aboutsummaryrefslogtreecommitdiff
path: root/crypto/aes_generic.c
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/aes_generic.c')
-rw-r--r--crypto/aes_generic.c468
1 files changed, 241 insertions, 227 deletions
diff --git a/crypto/aes_generic.c b/crypto/aes_generic.c
index 9401dca85e8..cf30af74480 100644
--- a/crypto/aes_generic.c
+++ b/crypto/aes_generic.c
@@ -47,11 +47,7 @@
* ---------------------------------------------------------------------------
*/
-/* Some changes from the Gladman version:
- s/RIJNDAEL(e_key)/E_KEY/g
- s/RIJNDAEL(d_key)/D_KEY/g
-*/
-
+#include <crypto/aes.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
@@ -59,88 +55,46 @@
#include <linux/crypto.h>
#include <asm/byteorder.h>
-#define AES_MIN_KEY_SIZE 16
-#define AES_MAX_KEY_SIZE 32
-
-#define AES_BLOCK_SIZE 16
-
-/*
- * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
- */
-static inline u8
-byte(const u32 x, const unsigned n)
+static inline u8 byte(const u32 x, const unsigned n)
{
return x >> (n << 3);
}
-struct aes_ctx {
- int key_length;
- u32 buf[120];
-};
-
-#define E_KEY (&ctx->buf[0])
-#define D_KEY (&ctx->buf[60])
-
static u8 pow_tab[256] __initdata;
static u8 log_tab[256] __initdata;
static u8 sbx_tab[256] __initdata;
static u8 isb_tab[256] __initdata;
static u32 rco_tab[10];
-static u32 ft_tab[4][256];
-static u32 it_tab[4][256];
-static u32 fl_tab[4][256];
-static u32 il_tab[4][256];
+u32 crypto_ft_tab[4][256];
+u32 crypto_fl_tab[4][256];
+u32 crypto_it_tab[4][256];
+u32 crypto_il_tab[4][256];
-static inline u8 __init
-f_mult (u8 a, u8 b)
+EXPORT_SYMBOL_GPL(crypto_ft_tab);
+EXPORT_SYMBOL_GPL(crypto_fl_tab);
+EXPORT_SYMBOL_GPL(crypto_it_tab);
+EXPORT_SYMBOL_GPL(crypto_il_tab);
+
+static inline u8 __init f_mult(u8 a, u8 b)
{
u8 aa = log_tab[a], cc = aa + log_tab[b];
return pow_tab[cc + (cc < aa ? 1 : 0)];
}
-#define ff_mult(a,b) (a && b ? f_mult(a, b) : 0)
-
-#define f_rn(bo, bi, n, k) \
- bo[n] = ft_tab[0][byte(bi[n],0)] ^ \
- ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
- ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
- ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
-
-#define i_rn(bo, bi, n, k) \
- bo[n] = it_tab[0][byte(bi[n],0)] ^ \
- it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
- it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
- it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
-
-#define ls_box(x) \
- ( fl_tab[0][byte(x, 0)] ^ \
- fl_tab[1][byte(x, 1)] ^ \
- fl_tab[2][byte(x, 2)] ^ \
- fl_tab[3][byte(x, 3)] )
-
-#define f_rl(bo, bi, n, k) \
- bo[n] = fl_tab[0][byte(bi[n],0)] ^ \
- fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
- fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
- fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
-
-#define i_rl(bo, bi, n, k) \
- bo[n] = il_tab[0][byte(bi[n],0)] ^ \
- il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
- il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
- il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
-
-static void __init
-gen_tabs (void)
+#define ff_mult(a, b) (a && b ? f_mult(a, b) : 0)
+
+static void __init gen_tabs(void)
{
u32 i, t;
u8 p, q;
- /* log and power tables for GF(2**8) finite field with
- 0x011b as modular polynomial - the simplest primitive
- root is 0x03, used here to generate the tables */
+ /*
+ * log and power tables for GF(2**8) finite field with
+ * 0x011b as modular polynomial - the simplest primitive
+ * root is 0x03, used here to generate the tables
+ */
for (i = 0, p = 1; i < 256; ++i) {
pow_tab[i] = (u8) p;
@@ -169,92 +123,119 @@ gen_tabs (void)
p = sbx_tab[i];
t = p;
- fl_tab[0][i] = t;
- fl_tab[1][i] = rol32(t, 8);
- fl_tab[2][i] = rol32(t, 16);
- fl_tab[3][i] = rol32(t, 24);
+ crypto_fl_tab[0][i] = t;
+ crypto_fl_tab[1][i] = rol32(t, 8);
+ crypto_fl_tab[2][i] = rol32(t, 16);
+ crypto_fl_tab[3][i] = rol32(t, 24);
- t = ((u32) ff_mult (2, p)) |
+ t = ((u32) ff_mult(2, p)) |
((u32) p << 8) |
- ((u32) p << 16) | ((u32) ff_mult (3, p) << 24);
+ ((u32) p << 16) | ((u32) ff_mult(3, p) << 24);
- ft_tab[0][i] = t;
- ft_tab[1][i] = rol32(t, 8);
- ft_tab[2][i] = rol32(t, 16);
- ft_tab[3][i] = rol32(t, 24);
+ crypto_ft_tab[0][i] = t;
+ crypto_ft_tab[1][i] = rol32(t, 8);
+ crypto_ft_tab[2][i] = rol32(t, 16);
+ crypto_ft_tab[3][i] = rol32(t, 24);
p = isb_tab[i];
t = p;
- il_tab[0][i] = t;
- il_tab[1][i] = rol32(t, 8);
- il_tab[2][i] = rol32(t, 16);
- il_tab[3][i] = rol32(t, 24);
-
- t = ((u32) ff_mult (14, p)) |
- ((u32) ff_mult (9, p) << 8) |
- ((u32) ff_mult (13, p) << 16) |
- ((u32) ff_mult (11, p) << 24);
-
- it_tab[0][i] = t;
- it_tab[1][i] = rol32(t, 8);
- it_tab[2][i] = rol32(t, 16);
- it_tab[3][i] = rol32(t, 24);
+ crypto_il_tab[0][i] = t;
+ crypto_il_tab[1][i] = rol32(t, 8);
+ crypto_il_tab[2][i] = rol32(t, 16);
+ crypto_il_tab[3][i] = rol32(t, 24);
+
+ t = ((u32) ff_mult(14, p)) |
+ ((u32) ff_mult(9, p) << 8) |
+ ((u32) ff_mult(13, p) << 16) |
+ ((u32) ff_mult(11, p) << 24);
+
+ crypto_it_tab[0][i] = t;
+ crypto_it_tab[1][i] = rol32(t, 8);
+ crypto_it_tab[2][i] = rol32(t, 16);
+ crypto_it_tab[3][i] = rol32(t, 24);
}
}
-#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
-
-#define imix_col(y,x) \
- u = star_x(x); \
- v = star_x(u); \
- w = star_x(v); \
- t = w ^ (x); \
- (y) = u ^ v ^ w; \
- (y) ^= ror32(u ^ t, 8) ^ \
- ror32(v ^ t, 16) ^ \
- ror32(t,24)
-
/* initialise the key schedule from the user supplied key */
-#define loop4(i) \
-{ t = ror32(t, 8); t = ls_box(t) ^ rco_tab[i]; \
- t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \
- t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \
- t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \
- t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \
-}
-
-#define loop6(i) \
-{ t = ror32(t, 8); t = ls_box(t) ^ rco_tab[i]; \
- t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \
- t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \
- t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \
- t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \
- t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \
- t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \
-}
-
-#define loop8(i) \
-{ t = ror32(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \
- t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \
- t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \
- t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \
- t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \
- t = E_KEY[8 * i + 4] ^ ls_box(t); \
- E_KEY[8 * i + 12] = t; \
- t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \
- t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \
- t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \
-}
+#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
-static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
- unsigned int key_len)
+#define imix_col(y,x) do { \
+ u = star_x(x); \
+ v = star_x(u); \
+ w = star_x(v); \
+ t = w ^ (x); \
+ (y) = u ^ v ^ w; \
+ (y) ^= ror32(u ^ t, 8) ^ \
+ ror32(v ^ t, 16) ^ \
+ ror32(t, 24); \
+} while (0)
+
+#define ls_box(x) \
+ crypto_fl_tab[0][byte(x, 0)] ^ \
+ crypto_fl_tab[1][byte(x, 1)] ^ \
+ crypto_fl_tab[2][byte(x, 2)] ^ \
+ crypto_fl_tab[3][byte(x, 3)]
+
+#define loop4(i) do { \
+ t = ror32(t, 8); \
+ t = ls_box(t) ^ rco_tab[i]; \
+ t ^= ctx->key_enc[4 * i]; \
+ ctx->key_enc[4 * i + 4] = t; \
+ t ^= ctx->key_enc[4 * i + 1]; \
+ ctx->key_enc[4 * i + 5] = t; \
+ t ^= ctx->key_enc[4 * i + 2]; \
+ ctx->key_enc[4 * i + 6] = t; \
+ t ^= ctx->key_enc[4 * i + 3]; \
+ ctx->key_enc[4 * i + 7] = t; \
+} while (0)
+
+#define loop6(i) do { \
+ t = ror32(t, 8); \
+ t = ls_box(t) ^ rco_tab[i]; \
+ t ^= ctx->key_enc[6 * i]; \
+ ctx->key_enc[6 * i + 6] = t; \
+ t ^= ctx->key_enc[6 * i + 1]; \
+ ctx->key_enc[6 * i + 7] = t; \
+ t ^= ctx->key_enc[6 * i + 2]; \
+ ctx->key_enc[6 * i + 8] = t; \
+ t ^= ctx->key_enc[6 * i + 3]; \
+ ctx->key_enc[6 * i + 9] = t; \
+ t ^= ctx->key_enc[6 * i + 4]; \
+ ctx->key_enc[6 * i + 10] = t; \
+ t ^= ctx->key_enc[6 * i + 5]; \
+ ctx->key_enc[6 * i + 11] = t; \
+} while (0)
+
+#define loop8(i) do { \
+ t = ror32(t, 8); \
+ t = ls_box(t) ^ rco_tab[i]; \
+ t ^= ctx->key_enc[8 * i]; \
+ ctx->key_enc[8 * i + 8] = t; \
+ t ^= ctx->key_enc[8 * i + 1]; \
+ ctx->key_enc[8 * i + 9] = t; \
+ t ^= ctx->key_enc[8 * i + 2]; \
+ ctx->key_enc[8 * i + 10] = t; \
+ t ^= ctx->key_enc[8 * i + 3]; \
+ ctx->key_enc[8 * i + 11] = t; \
+ t = ctx->key_enc[8 * i + 4] ^ ls_box(t); \
+ ctx->key_enc[8 * i + 12] = t; \
+ t ^= ctx->key_enc[8 * i + 5]; \
+ ctx->key_enc[8 * i + 13] = t; \
+ t ^= ctx->key_enc[8 * i + 6]; \
+ ctx->key_enc[8 * i + 14] = t; \
+ t ^= ctx->key_enc[8 * i + 7]; \
+ ctx->key_enc[8 * i + 15] = t; \
+} while (0)
+
+int crypto_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
+ unsigned int key_len)
{
- struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
+ struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
const __le32 *key = (const __le32 *)in_key;
u32 *flags = &tfm->crt_flags;
- u32 i, t, u, v, w;
+ u32 i, t, u, v, w, j;
if (key_len % 8) {
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
@@ -263,95 +244,113 @@ static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
ctx->key_length = key_len;
- E_KEY[0] = le32_to_cpu(key[0]);
- E_KEY[1] = le32_to_cpu(key[1]);
- E_KEY[2] = le32_to_cpu(key[2]);
- E_KEY[3] = le32_to_cpu(key[3]);
+ ctx->key_dec[key_len + 24] = ctx->key_enc[0] = le32_to_cpu(key[0]);
+ ctx->key_dec[key_len + 25] = ctx->key_enc[1] = le32_to_cpu(key[1]);
+ ctx->key_dec[key_len + 26] = ctx->key_enc[2] = le32_to_cpu(key[2]);
+ ctx->key_dec[key_len + 27] = ctx->key_enc[3] = le32_to_cpu(key[3]);
switch (key_len) {
case 16:
- t = E_KEY[3];
+ t = ctx->key_enc[3];
for (i = 0; i < 10; ++i)
- loop4 (i);
+ loop4(i);
break;
case 24:
- E_KEY[4] = le32_to_cpu(key[4]);
- t = E_KEY[5] = le32_to_cpu(key[5]);
+ ctx->key_enc[4] = le32_to_cpu(key[4]);
+ t = ctx->key_enc[5] = le32_to_cpu(key[5]);
for (i = 0; i < 8; ++i)
- loop6 (i);
+ loop6(i);
break;
case 32:
- E_KEY[4] = le32_to_cpu(key[4]);
- E_KEY[5] = le32_to_cpu(key[5]);
- E_KEY[6] = le32_to_cpu(key[6]);
- t = E_KEY[7] = le32_to_cpu(key[7]);
+ ctx->key_enc[4] = le32_to_cpu(key[4]);
+ ctx->key_enc[5] = le32_to_cpu(key[5]);
+ ctx->key_enc[6] = le32_to_cpu(key[6]);
+ t = ctx->key_enc[7] = le32_to_cpu(key[7]);
for (i = 0; i < 7; ++i)
- loop8 (i);
+ loop8(i);
break;
}
- D_KEY[0] = E_KEY[0];
- D_KEY[1] = E_KEY[1];
- D_KEY[2] = E_KEY[2];
- D_KEY[3] = E_KEY[3];
+ ctx->key_dec[0] = ctx->key_enc[key_len + 24];
+ ctx->key_dec[1] = ctx->key_enc[key_len + 25];
+ ctx->key_dec[2] = ctx->key_enc[key_len + 26];
+ ctx->key_dec[3] = ctx->key_enc[key_len + 27];
for (i = 4; i < key_len + 24; ++i) {
- imix_col (D_KEY[i], E_KEY[i]);
+ j = key_len + 24 - (i & ~3) + (i & 3);
+ imix_col(ctx->key_dec[j], ctx->key_enc[i]);
}
-
return 0;
}
+EXPORT_SYMBOL_GPL(crypto_aes_set_key);
/* encrypt a block of text */
-#define f_nround(bo, bi, k) \
- f_rn(bo, bi, 0, k); \
- f_rn(bo, bi, 1, k); \
- f_rn(bo, bi, 2, k); \
- f_rn(bo, bi, 3, k); \
- k += 4
-
-#define f_lround(bo, bi, k) \
- f_rl(bo, bi, 0, k); \
- f_rl(bo, bi, 1, k); \
- f_rl(bo, bi, 2, k); \
- f_rl(bo, bi, 3, k)
+#define f_rn(bo, bi, n, k) do { \
+ bo[n] = crypto_ft_tab[0][byte(bi[n], 0)] ^ \
+ crypto_ft_tab[1][byte(bi[(n + 1) & 3], 1)] ^ \
+ crypto_ft_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
+ crypto_ft_tab[3][byte(bi[(n + 3) & 3], 3)] ^ *(k + n); \
+} while (0)
+
+#define f_nround(bo, bi, k) do {\
+ f_rn(bo, bi, 0, k); \
+ f_rn(bo, bi, 1, k); \
+ f_rn(bo, bi, 2, k); \
+ f_rn(bo, bi, 3, k); \
+ k += 4; \
+} while (0)
+
+#define f_rl(bo, bi, n, k) do { \
+ bo[n] = crypto_fl_tab[0][byte(bi[n], 0)] ^ \
+ crypto_fl_tab[1][byte(bi[(n + 1) & 3], 1)] ^ \
+ crypto_fl_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
+ crypto_fl_tab[3][byte(bi[(n + 3) & 3], 3)] ^ *(k + n); \
+} while (0)
+
+#define f_lround(bo, bi, k) do {\
+ f_rl(bo, bi, 0, k); \
+ f_rl(bo, bi, 1, k); \
+ f_rl(bo, bi, 2, k); \
+ f_rl(bo, bi, 3, k); \
+} while (0)
static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
- const struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
+ const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
const __le32 *src = (const __le32 *)in;
__le32 *dst = (__le32 *)out;
u32 b0[4], b1[4];
- const u32 *kp = E_KEY + 4;
+ const u32 *kp = ctx->key_enc + 4;
+ const int key_len = ctx->key_length;
- b0[0] = le32_to_cpu(src[0]) ^ E_KEY[0];
- b0[1] = le32_to_cpu(src[1]) ^ E_KEY[1];
- b0[2] = le32_to_cpu(src[2]) ^ E_KEY[2];
- b0[3] = le32_to_cpu(src[3]) ^ E_KEY[3];
+ b0[0] = le32_to_cpu(src[0]) ^ ctx->key_enc[0];
+ b0[1] = le32_to_cpu(src[1]) ^ ctx->key_enc[1];
+ b0[2] = le32_to_cpu(src[2]) ^ ctx->key_enc[2];
+ b0[3] = le32_to_cpu(src[3]) ^ ctx->key_enc[3];
- if (ctx->key_length > 24) {
- f_nround (b1, b0, kp);
- f_nround (b0, b1, kp);
+ if (key_len > 24) {
+ f_nround(b1, b0, kp);
+ f_nround(b0, b1, kp);
}
- if (ctx->key_length > 16) {
- f_nround (b1, b0, kp);
- f_nround (b0, b1, kp);
+ if (key_len > 16) {
+ f_nround(b1, b0, kp);
+ f_nround(b0, b1, kp);
}
- f_nround (b1, b0, kp);
- f_nround (b0, b1, kp);
- f_nround (b1, b0, kp);
- f_nround (b0, b1, kp);
- f_nround (b1, b0, kp);
- f_nround (b0, b1, kp);
- f_nround (b1, b0, kp);
- f_nround (b0, b1, kp);
- f_nround (b1, b0, kp);
- f_lround (b0, b1, kp);
+ f_nround(b1, b0, kp);
+ f_nround(b0, b1, kp);
+ f_nround(b1, b0, kp);
+ f_nround(b0, b1, kp);
+ f_nround(b1, b0, kp);
+ f_nround(b0, b1, kp);
+ f_nround(b1, b0, kp);
+ f_nround(b0, b1, kp);
+ f_nround(b1, b0, kp);
+ f_lround(b0, b1, kp);
dst[0] = cpu_to_le32(b0[0]);
dst[1] = cpu_to_le32(b0[1]);
@@ -361,53 +360,69 @@ static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
/* decrypt a block of text */
-#define i_nround(bo, bi, k) \
- i_rn(bo, bi, 0, k); \
- i_rn(bo, bi, 1, k); \
- i_rn(bo, bi, 2, k); \
- i_rn(bo, bi, 3, k); \
- k -= 4
-
-#define i_lround(bo, bi, k) \
- i_rl(bo, bi, 0, k); \
- i_rl(bo, bi, 1, k); \
- i_rl(bo, bi, 2, k); \
- i_rl(bo, bi, 3, k)
+#define i_rn(bo, bi, n, k) do { \
+ bo[n] = crypto_it_tab[0][byte(bi[n], 0)] ^ \
+ crypto_it_tab[1][byte(bi[(n + 3) & 3], 1)] ^ \
+ crypto_it_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
+ crypto_it_tab[3][byte(bi[(n + 1) & 3], 3)] ^ *(k + n); \
+} while (0)
+
+#define i_nround(bo, bi, k) do {\
+ i_rn(bo, bi, 0, k); \
+ i_rn(bo, bi, 1, k); \
+ i_rn(bo, bi, 2, k); \
+ i_rn(bo, bi, 3, k); \
+ k += 4; \
+} while (0)
+
+#define i_rl(bo, bi, n, k) do { \
+ bo[n] = crypto_il_tab[0][byte(bi[n], 0)] ^ \
+ crypto_il_tab[1][byte(bi[(n + 3) & 3], 1)] ^ \
+ crypto_il_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
+ crypto_il_tab[3][byte(bi[(n + 1) & 3], 3)] ^ *(k + n); \
+} while (0)
+
+#define i_lround(bo, bi, k) do {\
+ i_rl(bo, bi, 0, k); \
+ i_rl(bo, bi, 1, k); \
+ i_rl(bo, bi, 2, k); \
+ i_rl(bo, bi, 3, k); \
+} while (0)
static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
- const struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
+ const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
const __le32 *src = (const __le32 *)in;
__le32 *dst = (__le32 *)out;
u32 b0[4], b1[4];
const int key_len = ctx->key_length;
- const u32 *kp = D_KEY + key_len + 20;
+ const u32 *kp = ctx->key_dec + 4;
- b0[0] = le32_to_cpu(src[0]) ^ E_KEY[key_len + 24];
- b0[1] = le32_to_cpu(src[1]) ^ E_KEY[key_len + 25];
- b0[2] = le32_to_cpu(src[2]) ^ E_KEY[key_len + 26];
- b0[3] = le32_to_cpu(src[3]) ^ E_KEY[key_len + 27];
+ b0[0] = le32_to_cpu(src[0]) ^ ctx->key_dec[0];
+ b0[1] = le32_to_cpu(src[1]) ^ ctx->key_dec[1];
+ b0[2] = le32_to_cpu(src[2]) ^ ctx->key_dec[2];
+ b0[3] = le32_to_cpu(src[3]) ^ ctx->key_dec[3];
if (key_len > 24) {
- i_nround (b1, b0, kp);
- i_nround (b0, b1, kp);
+ i_nround(b1, b0, kp);
+ i_nround(b0, b1, kp);
}
if (key_len > 16) {
- i_nround (b1, b0, kp);
- i_nround (b0, b1, kp);
+ i_nround(b1, b0, kp);
+ i_nround(b0, b1, kp);
}
- i_nround (b1, b0, kp);
- i_nround (b0, b1, kp);
- i_nround (b1, b0, kp);
- i_nround (b0, b1, kp);
- i_nround (b1, b0, kp);
- i_nround (b0, b1, kp);
- i_nround (b1, b0, kp);
- i_nround (b0, b1, kp);
- i_nround (b1, b0, kp);
- i_lround (b0, b1, kp);
+ i_nround(b1, b0, kp);
+ i_nround(b0, b1, kp);
+ i_nround(b1, b0, kp);
+ i_nround(b0, b1, kp);
+ i_nround(b1, b0, kp);
+ i_nround(b0, b1, kp);
+ i_nround(b1, b0, kp);
+ i_nround(b0, b1, kp);
+ i_nround(b1, b0, kp);
+ i_lround(b0, b1, kp);
dst[0] = cpu_to_le32(b0[0]);
dst[1] = cpu_to_le32(b0[1]);
@@ -415,14 +430,13 @@ static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
dst[3] = cpu_to_le32(b0[3]);
}
-
static struct crypto_alg aes_alg = {
.cra_name = "aes",
.cra_driver_name = "aes-generic",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
- .cra_ctxsize = sizeof(struct aes_ctx),
+ .cra_ctxsize = sizeof(struct crypto_aes_ctx),
.cra_alignmask = 3,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(aes_alg.cra_list),
@@ -430,9 +444,9 @@ static struct crypto_alg aes_alg = {
.cipher = {
.cia_min_keysize = AES_MIN_KEY_SIZE,
.cia_max_keysize = AES_MAX_KEY_SIZE,
- .cia_setkey = aes_set_key,
- .cia_encrypt = aes_encrypt,
- .cia_decrypt = aes_decrypt
+ .cia_setkey = crypto_aes_set_key,
+ .cia_encrypt = aes_encrypt,
+ .cia_decrypt = aes_decrypt
}
}
};