diff options
Diffstat (limited to 'arch/x86/mm/numa_32.c')
-rw-r--r-- | arch/x86/mm/numa_32.c | 398 |
1 files changed, 102 insertions, 296 deletions
diff --git a/arch/x86/mm/numa_32.c b/arch/x86/mm/numa_32.c index bde3906420d..849a975d3fa 100644 --- a/arch/x86/mm/numa_32.c +++ b/arch/x86/mm/numa_32.c @@ -22,39 +22,11 @@ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ -#include <linux/mm.h> #include <linux/bootmem.h> #include <linux/memblock.h> -#include <linux/mmzone.h> -#include <linux/highmem.h> -#include <linux/initrd.h> -#include <linux/nodemask.h> #include <linux/module.h> -#include <linux/kexec.h> -#include <linux/pfn.h> -#include <linux/swap.h> -#include <linux/acpi.h> - -#include <asm/e820.h> -#include <asm/setup.h> -#include <asm/mmzone.h> -#include <asm/bios_ebda.h> -#include <asm/proto.h> - -struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; -EXPORT_SYMBOL(node_data); - -/* - * numa interface - we expect the numa architecture specific code to have - * populated the following initialisation. - * - * 1) node_online_map - the map of all nodes configured (online) in the system - * 2) node_start_pfn - the starting page frame number for a node - * 3) node_end_pfn - the ending page fram number for a node - */ -unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly; -unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly; +#include "numa_internal.h" #ifdef CONFIG_DISCONTIGMEM /* @@ -99,108 +71,46 @@ unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn, } #endif -extern unsigned long find_max_low_pfn(void); extern unsigned long highend_pfn, highstart_pfn; #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE) -unsigned long node_remap_size[MAX_NUMNODES]; static void *node_remap_start_vaddr[MAX_NUMNODES]; void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags); -static unsigned long kva_start_pfn; -static unsigned long kva_pages; - -int __cpuinit numa_cpu_node(int cpu) -{ - return apic->x86_32_numa_cpu_node(cpu); -} - -/* - * FLAT - support for basic PC memory model with discontig enabled, essentially - * a single node with all available processors in it with a flat - * memory map. - */ -int __init get_memcfg_numa_flat(void) -{ - printk(KERN_DEBUG "NUMA - single node, flat memory mode\n"); - - node_start_pfn[0] = 0; - node_end_pfn[0] = max_pfn; - memblock_x86_register_active_regions(0, 0, max_pfn); - memory_present(0, 0, max_pfn); - node_remap_size[0] = node_memmap_size_bytes(0, 0, max_pfn); - - /* Indicate there is one node available. */ - nodes_clear(node_online_map); - node_set_online(0); - return 1; -} - -/* - * Find the highest page frame number we have available for the node - */ -static void __init propagate_e820_map_node(int nid) -{ - if (node_end_pfn[nid] > max_pfn) - node_end_pfn[nid] = max_pfn; - /* - * if a user has given mem=XXXX, then we need to make sure - * that the node _starts_ before that, too, not just ends - */ - if (node_start_pfn[nid] > max_pfn) - node_start_pfn[nid] = max_pfn; - BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]); -} - -/* - * Allocate memory for the pg_data_t for this node via a crude pre-bootmem - * method. For node zero take this from the bottom of memory, for - * subsequent nodes place them at node_remap_start_vaddr which contains - * node local data in physically node local memory. See setup_memory() - * for details. - */ -static void __init allocate_pgdat(int nid) -{ - char buf[16]; - - if (node_has_online_mem(nid) && node_remap_start_vaddr[nid]) - NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid]; - else { - unsigned long pgdat_phys; - pgdat_phys = memblock_find_in_range(min_low_pfn<<PAGE_SHIFT, - max_pfn_mapped<<PAGE_SHIFT, - sizeof(pg_data_t), - PAGE_SIZE); - NODE_DATA(nid) = (pg_data_t *)(pfn_to_kaddr(pgdat_phys>>PAGE_SHIFT)); - memset(buf, 0, sizeof(buf)); - sprintf(buf, "NODE_DATA %d", nid); - memblock_x86_reserve_range(pgdat_phys, pgdat_phys + sizeof(pg_data_t), buf); - } - printk(KERN_DEBUG "allocate_pgdat: node %d NODE_DATA %08lx\n", - nid, (unsigned long)NODE_DATA(nid)); -} - /* - * In the DISCONTIGMEM and SPARSEMEM memory model, a portion of the kernel - * virtual address space (KVA) is reserved and portions of nodes are mapped - * using it. This is to allow node-local memory to be allocated for - * structures that would normally require ZONE_NORMAL. The memory is - * allocated with alloc_remap() and callers should be prepared to allocate - * from the bootmem allocator instead. + * Remap memory allocator */ static unsigned long node_remap_start_pfn[MAX_NUMNODES]; static void *node_remap_end_vaddr[MAX_NUMNODES]; static void *node_remap_alloc_vaddr[MAX_NUMNODES]; -static unsigned long node_remap_offset[MAX_NUMNODES]; +/** + * alloc_remap - Allocate remapped memory + * @nid: NUMA node to allocate memory from + * @size: The size of allocation + * + * Allocate @size bytes from the remap area of NUMA node @nid. The + * size of the remap area is predetermined by init_alloc_remap() and + * only the callers considered there should call this function. For + * more info, please read the comment on top of init_alloc_remap(). + * + * The caller must be ready to handle allocation failure from this + * function and fall back to regular memory allocator in such cases. + * + * CONTEXT: + * Single CPU early boot context. + * + * RETURNS: + * Pointer to the allocated memory on success, %NULL on failure. + */ void *alloc_remap(int nid, unsigned long size) { void *allocation = node_remap_alloc_vaddr[nid]; size = ALIGN(size, L1_CACHE_BYTES); - if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid]) + if (!allocation || (allocation + size) > node_remap_end_vaddr[nid]) return NULL; node_remap_alloc_vaddr[nid] += size; @@ -209,26 +119,6 @@ void *alloc_remap(int nid, unsigned long size) return allocation; } -static void __init remap_numa_kva(void) -{ - void *vaddr; - unsigned long pfn; - int node; - - for_each_online_node(node) { - printk(KERN_DEBUG "remap_numa_kva: node %d\n", node); - for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) { - vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT); - printk(KERN_DEBUG "remap_numa_kva: %08lx to pfn %08lx\n", - (unsigned long)vaddr, - node_remap_start_pfn[node] + pfn); - set_pmd_pfn((ulong) vaddr, - node_remap_start_pfn[node] + pfn, - PAGE_KERNEL_LARGE); - } - } -} - #ifdef CONFIG_HIBERNATION /** * resume_map_numa_kva - add KVA mapping to the temporary page tables created @@ -240,15 +130,16 @@ void resume_map_numa_kva(pgd_t *pgd_base) int node; for_each_online_node(node) { - unsigned long start_va, start_pfn, size, pfn; + unsigned long start_va, start_pfn, nr_pages, pfn; start_va = (unsigned long)node_remap_start_vaddr[node]; start_pfn = node_remap_start_pfn[node]; - size = node_remap_size[node]; + nr_pages = (node_remap_end_vaddr[node] - + node_remap_start_vaddr[node]) >> PAGE_SHIFT; printk(KERN_DEBUG "%s: node %d\n", __func__, node); - for (pfn = 0; pfn < size; pfn += PTRS_PER_PTE) { + for (pfn = 0; pfn < nr_pages; pfn += PTRS_PER_PTE) { unsigned long vaddr = start_va + (pfn << PAGE_SHIFT); pgd_t *pgd = pgd_base + pgd_index(vaddr); pud_t *pud = pud_offset(pgd, vaddr); @@ -264,132 +155,89 @@ void resume_map_numa_kva(pgd_t *pgd_base) } #endif -static __init unsigned long calculate_numa_remap_pages(void) +/** + * init_alloc_remap - Initialize remap allocator for a NUMA node + * @nid: NUMA node to initizlie remap allocator for + * + * NUMA nodes may end up without any lowmem. As allocating pgdat and + * memmap on a different node with lowmem is inefficient, a special + * remap allocator is implemented which can be used by alloc_remap(). + * + * For each node, the amount of memory which will be necessary for + * pgdat and memmap is calculated and two memory areas of the size are + * allocated - one in the node and the other in lowmem; then, the area + * in the node is remapped to the lowmem area. + * + * As pgdat and memmap must be allocated in lowmem anyway, this + * doesn't waste lowmem address space; however, the actual lowmem + * which gets remapped over is wasted. The amount shouldn't be + * problematic on machines this feature will be used. + * + * Initialization failure isn't fatal. alloc_remap() is used + * opportunistically and the callers will fall back to other memory + * allocation mechanisms on failure. + */ +void __init init_alloc_remap(int nid, u64 start, u64 end) { - int nid; - unsigned long size, reserve_pages = 0; - - for_each_online_node(nid) { - u64 node_kva_target; - u64 node_kva_final; - - /* - * The acpi/srat node info can show hot-add memroy zones - * where memory could be added but not currently present. - */ - printk(KERN_DEBUG "node %d pfn: [%lx - %lx]\n", - nid, node_start_pfn[nid], node_end_pfn[nid]); - if (node_start_pfn[nid] > max_pfn) - continue; - if (!node_end_pfn[nid]) - continue; - if (node_end_pfn[nid] > max_pfn) - node_end_pfn[nid] = max_pfn; - - /* ensure the remap includes space for the pgdat. */ - size = node_remap_size[nid] + sizeof(pg_data_t); - - /* convert size to large (pmd size) pages, rounding up */ - size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES; - /* now the roundup is correct, convert to PAGE_SIZE pages */ - size = size * PTRS_PER_PTE; - - node_kva_target = round_down(node_end_pfn[nid] - size, - PTRS_PER_PTE); - node_kva_target <<= PAGE_SHIFT; - do { - node_kva_final = memblock_find_in_range(node_kva_target, - ((u64)node_end_pfn[nid])<<PAGE_SHIFT, - ((u64)size)<<PAGE_SHIFT, - LARGE_PAGE_BYTES); - node_kva_target -= LARGE_PAGE_BYTES; - } while (node_kva_final == MEMBLOCK_ERROR && - (node_kva_target>>PAGE_SHIFT) > (node_start_pfn[nid])); - - if (node_kva_final == MEMBLOCK_ERROR) - panic("Can not get kva ram\n"); - - node_remap_size[nid] = size; - node_remap_offset[nid] = reserve_pages; - reserve_pages += size; - printk(KERN_DEBUG "Reserving %ld pages of KVA for lmem_map of" - " node %d at %llx\n", - size, nid, node_kva_final>>PAGE_SHIFT); - - /* - * prevent kva address below max_low_pfn want it on system - * with less memory later. - * layout will be: KVA address , KVA RAM - * - * we are supposed to only record the one less then max_low_pfn - * but we could have some hole in high memory, and it will only - * check page_is_ram(pfn) && !page_is_reserved_early(pfn) to decide - * to use it as free. - * So memblock_x86_reserve_range here, hope we don't run out of that array - */ - memblock_x86_reserve_range(node_kva_final, - node_kva_final+(((u64)size)<<PAGE_SHIFT), - "KVA RAM"); - - node_remap_start_pfn[nid] = node_kva_final>>PAGE_SHIFT; - } - printk(KERN_INFO "Reserving total of %lx pages for numa KVA remap\n", - reserve_pages); - return reserve_pages; -} + unsigned long start_pfn = start >> PAGE_SHIFT; + unsigned long end_pfn = end >> PAGE_SHIFT; + unsigned long size, pfn; + u64 node_pa, remap_pa; + void *remap_va; -static void init_remap_allocator(int nid) -{ - node_remap_start_vaddr[nid] = pfn_to_kaddr( - kva_start_pfn + node_remap_offset[nid]); - node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] + - (node_remap_size[nid] * PAGE_SIZE); - node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] + - ALIGN(sizeof(pg_data_t), PAGE_SIZE); - - printk(KERN_DEBUG "node %d will remap to vaddr %08lx - %08lx\n", nid, - (ulong) node_remap_start_vaddr[nid], - (ulong) node_remap_end_vaddr[nid]); + /* + * The acpi/srat node info can show hot-add memroy zones where + * memory could be added but not currently present. + */ + printk(KERN_DEBUG "node %d pfn: [%lx - %lx]\n", + nid, start_pfn, end_pfn); + + /* calculate the necessary space aligned to large page size */ + size = node_memmap_size_bytes(nid, start_pfn, end_pfn); + size += ALIGN(sizeof(pg_data_t), PAGE_SIZE); + size = ALIGN(size, LARGE_PAGE_BYTES); + + /* allocate node memory and the lowmem remap area */ + node_pa = memblock_find_in_range(start, end, size, LARGE_PAGE_BYTES); + if (node_pa == MEMBLOCK_ERROR) { + pr_warning("remap_alloc: failed to allocate %lu bytes for node %d\n", + size, nid); + return; + } + memblock_x86_reserve_range(node_pa, node_pa + size, "KVA RAM"); + + remap_pa = memblock_find_in_range(min_low_pfn << PAGE_SHIFT, + max_low_pfn << PAGE_SHIFT, + size, LARGE_PAGE_BYTES); + if (remap_pa == MEMBLOCK_ERROR) { + pr_warning("remap_alloc: failed to allocate %lu bytes remap area for node %d\n", + size, nid); + memblock_x86_free_range(node_pa, node_pa + size); + return; + } + memblock_x86_reserve_range(remap_pa, remap_pa + size, "KVA PG"); + remap_va = phys_to_virt(remap_pa); + + /* perform actual remap */ + for (pfn = 0; pfn < size >> PAGE_SHIFT; pfn += PTRS_PER_PTE) + set_pmd_pfn((unsigned long)remap_va + (pfn << PAGE_SHIFT), + (node_pa >> PAGE_SHIFT) + pfn, + PAGE_KERNEL_LARGE); + + /* initialize remap allocator parameters */ + node_remap_start_pfn[nid] = node_pa >> PAGE_SHIFT; + node_remap_start_vaddr[nid] = remap_va; + node_remap_end_vaddr[nid] = remap_va + size; + node_remap_alloc_vaddr[nid] = remap_va; + + printk(KERN_DEBUG "remap_alloc: node %d [%08llx-%08llx) -> [%p-%p)\n", + nid, node_pa, node_pa + size, remap_va, remap_va + size); } void __init initmem_init(void) { - int nid; - long kva_target_pfn; - - /* - * When mapping a NUMA machine we allocate the node_mem_map arrays - * from node local memory. They are then mapped directly into KVA - * between zone normal and vmalloc space. Calculate the size of - * this space and use it to adjust the boundary between ZONE_NORMAL - * and ZONE_HIGHMEM. - */ - - get_memcfg_numa(); - numa_init_array(); - - kva_pages = roundup(calculate_numa_remap_pages(), PTRS_PER_PTE); + x86_numa_init(); - kva_target_pfn = round_down(max_low_pfn - kva_pages, PTRS_PER_PTE); - do { - kva_start_pfn = memblock_find_in_range(kva_target_pfn<<PAGE_SHIFT, - max_low_pfn<<PAGE_SHIFT, - kva_pages<<PAGE_SHIFT, - PTRS_PER_PTE<<PAGE_SHIFT) >> PAGE_SHIFT; - kva_target_pfn -= PTRS_PER_PTE; - } while (kva_start_pfn == MEMBLOCK_ERROR && kva_target_pfn > min_low_pfn); - - if (kva_start_pfn == MEMBLOCK_ERROR) - panic("Can not get kva space\n"); - - printk(KERN_INFO "kva_start_pfn ~ %lx max_low_pfn ~ %lx\n", - kva_start_pfn, max_low_pfn); - printk(KERN_INFO "max_pfn = %lx\n", max_pfn); - - /* avoid clash with initrd */ - memblock_x86_reserve_range(kva_start_pfn<<PAGE_SHIFT, - (kva_start_pfn + kva_pages)<<PAGE_SHIFT, - "KVA PG"); #ifdef CONFIG_HIGHMEM highstart_pfn = highend_pfn = max_pfn; if (max_pfn > max_low_pfn) @@ -409,51 +257,9 @@ void __init initmem_init(void) printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n", (ulong) pfn_to_kaddr(max_low_pfn)); - for_each_online_node(nid) { - init_remap_allocator(nid); - - allocate_pgdat(nid); - } - remap_numa_kva(); printk(KERN_DEBUG "High memory starts at vaddr %08lx\n", (ulong) pfn_to_kaddr(highstart_pfn)); - for_each_online_node(nid) - propagate_e820_map_node(nid); - - for_each_online_node(nid) { - memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); - NODE_DATA(nid)->node_id = nid; - } setup_bootmem_allocator(); } - -#ifdef CONFIG_MEMORY_HOTPLUG -static int paddr_to_nid(u64 addr) -{ - int nid; - unsigned long pfn = PFN_DOWN(addr); - - for_each_node(nid) - if (node_start_pfn[nid] <= pfn && - pfn < node_end_pfn[nid]) - return nid; - - return -1; -} - -/* - * This function is used to ask node id BEFORE memmap and mem_section's - * initialization (pfn_to_nid() can't be used yet). - * If _PXM is not defined on ACPI's DSDT, node id must be found by this. - */ -int memory_add_physaddr_to_nid(u64 addr) -{ - int nid = paddr_to_nid(addr); - return (nid >= 0) ? nid : 0; -} - -EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); -#endif - |