diff options
Diffstat (limited to 'arch/x86/kernel/tsc.c')
| -rw-r--r-- | arch/x86/kernel/tsc.c | 302 | 
1 files changed, 238 insertions, 64 deletions
diff --git a/arch/x86/kernel/tsc.c b/arch/x86/kernel/tsc.c index 8f98e9de1b8..424093b157d 100644 --- a/arch/x86/kernel/tsc.c +++ b/arch/x86/kernel/tsc.c @@ -55,7 +55,7 @@ u64 native_sched_clock(void)  	rdtscll(this_offset);  	/* return the value in ns */ -	return cycles_2_ns(this_offset); +	return __cycles_2_ns(this_offset);  }  /* We need to define a real function for sched_clock, to override the @@ -104,7 +104,7 @@ __setup("notsc", notsc_setup);  /*   * Read TSC and the reference counters. Take care of SMI disturbance   */ -static u64 tsc_read_refs(u64 *pm, u64 *hpet) +static u64 tsc_read_refs(u64 *p, int hpet)  {  	u64 t1, t2;  	int i; @@ -112,9 +112,9 @@ static u64 tsc_read_refs(u64 *pm, u64 *hpet)  	for (i = 0; i < MAX_RETRIES; i++) {  		t1 = get_cycles();  		if (hpet) -			*hpet = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; +			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;  		else -			*pm = acpi_pm_read_early(); +			*p = acpi_pm_read_early();  		t2 = get_cycles();  		if ((t2 - t1) < SMI_TRESHOLD)  			return t2; @@ -123,13 +123,59 @@ static u64 tsc_read_refs(u64 *pm, u64 *hpet)  }  /* + * Calculate the TSC frequency from HPET reference + */ +static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) +{ +	u64 tmp; + +	if (hpet2 < hpet1) +		hpet2 += 0x100000000ULL; +	hpet2 -= hpet1; +	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); +	do_div(tmp, 1000000); +	do_div(deltatsc, tmp); + +	return (unsigned long) deltatsc; +} + +/* + * Calculate the TSC frequency from PMTimer reference + */ +static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) +{ +	u64 tmp; + +	if (!pm1 && !pm2) +		return ULONG_MAX; + +	if (pm2 < pm1) +		pm2 += (u64)ACPI_PM_OVRRUN; +	pm2 -= pm1; +	tmp = pm2 * 1000000000LL; +	do_div(tmp, PMTMR_TICKS_PER_SEC); +	do_div(deltatsc, tmp); + +	return (unsigned long) deltatsc; +} + +#define CAL_MS		10 +#define CAL_LATCH	(CLOCK_TICK_RATE / (1000 / CAL_MS)) +#define CAL_PIT_LOOPS	1000 + +#define CAL2_MS		50 +#define CAL2_LATCH	(CLOCK_TICK_RATE / (1000 / CAL2_MS)) +#define CAL2_PIT_LOOPS	5000 + + +/*   * Try to calibrate the TSC against the Programmable   * Interrupt Timer and return the frequency of the TSC   * in kHz.   *   * Return ULONG_MAX on failure to calibrate.   */ -static unsigned long pit_calibrate_tsc(void) +static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)  {  	u64 tsc, t1, t2, delta;  	unsigned long tscmin, tscmax; @@ -144,8 +190,8 @@ static unsigned long pit_calibrate_tsc(void)  	 * (LSB then MSB) to begin countdown.  	 */  	outb(0xb0, 0x43); -	outb((CLOCK_TICK_RATE / (1000 / 50)) & 0xff, 0x42); -	outb((CLOCK_TICK_RATE / (1000 / 50)) >> 8, 0x42); +	outb(latch & 0xff, 0x42); +	outb(latch >> 8, 0x42);  	tsc = t1 = t2 = get_cycles(); @@ -166,31 +212,154 @@ static unsigned long pit_calibrate_tsc(void)  	/*  	 * Sanity checks:  	 * -	 * If we were not able to read the PIT more than 5000 +	 * If we were not able to read the PIT more than loopmin  	 * times, then we have been hit by a massive SMI  	 *  	 * If the maximum is 10 times larger than the minimum,  	 * then we got hit by an SMI as well.  	 */ -	if (pitcnt < 5000 || tscmax > 10 * tscmin) +	if (pitcnt < loopmin || tscmax > 10 * tscmin)  		return ULONG_MAX;  	/* Calculate the PIT value */  	delta = t2 - t1; -	do_div(delta, 50); +	do_div(delta, ms);  	return delta;  } +/* + * This reads the current MSB of the PIT counter, and + * checks if we are running on sufficiently fast and + * non-virtualized hardware. + * + * Our expectations are: + * + *  - the PIT is running at roughly 1.19MHz + * + *  - each IO is going to take about 1us on real hardware, + *    but we allow it to be much faster (by a factor of 10) or + *    _slightly_ slower (ie we allow up to a 2us read+counter + *    update - anything else implies a unacceptably slow CPU + *    or PIT for the fast calibration to work. + * + *  - with 256 PIT ticks to read the value, we have 214us to + *    see the same MSB (and overhead like doing a single TSC + *    read per MSB value etc). + * + *  - We're doing 2 reads per loop (LSB, MSB), and we expect + *    them each to take about a microsecond on real hardware. + *    So we expect a count value of around 100. But we'll be + *    generous, and accept anything over 50. + * + *  - if the PIT is stuck, and we see *many* more reads, we + *    return early (and the next caller of pit_expect_msb() + *    then consider it a failure when they don't see the + *    next expected value). + * + * These expectations mean that we know that we have seen the + * transition from one expected value to another with a fairly + * high accuracy, and we didn't miss any events. We can thus + * use the TSC value at the transitions to calculate a pretty + * good value for the TSC frequencty. + */ +static inline int pit_expect_msb(unsigned char val) +{ +	int count = 0; + +	for (count = 0; count < 50000; count++) { +		/* Ignore LSB */ +		inb(0x42); +		if (inb(0x42) != val) +			break; +	} +	return count > 50; +} + +/* + * How many MSB values do we want to see? We aim for a + * 15ms calibration, which assuming a 2us counter read + * error should give us roughly 150 ppm precision for + * the calibration. + */ +#define QUICK_PIT_MS 15 +#define QUICK_PIT_ITERATIONS (QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) + +static unsigned long quick_pit_calibrate(void) +{ +	/* Set the Gate high, disable speaker */ +	outb((inb(0x61) & ~0x02) | 0x01, 0x61); + +	/* +	 * Counter 2, mode 0 (one-shot), binary count +	 * +	 * NOTE! Mode 2 decrements by two (and then the +	 * output is flipped each time, giving the same +	 * final output frequency as a decrement-by-one), +	 * so mode 0 is much better when looking at the +	 * individual counts. +	 */ +	outb(0xb0, 0x43); + +	/* Start at 0xffff */ +	outb(0xff, 0x42); +	outb(0xff, 0x42); + +	if (pit_expect_msb(0xff)) { +		int i; +		u64 t1, t2, delta; +		unsigned char expect = 0xfe; + +		t1 = get_cycles(); +		for (i = 0; i < QUICK_PIT_ITERATIONS; i++, expect--) { +			if (!pit_expect_msb(expect)) +				goto failed; +		} +		t2 = get_cycles(); + +		/* +		 * Make sure we can rely on the second TSC timestamp: +		 */ +		if (!pit_expect_msb(expect)) +			goto failed; + +		/* +		 * Ok, if we get here, then we've seen the +		 * MSB of the PIT decrement QUICK_PIT_ITERATIONS +		 * times, and each MSB had many hits, so we never +		 * had any sudden jumps. +		 * +		 * As a result, we can depend on there not being +		 * any odd delays anywhere, and the TSC reads are +		 * reliable. +		 * +		 * kHz = ticks / time-in-seconds / 1000; +		 * kHz = (t2 - t1) / (QPI * 256 / PIT_TICK_RATE) / 1000 +		 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (QPI * 256 * 1000) +		 */ +		delta = (t2 - t1)*PIT_TICK_RATE; +		do_div(delta, QUICK_PIT_ITERATIONS*256*1000); +		printk("Fast TSC calibration using PIT\n"); +		return delta; +	} +failed: +	return 0; +}  /**   * native_calibrate_tsc - calibrate the tsc on boot   */  unsigned long native_calibrate_tsc(void)  { -	u64 tsc1, tsc2, delta, pm1, pm2, hpet1, hpet2; +	u64 tsc1, tsc2, delta, ref1, ref2;  	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; -	unsigned long flags; -	int hpet = is_hpet_enabled(), i; +	unsigned long flags, latch, ms, fast_calibrate; +	int hpet = is_hpet_enabled(), i, loopmin; + +	local_irq_save(flags); +	fast_calibrate = quick_pit_calibrate(); +	local_irq_restore(flags); +	if (fast_calibrate) +		return fast_calibrate;  	/*  	 * Run 5 calibration loops to get the lowest frequency value @@ -216,7 +385,13 @@ unsigned long native_calibrate_tsc(void)  	 * calibration delay loop as we have to wait for a certain  	 * amount of time anyway.  	 */ -	for (i = 0; i < 5; i++) { + +	/* Preset PIT loop values */ +	latch = CAL_LATCH; +	ms = CAL_MS; +	loopmin = CAL_PIT_LOOPS; + +	for (i = 0; i < 3; i++) {  		unsigned long tsc_pit_khz;  		/* @@ -226,16 +401,16 @@ unsigned long native_calibrate_tsc(void)  		 * read the end value.  		 */  		local_irq_save(flags); -		tsc1 = tsc_read_refs(&pm1, hpet ? &hpet1 : NULL); -		tsc_pit_khz = pit_calibrate_tsc(); -		tsc2 = tsc_read_refs(&pm2, hpet ? &hpet2 : NULL); +		tsc1 = tsc_read_refs(&ref1, hpet); +		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); +		tsc2 = tsc_read_refs(&ref2, hpet);  		local_irq_restore(flags);  		/* Pick the lowest PIT TSC calibration so far */  		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);  		/* hpet or pmtimer available ? */ -		if (!hpet && !pm1 && !pm2) +		if (!hpet && !ref1 && !ref2)  			continue;  		/* Check, whether the sampling was disturbed by an SMI */ @@ -243,23 +418,41 @@ unsigned long native_calibrate_tsc(void)  			continue;  		tsc2 = (tsc2 - tsc1) * 1000000LL; +		if (hpet) +			tsc2 = calc_hpet_ref(tsc2, ref1, ref2); +		else +			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); -		if (hpet) { -			if (hpet2 < hpet1) -				hpet2 += 0x100000000ULL; -			hpet2 -= hpet1; -			tsc1 = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); -			do_div(tsc1, 1000000); -		} else { -			if (pm2 < pm1) -				pm2 += (u64)ACPI_PM_OVRRUN; -			pm2 -= pm1; -			tsc1 = pm2 * 1000000000LL; -			do_div(tsc1, PMTMR_TICKS_PER_SEC); +		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); + +		/* Check the reference deviation */ +		delta = ((u64) tsc_pit_min) * 100; +		do_div(delta, tsc_ref_min); + +		/* +		 * If both calibration results are inside a 10% window +		 * then we can be sure, that the calibration +		 * succeeded. We break out of the loop right away. We +		 * use the reference value, as it is more precise. +		 */ +		if (delta >= 90 && delta <= 110) { +			printk(KERN_INFO +			       "TSC: PIT calibration matches %s. %d loops\n", +			       hpet ? "HPET" : "PMTIMER", i + 1); +			return tsc_ref_min;  		} -		do_div(tsc2, tsc1); -		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); +		/* +		 * Check whether PIT failed more than once. This +		 * happens in virtualized environments. We need to +		 * give the virtual PC a slightly longer timeframe for +		 * the HPET/PMTIMER to make the result precise. +		 */ +		if (i == 1 && tsc_pit_min == ULONG_MAX) { +			latch = CAL2_LATCH; +			ms = CAL2_MS; +			loopmin = CAL2_PIT_LOOPS; +		}  	}  	/* @@ -270,7 +463,7 @@ unsigned long native_calibrate_tsc(void)  		printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");  		/* We don't have an alternative source, disable TSC */ -		if (!hpet && !pm1 && !pm2) { +		if (!hpet && !ref1 && !ref2) {  			printk("TSC: No reference (HPET/PMTIMER) available\n");  			return 0;  		} @@ -278,7 +471,7 @@ unsigned long native_calibrate_tsc(void)  		/* The alternative source failed as well, disable TSC */  		if (tsc_ref_min == ULONG_MAX) {  			printk(KERN_WARNING "TSC: HPET/PMTIMER calibration " -			       "failed due to SMI disturbance.\n"); +			       "failed.\n");  			return 0;  		} @@ -290,44 +483,25 @@ unsigned long native_calibrate_tsc(void)  	}  	/* We don't have an alternative source, use the PIT calibration value */ -	if (!hpet && !pm1 && !pm2) { +	if (!hpet && !ref1 && !ref2) {  		printk(KERN_INFO "TSC: Using PIT calibration value\n");  		return tsc_pit_min;  	}  	/* The alternative source failed, use the PIT calibration value */  	if (tsc_ref_min == ULONG_MAX) { -		printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed due " -		       "to SMI disturbance. Using PIT calibration\n"); +		printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. " +		       "Using PIT calibration\n");  		return tsc_pit_min;  	} -	/* Check the reference deviation */ -	delta = ((u64) tsc_pit_min) * 100; -	do_div(delta, tsc_ref_min); - -	/* -	 * If both calibration results are inside a 5% window, the we -	 * use the lower frequency of those as it is probably the -	 * closest estimate. -	 */ -	if (delta >= 95 && delta <= 105) { -		printk(KERN_INFO "TSC: PIT calibration confirmed by %s.\n", -		       hpet ? "HPET" : "PMTIMER"); -		printk(KERN_INFO "TSC: using %s calibration value\n", -		       tsc_pit_min <= tsc_ref_min ? "PIT" : -		       hpet ? "HPET" : "PMTIMER"); -		return tsc_pit_min <= tsc_ref_min ? tsc_pit_min : tsc_ref_min; -	} - -	printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n", -	       hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); -  	/*  	 * The calibration values differ too much. In doubt, we use  	 * the PIT value as we know that there are PMTIMERs around -	 * running at double speed. +	 * running at double speed. At least we let the user know:  	 */ +	printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n", +	       hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);  	printk(KERN_INFO "TSC: Using PIT calibration value\n");  	return tsc_pit_min;  } @@ -585,7 +759,7 @@ __cpuinit int unsynchronized_tsc(void)  	if (!cpu_has_tsc || tsc_unstable)  		return 1; -#ifdef CONFIG_SMP +#ifdef CONFIG_X86_SMP  	if (apic_is_clustered_box())  		return 1;  #endif @@ -639,10 +813,6 @@ void __init tsc_init(void)  		cpu_khz = calibrate_cpu();  #endif -	lpj = ((u64)tsc_khz * 1000); -	do_div(lpj, HZ); -	lpj_fine = lpj; -  	printk("Detected %lu.%03lu MHz processor.\n",  			(unsigned long)cpu_khz / 1000,  			(unsigned long)cpu_khz % 1000); @@ -662,6 +832,10 @@ void __init tsc_init(void)  	/* now allow native_sched_clock() to use rdtsc */  	tsc_disabled = 0; +	lpj = ((u64)tsc_khz * 1000); +	do_div(lpj, HZ); +	lpj_fine = lpj; +  	use_tsc_delay();  	/* Check and install the TSC clocksource */  	dmi_check_system(bad_tsc_dmi_table);  | 
