diff options
Diffstat (limited to 'arch/mips/powertv/powertv_setup.c')
-rw-r--r-- | arch/mips/powertv/powertv_setup.c | 319 |
1 files changed, 0 insertions, 319 deletions
diff --git a/arch/mips/powertv/powertv_setup.c b/arch/mips/powertv/powertv_setup.c deleted file mode 100644 index 24689bff103..00000000000 --- a/arch/mips/powertv/powertv_setup.c +++ /dev/null @@ -1,319 +0,0 @@ -/* - * Carsten Langgaard, carstenl@mips.com - * Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved. - * Portions copyright (C) 2009 Cisco Systems, Inc. - * - * This program is free software; you can distribute it and/or modify it - * under the terms of the GNU General Public License (Version 2) as - * published by the Free Software Foundation. - * - * This program is distributed in the hope it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License - * for more details. - * - * You should have received a copy of the GNU General Public License along - * with this program; if not, write to the Free Software Foundation, Inc., - * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. - */ -#include <linux/init.h> -#include <linux/sched.h> -#include <linux/ioport.h> -#include <linux/pci.h> -#include <linux/screen_info.h> -#include <linux/notifier.h> -#include <linux/etherdevice.h> -#include <linux/if_ether.h> -#include <linux/ctype.h> -#include <linux/cpu.h> -#include <linux/time.h> - -#include <asm/bootinfo.h> -#include <asm/irq.h> -#include <asm/mips-boards/generic.h> -#include <asm/dma.h> -#include <asm/asm.h> -#include <asm/traps.h> -#include <asm/asm-offsets.h> -#include "reset.h" - -#define VAL(n) STR(n) - -/* - * Macros for loading addresses and storing registers: - * LONG_L_ Stringified version of LONG_L for use in asm() statement - * LONG_S_ Stringified version of LONG_S for use in asm() statement - * PTR_LA_ Stringified version of PTR_LA for use in asm() statement - * REG_SIZE Number of 8-bit bytes in a full width register - */ -#define LONG_L_ VAL(LONG_L) " " -#define LONG_S_ VAL(LONG_S) " " -#define PTR_LA_ VAL(PTR_LA) " " - -#ifdef CONFIG_64BIT -#warning TODO: 64-bit code needs to be verified -#define REG_SIZE "8" /* In bytes */ -#endif - -#ifdef CONFIG_32BIT -#define REG_SIZE "4" /* In bytes */ -#endif - -static void register_panic_notifier(void); -static int panic_handler(struct notifier_block *notifier_block, - unsigned long event, void *cause_string); - -const char *get_system_type(void) -{ - return "PowerTV"; -} - -void __init plat_mem_setup(void) -{ - panic_on_oops = 1; - register_panic_notifier(); - -#if 0 - mips_pcibios_init(); -#endif - mips_reboot_setup(); -} - -/* - * Install a panic notifier for platform-specific diagnostics - */ -static void register_panic_notifier() -{ - static struct notifier_block panic_notifier = { - .notifier_call = panic_handler, - .next = NULL, - .priority = INT_MAX - }; - atomic_notifier_chain_register(&panic_notifier_list, &panic_notifier); -} - -static int panic_handler(struct notifier_block *notifier_block, - unsigned long event, void *cause_string) -{ - struct pt_regs my_regs; - - /* Save all of the registers */ - { - unsigned long at, v0, v1; /* Must be on the stack */ - - /* Start by saving $at and v0 on the stack. We use $at - * ourselves, but it looks like the compiler may use v0 or v1 - * to load the address of the pt_regs structure. We'll come - * back later to store the registers in the pt_regs - * structure. */ - __asm__ __volatile__ ( - ".set noat\n" - LONG_S_ "$at, %[at]\n" - LONG_S_ "$2, %[v0]\n" - LONG_S_ "$3, %[v1]\n" - : - [at] "=m" (at), - [v0] "=m" (v0), - [v1] "=m" (v1) - : - : "at" - ); - - __asm__ __volatile__ ( - ".set noat\n" - "move $at, %[pt_regs]\n" - - /* Argument registers */ - LONG_S_ "$4, " VAL(PT_R4) "($at)\n" - LONG_S_ "$5, " VAL(PT_R5) "($at)\n" - LONG_S_ "$6, " VAL(PT_R6) "($at)\n" - LONG_S_ "$7, " VAL(PT_R7) "($at)\n" - - /* Temporary regs */ - LONG_S_ "$8, " VAL(PT_R8) "($at)\n" - LONG_S_ "$9, " VAL(PT_R9) "($at)\n" - LONG_S_ "$10, " VAL(PT_R10) "($at)\n" - LONG_S_ "$11, " VAL(PT_R11) "($at)\n" - LONG_S_ "$12, " VAL(PT_R12) "($at)\n" - LONG_S_ "$13, " VAL(PT_R13) "($at)\n" - LONG_S_ "$14, " VAL(PT_R14) "($at)\n" - LONG_S_ "$15, " VAL(PT_R15) "($at)\n" - - /* "Saved" registers */ - LONG_S_ "$16, " VAL(PT_R16) "($at)\n" - LONG_S_ "$17, " VAL(PT_R17) "($at)\n" - LONG_S_ "$18, " VAL(PT_R18) "($at)\n" - LONG_S_ "$19, " VAL(PT_R19) "($at)\n" - LONG_S_ "$20, " VAL(PT_R20) "($at)\n" - LONG_S_ "$21, " VAL(PT_R21) "($at)\n" - LONG_S_ "$22, " VAL(PT_R22) "($at)\n" - LONG_S_ "$23, " VAL(PT_R23) "($at)\n" - - /* Add'l temp regs */ - LONG_S_ "$24, " VAL(PT_R24) "($at)\n" - LONG_S_ "$25, " VAL(PT_R25) "($at)\n" - - /* Kernel temp regs */ - LONG_S_ "$26, " VAL(PT_R26) "($at)\n" - LONG_S_ "$27, " VAL(PT_R27) "($at)\n" - - /* Global pointer, stack pointer, frame pointer and - * return address */ - LONG_S_ "$gp, " VAL(PT_R28) "($at)\n" - LONG_S_ "$sp, " VAL(PT_R29) "($at)\n" - LONG_S_ "$fp, " VAL(PT_R30) "($at)\n" - LONG_S_ "$ra, " VAL(PT_R31) "($at)\n" - - /* Now we can get the $at and v0 registers back and - * store them */ - LONG_L_ "$8, %[at]\n" - LONG_S_ "$8, " VAL(PT_R1) "($at)\n" - LONG_L_ "$8, %[v0]\n" - LONG_S_ "$8, " VAL(PT_R2) "($at)\n" - LONG_L_ "$8, %[v1]\n" - LONG_S_ "$8, " VAL(PT_R3) "($at)\n" - : - : - [at] "m" (at), - [v0] "m" (v0), - [v1] "m" (v1), - [pt_regs] "r" (&my_regs) - : "at", "t0" - ); - - /* Set the current EPC value to be the current location in this - * function */ - __asm__ __volatile__ ( - ".set noat\n" - "1:\n" - PTR_LA_ "$at, 1b\n" - LONG_S_ "$at, %[cp0_epc]\n" - : - [cp0_epc] "=m" (my_regs.cp0_epc) - : - : "at" - ); - - my_regs.cp0_cause = read_c0_cause(); - my_regs.cp0_status = read_c0_status(); - } - - pr_crit("I'm feeling a bit sleepy. hmmmmm... perhaps a nap would... " - "zzzz... \n"); - - return NOTIFY_DONE; -} - -/* Information about the RF MAC address, if one was supplied on the - * command line. */ -static bool have_rfmac; -static u8 rfmac[ETH_ALEN]; - -static int rfmac_param(char *p) -{ - u8 *q; - bool is_high_nibble; - int c; - - /* Skip a leading "0x", if present */ - if (*p == '0' && *(p+1) == 'x') - p += 2; - - q = rfmac; - is_high_nibble = true; - - for (c = (unsigned char) *p++; - isxdigit(c) && q - rfmac < ETH_ALEN; - c = (unsigned char) *p++) { - int nibble; - - nibble = (isdigit(c) ? (c - '0') : - (isupper(c) ? c - 'A' + 10 : c - 'a' + 10)); - - if (is_high_nibble) - *q = nibble << 4; - else - *q++ |= nibble; - - is_high_nibble = !is_high_nibble; - } - - /* If we parsed all the way to the end of the parameter value and - * parsed all ETH_ALEN bytes, we have a usable RF MAC address */ - have_rfmac = (c == '\0' && q - rfmac == ETH_ALEN); - - return 0; -} - -early_param("rfmac", rfmac_param); - -/* - * Generate an Ethernet MAC address that has a good chance of being unique. - * @addr: Pointer to six-byte array containing the Ethernet address - * Generates an Ethernet MAC address that is highly likely to be unique for - * this particular system on a network with other systems of the same type. - * - * The problem we are solving is that, when eth_random_addr() is used to - * generate MAC addresses at startup, there isn't much entropy for the random - * number generator to use and the addresses it produces are fairly likely to - * be the same as those of other identical systems on the same local network. - * This is true even for relatively small numbers of systems (for the reason - * why, see the Wikipedia entry for "Birthday problem" at: - * http://en.wikipedia.org/wiki/Birthday_problem - * - * The good news is that we already have a MAC address known to be unique, the - * RF MAC address. The bad news is that this address is already in use on the - * RF interface. Worse, the obvious trick, taking the RF MAC address and - * turning on the locally managed bit, has already been used for other devices. - * Still, this does give us something to work with. - * - * The approach we take is: - * 1. If we can't get the RF MAC Address, just call eth_random_addr. - * 2. Use the 24-bit NIC-specific bits of the RF MAC address as the last 24 - * bits of the new address. This is very likely to be unique, except for - * the current box. - * 3. To avoid using addresses already on the current box, we set the top - * six bits of the address with a value different from any currently - * registered Scientific Atlanta organizationally unique identifyer - * (OUI). This avoids duplication with any addresses on the system that - * were generated from valid Scientific Atlanta-registered address by - * simply flipping the locally managed bit. - * 4. We aren't generating a multicast address, so we leave the multicast - * bit off. Since we aren't using a registered address, we have to set - * the locally managed bit. - * 5. We then randomly generate the remaining 16-bits. This does two - * things: - * a. It allows us to call this function for more than one device - * in this system - * b. It ensures that things will probably still work even if - * some device on the device network has a locally managed - * address that matches the top six bits from step 2. - */ -void platform_random_ether_addr(u8 addr[ETH_ALEN]) -{ - const int num_random_bytes = 2; - const unsigned char non_sciatl_oui_bits = 0xc0u; - const unsigned char mac_addr_locally_managed = (1 << 1); - - if (!have_rfmac) { - pr_warning("rfmac not available on command line; " - "generating random MAC address\n"); - eth_random_addr(addr); - } - - else { - int i; - - /* Set the first byte to something that won't match a Scientific - * Atlanta OUI, is locally managed, and isn't a multicast - * address */ - addr[0] = non_sciatl_oui_bits | mac_addr_locally_managed; - - /* Get some bytes of random address information */ - get_random_bytes(&addr[1], num_random_bytes); - - /* Copy over the NIC-specific bits of the RF MAC address */ - for (i = 1 + num_random_bytes; i < ETH_ALEN; i++) - addr[i] = rfmac[i]; - } -} |