diff options
Diffstat (limited to 'Documentation')
51 files changed, 1114 insertions, 297 deletions
diff --git a/Documentation/ABI/testing/sysfs-bus-usb b/Documentation/ABI/testing/sysfs-bus-usb index a986e9bbba3..bcebb9eaedc 100644 --- a/Documentation/ABI/testing/sysfs-bus-usb +++ b/Documentation/ABI/testing/sysfs-bus-usb @@ -160,7 +160,7 @@ Description: match the driver to the device. For example: # echo "046d c315" > /sys/bus/usb/drivers/foo/remove_id -What: /sys/bus/usb/device/.../avoid_reset +What: /sys/bus/usb/device/.../avoid_reset_quirk Date: December 2009 Contact: Oliver Neukum <oliver@neukum.org> Description: diff --git a/Documentation/PCI/PCI-DMA-mapping.txt b/Documentation/DMA-API-HOWTO.txt index 52618ab069a..52618ab069a 100644 --- a/Documentation/PCI/PCI-DMA-mapping.txt +++ b/Documentation/DMA-API-HOWTO.txt diff --git a/Documentation/DocBook/libata.tmpl b/Documentation/DocBook/libata.tmpl index ba997577150..ff3e5bec1c2 100644 --- a/Documentation/DocBook/libata.tmpl +++ b/Documentation/DocBook/libata.tmpl @@ -107,10 +107,6 @@ void (*dev_config) (struct ata_port *, struct ata_device *); issue of SET FEATURES - XFER MODE, and prior to operation. </para> <para> - Called by ata_device_add() after ata_dev_identify() determines - a device is present. - </para> - <para> This entry may be specified as NULL in ata_port_operations. </para> @@ -154,8 +150,8 @@ unsigned int (*mode_filter) (struct ata_port *, struct ata_device *, unsigned in <sect2><title>Taskfile read/write</title> <programlisting> -void (*tf_load) (struct ata_port *ap, struct ata_taskfile *tf); -void (*tf_read) (struct ata_port *ap, struct ata_taskfile *tf); +void (*sff_tf_load) (struct ata_port *ap, struct ata_taskfile *tf); +void (*sff_tf_read) (struct ata_port *ap, struct ata_taskfile *tf); </programlisting> <para> @@ -164,36 +160,35 @@ void (*tf_read) (struct ata_port *ap, struct ata_taskfile *tf); hardware registers / DMA buffers, to obtain the current set of taskfile register values. Most drivers for taskfile-based hardware (PIO or MMIO) use - ata_tf_load() and ata_tf_read() for these hooks. + ata_sff_tf_load() and ata_sff_tf_read() for these hooks. </para> </sect2> <sect2><title>PIO data read/write</title> <programlisting> -void (*data_xfer) (struct ata_device *, unsigned char *, unsigned int, int); +void (*sff_data_xfer) (struct ata_device *, unsigned char *, unsigned int, int); </programlisting> <para> All bmdma-style drivers must implement this hook. This is the low-level operation that actually copies the data bytes during a PIO data transfer. -Typically the driver -will choose one of ata_pio_data_xfer_noirq(), ata_pio_data_xfer(), or -ata_mmio_data_xfer(). +Typically the driver will choose one of ata_sff_data_xfer_noirq(), +ata_sff_data_xfer(), or ata_sff_data_xfer32(). </para> </sect2> <sect2><title>ATA command execute</title> <programlisting> -void (*exec_command)(struct ata_port *ap, struct ata_taskfile *tf); +void (*sff_exec_command)(struct ata_port *ap, struct ata_taskfile *tf); </programlisting> <para> causes an ATA command, previously loaded with ->tf_load(), to be initiated in hardware. - Most drivers for taskfile-based hardware use ata_exec_command() + Most drivers for taskfile-based hardware use ata_sff_exec_command() for this hook. </para> @@ -218,8 +213,8 @@ command. <sect2><title>Read specific ATA shadow registers</title> <programlisting> -u8 (*check_status)(struct ata_port *ap); -u8 (*check_altstatus)(struct ata_port *ap); +u8 (*sff_check_status)(struct ata_port *ap); +u8 (*sff_check_altstatus)(struct ata_port *ap); </programlisting> <para> @@ -227,20 +222,14 @@ u8 (*check_altstatus)(struct ata_port *ap); hardware. On some hardware, reading the Status register has the side effect of clearing the interrupt condition. Most drivers for taskfile-based hardware use - ata_check_status() for this hook. - </para> - <para> - Note that because this is called from ata_device_add(), at - least a dummy function that clears device interrupts must be - provided for all drivers, even if the controller doesn't - actually have a taskfile status register. + ata_sff_check_status() for this hook. </para> </sect2> <sect2><title>Select ATA device on bus</title> <programlisting> -void (*dev_select)(struct ata_port *ap, unsigned int device); +void (*sff_dev_select)(struct ata_port *ap, unsigned int device); </programlisting> <para> @@ -251,9 +240,7 @@ void (*dev_select)(struct ata_port *ap, unsigned int device); </para> <para> Most drivers for taskfile-based hardware use - ata_std_dev_select() for this hook. Controllers which do not - support second drives on a port (such as SATA contollers) will - use ata_noop_dev_select(). + ata_sff_dev_select() for this hook. </para> </sect2> @@ -441,13 +428,13 @@ void (*irq_clear) (struct ata_port *); to struct ata_host_set. </para> <para> - Most legacy IDE drivers use ata_interrupt() for the + Most legacy IDE drivers use ata_sff_interrupt() for the irq_handler hook, which scans all ports in the host_set, determines which queued command was active (if any), and calls - ata_host_intr(ap,qc). + ata_sff_host_intr(ap,qc). </para> <para> - Most legacy IDE drivers use ata_bmdma_irq_clear() for the + Most legacy IDE drivers use ata_sff_irq_clear() for the irq_clear() hook, which simply clears the interrupt and error flags in the DMA status register. </para> @@ -496,10 +483,6 @@ void (*host_stop) (struct ata_host_set *host_set); data from port at this time. </para> <para> - Many drivers use ata_port_stop() as this hook, which frees the - PRD table. - </para> - <para> ->host_stop() is called after all ->port_stop() calls have completed. The hook must finalize hardware shutdown, release DMA and other resources, etc. diff --git a/Documentation/DocBook/tracepoint.tmpl b/Documentation/DocBook/tracepoint.tmpl index 8bca1d5cec0..e8473eae2a2 100644 --- a/Documentation/DocBook/tracepoint.tmpl +++ b/Documentation/DocBook/tracepoint.tmpl @@ -16,6 +16,15 @@ </address> </affiliation> </author> + <author> + <firstname>William</firstname> + <surname>Cohen</surname> + <affiliation> + <address> + <email>wcohen@redhat.com</email> + </address> + </affiliation> + </author> </authorgroup> <legalnotice> @@ -91,4 +100,8 @@ !Iinclude/trace/events/signal.h </chapter> + <chapter id="block"> + <title>Block IO</title> +!Iinclude/trace/events/block.h + </chapter> </book> diff --git a/Documentation/HOWTO b/Documentation/HOWTO index f5395af88a4..40ada93b820 100644 --- a/Documentation/HOWTO +++ b/Documentation/HOWTO @@ -234,7 +234,7 @@ process is as follows: Linus, usually the patches that have already been included in the -next kernel for a few weeks. The preferred way to submit big changes is using git (the kernel's source management tool, more information - can be found at http://git.or.cz/) but plain patches are also just + can be found at http://git-scm.com/) but plain patches are also just fine. - After two weeks a -rc1 kernel is released it is now possible to push only patches that do not include new features that could affect the diff --git a/Documentation/RCU/NMI-RCU.txt b/Documentation/RCU/NMI-RCU.txt index a6d32e65d22..a8536cb8809 100644 --- a/Documentation/RCU/NMI-RCU.txt +++ b/Documentation/RCU/NMI-RCU.txt @@ -34,7 +34,7 @@ NMI handler. cpu = smp_processor_id(); ++nmi_count(cpu); - if (!rcu_dereference(nmi_callback)(regs, cpu)) + if (!rcu_dereference_sched(nmi_callback)(regs, cpu)) default_do_nmi(regs); nmi_exit(); @@ -47,12 +47,13 @@ function pointer. If this handler returns zero, do_nmi() invokes the default_do_nmi() function to handle a machine-specific NMI. Finally, preemption is restored. -Strictly speaking, rcu_dereference() is not needed, since this code runs -only on i386, which does not need rcu_dereference() anyway. However, -it is a good documentation aid, particularly for anyone attempting to -do something similar on Alpha. +In theory, rcu_dereference_sched() is not needed, since this code runs +only on i386, which in theory does not need rcu_dereference_sched() +anyway. However, in practice it is a good documentation aid, particularly +for anyone attempting to do something similar on Alpha or on systems +with aggressive optimizing compilers. -Quick Quiz: Why might the rcu_dereference() be necessary on Alpha, +Quick Quiz: Why might the rcu_dereference_sched() be necessary on Alpha, given that the code referenced by the pointer is read-only? @@ -99,17 +100,21 @@ invoke irq_enter() and irq_exit() on NMI entry and exit, respectively. Answer to Quick Quiz - Why might the rcu_dereference() be necessary on Alpha, given + Why might the rcu_dereference_sched() be necessary on Alpha, given that the code referenced by the pointer is read-only? Answer: The caller to set_nmi_callback() might well have - initialized some data that is to be used by the - new NMI handler. In this case, the rcu_dereference() - would be needed, because otherwise a CPU that received - an NMI just after the new handler was set might see - the pointer to the new NMI handler, but the old - pre-initialized version of the handler's data. - - More important, the rcu_dereference() makes it clear - to someone reading the code that the pointer is being - protected by RCU. + initialized some data that is to be used by the new NMI + handler. In this case, the rcu_dereference_sched() would + be needed, because otherwise a CPU that received an NMI + just after the new handler was set might see the pointer + to the new NMI handler, but the old pre-initialized + version of the handler's data. + + This same sad story can happen on other CPUs when using + a compiler with aggressive pointer-value speculation + optimizations. + + More important, the rcu_dereference_sched() makes it + clear to someone reading the code that the pointer is + being protected by RCU-sched. diff --git a/Documentation/RCU/checklist.txt b/Documentation/RCU/checklist.txt index cbc180f9019..790d1a81237 100644 --- a/Documentation/RCU/checklist.txt +++ b/Documentation/RCU/checklist.txt @@ -260,7 +260,8 @@ over a rather long period of time, but improvements are always welcome! The reason that it is permissible to use RCU list-traversal primitives when the update-side lock is held is that doing so can be quite helpful in reducing code bloat when common code is - shared between readers and updaters. + shared between readers and updaters. Additional primitives + are provided for this case, as discussed in lockdep.txt. 10. Conversely, if you are in an RCU read-side critical section, and you don't hold the appropriate update-side lock, you -must- @@ -344,8 +345,8 @@ over a rather long period of time, but improvements are always welcome! requiring SRCU's read-side deadlock immunity or low read-side realtime latency. - Note that, rcu_assign_pointer() and rcu_dereference() relate to - SRCU just as they do to other forms of RCU. + Note that, rcu_assign_pointer() relates to SRCU just as they do + to other forms of RCU. 15. The whole point of call_rcu(), synchronize_rcu(), and friends is to wait until all pre-existing readers have finished before diff --git a/Documentation/RCU/lockdep.txt b/Documentation/RCU/lockdep.txt index fe24b58627b..d7a49b2f699 100644 --- a/Documentation/RCU/lockdep.txt +++ b/Documentation/RCU/lockdep.txt @@ -32,9 +32,20 @@ checking of rcu_dereference() primitives: srcu_dereference(p, sp): Check for SRCU read-side critical section. rcu_dereference_check(p, c): - Use explicit check expression "c". + Use explicit check expression "c". This is useful in + code that is invoked by both readers and updaters. rcu_dereference_raw(p) Don't check. (Use sparingly, if at all.) + rcu_dereference_protected(p, c): + Use explicit check expression "c", and omit all barriers + and compiler constraints. This is useful when the data + structure cannot change, for example, in code that is + invoked only by updaters. + rcu_access_pointer(p): + Return the value of the pointer and omit all barriers, + but retain the compiler constraints that prevent duplicating + or coalescsing. This is useful when when testing the + value of the pointer itself, for example, against NULL. The rcu_dereference_check() check expression can be any boolean expression, but would normally include one of the rcu_read_lock_held() @@ -59,7 +70,20 @@ In case (1), the pointer is picked up in an RCU-safe manner for vanilla RCU read-side critical sections, in case (2) the ->file_lock prevents any change from taking place, and finally, in case (3) the current task is the only task accessing the file_struct, again preventing any change -from taking place. +from taking place. If the above statement was invoked only from updater +code, it could instead be written as follows: + + file = rcu_dereference_protected(fdt->fd[fd], + lockdep_is_held(&files->file_lock) || + atomic_read(&files->count) == 1); + +This would verify cases #2 and #3 above, and furthermore lockdep would +complain if this was used in an RCU read-side critical section unless one +of these two cases held. Because rcu_dereference_protected() omits all +barriers and compiler constraints, it generates better code than do the +other flavors of rcu_dereference(). On the other hand, it is illegal +to use rcu_dereference_protected() if either the RCU-protected pointer +or the RCU-protected data that it points to can change concurrently. There are currently only "universal" versions of the rcu_assign_pointer() and RCU list-/tree-traversal primitives, which do not (yet) check for diff --git a/Documentation/RCU/stallwarn.txt b/Documentation/RCU/stallwarn.txt index 1423d2570d7..44c6dcc93d6 100644 --- a/Documentation/RCU/stallwarn.txt +++ b/Documentation/RCU/stallwarn.txt @@ -3,35 +3,79 @@ Using RCU's CPU Stall Detector The CONFIG_RCU_CPU_STALL_DETECTOR kernel config parameter enables RCU's CPU stall detector, which detects conditions that unduly delay RCU grace periods. The stall detector's idea of what constitutes -"unduly delayed" is controlled by a pair of C preprocessor macros: +"unduly delayed" is controlled by a set of C preprocessor macros: RCU_SECONDS_TILL_STALL_CHECK This macro defines the period of time that RCU will wait from the beginning of a grace period until it issues an RCU CPU - stall warning. It is normally ten seconds. + stall warning. This time period is normally ten seconds. RCU_SECONDS_TILL_STALL_RECHECK This macro defines the period of time that RCU will wait after - issuing a stall warning until it issues another stall warning. - It is normally set to thirty seconds. + issuing a stall warning until it issues another stall warning + for the same stall. This time period is normally set to thirty + seconds. RCU_STALL_RAT_DELAY - The CPU stall detector tries to make the offending CPU rat on itself, - as this often gives better-quality stack traces. However, if - the offending CPU does not detect its own stall in the number - of jiffies specified by RCU_STALL_RAT_DELAY, then other CPUs will - complain. This is normally set to two jiffies. + The CPU stall detector tries to make the offending CPU print its + own warnings, as this often gives better-quality stack traces. + However, if the offending CPU does not detect its own stall in + the number of jiffies specified by RCU_STALL_RAT_DELAY, then + some other CPU will complain. This delay is normally set to + two jiffies. -The following problems can result in an RCU CPU stall warning: +When a CPU detects that it is stalling, it will print a message similar +to the following: + +INFO: rcu_sched_state detected stall on CPU 5 (t=2500 jiffies) + +This message indicates that CPU 5 detected that it was causing a stall, +and that the stall was affecting RCU-sched. This message will normally be +followed by a stack dump of the offending CPU. On TREE_RCU kernel builds, +RCU and RCU-sched are implemented by the same underlying mechanism, +while on TREE_PREEMPT_RCU kernel builds, RCU is instead implemented +by rcu_preempt_state. + +On the other hand, if the offending CPU fails to print out a stall-warning +message quickly enough, some other CPU will print a message similar to +the following: + +INFO: rcu_bh_state detected stalls on CPUs/tasks: { 3 5 } (detected by 2, 2502 jiffies) + +This message indicates that CPU 2 detected that CPUs 3 and 5 were both +causing stalls, and that the stall was affecting RCU-bh. This message +will normally be followed by stack dumps for each CPU. Please note that +TREE_PREEMPT_RCU builds can be stalled by tasks as well as by CPUs, +and that the tasks will be indicated by PID, for example, "P3421". +It is even possible for a rcu_preempt_state stall to be caused by both +CPUs -and- tasks, in which case the offending CPUs and tasks will all +be called out in the list. + +Finally, if the grace period ends just as the stall warning starts +printing, there will be a spurious stall-warning message: + +INFO: rcu_bh_state detected stalls on CPUs/tasks: { } (detected by 4, 2502 jiffies) + +This is rare, but does happen from time to time in real life. + +So your kernel printed an RCU CPU stall warning. The next question is +"What caused it?" The following problems can result in RCU CPU stall +warnings: o A CPU looping in an RCU read-side critical section. -o A CPU looping with interrupts disabled. +o A CPU looping with interrupts disabled. This condition can + result in RCU-sched and RCU-bh stalls. -o A CPU looping with preemption disabled. +o A CPU looping with preemption disabled. This condition can + result in RCU-sched stalls and, if ksoftirqd is in use, RCU-bh + stalls. + +o A CPU looping with bottom halves disabled. This condition can + result in RCU-sched and RCU-bh stalls. o For !CONFIG_PREEMPT kernels, a CPU looping anywhere in the kernel without invoking schedule(). @@ -39,20 +83,24 @@ o For !CONFIG_PREEMPT kernels, a CPU looping anywhere in the kernel o A bug in the RCU implementation. o A hardware failure. This is quite unlikely, but has occurred - at least once in a former life. A CPU failed in a running system, + at least once in real life. A CPU failed in a running system, becoming unresponsive, but not causing an immediate crash. This resulted in a series of RCU CPU stall warnings, eventually leading the realization that the CPU had failed. -The RCU, RCU-sched, and RCU-bh implementations have CPU stall warning. -SRCU does not do so directly, but its calls to synchronize_sched() will -result in RCU-sched detecting any CPU stalls that might be occurring. - -To diagnose the cause of the stall, inspect the stack traces. The offending -function will usually be near the top of the stack. If you have a series -of stall warnings from a single extended stall, comparing the stack traces -can often help determine where the stall is occurring, which will usually -be in the function nearest the top of the stack that stays the same from -trace to trace. +The RCU, RCU-sched, and RCU-bh implementations have CPU stall +warning. SRCU does not have its own CPU stall warnings, but its +calls to synchronize_sched() will result in RCU-sched detecting +RCU-sched-related CPU stalls. Please note that RCU only detects +CPU stalls when there is a grace period in progress. No grace period, +no CPU stall warnings. + +To diagnose the cause of the stall, inspect the stack traces. +The offending function will usually be near the top of the stack. +If you have a series of stall warnings from a single extended stall, +comparing the stack traces can often help determine where the stall +is occurring, which will usually be in the function nearest the top of +that portion of the stack which remains the same from trace to trace. +If you can reliably trigger the stall, ftrace can be quite helpful. RCU bugs can often be debugged with the help of CONFIG_RCU_TRACE. diff --git a/Documentation/RCU/torture.txt b/Documentation/RCU/torture.txt index 0e50bc2aa1e..5d9016795fd 100644 --- a/Documentation/RCU/torture.txt +++ b/Documentation/RCU/torture.txt @@ -182,16 +182,6 @@ Similarly, sched_expedited RCU provides the following: sched_expedited-torture: Reader Pipe: 12660320201 95875 0 0 0 0 0 0 0 0 0 sched_expedited-torture: Reader Batch: 12660424885 0 0 0 0 0 0 0 0 0 0 sched_expedited-torture: Free-Block Circulation: 1090795 1090795 1090794 1090793 1090792 1090791 1090790 1090789 1090788 1090787 0 - state: -1 / 0:0 3:0 4:0 - -As before, the first four lines are similar to those for RCU. -The last line shows the task-migration state. The first number is --1 if synchronize_sched_expedited() is idle, -2 if in the process of -posting wakeups to the migration kthreads, and N when waiting on CPU N. -Each of the colon-separated fields following the "/" is a CPU:state pair. -Valid states are "0" for idle, "1" for waiting for quiescent state, -"2" for passed through quiescent state, and "3" when a race with a -CPU-hotplug event forces use of the synchronize_sched() primitive. USAGE diff --git a/Documentation/RCU/trace.txt b/Documentation/RCU/trace.txt index 8608fd85e92..efd8cc95c06 100644 --- a/Documentation/RCU/trace.txt +++ b/Documentation/RCU/trace.txt @@ -256,23 +256,23 @@ o Each element of the form "1/1 0:127 ^0" represents one struct The output of "cat rcu/rcu_pending" looks as follows: rcu_sched: - 0 np=255892 qsp=53936 cbr=0 cng=14417 gpc=10033 gps=24320 nf=6445 nn=146741 - 1 np=261224 qsp=54638 cbr=0 cng=25723 gpc=16310 gps=2849 nf=5912 nn=155792 - 2 np=237496 qsp=49664 cbr=0 cng=2762 gpc=45478 gps=1762 nf=1201 nn=136629 - 3 np=236249 qsp=48766 cbr=0 cng=286 gpc=48049 gps=1218 nf=207 nn=137723 - |