aboutsummaryrefslogtreecommitdiff
path: root/arch/powerpc/perf
diff options
context:
space:
mode:
Diffstat (limited to 'arch/powerpc/perf')
-rw-r--r--arch/powerpc/perf/Makefile14
-rw-r--r--arch/powerpc/perf/callchain.c492
-rw-r--r--arch/powerpc/perf/core-book3s.c1448
-rw-r--r--arch/powerpc/perf/core-fsl-emb.c688
-rw-r--r--arch/powerpc/perf/e500-pmu.c134
-rw-r--r--arch/powerpc/perf/mpc7450-pmu.c422
-rw-r--r--arch/powerpc/perf/power4-pmu.c621
-rw-r--r--arch/powerpc/perf/power5+-pmu.c690
-rw-r--r--arch/powerpc/perf/power5-pmu.c629
-rw-r--r--arch/powerpc/perf/power6-pmu.c552
-rw-r--r--arch/powerpc/perf/power7-pmu.c379
-rw-r--r--arch/powerpc/perf/ppc970-pmu.c502
12 files changed, 6571 insertions, 0 deletions
diff --git a/arch/powerpc/perf/Makefile b/arch/powerpc/perf/Makefile
new file mode 100644
index 00000000000..af3fac23768
--- /dev/null
+++ b/arch/powerpc/perf/Makefile
@@ -0,0 +1,14 @@
+subdir-ccflags-$(CONFIG_PPC_WERROR) := -Werror
+
+obj-$(CONFIG_PERF_EVENTS) += callchain.o
+
+obj-$(CONFIG_PPC_PERF_CTRS) += core-book3s.o
+obj64-$(CONFIG_PPC_PERF_CTRS) += power4-pmu.o ppc970-pmu.o power5-pmu.o \
+ power5+-pmu.o power6-pmu.o power7-pmu.o
+obj32-$(CONFIG_PPC_PERF_CTRS) += mpc7450-pmu.o
+
+obj-$(CONFIG_FSL_EMB_PERF_EVENT) += core-fsl-emb.o
+obj-$(CONFIG_FSL_EMB_PERF_EVENT_E500) += e500-pmu.o
+
+obj-$(CONFIG_PPC64) += $(obj64-y)
+obj-$(CONFIG_PPC32) += $(obj32-y)
diff --git a/arch/powerpc/perf/callchain.c b/arch/powerpc/perf/callchain.c
new file mode 100644
index 00000000000..e8a18d1cc7c
--- /dev/null
+++ b/arch/powerpc/perf/callchain.c
@@ -0,0 +1,492 @@
+/*
+ * Performance counter callchain support - powerpc architecture code
+ *
+ * Copyright © 2009 Paul Mackerras, IBM Corporation.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ */
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/perf_event.h>
+#include <linux/percpu.h>
+#include <linux/uaccess.h>
+#include <linux/mm.h>
+#include <asm/ptrace.h>
+#include <asm/pgtable.h>
+#include <asm/sigcontext.h>
+#include <asm/ucontext.h>
+#include <asm/vdso.h>
+#ifdef CONFIG_PPC64
+#include "../kernel/ppc32.h"
+#endif
+
+
+/*
+ * Is sp valid as the address of the next kernel stack frame after prev_sp?
+ * The next frame may be in a different stack area but should not go
+ * back down in the same stack area.
+ */
+static int valid_next_sp(unsigned long sp, unsigned long prev_sp)
+{
+ if (sp & 0xf)
+ return 0; /* must be 16-byte aligned */
+ if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
+ return 0;
+ if (sp >= prev_sp + STACK_FRAME_OVERHEAD)
+ return 1;
+ /*
+ * sp could decrease when we jump off an interrupt stack
+ * back to the regular process stack.
+ */
+ if ((sp & ~(THREAD_SIZE - 1)) != (prev_sp & ~(THREAD_SIZE - 1)))
+ return 1;
+ return 0;
+}
+
+void
+perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
+{
+ unsigned long sp, next_sp;
+ unsigned long next_ip;
+ unsigned long lr;
+ long level = 0;
+ unsigned long *fp;
+
+ lr = regs->link;
+ sp = regs->gpr[1];
+ perf_callchain_store(entry, regs->nip);
+
+ if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
+ return;
+
+ for (;;) {
+ fp = (unsigned long *) sp;
+ next_sp = fp[0];
+
+ if (next_sp == sp + STACK_INT_FRAME_SIZE &&
+ fp[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
+ /*
+ * This looks like an interrupt frame for an
+ * interrupt that occurred in the kernel
+ */
+ regs = (struct pt_regs *)(sp + STACK_FRAME_OVERHEAD);
+ next_ip = regs->nip;
+ lr = regs->link;
+ level = 0;
+ perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
+
+ } else {
+ if (level == 0)
+ next_ip = lr;
+ else
+ next_ip = fp[STACK_FRAME_LR_SAVE];
+
+ /*
+ * We can't tell which of the first two addresses
+ * we get are valid, but we can filter out the
+ * obviously bogus ones here. We replace them
+ * with 0 rather than removing them entirely so
+ * that userspace can tell which is which.
+ */
+ if ((level == 1 && next_ip == lr) ||
+ (level <= 1 && !kernel_text_address(next_ip)))
+ next_ip = 0;
+
+ ++level;
+ }
+
+ perf_callchain_store(entry, next_ip);
+ if (!valid_next_sp(next_sp, sp))
+ return;
+ sp = next_sp;
+ }
+}
+
+#ifdef CONFIG_PPC64
+/*
+ * On 64-bit we don't want to invoke hash_page on user addresses from
+ * interrupt context, so if the access faults, we read the page tables
+ * to find which page (if any) is mapped and access it directly.
+ */
+static int read_user_stack_slow(void __user *ptr, void *ret, int nb)
+{
+ pgd_t *pgdir;
+ pte_t *ptep, pte;
+ unsigned shift;
+ unsigned long addr = (unsigned long) ptr;
+ unsigned long offset;
+ unsigned long pfn;
+ void *kaddr;
+
+ pgdir = current->mm->pgd;
+ if (!pgdir)
+ return -EFAULT;
+
+ ptep = find_linux_pte_or_hugepte(pgdir, addr, &shift);
+ if (!shift)
+ shift = PAGE_SHIFT;
+
+ /* align address to page boundary */
+ offset = addr & ((1UL << shift) - 1);
+ addr -= offset;
+
+ if (ptep == NULL)
+ return -EFAULT;
+ pte = *ptep;
+ if (!pte_present(pte) || !(pte_val(pte) & _PAGE_USER))
+ return -EFAULT;
+ pfn = pte_pfn(pte);
+ if (!page_is_ram(pfn))
+ return -EFAULT;
+
+ /* no highmem to worry about here */
+ kaddr = pfn_to_kaddr(pfn);
+ memcpy(ret, kaddr + offset, nb);
+ return 0;
+}
+
+static int read_user_stack_64(unsigned long __user *ptr, unsigned long *ret)
+{
+ if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned long) ||
+ ((unsigned long)ptr & 7))
+ return -EFAULT;
+
+ pagefault_disable();
+ if (!__get_user_inatomic(*ret, ptr)) {
+ pagefault_enable();
+ return 0;
+ }
+ pagefault_enable();
+
+ return read_user_stack_slow(ptr, ret, 8);
+}
+
+static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
+{
+ if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
+ ((unsigned long)ptr & 3))
+ return -EFAULT;
+
+ pagefault_disable();
+ if (!__get_user_inatomic(*ret, ptr)) {
+ pagefault_enable();
+ return 0;
+ }
+ pagefault_enable();
+
+ return read_user_stack_slow(ptr, ret, 4);
+}
+
+static inline int valid_user_sp(unsigned long sp, int is_64)
+{
+ if (!sp || (sp & 7) || sp > (is_64 ? TASK_SIZE : 0x100000000UL) - 32)
+ return 0;
+ return 1;
+}
+
+/*
+ * 64-bit user processes use the same stack frame for RT and non-RT signals.
+ */
+struct signal_frame_64 {
+ char dummy[__SIGNAL_FRAMESIZE];
+ struct ucontext uc;
+ unsigned long unused[2];
+ unsigned int tramp[6];
+ struct siginfo *pinfo;
+ void *puc;
+ struct siginfo info;
+ char abigap[288];
+};
+
+static int is_sigreturn_64_address(unsigned long nip, unsigned long fp)
+{
+ if (nip == fp + offsetof(struct signal_frame_64, tramp))
+ return 1;
+ if (vdso64_rt_sigtramp && current->mm->context.vdso_base &&
+ nip == current->mm->context.vdso_base + vdso64_rt_sigtramp)
+ return 1;
+ return 0;
+}
+
+/*
+ * Do some sanity checking on the signal frame pointed to by sp.
+ * We check the pinfo and puc pointers in the frame.
+ */
+static int sane_signal_64_frame(unsigned long sp)
+{
+ struct signal_frame_64 __user *sf;
+ unsigned long pinfo, puc;
+
+ sf = (struct signal_frame_64 __user *) sp;
+ if (read_user_stack_64((unsigned long __user *) &sf->pinfo, &pinfo) ||
+ read_user_stack_64((unsigned long __user *) &sf->puc, &puc))
+ return 0;
+ return pinfo == (unsigned long) &sf->info &&
+ puc == (unsigned long) &sf->uc;
+}
+
+static void perf_callchain_user_64(struct perf_callchain_entry *entry,
+ struct pt_regs *regs)
+{
+ unsigned long sp, next_sp;
+ unsigned long next_ip;
+ unsigned long lr;
+ long level = 0;
+ struct signal_frame_64 __user *sigframe;
+ unsigned long __user *fp, *uregs;
+
+ next_ip = regs->nip;
+ lr = regs->link;
+ sp = regs->gpr[1];
+ perf_callchain_store(entry, next_ip);
+
+ for (;;) {
+ fp = (unsigned long __user *) sp;
+ if (!valid_user_sp(sp, 1) || read_user_stack_64(fp, &next_sp))
+ return;
+ if (level > 0 && read_user_stack_64(&fp[2], &next_ip))
+ return;
+
+ /*
+ * Note: the next_sp - sp >= signal frame size check
+ * is true when next_sp < sp, which can happen when
+ * transitioning from an alternate signal stack to the
+ * normal stack.
+ */
+ if (next_sp - sp >= sizeof(struct signal_frame_64) &&
+ (is_sigreturn_64_address(next_ip, sp) ||
+ (level <= 1 && is_sigreturn_64_address(lr, sp))) &&
+ sane_signal_64_frame(sp)) {
+ /*
+ * This looks like an signal frame
+ */
+ sigframe = (struct signal_frame_64 __user *) sp;
+ uregs = sigframe->uc.uc_mcontext.gp_regs;
+ if (read_user_stack_64(&uregs[PT_NIP], &next_ip) ||
+ read_user_stack_64(&uregs[PT_LNK], &lr) ||
+ read_user_stack_64(&uregs[PT_R1], &sp))
+ return;
+ level = 0;
+ perf_callchain_store(entry, PERF_CONTEXT_USER);
+ perf_callchain_store(entry, next_ip);
+ continue;
+ }
+
+ if (level == 0)
+ next_ip = lr;
+ perf_callchain_store(entry, next_ip);
+ ++level;
+ sp = next_sp;
+ }
+}
+
+static inline int current_is_64bit(void)
+{
+ /*
+ * We can't use test_thread_flag() here because we may be on an
+ * interrupt stack, and the thread flags don't get copied over
+ * from the thread_info on the main stack to the interrupt stack.
+ */
+ return !test_ti_thread_flag(task_thread_info(current), TIF_32BIT);
+}
+
+#else /* CONFIG_PPC64 */
+/*
+ * On 32-bit we just access the address and let hash_page create a
+ * HPTE if necessary, so there is no need to fall back to reading
+ * the page tables. Since this is called at interrupt level,
+ * do_page_fault() won't treat a DSI as a page fault.
+ */
+static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
+{
+ int rc;
+
+ if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
+ ((unsigned long)ptr & 3))
+ return -EFAULT;
+
+ pagefault_disable();
+ rc = __get_user_inatomic(*ret, ptr);
+ pagefault_enable();
+
+ return rc;
+}
+
+static inline void perf_callchain_user_64(struct perf_callchain_entry *entry,
+ struct pt_regs *regs)
+{
+}
+
+static inline int current_is_64bit(void)
+{
+ return 0;
+}
+
+static inline int valid_user_sp(unsigned long sp, int is_64)
+{
+ if (!sp || (sp & 7) || sp > TASK_SIZE - 32)
+ return 0;
+ return 1;
+}
+
+#define __SIGNAL_FRAMESIZE32 __SIGNAL_FRAMESIZE
+#define sigcontext32 sigcontext
+#define mcontext32 mcontext
+#define ucontext32 ucontext
+#define compat_siginfo_t struct siginfo
+
+#endif /* CONFIG_PPC64 */
+
+/*
+ * Layout for non-RT signal frames
+ */
+struct signal_frame_32 {
+ char dummy[__SIGNAL_FRAMESIZE32];
+ struct sigcontext32 sctx;
+ struct mcontext32 mctx;
+ int abigap[56];
+};
+
+/*
+ * Layout for RT signal frames
+ */
+struct rt_signal_frame_32 {
+ char dummy[__SIGNAL_FRAMESIZE32 + 16];
+ compat_siginfo_t info;
+ struct ucontext32 uc;
+ int abigap[56];
+};
+
+static int is_sigreturn_32_address(unsigned int nip, unsigned int fp)
+{
+ if (nip == fp + offsetof(struct signal_frame_32, mctx.mc_pad))
+ return 1;
+ if (vdso32_sigtramp && current->mm->context.vdso_base &&
+ nip == current->mm->context.vdso_base + vdso32_sigtramp)
+ return 1;
+ return 0;
+}
+
+static int is_rt_sigreturn_32_address(unsigned int nip, unsigned int fp)
+{
+ if (nip == fp + offsetof(struct rt_signal_frame_32,
+ uc.uc_mcontext.mc_pad))
+ return 1;
+ if (vdso32_rt_sigtramp && current->mm->context.vdso_base &&
+ nip == current->mm->context.vdso_base + vdso32_rt_sigtramp)
+ return 1;
+ return 0;
+}
+
+static int sane_signal_32_frame(unsigned int sp)
+{
+ struct signal_frame_32 __user *sf;
+ unsigned int regs;
+
+ sf = (struct signal_frame_32 __user *) (unsigned long) sp;
+ if (read_user_stack_32((unsigned int __user *) &sf->sctx.regs, &regs))
+ return 0;
+ return regs == (unsigned long) &sf->mctx;
+}
+
+static int sane_rt_signal_32_frame(unsigned int sp)
+{
+ struct rt_signal_frame_32 __user *sf;
+ unsigned int regs;
+
+ sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
+ if (read_user_stack_32((unsigned int __user *) &sf->uc.uc_regs, &regs))
+ return 0;
+ return regs == (unsigned long) &sf->uc.uc_mcontext;
+}
+
+static unsigned int __user *signal_frame_32_regs(unsigned int sp,
+ unsigned int next_sp, unsigned int next_ip)
+{
+ struct mcontext32 __user *mctx = NULL;
+ struct signal_frame_32 __user *sf;
+ struct rt_signal_frame_32 __user *rt_sf;
+
+ /*
+ * Note: the next_sp - sp >= signal frame size check
+ * is true when next_sp < sp, for example, when
+ * transitioning from an alternate signal stack to the
+ * normal stack.
+ */
+ if (next_sp - sp >= sizeof(struct signal_frame_32) &&
+ is_sigreturn_32_address(next_ip, sp) &&
+ sane_signal_32_frame(sp)) {
+ sf = (struct signal_frame_32 __user *) (unsigned long) sp;
+ mctx = &sf->mctx;
+ }
+
+ if (!mctx && next_sp - sp >= sizeof(struct rt_signal_frame_32) &&
+ is_rt_sigreturn_32_address(next_ip, sp) &&
+ sane_rt_signal_32_frame(sp)) {
+ rt_sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
+ mctx = &rt_sf->uc.uc_mcontext;
+ }
+
+ if (!mctx)
+ return NULL;
+ return mctx->mc_gregs;
+}
+
+static void perf_callchain_user_32(struct perf_callchain_entry *entry,
+ struct pt_regs *regs)
+{
+ unsigned int sp, next_sp;
+ unsigned int next_ip;
+ unsigned int lr;
+ long level = 0;
+ unsigned int __user *fp, *uregs;
+
+ next_ip = regs->nip;
+ lr = regs->link;
+ sp = regs->gpr[1];
+ perf_callchain_store(entry, next_ip);
+
+ while (entry->nr < PERF_MAX_STACK_DEPTH) {
+ fp = (unsigned int __user *) (unsigned long) sp;
+ if (!valid_user_sp(sp, 0) || read_user_stack_32(fp, &next_sp))
+ return;
+ if (level > 0 && read_user_stack_32(&fp[1], &next_ip))
+ return;
+
+ uregs = signal_frame_32_regs(sp, next_sp, next_ip);
+ if (!uregs && level <= 1)
+ uregs = signal_frame_32_regs(sp, next_sp, lr);
+ if (uregs) {
+ /*
+ * This looks like an signal frame, so restart
+ * the stack trace with the values in it.
+ */
+ if (read_user_stack_32(&uregs[PT_NIP], &next_ip) ||
+ read_user_stack_32(&uregs[PT_LNK], &lr) ||
+ read_user_stack_32(&uregs[PT_R1], &sp))
+ return;
+ level = 0;
+ perf_callchain_store(entry, PERF_CONTEXT_USER);
+ perf_callchain_store(entry, next_ip);
+ continue;
+ }
+
+ if (level == 0)
+ next_ip = lr;
+ perf_callchain_store(entry, next_ip);
+ ++level;
+ sp = next_sp;
+ }
+}
+
+void
+perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
+{
+ if (current_is_64bit())
+ perf_callchain_user_64(entry, regs);
+ else
+ perf_callchain_user_32(entry, regs);
+}
diff --git a/arch/powerpc/perf/core-book3s.c b/arch/powerpc/perf/core-book3s.c
new file mode 100644
index 00000000000..c2e27ede07e
--- /dev/null
+++ b/arch/powerpc/perf/core-book3s.c
@@ -0,0 +1,1448 @@
+/*
+ * Performance event support - powerpc architecture code
+ *
+ * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ */
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/perf_event.h>
+#include <linux/percpu.h>
+#include <linux/hardirq.h>
+#include <asm/reg.h>
+#include <asm/pmc.h>
+#include <asm/machdep.h>
+#include <asm/firmware.h>
+#include <asm/ptrace.h>
+
+struct cpu_hw_events {
+ int n_events;
+ int n_percpu;
+ int disabled;
+ int n_added;
+ int n_limited;
+ u8 pmcs_enabled;
+ struct perf_event *event[MAX_HWEVENTS];
+ u64 events[MAX_HWEVENTS];
+ unsigned int flags[MAX_HWEVENTS];
+ unsigned long mmcr[3];
+ struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
+ u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
+ u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
+ unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
+ unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
+
+ unsigned int group_flag;
+ int n_txn_start;
+};
+DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
+
+struct power_pmu *ppmu;
+
+/*
+ * Normally, to ignore kernel events we set the FCS (freeze counters
+ * in supervisor mode) bit in MMCR0, but if the kernel runs with the
+ * hypervisor bit set in the MSR, or if we are running on a processor
+ * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
+ * then we need to use the FCHV bit to ignore kernel events.
+ */
+static unsigned int freeze_events_kernel = MMCR0_FCS;
+
+/*
+ * 32-bit doesn't have MMCRA but does have an MMCR2,
+ * and a few other names are different.
+ */
+#ifdef CONFIG_PPC32
+
+#define MMCR0_FCHV 0
+#define MMCR0_PMCjCE MMCR0_PMCnCE
+
+#define SPRN_MMCRA SPRN_MMCR2
+#define MMCRA_SAMPLE_ENABLE 0
+
+static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
+{
+ return 0;
+}
+static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
+static inline u32 perf_get_misc_flags(struct pt_regs *regs)
+{
+ return 0;
+}
+static inline void perf_read_regs(struct pt_regs *regs) { }
+static inline int perf_intr_is_nmi(struct pt_regs *regs)
+{
+ return 0;
+}
+
+#endif /* CONFIG_PPC32 */
+
+/*
+ * Things that are specific to 64-bit implementations.
+ */
+#ifdef CONFIG_PPC64
+
+static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
+{
+ unsigned long mmcra = regs->dsisr;
+
+ if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
+ unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
+ if (slot > 1)
+ return 4 * (slot - 1);
+ }
+ return 0;
+}
+
+/*
+ * The user wants a data address recorded.
+ * If we're not doing instruction sampling, give them the SDAR
+ * (sampled data address). If we are doing instruction sampling, then
+ * only give them the SDAR if it corresponds to the instruction
+ * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC
+ * bit in MMCRA.
+ */
+static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
+{
+ unsigned long mmcra = regs->dsisr;
+ unsigned long sdsync = (ppmu->flags & PPMU_ALT_SIPR) ?
+ POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC;
+
+ if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
+ *addrp = mfspr(SPRN_SDAR);
+}
+
+static inline u32 perf_get_misc_flags(struct pt_regs *regs)
+{
+ unsigned long mmcra = regs->dsisr;
+ unsigned long sihv = MMCRA_SIHV;
+ unsigned long sipr = MMCRA_SIPR;
+
+ if (TRAP(regs) != 0xf00)
+ return 0; /* not a PMU interrupt */
+
+ if (ppmu->flags & PPMU_ALT_SIPR) {
+ sihv = POWER6_MMCRA_SIHV;
+ sipr = POWER6_MMCRA_SIPR;
+ }
+
+ /* PR has priority over HV, so order below is important */
+ if (mmcra & sipr)
+ return PERF_RECORD_MISC_USER;
+ if ((mmcra & sihv) && (freeze_events_kernel != MMCR0_FCHV))
+ return PERF_RECORD_MISC_HYPERVISOR;
+ return PERF_RECORD_MISC_KERNEL;
+}
+
+/*
+ * Overload regs->dsisr to store MMCRA so we only need to read it once
+ * on each interrupt.
+ */
+static inline void perf_read_regs(struct pt_regs *regs)
+{
+ regs->dsisr = mfspr(SPRN_MMCRA);
+}
+
+/*
+ * If interrupts were soft-disabled when a PMU interrupt occurs, treat
+ * it as an NMI.
+ */
+static inline int perf_intr_is_nmi(struct pt_regs *regs)
+{
+ return !regs->softe;
+}
+
+#endif /* CONFIG_PPC64 */
+
+static void perf_event_interrupt(struct pt_regs *regs);
+
+void perf_event_print_debug(void)
+{
+}
+
+/*
+ * Read one performance monitor counter (PMC).
+ */
+static unsigned long read_pmc(int idx)
+{
+ unsigned long val;
+
+ switch (idx) {
+ case 1:
+ val = mfspr(SPRN_PMC1);
+ break;
+ case 2:
+ val = mfspr(SPRN_PMC2);
+ break;
+ case 3:
+ val = mfspr(SPRN_PMC3);
+ break;
+ case 4:
+ val = mfspr(SPRN_PMC4);
+ break;
+ case 5:
+ val = mfspr(SPRN_PMC5);
+ break;
+ case 6:
+ val = mfspr(SPRN_PMC6);
+ break;
+#ifdef CONFIG_PPC64
+ case 7:
+ val = mfspr(SPRN_PMC7);
+ break;
+ case 8:
+ val = mfspr(SPRN_PMC8);
+ break;
+#endif /* CONFIG_PPC64 */
+ default:
+ printk(KERN_ERR "oops trying to read PMC%d\n", idx);
+ val = 0;
+ }
+ return val;
+}
+
+/*
+ * Write one PMC.
+ */
+static void write_pmc(int idx, unsigned long val)
+{
+ switch (idx) {
+ case 1:
+ mtspr(SPRN_PMC1, val);
+ break;
+ case 2:
+ mtspr(SPRN_PMC2, val);
+ break;
+ case 3:
+ mtspr(SPRN_PMC3, val);
+ break;
+ case 4:
+ mtspr(SPRN_PMC4, val);
+ break;
+ case 5:
+ mtspr(SPRN_PMC5, val);
+ break;
+ case 6:
+ mtspr(SPRN_PMC6, val);
+ break;
+#ifdef CONFIG_PPC64
+ case 7:
+ mtspr(SPRN_PMC7, val);
+ break;
+ case 8:
+ mtspr(SPRN_PMC8, val);
+ break;
+#endif /* CONFIG_PPC64 */
+ default:
+ printk(KERN_ERR "oops trying to write PMC%d\n", idx);
+ }
+}
+
+/*
+ * Check if a set of events can all go on the PMU at once.
+ * If they can't, this will look at alternative codes for the events
+ * and see if any combination of alternative codes is feasible.
+ * The feasible set is returned in event_id[].
+ */
+static int power_check_constraints(struct cpu_hw_events *cpuhw,
+ u64 event_id[], unsigned int cflags[],
+ int n_ev)
+{
+ unsigned long mask, value, nv;
+ unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
+ int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
+ int i, j;
+ unsigned long addf = ppmu->add_fields;
+ unsigned long tadd = ppmu->test_adder;
+
+ if (n_ev > ppmu->n_counter)
+ return -1;
+
+ /* First see if the events will go on as-is */
+ for (i = 0; i < n_ev; ++i) {
+ if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
+ && !ppmu->limited_pmc_event(event_id[i])) {
+ ppmu->get_alternatives(event_id[i], cflags[i],
+ cpuhw->alternatives[i]);
+ event_id[i] = cpuhw->alternatives[i][0];
+ }
+ if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
+ &cpuhw->avalues[i][0]))
+ return -1;
+ }
+ value = mask = 0;
+ for (i = 0; i < n_ev; ++i) {
+ nv = (value | cpuhw->avalues[i][0]) +
+ (value & cpuhw->avalues[i][0] & addf);
+ if ((((nv + tadd) ^ value) & mask) != 0 ||
+ (((nv + tadd) ^ cpuhw->avalues[i][0]) &
+ cpuhw->amasks[i][0]) != 0)
+ break;
+ value = nv;
+ mask |= cpuhw->amasks[i][0];
+ }
+ if (i == n_ev)
+ return 0; /* all OK */
+
+ /* doesn't work, gather alternatives... */
+ if (!ppmu->get_alternatives)
+ return -1;
+ for (i = 0; i < n_ev; ++i) {
+ choice[i] = 0;
+ n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
+ cpuhw->alternatives[i]);
+ for (j = 1; j < n_alt[i]; ++j)
+ ppmu->get_constraint(cpuhw->alternatives[i][j],
+ &cpuhw->amasks[i][j],
+ &cpuhw->avalues[i][j]);
+ }
+
+ /* enumerate all possibilities and see if any will work */
+ i = 0;
+ j = -1;
+ value = mask = nv = 0;
+ while (i < n_ev) {
+ if (j >= 0) {
+ /* we're backtracking, restore context */
+ value = svalues[i];
+ mask = smasks[i];
+ j = choice[i];
+ }
+ /*
+ * See if any alternative k for event_id i,
+ * where k > j, will satisfy the constraints.
+ */
+ while (++j < n_alt[i]) {
+ nv = (value | cpuhw->avalues[i][j]) +
+ (value & cpuhw->avalues[i][j] & addf);
+ if ((((nv + tadd) ^ value) & mask) == 0 &&
+ (((nv + tadd) ^ cpuhw->avalues[i][j])
+ & cpuhw->amasks[i][j]) == 0)
+ break;
+ }
+ if (j >= n_alt[i]) {
+ /*
+ * No feasible alternative, backtrack
+ * to event_id i-1 and continue enumerating its
+ * alternatives from where we got up to.
+ */
+ if (--i < 0)
+ return -1;
+ } else {
+ /*
+ * Found a feasible alternative for event_id i,
+ * remember where we got up to with this event_id,
+ * go on to the next event_id, and start with
+ * the first alternative for it.
+ */
+ choice[i] = j;
+ svalues[i] = value;
+ smasks[i] = mask;
+ value = nv;
+ mask |= cpuhw->amasks[i][j];
+ ++i;
+ j = -1;
+ }
+ }
+
+ /* OK, we have a feasible combination, tell the caller the solution */
+ for (i = 0; i < n_ev; ++i)
+ event_id[i] = cpuhw->alternatives[i][choice[i]];
+ return 0;
+}
+
+/*
+ * Check if newly-added events have consistent settings for
+ * exclude_{user,kernel,hv} with each other and any previously
+ * added events.
+ */
+static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
+ int n_prev, int n_new)
+{
+ int eu = 0, ek = 0, eh = 0;
+ int i, n, first;
+ struct perf_event *event;
+
+ n = n_prev + n_new;
+ if (n <= 1)
+ return 0;
+
+ first = 1;
+ for (i = 0; i < n; ++i) {
+ if (cflags[i] & PPMU_LIMITED_PMC_OK) {
+ cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
+ continue;
+ }
+ event = ctrs[i];
+ if (first) {
+ eu = event->attr.exclude_user;
+ ek = event->attr.exclude_kernel;
+ eh = event->attr.exclude_hv;
+ first = 0;
+ } else if (event->attr.exclude_user != eu ||
+ event->attr.exclude_kernel != ek ||
+ event->attr.exclude_hv != eh) {
+ return -EAGAIN;
+ }
+ }
+
+ if (eu || ek || eh)
+ for (i = 0; i < n; ++i)
+ if (cflags[i] & PPMU_LIMITED_PMC_OK)
+ cflags[i] |= PPMU_LIMITED_PMC_REQD;
+
+ return 0;
+}
+
+static u64 check_and_compute_delta(u64 prev, u64 val)
+{
+ u64 delta = (val - prev) & 0xfffffffful;
+
+ /*
+ * POWER7 can roll back counter values, if the new value is smaller
+ * than the previous value it will cause the delta and the counter to
+ * have bogus values unless we rolled a counter over. If a coutner is
+ * rolled back, it will be smaller, but within 256, which is the maximum
+ * number of events to rollback at once. If we dectect a rollback
+ * return 0. This can lead to a small lack of precision in the
+ * counters.
+ */
+ if (prev > val && (prev - val) < 256)
+ delta = 0;
+
+ return delta;
+}
+
+static void power_pmu_read(struct perf_event *event)
+{
+ s64 val, delta, prev;
+
+ if (event->hw.state & PERF_HES_STOPPED)
+ return;
+
+ if (!event->hw.idx)
+ return;
+ /*
+ * Performance monitor interrupts come even when interrupts
+ * are soft-disabled, as long as interrupts are hard-enabled.
+ * Therefore we treat them like NMIs.
+ */
+ do {
+ prev = local64_read(&event->hw.prev_count);
+ barrier();
+ val = read_pmc(event->hw.idx);
+ delta = check_and_compute_delta(prev, val);
+ if (!delta)
+ return;
+ } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
+
+ local64_add(delta, &event->count);
+ local64_sub(delta, &event->hw.period_left);
+}
+
+/*
+ * On some machines, PMC5 and PMC6 can't be written, don't respect
+ * the freeze conditions, and don't generate interrupts. This tells
+ * us if `event' is using such a PMC.
+ */
+static int is_limited_pmc(int pmcnum)
+{
+ return (ppmu->flags & PPMU_LIMITED_PMC5_6)
+ && (pmcnum == 5 || pmcnum == 6);
+}
+
+static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
+ unsigned long pmc5, unsigned long pmc6)
+{
+ struct perf_event *event;
+ u64 val, prev, delta;
+ int i;
+
+ for (i = 0; i < cpuhw->n_limited; ++i) {
+ event = cpuhw->limited_counter[i];
+ if (!event->hw.idx)
+ continue;
+ val = (event->hw.idx == 5) ? pmc5 : pmc6;
+ prev = local64_read(&event->hw.prev_count);
+ event->hw.idx = 0;
+ delta = check_and_compute_delta(prev, val);
+ if (delta)
+ local64_add(delta, &event->count);
+ }
+}
+
+static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
+ unsigned long pmc5, unsigned long pmc6)
+{
+ struct perf_event *event;
+ u64 val, prev;
+ int i;
+
+ for (i = 0; i < cpuhw->n_limited; ++i) {
+ event = cpuhw->limited_counter[i];
+ event->hw.idx = cpuhw->limited_hwidx[i];
+ val = (event->hw.idx == 5) ? pmc5 : pmc6;
+ prev = local64_read(&event->hw.prev_count);
+ if (check_and_compute_delta(prev, val))
+ local64_set(&event->hw.prev_count, val);
+ perf_event_update_userpage(event);
+ }
+}
+
+/*
+ * Since limited events don't respect the freeze conditions, we
+ * have to read them immediately after freezing or unfreezing the
+ * other events. We try to keep the values from the limited
+ * events as consistent as possible by keeping the delay (in
+ * cycles and instructions) between freezing/unfreezing and reading
+ * the limited events as small and consistent as possible.
+ * Therefore, if any limited events are in use, we read them
+ * both, and always in the same order, to minimize variability,
+ * and do it inside the same asm that writes MMCR0.
+ */
+static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
+{
+ unsigned long pmc5, pmc6;
+
+ if (!cpuhw->n_limited) {
+ mtspr(SPRN_MMCR0, mmcr0);
+ return;
+ }
+
+ /*
+ * Write MMCR0, then read PMC5 and PMC6 immediately.
+ * To ensure we don't get a performance monitor interrupt
+ * between writing MMCR0 and freezing/thawing the limited
+ * events, we first write MMCR0 with the event overflow
+ * interrupt enable bits turned off.
+ */
+ asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
+ : "=&r" (pmc5), "=&r" (pmc6)
+ : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
+ "i" (SPRN_MMCR0),
+ "i" (SPRN_PMC5), "i" (SPRN_PMC6));
+
+ if (mmcr0 & MMCR0_FC)
+ freeze_limited_counters(cpuhw, pmc5, pmc6);
+ else
+ thaw_limited_counters(cpuhw, pmc5, pmc6);
+
+ /*
+ * Write the full MMCR0 including the event overflow interrupt
+ * enable bits, if necessary.
+ */
+ if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
+ mtspr(SPRN_MMCR0, mmcr0);
+}
+
+/*
+ * Disable all events to prevent PMU interrupts and to allow
+ * events to be added or removed.
+ */
+static void power_pmu_disable(struct pmu *pmu)
+{
+ struct cpu_hw_events *cpuhw;
+ unsigned long flags;
+
+ if (!ppmu)
+ return;
+ local_irq_save(flags);
+ cpuhw = &__get_cpu_var(cpu_hw_events);
+
+ if (!cpuhw->disabled) {
+ cpuhw->disabled = 1;
+ cpuhw->n_added = 0;
+
+ /*
+ * Check if we ever enabled the PMU on this cpu.
+ */
+ if (!cpuhw->pmcs_enabled) {
+ ppc_enable_pmcs();
+ cpuhw->pmcs_enabled = 1;
+ }
+
+ /*
+ * Disable instruction sampling if it was enabled
+ */
+ if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
+ mtspr(SPRN_MMCRA,
+ cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
+ mb();
+ }
+
+ /*
+ * Set the 'freeze counters' bit.
+ * The barrier is to make sure the mtspr has been
+ * executed and the PMU has frozen the events
+ * before we return.
+ */
+ write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
+ mb();
+ }
+ local_irq_restore(flags);
+}
+
+/*
+ * Re-enable all events if disable == 0.
+ * If we were previously disabled and events were added, then
+ * put the new config on the PMU.
+ */
+static void power_pmu_enable(struct pmu *pmu)
+{
+ struct perf_event *event;