diff options
Diffstat (limited to 'arch/tile/kernel/single_step.c')
| -rw-r--r-- | arch/tile/kernel/single_step.c | 663 | 
1 files changed, 663 insertions, 0 deletions
diff --git a/arch/tile/kernel/single_step.c b/arch/tile/kernel/single_step.c new file mode 100644 index 00000000000..5ec4b9c651f --- /dev/null +++ b/arch/tile/kernel/single_step.c @@ -0,0 +1,663 @@ +/* + * Copyright 2010 Tilera Corporation. All Rights Reserved. + * + *   This program is free software; you can redistribute it and/or + *   modify it under the terms of the GNU General Public License + *   as published by the Free Software Foundation, version 2. + * + *   This program is distributed in the hope that it will be useful, but + *   WITHOUT ANY WARRANTY; without even the implied warranty of + *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or + *   NON INFRINGEMENT.  See the GNU General Public License for + *   more details. + * + * A code-rewriter that enables instruction single-stepping. + * Derived from iLib's single-stepping code. + */ + +#ifndef __tilegx__   /* No support for single-step yet. */ + +/* These functions are only used on the TILE platform */ +#include <linux/slab.h> +#include <linux/thread_info.h> +#include <linux/uaccess.h> +#include <linux/mman.h> +#include <linux/types.h> +#include <linux/err.h> +#include <asm/cacheflush.h> +#include <asm/opcode-tile.h> +#include <asm/opcode_constants.h> +#include <arch/abi.h> + +#define signExtend17(val) sign_extend((val), 17) +#define TILE_X1_MASK (0xffffffffULL << 31) + +int unaligned_printk; + +static int __init setup_unaligned_printk(char *str) +{ +	long val; +	if (strict_strtol(str, 0, &val) != 0) +		return 0; +	unaligned_printk = val; +	pr_info("Printk for each unaligned data accesses is %s\n", +		unaligned_printk ? "enabled" : "disabled"); +	return 1; +} +__setup("unaligned_printk=", setup_unaligned_printk); + +unsigned int unaligned_fixup_count; + +enum mem_op { +	MEMOP_NONE, +	MEMOP_LOAD, +	MEMOP_STORE, +	MEMOP_LOAD_POSTINCR, +	MEMOP_STORE_POSTINCR +}; + +static inline tile_bundle_bits set_BrOff_X1(tile_bundle_bits n, int32_t offset) +{ +	tile_bundle_bits result; + +	/* mask out the old offset */ +	tile_bundle_bits mask = create_BrOff_X1(-1); +	result = n & (~mask); + +	/* or in the new offset */ +	result |= create_BrOff_X1(offset); + +	return result; +} + +static inline tile_bundle_bits move_X1(tile_bundle_bits n, int dest, int src) +{ +	tile_bundle_bits result; +	tile_bundle_bits op; + +	result = n & (~TILE_X1_MASK); + +	op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) | +		create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) | +		create_Dest_X1(dest) | +		create_SrcB_X1(TREG_ZERO) | +		create_SrcA_X1(src) ; + +	result |= op; +	return result; +} + +static inline tile_bundle_bits nop_X1(tile_bundle_bits n) +{ +	return move_X1(n, TREG_ZERO, TREG_ZERO); +} + +static inline tile_bundle_bits addi_X1( +	tile_bundle_bits n, int dest, int src, int imm) +{ +	n &= ~TILE_X1_MASK; + +	n |=  (create_SrcA_X1(src) | +	       create_Dest_X1(dest) | +	       create_Imm8_X1(imm) | +	       create_S_X1(0) | +	       create_Opcode_X1(IMM_0_OPCODE_X1) | +	       create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1)); + +	return n; +} + +static tile_bundle_bits rewrite_load_store_unaligned( +	struct single_step_state *state, +	tile_bundle_bits bundle, +	struct pt_regs *regs, +	enum mem_op mem_op, +	int size, int sign_ext) +{ +	unsigned char __user *addr; +	int val_reg, addr_reg, err, val; + +	/* Get address and value registers */ +	if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) { +		addr_reg = get_SrcA_Y2(bundle); +		val_reg = get_SrcBDest_Y2(bundle); +	} else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) { +		addr_reg = get_SrcA_X1(bundle); +		val_reg  = get_Dest_X1(bundle); +	} else { +		addr_reg = get_SrcA_X1(bundle); +		val_reg  = get_SrcB_X1(bundle); +	} + +	/* +	 * If registers are not GPRs, don't try to handle it. +	 * +	 * FIXME: we could handle non-GPR loads by getting the real value +	 * from memory, writing it to the single step buffer, using a +	 * temp_reg to hold a pointer to that memory, then executing that +	 * instruction and resetting temp_reg.  For non-GPR stores, it's a +	 * little trickier; we could use the single step buffer for that +	 * too, but we'd have to add some more state bits so that we could +	 * call back in here to copy that value to the real target.  For +	 * now, we just handle the simple case. +	 */ +	if ((val_reg >= PTREGS_NR_GPRS && +	     (val_reg != TREG_ZERO || +	      mem_op == MEMOP_LOAD || +	      mem_op == MEMOP_LOAD_POSTINCR)) || +	    addr_reg >= PTREGS_NR_GPRS) +		return bundle; + +	/* If it's aligned, don't handle it specially */ +	addr = (void __user *)regs->regs[addr_reg]; +	if (((unsigned long)addr % size) == 0) +		return bundle; + +#ifndef __LITTLE_ENDIAN +# error We assume little-endian representation with copy_xx_user size 2 here +#endif +	/* Handle unaligned load/store */ +	if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) { +		unsigned short val_16; +		switch (size) { +		case 2: +			err = copy_from_user(&val_16, addr, sizeof(val_16)); +			val = sign_ext ? ((short)val_16) : val_16; +			break; +		case 4: +			err = copy_from_user(&val, addr, sizeof(val)); +			break; +		default: +			BUG(); +		} +		if (err == 0) { +			state->update_reg = val_reg; +			state->update_value = val; +			state->update = 1; +		} +	} else { +		val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg]; +		err = copy_to_user(addr, &val, size); +	} + +	if (err) { +		siginfo_t info = { +			.si_signo = SIGSEGV, +			.si_code = SEGV_MAPERR, +			.si_addr = addr +		}; +		force_sig_info(info.si_signo, &info, current); +		return (tile_bundle_bits) 0; +	} + +	if (unaligned_fixup == 0) { +		siginfo_t info = { +			.si_signo = SIGBUS, +			.si_code = BUS_ADRALN, +			.si_addr = addr +		}; +		force_sig_info(info.si_signo, &info, current); +		return (tile_bundle_bits) 0; +	} + +	if (unaligned_printk || unaligned_fixup_count == 0) { +		pr_info("Process %d/%s: PC %#lx: Fixup of" +			" unaligned %s at %#lx.\n", +			current->pid, current->comm, regs->pc, +			(mem_op == MEMOP_LOAD || +			 mem_op == MEMOP_LOAD_POSTINCR) ? +			"load" : "store", +			(unsigned long)addr); +		if (!unaligned_printk) { +#define P pr_info +P("\n"); +P("Unaligned fixups in the kernel will slow your application considerably.\n"); +P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n"); +P("which requests the kernel show all unaligned fixups, or write a \"0\"\n"); +P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n"); +P("access will become a SIGBUS you can debug. No further warnings will be\n"); +P("shown so as to avoid additional slowdown, but you can track the number\n"); +P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n"); +P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n"); +P("\n"); +#undef P +		} +	} +	++unaligned_fixup_count; + +	if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) { +		/* Convert the Y2 instruction to a prefetch. */ +		bundle &= ~(create_SrcBDest_Y2(-1) | +			    create_Opcode_Y2(-1)); +		bundle |= (create_SrcBDest_Y2(TREG_ZERO) | +			   create_Opcode_Y2(LW_OPCODE_Y2)); +	/* Replace the load postincr with an addi */ +	} else if (mem_op == MEMOP_LOAD_POSTINCR) { +		bundle = addi_X1(bundle, addr_reg, addr_reg, +				 get_Imm8_X1(bundle)); +	/* Replace the store postincr with an addi */ +	} else if (mem_op == MEMOP_STORE_POSTINCR) { +		bundle = addi_X1(bundle, addr_reg, addr_reg, +				 get_Dest_Imm8_X1(bundle)); +	} else { +		/* Convert the X1 instruction to a nop. */ +		bundle &= ~(create_Opcode_X1(-1) | +			    create_UnShOpcodeExtension_X1(-1) | +			    create_UnOpcodeExtension_X1(-1)); +		bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) | +			   create_UnShOpcodeExtension_X1( +				   UN_0_SHUN_0_OPCODE_X1) | +			   create_UnOpcodeExtension_X1( +				   NOP_UN_0_SHUN_0_OPCODE_X1)); +	} + +	return bundle; +} + +/** + * single_step_once() - entry point when single stepping has been triggered. + * @regs: The machine register state + * + *  When we arrive at this routine via a trampoline, the single step + *  engine copies the executing bundle to the single step buffer. + *  If the instruction is a condition branch, then the target is + *  reset to one past the next instruction. If the instruction + *  sets the lr, then that is noted. If the instruction is a jump + *  or call, then the new target pc is preserved and the current + *  bundle instruction set to null. + * + *  The necessary post-single-step rewriting information is stored in + *  single_step_state->  We use data segment values because the + *  stack will be rewound when we run the rewritten single-stepped + *  instruction. + */ +void single_step_once(struct pt_regs *regs) +{ +	extern tile_bundle_bits __single_step_ill_insn; +	extern tile_bundle_bits __single_step_j_insn; +	extern tile_bundle_bits __single_step_addli_insn; +	extern tile_bundle_bits __single_step_auli_insn; +	struct thread_info *info = (void *)current_thread_info(); +	struct single_step_state *state = info->step_state; +	int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP); +	tile_bundle_bits __user *buffer, *pc; +	tile_bundle_bits bundle; +	int temp_reg; +	int target_reg = TREG_LR; +	int err; +	enum mem_op mem_op = MEMOP_NONE; +	int size = 0, sign_ext = 0;  /* happy compiler */ + +	asm( +"    .pushsection .rodata.single_step\n" +"    .align 8\n" +"    .globl    __single_step_ill_insn\n" +"__single_step_ill_insn:\n" +"    ill\n" +"    .globl    __single_step_addli_insn\n" +"__single_step_addli_insn:\n" +"    { nop; addli r0, zero, 0 }\n" +"    .globl    __single_step_auli_insn\n" +"__single_step_auli_insn:\n" +"    { nop; auli r0, r0, 0 }\n" +"    .globl    __single_step_j_insn\n" +"__single_step_j_insn:\n" +"    j .\n" +"    .popsection\n" +	); + +	if (state == NULL) { +		/* allocate a page of writable, executable memory */ +		state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL); +		if (state == NULL) { +			pr_err("Out of kernel memory trying to single-step\n"); +			return; +		} + +		/* allocate a cache line of writable, executable memory */ +		down_write(¤t->mm->mmap_sem); +		buffer = (void __user *) do_mmap(NULL, 0, 64, +					  PROT_EXEC | PROT_READ | PROT_WRITE, +					  MAP_PRIVATE | MAP_ANONYMOUS, +					  0); +		up_write(¤t->mm->mmap_sem); + +		if (IS_ERR((void __force *)buffer)) { +			kfree(state); +			pr_err("Out of kernel pages trying to single-step\n"); +			return; +		} + +		state->buffer = buffer; +		state->is_enabled = 0; + +		info->step_state = state; + +		/* Validate our stored instruction patterns */ +		BUG_ON(get_Opcode_X1(__single_step_addli_insn) != +		       ADDLI_OPCODE_X1); +		BUG_ON(get_Opcode_X1(__single_step_auli_insn) != +		       AULI_OPCODE_X1); +		BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO); +		BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0); +		BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0); +	} + +	/* +	 * If we are returning from a syscall, we still haven't hit the +	 * "ill" for the swint1 instruction.  So back the PC up to be +	 * pointing at the swint1, but we'll actually return directly +	 * back to the "ill" so we come back in via SIGILL as if we +	 * had "executed" the swint1 without ever being in kernel space. +	 */ +	if (regs->faultnum == INT_SWINT_1) +		regs->pc -= 8; + +	pc = (tile_bundle_bits __user *)(regs->pc); +	if (get_user(bundle, pc) != 0) { +		pr_err("Couldn't read instruction at %p trying to step\n", pc); +		return; +	} + +	/* We'll follow the instruction with 2 ill op bundles */ +	state->orig_pc = (unsigned long)pc; +	state->next_pc = (unsigned long)(pc + 1); +	state->branch_next_pc = 0; +	state->update = 0; + +	if (!(bundle & TILE_BUNDLE_Y_ENCODING_MASK)) { +		/* two wide, check for control flow */ +		int opcode = get_Opcode_X1(bundle); + +		switch (opcode) { +		/* branches */ +		case BRANCH_OPCODE_X1: +		{ +			int32_t offset = signExtend17(get_BrOff_X1(bundle)); + +			/* +			 * For branches, we use a rewriting trick to let the +			 * hardware evaluate whether the branch is taken or +			 * untaken.  We record the target offset and then +			 * rewrite the branch instruction to target 1 insn +			 * ahead if the branch is taken.  We then follow the +			 * rewritten branch with two bundles, each containing +			 * an "ill" instruction. The supervisor examines the +			 * pc after the single step code is executed, and if +			 * the pc is the first ill instruction, then the +			 * branch (if any) was not taken.  If the pc is the +			 * second ill instruction, then the branch was +			 * taken. The new pc is computed for these cases, and +			 * inserted into the registers for the thread.  If +			 * the pc is the start of the single step code, then +			 * an exception or interrupt was taken before the +			 * code started processing, and the same "original" +			 * pc is restored.  This change, different from the +			 * original implementation, has the advantage of +			 * executing a single user instruction. +			 */ +			state->branch_next_pc = (unsigned long)(pc + offset); + +			/* rewrite branch offset to go forward one bundle */ +			bundle = set_BrOff_X1(bundle, 2); +		} +		break; + +		/* jumps */ +		case JALB_OPCODE_X1: +		case JALF_OPCODE_X1: +			state->update = 1; +			state->next_pc = +				(unsigned long) (pc + get_JOffLong_X1(bundle)); +			break; + +		case JB_OPCODE_X1: +		case JF_OPCODE_X1: +			state->next_pc = +				(unsigned long) (pc + get_JOffLong_X1(bundle)); +			bundle = nop_X1(bundle); +			break; + +		case SPECIAL_0_OPCODE_X1: +			switch (get_RRROpcodeExtension_X1(bundle)) { +			/* jump-register */ +			case JALRP_SPECIAL_0_OPCODE_X1: +			case JALR_SPECIAL_0_OPCODE_X1: +				state->update = 1; +				state->next_pc = +					regs->regs[get_SrcA_X1(bundle)]; +				break; + +			case JRP_SPECIAL_0_OPCODE_X1: +			case JR_SPECIAL_0_OPCODE_X1: +				state->next_pc = +					regs->regs[get_SrcA_X1(bundle)]; +				bundle = nop_X1(bundle); +				break; + +			case LNK_SPECIAL_0_OPCODE_X1: +				state->update = 1; +				target_reg = get_Dest_X1(bundle); +				break; + +			/* stores */ +			case SH_SPECIAL_0_OPCODE_X1: +				mem_op = MEMOP_STORE; +				size = 2; +				break; + +			case SW_SPECIAL_0_OPCODE_X1: +				mem_op = MEMOP_STORE; +				size = 4; +				break; +			} +			break; + +		/* loads and iret */ +		case SHUN_0_OPCODE_X1: +			if (get_UnShOpcodeExtension_X1(bundle) == +			    UN_0_SHUN_0_OPCODE_X1) { +				switch (get_UnOpcodeExtension_X1(bundle)) { +				case LH_UN_0_SHUN_0_OPCODE_X1: +					mem_op = MEMOP_LOAD; +					size = 2; +					sign_ext = 1; +					break; + +				case LH_U_UN_0_SHUN_0_OPCODE_X1: +					mem_op = MEMOP_LOAD; +					size = 2; +					sign_ext = 0; +					break; + +				case LW_UN_0_SHUN_0_OPCODE_X1: +					mem_op = MEMOP_LOAD; +					size = 4; +					break; + +				case IRET_UN_0_SHUN_0_OPCODE_X1: +				{ +					unsigned long ex0_0 = __insn_mfspr( +						SPR_EX_CONTEXT_0_0); +					unsigned long ex0_1 = __insn_mfspr( +						SPR_EX_CONTEXT_0_1); +					/* +					 * Special-case it if we're iret'ing +					 * to PL0 again.  Otherwise just let +					 * it run and it will generate SIGILL. +					 */ +					if (EX1_PL(ex0_1) == USER_PL) { +						state->next_pc = ex0_0; +						regs->ex1 = ex0_1; +						bundle = nop_X1(bundle); +					} +				} +				} +			} +			break; + +#if CHIP_HAS_WH64() +		/* postincrement operations */ +		case IMM_0_OPCODE_X1: +			switch (get_ImmOpcodeExtension_X1(bundle)) { +			case LWADD_IMM_0_OPCODE_X1: +				mem_op = MEMOP_LOAD_POSTINCR; +				size = 4; +				break; + +			case LHADD_IMM_0_OPCODE_X1: +				mem_op = MEMOP_LOAD_POSTINCR; +				size = 2; +				sign_ext = 1; +				break; + +			case LHADD_U_IMM_0_OPCODE_X1: +				mem_op = MEMOP_LOAD_POSTINCR; +				size = 2; +				sign_ext = 0; +				break; + +			case SWADD_IMM_0_OPCODE_X1: +				mem_op = MEMOP_STORE_POSTINCR; +				size = 4; +				break; + +			case SHADD_IMM_0_OPCODE_X1: +				mem_op = MEMOP_STORE_POSTINCR; +				size = 2; +				break; + +			default: +				break; +			} +			break; +#endif /* CHIP_HAS_WH64() */ +		} + +		if (state->update) { +			/* +			 * Get an available register.  We start with a +			 * bitmask with 1's for available registers. +			 * We truncate to the low 32 registers since +			 * we are guaranteed to have set bits in the +			 * low 32 bits, then use ctz to pick the first. +			 */ +			u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) | +					   (1ULL << get_SrcA_X0(bundle)) | +					   (1ULL << get_SrcB_X0(bundle)) | +					   (1ULL << target_reg)); +			temp_reg = __builtin_ctz(mask); +			state->update_reg = temp_reg; +			state->update_value = regs->regs[temp_reg]; +			regs->regs[temp_reg] = (unsigned long) (pc+1); +			regs->flags |= PT_FLAGS_RESTORE_REGS; +			bundle = move_X1(bundle, target_reg, temp_reg); +		} +	} else { +		int opcode = get_Opcode_Y2(bundle); + +		switch (opcode) { +		/* loads */ +		case LH_OPCODE_Y2: +			mem_op = MEMOP_LOAD; +			size = 2; +			sign_ext = 1; +			break; + +		case LH_U_OPCODE_Y2: +			mem_op = MEMOP_LOAD; +			size = 2; +			sign_ext = 0; +			break; + +		case LW_OPCODE_Y2: +			mem_op = MEMOP_LOAD; +			size = 4; +			break; + +		/* stores */ +		case SH_OPCODE_Y2: +			mem_op = MEMOP_STORE; +			size = 2; +			break; + +		case SW_OPCODE_Y2: +			mem_op = MEMOP_STORE; +			size = 4; +			break; +		} +	} + +	/* +	 * Check if we need to rewrite an unaligned load/store. +	 * Returning zero is a special value meaning we need to SIGSEGV. +	 */ +	if (mem_op != MEMOP_NONE && unaligned_fixup >= 0) { +		bundle = rewrite_load_store_unaligned(state, bundle, regs, +						      mem_op, size, sign_ext); +		if (bundle == 0) +			return; +	} + +	/* write the bundle to our execution area */ +	buffer = state->buffer; +	err = __put_user(bundle, buffer++); + +	/* +	 * If we're really single-stepping, we take an INT_ILL after. +	 * If we're just handling an unaligned access, we can just +	 * jump directly back to where we were in user code. +	 */ +	if (is_single_step) { +		err |= __put_user(__single_step_ill_insn, buffer++); +		err |= __put_user(__single_step_ill_insn, buffer++); +	} else { +		long delta; + +		if (state->update) { +			/* We have some state to update; do it inline */ +			int ha16; +			bundle = __single_step_addli_insn; +			bundle |= create_Dest_X1(state->update_reg); +			bundle |= create_Imm16_X1(state->update_value); +			err |= __put_user(bundle, buffer++); +			bundle = __single_step_auli_insn; +			bundle |= create_Dest_X1(state->update_reg); +			bundle |= create_SrcA_X1(state->update_reg); +			ha16 = (state->update_value + 0x8000) >> 16; +			bundle |= create_Imm16_X1(ha16); +			err |= __put_user(bundle, buffer++); +			state->update = 0; +		} + +		/* End with a jump back to the next instruction */ +		delta = ((regs->pc + TILE_BUNDLE_SIZE_IN_BYTES) - +			(unsigned long)buffer) >> +			TILE_LOG2_BUNDLE_ALIGNMENT_IN_BYTES; +		bundle = __single_step_j_insn; +		bundle |= create_JOffLong_X1(delta); +		err |= __put_user(bundle, buffer++); +	} + +	if (err) { +		pr_err("Fault when writing to single-step buffer\n"); +		return; +	} + +	/* +	 * Flush the buffer. +	 * We do a local flush only, since this is a thread-specific buffer. +	 */ +	__flush_icache_range((unsigned long)state->buffer, +			     (unsigned long)buffer); + +	/* Indicate enabled */ +	state->is_enabled = is_single_step; +	regs->pc = (unsigned long)state->buffer; + +	/* Fault immediately if we are coming back from a syscall. */ +	if (regs->faultnum == INT_SWINT_1) +		regs->pc += 8; +} + +#endif /* !__tilegx__ */  | 
