <linux/devfs_fs_kernel.h>
+#include <linux/mmtimer.h>
+#include <linux/miscdevice.h>
+#include <linux/posix-timers.h>
+#include <linux/interrupt.h>
+
+#include <asm/uaccess.h>
+#include <asm/sn/addrs.h>
+#include <asm/sn/intr.h>
+#include <asm/sn/shub_mmr.h>
+#include <asm/sn/nodepda.h>
+#include <asm/sn/shubio.h>
+
+MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
+MODULE_DESCRIPTION("SGI Altix RTC Timer");
+MODULE_LICENSE("GPL");
+
+/* name of the device, usually in /dev */
+#define MMTIMER_NAME "mmtimer"
+#define MMTIMER_DESC "SGI Altix RTC Timer"
+#define MMTIMER_VERSION "2.0"
+
+#define RTC_BITS 55 /* 55 bits for this implementation */
+
+extern unsigned long sn_rtc_cycles_per_second;
+
+#define RTC_COUNTER_ADDR ((long *)LOCAL_MMR_ADDR(SH_RTC))
+
+#define rtc_time() (*RTC_COUNTER_ADDR)
+
+static int mmtimer_ioctl(struct inode *inode, struct file *file,
+ unsigned int cmd, unsigned long arg);
+static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma);
+
+/*
+ * Period in femtoseconds (10^-15 s)
+ */
+static unsigned long mmtimer_femtoperiod = 0;
+
+static struct file_operations mmtimer_fops = {
+ .owner = THIS_MODULE,
+ .mmap = mmtimer_mmap,
+ .ioctl = mmtimer_ioctl,
+};
+
+/*
+ * We only have comparison registers RTC1-4 currently available per
+ * node. RTC0 is used by SAL.
+ */
+#define NUM_COMPARATORS 3
+/* Check for an RTC interrupt pending */
+static int inline mmtimer_int_pending(int comparator)
+{
+ if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED)) &
+ SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator)
+ return 1;
+ else
+ return 0;
+}
+/* Clear the RTC interrupt pending bit */
+static void inline mmtimer_clr_int_pending(int comparator)
+{
+ HUB_S((u64 *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS),
+ SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator);
+}
+
+/* Setup timer on comparator RTC1 */
+static void inline mmtimer_setup_int_0(u64 expires)
+{
+ u64 val;
+
+ /* Disable interrupt */
+ HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 0UL);
+
+ /* Initialize comparator value */
+ HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), -1L);
+
+ /* Clear pending bit */
+ mmtimer_clr_int_pending(0);
+
+ val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC1_INT_CONFIG_IDX_SHFT) |
+ ((u64)cpu_physical_id(smp_processor_id()) <<
+ SH_RTC1_INT_CONFIG_PID_SHFT);
+
+ /* Set configuration */
+ HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG), val);
+
+ /* Enable RTC interrupts */
+ HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 1UL);
+
+ /* Initialize comparator value */
+ HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), expires);
+
+
+}
+
+/* Setup timer on comparator RTC2 */
+static void inline mmtimer_setup_int_1(u64 expires)
+{
+ u64 val;
+
+ HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 0UL);
+
+ HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), -1L);
+
+ mmtimer_clr_int_pending(1);
+
+ val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC2_INT_CONFIG_IDX_SHFT) |
+ ((u64)cpu_physical_id(smp_processor_id()) <<
+ SH_RTC2_INT_CONFIG_PID_SHFT);
+
+ HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG), val);
+
+ HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 1UL);
+
+ HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), expires);
+}
+
+/* Setup timer on comparator RTC3 */
+static void inline mmtimer_setup_int_2(u64 expires)
+{
+ u64 val;
+
+ HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 0UL);
+
+ HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), -1L);
+
+ mmtimer_clr_int_pending(2);
+
+ val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC3_INT_CONFIG_IDX_SHFT) |
+ ((u64)cpu_physical_id(smp_processor_id()) <<
+ SH_RTC3_INT_CONFIG_PID_SHFT);
+
+ HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG), val);
+
+ HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 1UL);
+
+ HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), expires);
+}
+
+/*
+ * This function must be called with interrupts disabled and preemption off
+ * in order to insure that the setup succeeds in a deterministic time frame.
+ * It will check if the interrupt setup succeeded.
+ */
+static int inline mmtimer_setup(int comparator, unsigned long expires)
+{
+
+ switch (comparator) {
+ case 0:
+ mmtimer_setup_int_0(expires);
+ break;
+ case 1:
+ mmtimer_setup_int_1(expires);
+ break;
+ case 2:
+ mmtimer_setup_int_2(expires);
+ break;
+ }
+ /* We might've missed our expiration time */
+ if (rtc_time() < expires)
+ return 1;
+
+ /*
+ * If an interrupt is already pending then its okay
+ * if not then we failed
+ */
+ return mmtimer_int_pending(comparator);
+}
+
+static int inline mmtimer_disable_int(long nasid, int comparator)
+{
+ switch (comparator) {
+ case 0:
+ nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE),
+ 0UL) : REMOTE_HUB_S(nasid, SH_RTC1_INT_ENABLE, 0UL);
+ break;
+ case 1:
+ nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE),
+ 0UL) : REMOTE_HUB_S(nasid, SH_RTC2_INT_ENABLE, 0UL);
+ break;
+ case 2:
+ nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE),
+ 0UL) : REMOTE_HUB_S(nasid, SH_RTC3_INT_ENABLE, 0UL);
+ break;
+ default:
+ return -EFAULT;
+ }
+ return 0;
+}
+
+#define TIMER_OFF 0xbadcabLL
+
+/* There is one of these for each comparator */
+typedef struct mmtimer {
+ spinlock_t lock ____cacheline_aligned;
+ struct k_itimer *timer;
+ int i;
+ int cpu;
+ struct tasklet_struct tasklet;
+} mmtimer_t;
+
+/*
+ * Total number of comparators is comparators/node * MAX nodes/running kernel
+ */
+static mmtimer_t timers[NUM_COMPARATORS*MAX_COMPACT_NODES];
+
+/**
+ * mmtimer_ioctl - ioctl interface for /dev/mmtimer
+ * @inode: inode of the device
+ * @file: file structure for the device
+ * @cmd: command to execute
+ * @arg: optional argument to command
+ *
+ * Executes the command specified by @cmd. Returns 0 for success, < 0 for
+ * failure.
+ *
+ * Valid commands:
+ *
+ * %MMTIMER_GETOFFSET - Should return the offset (relative to the start
+ * of the page where the registers are mapped) for the counter in question.
+ *
+ * %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15)
+ * seconds
+ *
+ * %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address
+ * specified by @arg
+ *
+ * %MMTIMER_GETBITS - Returns the number of bits in the clock's counter
+ *
+ * %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace
+ *
+ * %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it
+ * in the address specified by @arg.
+ */
+static int mmtimer_ioctl(struct inode *inode, struct file *file,
+ unsigned int cmd, unsigned long arg)
+{
+ int ret = 0;
+
+ switch (cmd) {
+ case MMTIMER_GETOFFSET: /* offset of the counter */
+ /*
+ * SN RTC registers are on their own 64k page
+ */
+ if(PAGE_SIZE <= (1 << 16))
+ ret = (((long)RTC_COUNTER_ADDR) & (PAGE_SIZE-1)) / 8;
+ else
+ ret = -ENOSYS;
+ break;
+
+ case MMTIMER_GETRES: /* resolution of the clock in 10^-15 s */
+ if(copy_to_user((unsigned long __user *)arg,
+ &mmtimer_femtoperiod, sizeof(unsigned long)))
+ return -EFAULT;
+ break;
+
+ case MMTIMER_GETFREQ: /* frequency in Hz */
+ if(copy_to_user((unsigned long __user *)arg,
+ &sn_rtc_cycles_per_second,
+ sizeof(unsigned long)))
+ return -EFAULT;
+ ret = 0;
+ break;
+
+ case MMTIMER_GETBITS: /* number of bits in the clock */
+ ret = RTC_BITS;
+ break;
+
+ case MMTIMER_MMAPAVAIL: /* can we mmap the clock into userspace? */
+ ret = (PAGE_SIZE <= (1 << 16)) ? 1 : 0;
+ break;
+
+ case MMTIMER_GETCOUNTER:
+ if(copy_to_user((unsigned long __user *)arg,
+ RTC_COUNTER_ADDR, sizeof(unsigned long)))
+ return -EFAULT;
+ break;
+ default:
+ ret = -ENOSYS;
+ break;
+ }
+
+ return ret;
+}
+
+/**
+ * mmtimer_mmap - maps the clock's registers into userspace
+ * @file: file structure for the device
+ * @vma: VMA to map the registers into
+ *
+ * Calls remap_pfn_range() to map the clock's registers into
+ * the calling process' address space.
+ */
+static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma)
+{
+ unsigned long mmtimer_addr;
+
+ if (vma->vm_end - vma->vm_start != PAGE_SIZE)
+ return -EINVAL;
+
+ if (vma->vm_flags & VM_WRITE)
+ return -EPERM;
+
+ if (PAGE_SIZE > (1 << 16))
+ return -ENOSYS;
+
+ vma->vm_flags |= (VM_IO | VM_SHM | VM_LOCKED );
+ vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
+
+ mmtimer_addr = __pa(RTC_COUNTER_ADDR);
+ mmtimer_addr &= ~(PAGE_SIZE - 1);
+ mmtimer_addr &= 0xfffffffffffffffUL;
+
+ if (remap_pfn_range(vma, vma->vm_start, mmtimer_addr >> PAGE_SHIFT,
+ PAGE_SIZE, vma->vm_page_prot)) {
+ printk(KERN_ERR "remap_pfn_range failed in mmtimer.c\n");
+ return -EAGAIN;
+ }
+
+ return 0;
+}
+
+static struct miscdevice mmtimer_miscdev = {
+ SGI_MMTIMER,
+ MMTIMER_NAME,
+ &mmtimer_fops
+};
+
+static struct timespec sgi_clock_offset;
+static int sgi_clock_period;
+
+/*
+ * Posix Timer Interface
+ */
+
+static struct timespec sgi_clock_offset;
+static int sgi_clock_period;
+
+static int sgi_clock_get(clockid_t clockid, struct timespec *tp)
+{
+ u64 nsec;
+
+ nsec = rtc_time() * sgi_clock_period
+ + sgi_clock_offset.tv_nsec;
+ tp->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tp->tv_nsec)
+ + sgi_clock_offset.tv_sec;
+ return 0;
+};
+
+static int sgi_clock_set(clockid_t clockid, struct timespec *tp)
+{
+
+ u64 nsec;
+ u64 rem;
+
+ nsec = rtc_time() * sgi_clock_period;
+
+ sgi_clock_offset.tv_sec = tp->tv_sec - div_long_long_rem(nsec, NSEC_PER_SEC, &rem);
+
+ if (rem <= tp->tv_nsec)
+ sgi_clock_offset.tv_nsec = tp->tv_sec - rem;
+ else {
+ sgi_clock_offset.tv_nsec = tp->tv_sec + NSEC_PER_SEC - rem;
+ sgi_clock_offset.tv_sec--;
+ }
+ return 0;
+}
+
+/*
+ * Schedule the next periodic interrupt. This function will attempt
+ * to schedule a periodic interrupt later if necessary. If the scheduling
+ * of an interrupt fails then the time to skip is lengthened
+ * exponentially in order to ensure that the next interrupt
+ * can be properly scheduled..
+ */
+static int inline reschedule_periodic_timer(mmtimer_t *x)
+{
+ int n;
+ struct k_itimer *t = x->timer;
+
+ t->it.mmtimer.clock = x->i;
+ t->it_overrun--;
+
+ n = 0;
+ do {
+
+ t->it.mmtimer.expires += t->it.mmtimer.incr << n;
+ t->it_overrun += 1 << n;
+ n++;
+ if (n > 20)
+ return 1;
+
+ } while (!mmtimer_setup(x->i, t->it.mmtimer.expires));
+
+ return 0;
+}
+
+/**
+ * mmtimer_interrupt - timer interrupt handler
+ * @irq: irq received
+ * @dev_id: device the irq came from
+ * @regs: register state upon receipt of the interrupt
+ *
+ * Called when one of the comarators matches the counter, This
+ * routine will send signals to processes that have requested
+ * them.
+ *
+ * This interrupt is run in an interrupt context
+ * by the SHUB. It is therefore safe to locally access SHub
+ * registers.
+ */
+static irqreturn_t
+mmtimer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
+{
+ int i;
+ mmtimer_t *base = timers + cpuid_to_cnodeid(smp_processor_id()) *
+ NUM_COMPARATORS;
+ unsigned long expires = 0;
+ int result = IRQ_NONE;
+
+ /*
+ * Do this once for each comparison register
+ */
+ for (i = 0; i < NUM_COMPARATORS; i++) {
+ /* Make sure this doesn't get reused before tasklet_sched */
+ spin_lock(&base[i].lock);
+ if (base[i].cpu == smp_processor_id()) {
+ if (base[i].timer)
+ expires = base[i].timer->it.mmtimer.expires;
+ /* expires test won't work with shared irqs */
+ if ((mmtimer_int_pending(i) > 0) ||
+ (expires && (expires < rtc_time()))) {
+ mmtimer_clr_int_pending(i);
+ tasklet_schedule(&base[i].tasklet);
+ result = IRQ_HANDLED;
+ }
+ }
+ spin_unlock(&base[i].lock);
+ expires = 0;
+ }
+ return result;
+}
+
+void mmtimer_tasklet(unsigned long data) {
+ mmtimer_t *x = (mmtimer_t *)data;
+ struct k_itimer *t = x->timer;
+ unsigned long flags;
+
+ if (t == NULL)
+ return;
+
+ /* Send signal and deal with periodic signals */
+ spin_lock_irqsave(&t->it_lock, flags);
+ spin_lock(&x->lock);
+ /* If timer was deleted between interrupt and here, leave */
+ if (t != x->timer)
+ goto out;
+ t->it_overrun = 0;
+
+ if (tasklist_lock.write_lock || posix_timer_event(t, 0) != 0) {
+
+ // printk(KERN_WARNING "mmtimer: cannot deliver signal.\n");
+
+ t->it_overrun++;
+ }
+ if(t->it.mmtimer.incr) {
+ /* Periodic timer */
+ if (reschedule_periodic_timer(x)) {
+ printk(KERN_WARNING "mmtimer: unable to reschedule\n");
+ x->timer = NULL;
+ }
+ } else {
+ /* Ensure we don't false trigger in mmtimer_interrupt */
+ t->it.mmtimer.expires = 0;
+ }
+ t->it_overrun_last = t->it_overrun;
+out:
+ spin_unlock(&x->lock);
+ spin_unlock_irqrestore(&t->it_lock, flags);
+}
+
+static int sgi_timer_create(struct k_itimer *timer)
+{
+ /* Insure that a newly created timer is off */
+ timer->it.mmtimer.clock = TIMER_OFF;
+ return 0;
+}
+
+/* This does not really delete a timer. It just insures
+ * that the timer is not active
+ *
+ * Assumption: it_lock is already held with irq's disabled
+ */
+static int sgi_timer_del(struct k_itimer *timr)
+{
+ int i = timr->it.mmtimer.clock;
+ cnodeid_t nodeid = timr->it.mmtimer.node;
+ mmtimer_t *t = timers + nodeid * NUM_COMPARATORS +i;
+ unsigned long irqflags;
+
+ if (i != TIMER_OFF) {
+ spin_lock_irqsave(&t->lock, irqflags);
+ mmtimer_disable_int(cnodeid_to_nasid(nodeid),i);
+ t->timer = NULL;
+ timr->it.mmtimer.clock = TIMER_OFF;
+ timr->it.mmtimer.expires = 0;
+ spin_unlock_irqrestore(&t->lock, irqflags);
+ }
+ return 0;
+}
+
+#define timespec_to_ns(x) ((x).tv_nsec + (x).tv_sec * NSEC_PER_SEC)
+#define ns_to_timespec(ts, nsec) (ts).tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &(ts).tv_nsec)
+
+/* Assumption: it_lock is already held with irq's disabled */
+static void sgi_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
+{
+
+ if (timr->it.mmtimer.clock == TIMER_OFF) {
+ cur_setting->it_interval.tv_nsec = 0;
+ cur_setting->it_interval.tv_sec = 0;
+ cur_setting->it_value.tv_nsec = 0;
+ cur_setting->it_value.tv_sec =0;
+ return;
+ }
+
+ ns_to_timespec(cur_setting->it_interval, timr->it.mmtimer.incr * sgi_clock_period);
+ ns_to_timespec(cur_setting->it_value, (timr->it.mmtimer.expires - rtc_time())* sgi_clock_period);
+ return;
+}
+
+
+static int sgi_timer_set(struct k_itimer *timr, int flags,
+ struct itimerspec * new_setting,
+ struct itimerspec * old_setting)
+{
+
+ int i;
+ unsigned long when, period, irqflags;
+ int err = 0;
+ cnodeid_t nodeid;
+ mmtimer_t *base;
+
+ if (old_setting)
+ sgi_timer_get(timr, old_setting);
+
+ sgi_timer_del(timr);
+ when = timespec_to_ns(new_setting->it_value);
+ period = timespec_to_ns(new_setting->it_interval);
+
+ if (when == 0)
+ /* Clear timer */
+ return 0;
+
+ if (flags & TIMER_ABSTIME) {
+ struct timespec n;
+ unsigned long now;
+
+ getnstimeofday(&n);
+ now = timespec_to_ns(n);
+ if (when > now)
+ when -= now;
+ else
+ /* Fire the timer immediately */
+ when = 0;
+ }
+
+ /*
+ * Convert to sgi clock period. Need to keep rtc_time() as near as possible
+ * to getnstimeofday() in order to be as faithful as possible to the time
+ * specified.
+ */
+ when = (when + sgi_clock_period - 1) / sgi_clock_period + rtc_time();
+ period = (period + sgi_clock_period - 1) / sgi_clock_period;
+
+ /*
+ * We are allocating a local SHub comparator. If we would be moved to another
+ * cpu then another SHub may be local to us. Prohibit that by switching off
+ * preemption.
+ */
+ preempt_disable();
+
+ nodeid = cpuid_to_cnodeid(smp_processor_id());
+ base = timers + nodeid * NUM_COMPARATORS;
+retry:
+ /* Don't use an allocated timer, or a deleted one that's pending */
+ for(i = 0; i< NUM_COMPARATORS; i++) {
+ if (!base[i].timer && !base[i].tasklet.state) {
+ break;
+ }
+ }
+
+ if (i == NUM_COMPARATORS) {
+ preempt_enable();
+ return -EBUSY;
+ }
+
+ spin_lock_irqsave(&base[i].lock, irqflags);
+
+ if (base[i].timer || base[i].tasklet.state != 0) {
+ spin_unlock_irqrestore(&base[i].lock, irqflags);
+ goto retry;
+ }
+ base[i].timer = timr;
+ base[i].cpu = smp_processor_id();
+
+ timr->it.mmtimer.clock = i;
+ timr->it.mmtimer.node = nodeid;
+ timr->it.mmtimer.incr = period;
+ timr->it.mmtimer.expires = when;
+
+ if (period == 0) {
+ if (!mmtimer_setup(i, when)) {
+ mmtimer_disable_int(-1, i);
+ posix_timer_event(timr, 0);
+ timr->it.mmtimer.expires = 0;
+ }
+ } else {
+ timr->it.mmtimer.expires -= period;
+ if (reschedule_periodic_timer(base+i))
+ err = -EINVAL;
+ }
+
+ spin_unlock_irqrestore(&base[i].lock, irqflags);
+
+ preempt_enable();
+
+ return err;
+}
+
+static struct k_clock sgi_clock = {
+ .res = 0,
+ .clock_set = sgi_clock_set,
+ .clock_get = sgi_clock_get,
+ .timer_create = sgi_timer_create,
+ .nsleep = do_posix_clock_nonanosleep,
+ .timer_set = sgi_timer_set,
+ .timer_del = sgi_timer_del,
+ .timer_get = sgi_timer_get
+};
+
+/**
+ * mmtimer_init - device initialization routine
+ *
+ * Does initial setup for the mmtimer device.
+ */
+static int __init mmtimer_init(void)
+{
+ unsigned i;
+
+ if (!ia64_platform_is("sn2"))
+ return -1;
+
+ /*
+ * Sanity check the cycles/sec variable
+ */
+ if (sn_rtc_cycles_per_second < 100000) {
+ printk(KERN_ERR "%s: unable to determine clock frequency\n",
+ MMTIMER_NAME);
+ return -1;
+ }
+
+ mmtimer_femtoperiod = ((unsigned long)1E15 + sn_rtc_cycles_per_second /
+ 2) / sn_rtc_cycles_per_second;
+
+ for (i=0; i< NUM_COMPARATORS*MAX_COMPACT_NODES; i++) {
+ spin_lock_init(&timers[i].lock);
+ timers[i].timer = NULL;
+ timers[i].cpu = 0;
+ timers[i].i = i % NUM_COMPARATORS;
+ tasklet_init(&timers[i].tasklet, mmtimer_tasklet, (unsigned long) (timers+i));
+ }
+
+ if (request_irq(SGI_MMTIMER_VECTOR, mmtimer_interrupt, SA_PERCPU_IRQ, MMTIMER_NAME, NULL)) {
+ printk(KERN_WARNING "%s: unable to allocate interrupt.",
+ MMTIMER_NAME);
+ return -1;
+ }
+
+ strcpy(mmtimer_miscdev.devfs_name, MMTIMER_NAME);
+ if (misc_register(&mmtimer_miscdev)) {
+ printk(KERN_ERR "%s: failed to register device\n",
+ MMTIMER_NAME);
+ return -1;
+ }
+
+ sgi_clock_period = sgi_clock.res = NSEC_PER_SEC / sn_rtc_cycles_per_second;
+ register_posix_clock(CLOCK_SGI_CYCLE, &sgi_clock);
+
+ printk(KERN_INFO "%s: v%s, %ld MHz\n", MMTIMER_DESC, MMTIMER_VERSION,
+ sn_rtc_cycles_per_second/(unsigned long)1E6);
+
+ return 0;
+}
+
+module_init(mmtimer_init);
+