aboutsummaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/sound/alsa/ALSA-Configuration.txt327
-rw-r--r--Documentation/sound/alsa/HD-Audio-Models.txt348
-rw-r--r--Documentation/sound/alsa/HD-Audio.txt577
-rw-r--r--Documentation/sound/alsa/Procfile.txt10
4 files changed, 949 insertions, 313 deletions
diff --git a/Documentation/sound/alsa/ALSA-Configuration.txt b/Documentation/sound/alsa/ALSA-Configuration.txt
index 394d7d378dc..ee45454c50b 100644
--- a/Documentation/sound/alsa/ALSA-Configuration.txt
+++ b/Documentation/sound/alsa/ALSA-Configuration.txt
@@ -757,6 +757,8 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
model - force the model name
position_fix - Fix DMA pointer (0 = auto, 1 = use LPIB, 2 = POSBUF)
probe_mask - Bitmask to probe codecs (default = -1, meaning all slots)
+ probe_only - Only probing and no codec initialization (default=off);
+ Useful to check the initial codec status for debugging
bdl_pos_adj - Specifies the DMA IRQ timing delay in samples.
Passing -1 will make the driver to choose the appropriate
value based on the controller chip.
@@ -772,327 +774,23 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
This module supports multiple cards and autoprobe.
+ See Documentation/sound/alsa/HD-Audio.txt for more details about
+ HD-audio driver.
+
Each codec may have a model table for different configurations.
If your machine isn't listed there, the default (usually minimal)
configuration is set up. You can pass "model=<name>" option to
specify a certain model in such a case. There are different
- models depending on the codec chip.
-
- Model name Description
- ---------- -----------
- ALC880
- 3stack 3-jack in back and a headphone out
- 3stack-digout 3-jack in back, a HP out and a SPDIF out
- 5stack 5-jack in back, 2-jack in front
- 5stack-digout 5-jack in back, 2-jack in front, a SPDIF out
- 6stack 6-jack in back, 2-jack in front
- 6stack-digout 6-jack with a SPDIF out
- w810 3-jack
- z71v 3-jack (HP shared SPDIF)
- asus 3-jack (ASUS Mobo)
- asus-w1v ASUS W1V
- asus-dig ASUS with SPDIF out
- asus-dig2 ASUS with SPDIF out (using GPIO2)
- uniwill 3-jack
- fujitsu Fujitsu Laptops (Pi1536)
- F1734 2-jack
- lg LG laptop (m1 express dual)
- lg-lw LG LW20/LW25 laptop
- tcl TCL S700
- clevo Clevo laptops (m520G, m665n)
- medion Medion Rim 2150
- test for testing/debugging purpose, almost all controls can be
- adjusted. Appearing only when compiled with
- $CONFIG_SND_DEBUG=y
- auto auto-config reading BIOS (default)
-
- ALC260
- hp HP machines
- hp-3013 HP machines (3013-variant)
- hp-dc7600 HP DC7600
- fujitsu Fujitsu S7020
- acer Acer TravelMate
- will Will laptops (PB V7900)
- replacer Replacer 672V
- basic fixed pin assignment (old default model)
- test for testing/debugging purpose, almost all controls can
- adjusted. Appearing only when compiled with
- $CONFIG_SND_DEBUG=y
- auto auto-config reading BIOS (default)
-
- ALC262
- fujitsu Fujitsu Laptop
- hp-bpc HP xw4400/6400/8400/9400 laptops
- hp-bpc-d7000 HP BPC D7000
- hp-tc-t5735 HP Thin Client T5735
- hp-rp5700 HP RP5700
- benq Benq ED8
- benq-t31 Benq T31
- hippo Hippo (ATI) with jack detection, Sony UX-90s
- hippo_1 Hippo (Benq) with jack detection
- sony-assamd Sony ASSAMD
- toshiba-s06 Toshiba S06
- toshiba-rx1 Toshiba RX1
- ultra Samsung Q1 Ultra Vista model
- lenovo-3000 Lenovo 3000 y410
- nec NEC Versa S9100
- basic fixed pin assignment w/o SPDIF
- auto auto-config reading BIOS (default)
-
- ALC267/268
- quanta-il1 Quanta IL1 mini-notebook
- 3stack 3-stack model
- toshiba Toshiba A205
- acer Acer laptops
- acer-aspire Acer Aspire One
- dell Dell OEM laptops (Vostro 1200)
- zepto Zepto laptops
- test for testing/debugging purpose, almost all controls can
- adjusted. Appearing only when compiled with
- $CONFIG_SND_DEBUG=y
- auto auto-config reading BIOS (default)
-
- ALC269
- basic Basic preset
- quanta Quanta FL1
- eeepc-p703 ASUS Eeepc P703 P900A
- eeepc-p901 ASUS Eeepc P901 S101
-
- ALC662/663
- 3stack-dig 3-stack (2-channel) with SPDIF
- 3stack-6ch 3-stack (6-channel)
- 3stack-6ch-dig 3-stack (6-channel) with SPDIF
- 6stack-dig 6-stack with SPDIF
- lenovo-101e Lenovo laptop
- eeepc-p701 ASUS Eeepc P701
- eeepc-ep20 ASUS Eeepc EP20
- ecs ECS/Foxconn mobo
- m51va ASUS M51VA
- g71v ASUS G71V
- h13 ASUS H13
- g50v ASUS G50V
- asus-mode1 ASUS
- asus-mode2 ASUS
- asus-mode3 ASUS
- asus-mode4 ASUS
- asus-mode5 ASUS
- asus-mode6 ASUS
- auto auto-config reading BIOS (default)
-
- ALC882/885
- 3stack-dig 3-jack with SPDIF I/O
- 6stack-dig 6-jack digital with SPDIF I/O
- arima Arima W820Di1
- targa Targa T8, MSI-1049 T8
- asus-a7j ASUS A7J
- asus-a7m ASUS A7M
- macpro MacPro support
- mbp3 Macbook Pro rev3
- imac24 iMac 24'' with jack detection
- w2jc ASUS W2JC
- auto auto-config reading BIOS (default)
-
- ALC883/888
- 3stack-dig 3-jack with SPDIF I/O
- 6stack-dig 6-jack digital with SPDIF I/O
- 3stack-6ch 3-jack 6-channel
- 3stack-6ch-dig 3-jack 6-channel with SPDIF I/O
- 6stack-dig-demo 6-jack digital for Intel demo board
- acer Acer laptops (Travelmate 3012WTMi, Aspire 5600, etc)
- acer-aspire Acer Aspire 9810
- medion Medion Laptops
- medion-md2 Medion MD2
- targa-dig Targa/MSI
- targa-2ch-dig Targs/MSI with 2-channel
- laptop-eapd 3-jack with SPDIF I/O and EAPD (Clevo M540JE, M550JE)
- lenovo-101e Lenovo 101E
- lenovo-nb0763 Lenovo NB0763
- lenovo-ms7195-dig Lenovo MS7195
- lenovo-sky Lenovo Sky
- haier-w66 Haier W66
- 3stack-hp HP machines with 3stack (Lucknow, Samba boards)
- 6stack-dell Dell machines with 6stack (Inspiron 530)
- mitac Mitac 8252D
- clevo-m720 Clevo M720 laptop series
- fujitsu-pi2515 Fujitsu AMILO Pi2515
- 3stack-6ch-intel Intel DG33* boards
- auto auto-config reading BIOS (default)
-
- ALC861/660
- 3stack 3-jack
- 3stack-dig 3-jack with SPDIF I/O
- 6stack-dig 6-jack with SPDIF I/O
- 3stack-660 3-jack (for ALC660)
- uniwill-m31 Uniwill M31 laptop
- toshiba Toshiba laptop support
- asus Asus laptop support
- asus-laptop ASUS F2/F3 laptops
- auto auto-config reading BIOS (default)
-
- ALC861VD/660VD
- 3stack 3-jack
- 3stack-dig 3-jack with SPDIF OUT
- 6stack-dig 6-jack with SPDIF OUT
- 3stack-660 3-jack (for ALC660VD)
- 3stack-660-digout 3-jack with SPDIF OUT (for ALC660VD)
- lenovo Lenovo 3000 C200
- dallas Dallas laptops
- hp HP TX1000
- auto auto-config reading BIOS (default)
-
- CMI9880
- minimal 3-jack in back
- min_fp 3-jack in back, 2-jack in front
- full 6-jack in back, 2-jack in front
- full_dig 6-jack in back, 2-jack in front, SPDIF I/O
- allout 5-jack in back, 2-jack in front, SPDIF out
- auto auto-config reading BIOS (default)
-
- AD1882 / AD1882A
- 3stack 3-stack mode (default)
- 6stack 6-stack mode
-
- AD1884A / AD1883 / AD1984A / AD1984B
- desktop 3-stack desktop (default)
- laptop laptop with HP jack sensing
- mobile mobile devices with HP jack sensing
- thinkpad Lenovo Thinkpad X300
-
- AD1884
- N/A
-
- AD1981
- basic 3-jack (default)
- hp HP nx6320
- thinkpad Lenovo Thinkpad T60/X60/Z60
- toshiba Toshiba U205
-
- AD1983
- N/A
-
- AD1984
- basic default configuration
- thinkpad Lenovo Thinkpad T61/X61
- dell Dell T3400
-
- AD1986A
- 6stack 6-jack, separate surrounds (default)
- 3stack 3-stack, shared surrounds
- laptop 2-channel only (FSC V2060, Samsung M50)
- laptop-eapd 2-channel with EAPD (Samsung R65, ASUS A6J)
- laptop-automute 2-channel with EAPD and HP-automute (Lenovo N100)
- ultra 2-channel with EAPD (Samsung Ultra tablet PC)
-
- AD1988/AD1988B/AD1989A/AD1989B
- 6stack 6-jack
- 6stack-dig ditto with SPDIF
- 3stack 3-jack
- 3stack-dig ditto with SPDIF
- laptop 3-jack with hp-jack automute
- laptop-dig ditto with SPDIF
- auto auto-config reading BIOS (default)
-
- Conexant 5045
- laptop-hpsense Laptop with HP sense (old model laptop)
- laptop-micsense Laptop with Mic sense (old model fujitsu)
- laptop-hpmicsense Laptop with HP and Mic senses
- benq Benq R55E
- test for testing/debugging purpose, almost all controls
- can be adjusted. Appearing only when compiled with
- $CONFIG_SND_DEBUG=y
-
- Conexant 5047
- laptop Basic Laptop config
- laptop-hp Laptop config for some HP models (subdevice 30A5)
- laptop-eapd Laptop config with EAPD support
- test for testing/debugging purpose, almost all controls
- can be adjusted. Appearing only when compiled with
- $CONFIG_SND_DEBUG=y
-
- Conexant 5051
- laptop Basic Laptop config (default)
- hp HP Spartan laptop
-
- STAC9200
- ref Reference board
- dell-d21 Dell (unknown)
- dell-d22 Dell (unknown)
- dell-d23 Dell (unknown)
- dell-m21 Dell Inspiron 630m, Dell Inspiron 640m
- dell-m22 Dell Latitude D620, Dell Latitude D820
- dell-m23 Dell XPS M1710, Dell Precision M90
- dell-m24 Dell Latitude 120L
- dell-m25 Dell Inspiron E1505n
- dell-m26 Dell Inspiron 1501
- dell-m27 Dell Inspiron E1705/9400
- gateway Gateway laptops with EAPD control
- panasonic Panasonic CF-74
-
- STAC9205/9254
- ref Reference board
- dell-m42 Dell (unknown)
- dell-m43 Dell Precision
- dell-m44 Dell Inspiron
-
- STAC9220/9221
- ref Reference board
- 3stack D945 3stack
- 5stack D945 5stack + SPDIF
- intel-mac-v1 Intel Mac Type 1
- intel-mac-v2 Intel Mac Type 2
- intel-mac-v3 Intel Mac Type 3
- intel-mac-v4 Intel Mac Type 4
- intel-mac-v5 Intel Mac Type 5
- intel-mac-auto Intel Mac (detect type according to subsystem id)
- macmini Intel Mac Mini (equivalent with type 3)
- macbook Intel Mac Book (eq. type 5)
- macbook-pro-v1 Intel Mac Book Pro 1st generation (eq. type 3)
- macbook-pro Intel Mac Book Pro 2nd generation (eq. type 3)
- imac-intel Intel iMac (eq. type 2)
- imac-intel-20 Intel iMac (newer version) (eq. type 3)
- dell-d81 Dell (unknown)
- dell-d82 Dell (unknown)
- dell-m81 Dell (unknown)
- dell-m82 Dell XPS M1210
-
- STAC9202/9250/9251
- ref Reference board, base config
- m2-2 Some Gateway MX series laptops
- m6 Some Gateway NX series laptops
- pa6 Gateway NX860 series
-
- STAC9227/9228/9229/927x
- ref Reference board
- ref-no-jd Reference board without HP/Mic jack detection
- 3stack D965 3stack
- 5stack D965 5stack + SPDIF
- dell-3stack Dell Dimension E520
- dell-bios Fixes with Dell BIOS setup
-
- STAC92HD71B*
- ref Reference board
- dell-m4-1 Dell desktops
- dell-m4-2 Dell desktops
- dell-m4-3 Dell desktops
-
- STAC92HD73*
- ref Reference board
- no-jd BIOS setup but without jack-detection
- dell-m6-amic Dell desktops/laptops with analog mics
- dell-m6-dmic Dell desktops/laptops with digital mics
- dell-m6 Dell desktops/laptops with both type of mics
-
- STAC9872
- vaio Setup for VAIO FE550G/SZ110
- vaio-ar Setup for VAIO AR
+ models depending on the codec chip. The list of available models
+ is found in HD-Audio-Models.txt
The model name "genric" is treated as a special case. When this
model is given, the driver uses the generic codec parser without
"codec-patch". It's sometimes good for testing and debugging.
If the default configuration doesn't work and one of the above
- matches with your device, report it together with the PCI
- subsystem ID (output of "lspci -nv") to ALSA BTS or alsa-devel
+ matches with your device, report it together with alsa-info.sh
+ output (with --no-upload option) to kernel bugzilla or alsa-devel
ML (see the section "Links and Addresses").
power_save and power_save_controller options are for power-saving
@@ -2409,8 +2107,11 @@ Links and Addresses
ALSA project homepage
http://www.alsa-project.org
- ALSA Bug Tracking System
- https://bugtrack.alsa-project.org/bugs/
+ Kernel Bugzilla
+ http://bugzilla.kernel.org/
ALSA Developers ML
mailto:alsa-devel@alsa-project.org
+
+ alsa-info.sh script
+ http://www.alsa-project.org/alsa-info.sh
diff --git a/Documentation/sound/alsa/HD-Audio-Models.txt b/Documentation/sound/alsa/HD-Audio-Models.txt
new file mode 100644
index 00000000000..4b7ac21ea9e
--- /dev/null
+++ b/Documentation/sound/alsa/HD-Audio-Models.txt
@@ -0,0 +1,348 @@
+ Model name Description
+ ---------- -----------
+ALC880
+======
+ 3stack 3-jack in back and a headphone out
+ 3stack-digout 3-jack in back, a HP out and a SPDIF out
+ 5stack 5-jack in back, 2-jack in front
+ 5stack-digout 5-jack in back, 2-jack in front, a SPDIF out
+ 6stack 6-jack in back, 2-jack in front
+ 6stack-digout 6-jack with a SPDIF out
+ w810 3-jack
+ z71v 3-jack (HP shared SPDIF)
+ asus 3-jack (ASUS Mobo)
+ asus-w1v ASUS W1V
+ asus-dig ASUS with SPDIF out
+ asus-dig2 ASUS with SPDIF out (using GPIO2)
+ uniwill 3-jack
+ fujitsu Fujitsu Laptops (Pi1536)
+ F1734 2-jack
+ lg LG laptop (m1 express dual)
+ lg-lw LG LW20/LW25 laptop
+ tcl TCL S700
+ clevo Clevo laptops (m520G, m665n)
+ medion Medion Rim 2150
+ test for testing/debugging purpose, almost all controls can be
+ adjusted. Appearing only when compiled with
+ $CONFIG_SND_DEBUG=y
+ auto auto-config reading BIOS (default)
+
+ALC260
+======
+ hp HP machines
+ hp-3013 HP machines (3013-variant)
+ hp-dc7600 HP DC7600
+ fujitsu Fujitsu S7020
+ acer Acer TravelMate
+ will Will laptops (PB V7900)
+ replacer Replacer 672V
+ basic fixed pin assignment (old default model)
+ test for testing/debugging purpose, almost all controls can
+ adjusted. Appearing only when compiled with
+ $CONFIG_SND_DEBUG=y
+ auto auto-config reading BIOS (default)
+
+ALC262
+======
+ fujitsu Fujitsu Laptop
+ hp-bpc HP xw4400/6400/8400/9400 laptops
+ hp-bpc-d7000 HP BPC D7000
+ hp-tc-t5735 HP Thin Client T5735
+ hp-rp5700 HP RP5700
+ benq Benq ED8
+ benq-t31 Benq T31
+ hippo Hippo (ATI) with jack detection, Sony UX-90s
+ hippo_1 Hippo (Benq) with jack detection
+ sony-assamd Sony ASSAMD
+ toshiba-s06 Toshiba S06
+ toshiba-rx1 Toshiba RX1
+ ultra Samsung Q1 Ultra Vista model
+ lenovo-3000 Lenovo 3000 y410
+ nec NEC Versa S9100
+ basic fixed pin assignment w/o SPDIF
+ auto auto-config reading BIOS (default)
+
+ALC267/268
+==========
+ quanta-il1 Quanta IL1 mini-notebook
+ 3stack 3-stack model
+ toshiba Toshiba A205
+ acer Acer laptops
+ acer-dmic Acer laptops with digital-mic
+ acer-aspire Acer Aspire One
+ dell Dell OEM laptops (Vostro 1200)
+ zepto Zepto laptops
+ test for testing/debugging purpose, almost all controls can
+ adjusted. Appearing only when compiled with
+ $CONFIG_SND_DEBUG=y
+ auto auto-config reading BIOS (default)
+
+ALC269
+======
+ basic Basic preset
+ quanta Quanta FL1
+ eeepc-p703 ASUS Eeepc P703 P900A
+ eeepc-p901 ASUS Eeepc P901 S101
+ fujitsu FSC Amilo
+ auto auto-config reading BIOS (default)
+
+ALC662/663
+==========
+ 3stack-dig 3-stack (2-channel) with SPDIF
+ 3stack-6ch 3-stack (6-channel)
+ 3stack-6ch-dig 3-stack (6-channel) with SPDIF
+ 6stack-dig 6-stack with SPDIF
+ lenovo-101e Lenovo laptop
+ eeepc-p701 ASUS Eeepc P701
+ eeepc-ep20 ASUS Eeepc EP20
+ ecs ECS/Foxconn mobo
+ m51va ASUS M51VA
+ g71v ASUS G71V
+ h13 ASUS H13
+ g50v ASUS G50V
+ asus-mode1 ASUS
+ asus-mode2 ASUS
+ asus-mode3 ASUS
+ asus-mode4 ASUS
+ asus-mode5 ASUS
+ asus-mode6 ASUS
+ auto auto-config reading BIOS (default)
+
+ALC882/885
+==========
+ 3stack-dig 3-jack with SPDIF I/O
+ 6stack-dig 6-jack digital with SPDIF I/O
+ arima Arima W820Di1
+ targa Targa T8, MSI-1049 T8
+ asus-a7j ASUS A7J
+ asus-a7m ASUS A7M
+ macpro MacPro support
+ mbp3 Macbook Pro rev3
+ imac24 iMac 24'' with jack detection
+ w2jc ASUS W2JC
+ auto auto-config reading BIOS (default)
+
+ALC883/888
+==========
+ 3stack-dig 3-jack with SPDIF I/O
+ 6stack-dig 6-jack digital with SPDIF I/O
+ 3stack-6ch 3-jack 6-channel
+ 3stack-6ch-dig 3-jack 6-channel with SPDIF I/O
+ 6stack-dig-demo 6-jack digital for Intel demo board
+ acer Acer laptops (Travelmate 3012WTMi, Aspire 5600, etc)
+ acer-aspire Acer Aspire 9810
+ acer-aspire-4930g Acer Aspire 4930G
+ medion Medion Laptops
+ medion-md2 Medion MD2
+ targa-dig Targa/MSI
+ targa-2ch-dig Targs/MSI with 2-channel
+ laptop-eapd 3-jack with SPDIF I/O and EAPD (Clevo M540JE, M550JE)
+ lenovo-101e Lenovo 101E
+ lenovo-nb0763 Lenovo NB0763
+ lenovo-ms7195-dig Lenovo MS7195
+ lenovo-sky Lenovo Sky
+ haier-w66 Haier W66
+ 3stack-hp HP machines with 3stack (Lucknow, Samba boards)
+ 6stack-dell Dell machines with 6stack (Inspiron 530)
+ mitac Mitac 8252D
+ clevo-m720 Clevo M720 laptop series
+ fujitsu-pi2515 Fujitsu AMILO Pi2515
+ fujitsu-xa3530 Fujitsu AMILO XA3530
+ 3stack-6ch-intel Intel DG33* boards
+ auto auto-config reading BIOS (default)
+
+ALC861/660
+==========
+ 3stack 3-jack
+ 3stack-dig 3-jack with SPDIF I/O
+ 6stack-dig 6-jack with SPDIF I/O
+ 3stack-660 3-jack (for ALC660)
+ uniwill-m31 Uniwill M31 laptop
+ toshiba Toshiba laptop support
+ asus Asus laptop support
+ asus-laptop ASUS F2/F3 laptops
+ auto auto-config reading BIOS (default)
+
+ALC861VD/660VD
+==============
+ 3stack 3-jack
+ 3stack-dig 3-jack with SPDIF OUT
+ 6stack-dig 6-jack with SPDIF OUT
+ 3stack-660 3-jack (for ALC660VD)
+ 3stack-660-digout 3-jack with SPDIF OUT (for ALC660VD)
+ lenovo Lenovo 3000 C200
+ dallas Dallas laptops
+ hp HP TX1000
+ asus-v1s ASUS V1Sn
+ auto auto-config reading BIOS (default)
+
+CMI9880
+=======
+ minimal 3-jack in back
+ min_fp 3-jack in back, 2-jack in front
+ full 6-jack in back, 2-jack in front
+ full_dig 6-jack in back, 2-jack in front, SPDIF I/O
+ allout 5-jack in back, 2-jack in front, SPDIF out
+ auto auto-config reading BIOS (default)
+
+AD1882 / AD1882A
+================
+ 3stack 3-stack mode (default)
+ 6stack 6-stack mode
+
+AD1884A / AD1883 / AD1984A / AD1984B
+====================================
+ desktop 3-stack desktop (default)
+ laptop laptop with HP jack sensing
+ mobile mobile devices with HP jack sensing
+ thinkpad Lenovo Thinkpad X300
+
+AD1884
+======
+ N/A
+
+AD1981
+======
+ basic 3-jack (default)
+ hp HP nx6320
+ thinkpad Lenovo Thinkpad T60/X60/Z60
+ toshiba Toshiba U205
+
+AD1983
+======
+ N/A
+
+AD1984
+======
+ basic default configuration
+ thinkpad Lenovo Thinkpad T61/X61
+ dell Dell T3400
+
+AD1986A
+=======
+ 6stack 6-jack, separate surrounds (default)
+ 3stack 3-stack, shared surrounds
+ laptop 2-channel only (FSC V2060, Samsung M50)
+ laptop-eapd 2-channel with EAPD (ASUS A6J)
+ laptop-automute 2-channel with EAPD and HP-automute (Lenovo N100)
+ ultra 2-channel with EAPD (Samsung Ultra tablet PC)
+ samsung 2-channel with EAPD (Samsung R65)
+
+AD1988/AD1988B/AD1989A/AD1989B
+==============================
+ 6stack 6-jack
+ 6stack-dig ditto with SPDIF
+ 3stack 3-jack
+ 3stack-dig ditto with SPDIF
+ laptop 3-jack with hp-jack automute
+ laptop-dig ditto with SPDIF
+ auto auto-config reading BIOS (default)
+
+Conexant 5045
+=============
+ laptop-hpsense Laptop with HP sense (old model laptop)
+ laptop-micsense Laptop with Mic sense (old model fujitsu)
+ laptop-hpmicsense Laptop with HP and Mic senses
+ benq Benq R55E
+ test for testing/debugging purpose, almost all controls
+ can be adjusted. Appearing only when compiled with
+ $CONFIG_SND_DEBUG=y
+
+Conexant 5047
+=============
+ laptop Basic Laptop config
+ laptop-hp Laptop config for some HP models (subdevice 30A5)
+ laptop-eapd Laptop config with EAPD support
+ test for testing/debugging purpose, almost all controls
+ can be adjusted. Appearing only when compiled with
+ $CONFIG_SND_DEBUG=y
+
+Conexant 5051
+=============
+ laptop Basic Laptop config (default)
+ hp HP Spartan laptop
+
+STAC9200
+========
+ ref Reference board
+ dell-d21 Dell (unknown)
+ dell-d22 Dell (unknown)
+ dell-d23 Dell (unknown)
+ dell-m21 Dell Inspiron 630m, Dell Inspiron 640m
+ dell-m22 Dell Latitude D620, Dell Latitude D820
+ dell-m23 Dell XPS M1710, Dell Precision M90
+ dell-m24 Dell Latitude 120L
+ dell-m25 Dell Inspiron E1505n
+ dell-m26 Dell Inspiron 1501
+ dell-m27 Dell Inspiron E1705/9400
+ gateway Gateway laptops with EAPD control
+ panasonic Panasonic CF-74
+
+STAC9205/9254
+=============
+ ref Reference board
+ dell-m42 Dell (unknown)
+ dell-m43 Dell Precision
+ dell-m44 Dell Inspiron
+
+STAC9220/9221
+=============
+ ref Reference board
+ 3stack D945 3stack
+ 5stack D945 5stack + SPDIF
+ intel-mac-v1 Intel Mac Type 1
+ intel-mac-v2 Intel Mac Type 2
+ intel-mac-v3 Intel Mac Type 3
+ intel-mac-v4 Intel Mac Type 4
+ intel-mac-v5 Intel Mac Type 5
+ intel-mac-auto Intel Mac (detect type according to subsystem id)
+ macmini Intel Mac Mini (equivalent with type 3)
+ macbook Intel Mac Book (eq. type 5)
+ macbook-pro-v1 Intel Mac Book Pro 1st generation (eq. type 3)
+ macbook-pro Intel Mac Book Pro 2nd generation (eq. type 3)
+ imac-intel Intel iMac (eq. type 2)
+ imac-intel-20 Intel iMac (newer version) (eq. type 3)
+ dell-d81 Dell (unknown)
+ dell-d82 Dell (unknown)
+ dell-m81 Dell (unknown)
+ dell-m82 Dell XPS M1210
+
+STAC9202/9250/9251
+==================
+ ref Reference board, base config
+ m2-2 Some Gateway MX series laptops
+ m6 Some Gateway NX series laptops
+ pa6 Gateway NX860 series
+
+STAC9227/9228/9229/927x
+=======================
+ ref Reference board
+ ref-no-jd Reference board without HP/Mic jack detection
+ 3stack D965 3stack
+ 5stack D965 5stack + SPDIF
+ dell-3stack Dell Dimension E520
+ dell-bios Fixes with Dell BIOS setup
+
+STAC92HD71B*
+============
+ ref Reference board
+ dell-m4-1 Dell desktops
+ dell-m4-2 Dell desktops
+ dell-m4-3 Dell desktops
+
+STAC92HD73*
+===========
+ ref Reference board
+ no-jd BIOS setup but without jack-detection
+ dell-m6-amic Dell desktops/laptops with analog mics
+ dell-m6-dmic Dell desktops/laptops with digital mics
+ dell-m6 Dell desktops/laptops with both type of mics
+
+STAC92HD83*
+===========
+ ref Reference board
+
+STAC9872
+========
+ vaio Setup for VAIO FE550G/SZ110
+ vaio-ar Setup for VAIO AR
diff --git a/Documentation/sound/alsa/HD-Audio.txt b/Documentation/sound/alsa/HD-Audio.txt
new file mode 100644
index 00000000000..8d68fff7183
--- /dev/null
+++ b/Documentation/sound/alsa/HD-Audio.txt
@@ -0,0 +1,577 @@
+MORE NOTES ON HD-AUDIO DRIVER
+=============================
+ Takashi Iwai <tiwai@suse.de>
+
+
+GENERAL
+-------
+
+HD-audio is the new standard on-board audio component on modern PCs
+after AC97. Although Linux has been supporting HD-audio since long
+time ago, there are often problems with new machines. A part of the
+problem is broken BIOS, and the rest is the driver implementation.
+This document explains the brief trouble-shooting and debugging
+methods for the HD-audio hardware.
+
+The HD-audio component consists of two parts: the controller chip and
+the codec chips on the HD-audio bus. Linux provides a single driver
+for all controllers, snd-hda-intel. Although the driver name contains
+a word of a well-known harware vendor, it's not specific to it but for
+all controller chips by other companies. Since the HD-audio
+controllers are supposed to be compatible, the single snd-hda-driver
+should work in most cases. But, not surprisingly, there are known
+bugs and issues specific to each controller type. The snd-hda-intel
+driver has a bunch of workarounds for these as described below.
+
+A controller may have multiple codecs. Usually you have one audio
+codec and optionally one modem codec. In theory, there might be
+multiple audio codecs, e.g. for analog and digital outputs, and the
+driver might not work properly because of conflict of mixer elements.
+This should be fixed in future if such hardware really exists.
+
+The snd-hda-intel driver has several different codec parsers depending
+on the codec. It has a generic parser as a fallback, but this
+functionality is fairly limited until now. Instead of the generic
+parser, usually the codec-specific parser (coded in patch_*.c) is used
+for the codec-specific implementations. The details about the
+codec-specific problems are explained in the later sections.
+
+If you are interested in the deep debugging of HD-audio, read the
+HD-audio specification at first. The specification is found on
+Intel's web page, for example:
+
+- http://www.intel.com/standards/hdaudio/
+
+
+HD-AUDIO CONTROLLER
+-------------------
+
+DMA-Position Problem
+~~~~~~~~~~~~~~~~~~~~
+The most common problem of the controller is the inaccurate DMA
+pointer reporting. The DMA pointer for playback and capture can be
+read in two ways, either via a LPIB register or via a position-buffer
+map. As default the driver tries to read from the io-mapped
+position-buffer, and falls back to LPIB if the position-buffer appears
+dead. However, this detection isn't perfect on some devices. In such
+a case, you can change the default method via `position_fix` option.
+
+`position_fix=1` means to use LPIB method explicitly.
+`position_fix=2` means to use the position-buffer. 0 is the default
+value, the automatic check and fallback to LPIB as described in the
+above. If you get a problem of repeated sounds, this option might
+help.
+
+In addition to that, every controller is known to be broken regarding
+the wake-up timing. It wakes up a few samples before actually
+processing the data on the buffer. This caused a lot of problems, for
+example, with ALSA dmix or JACK. Since 2.6.27 kernel, the driver puts
+an artificial delay to the wake up timing. This delay is controlled
+via `bdl_pos_adj` option.
+
+When `bdl_pos_adj` is a negative value (as default), it's assigned to
+an appropriate value depending on the controller chip. For Intel
+chips, it'd be 1 while it'd be 32 for others. Usually this works.
+Only in case it doesn't work and you get warning messages, you should
+change this parameter to other values.
+
+
+Codec-Probing Problem
+~~~~~~~~~~~~~~~~~~~~~
+A less often but a more severe problem is the codec probing. When
+BIOS reports the available codec slots wrongly, the driver gets
+confused and tries to access the non-existing codec slot. This often
+results in the total screw-up, and destructs the further communication
+with the codec chips. The symptom appears usually as error messages
+like:
+------------------------------------------------------------------------
+ hda_intel: azx_get_response timeout, switching to polling mode:
+ last cmd=0x12345678
+ hda_intel: azx_get_response timeout, switching to single_cmd mode:
+ last cmd=0x12345678
+------------------------------------------------------------------------
+
+The first line is a warning, and this is usually relatively harmless.
+It means that the codec response isn't notified via an IRQ. The
+driver uses explicit polling method to read the response. It gives
+very slight CPU overhead, but you'd unlikely notice it.
+
+The second line is, however, a fatal error. If this happens, usually
+it means that something is really wrong. Most likely you are
+accessing a non-existing codec slot.
+
+Thus, if the second error message appears, try to narrow the probed
+codec slots via `probe_mask` option. It's a bitmask, and each bit
+corresponds to the codec slot. For example, to probe only the first
+slot, pass `probe_mask=1`. For the first and the third slots, pass
+`probe_mask=5` (where 5 = 1 | 4), and so on.
+
+Since 2.6.29 kernel, the driver has a more robust probing method, so
+this error might happen rarely, though.
+
+
+Interrupt Handling
+~~~~~~~~~~~~~~~~~~
+In rare but some cases, the interrupt isn't properly handled as
+default. You would notice this by the DMA transfer error reported by
+ALSA PCM core, for example. Using MSI might help in such a case.
+Pass `enable_msi=1` option for enabling MSI.
+
+
+HD-AUDIO CODEC
+--------------
+
+Model Option
+~~~~~~~~~~~~
+The most common problem regarding the HD-audio driver is the
+unsupported codec features or the mismatched device configuration.
+Most of codec-specific code has several preset models, either to
+override the BIOS setup or to provide more comprehensive features.
+
+The driver checks PCI SSID and looks through the static configuration
+table until any matching entry is found. If you have a new machine,
+you may see a message like below:
+------------------------------------------------------------------------
+ hda_codec: Unknown model for ALC880, trying auto-probe from BIOS...
+------------------------------------------------------------------------
+Even if you see such a message, DON'T PANIC. Take a deep breath and
+keep your towel. First of all, it's an informational message, no
+warning, no error. This means that the PCI SSID of your device isn't
+listed in the known preset model (white-)list. But, this doesn't mean
+that the driver is broken. Many codec-drivers provide the automatic
+configuration mechanism based on the BIOS setup.
+
+The HD-audio codec has usually "pin" widgets, and BIOS sets the default
+configuration of each pin, which indicates the location, the
+connection type, the jack color, etc. The HD-audio driver can guess
+the right connection judging from these default configuration values.
+However -- some codec-support codes, such as patch_analog.c, don't
+support the automatic probing (yet as of 2.6.28). And, BIOS is often,
+yes, pretty often broken. It sets up wrong values and screws up the
+driver.
+
+The preset model is provided basically to overcome such a situation.
+When the matching preset model is found in the white-list, the driver
+assumes the static configuration of that preset and builds the mixer
+elements and PCM streams based on the static information. Thus, if
+you have a newer machine with a slightly different PCI SSID from the
+existing one, you may have a good chance to re-use the same model.
+You can pass the `model` option to specify the preset model instead of
+PCI SSID look-up.
+
+What `model` option values are available depends on the codec chip.
+Check your codec chip from the codec proc file (see "Codec Proc-File"
+section below). It will show the vendor/product name of your codec
+chip. Then, see Documentation/sound/alsa/HD-Audio-Modelstxt file,
+the section of HD-audio driver. You can find a list of codecs
+and `model` options belonging to each codec. For example, for Realtek
+ALC262 codec chip, pass `model=ultra` for devices that are compatible
+with Samsung Q1 Ultra.
+
+Thus, the first thing you can do for any brand-new, unsupported and
+non-working HD-audio hardware is to check HD-audio codec and several
+different `model` option values. If you have a luck, some of them
+might suit with your device well.
+
+Some codecs such as ALC880 have a special model option `model=test`.
+This configures the driver to provide as many mixer controls as
+possible for every single pin feature except for the unsolicited
+events (and maybe some other specials). Adjust each mixer element and
+try the I/O in the way of trial-and-error until figuring out the whole
+I/O pin mappings.
+
+Note that `model=generic` has a special meaning. It means to use the
+generic parser regardless of the codec. Usually the codec-specific
+parser is much better than the generic parser (as now). Thus this
+option is more about the debugging purpose.
+
+
+Speaker and Headphone Output
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+One of the most frequent (and obvious) bugs with HD-audio is the
+silent output from either or both of a built-in speaker and a
+headphone jack. In general, you should try a headphone output at
+first. A speaker output often requires more additional controls like
+the external amplifier bits. Thus a headphone output has a slightly
+better chance.
+
+Before making a bug report, double-check whether the mixer is set up
+correctly. The recent version of snd-hda-intel driver provides mostly
+"Master" volume control as well as "Front" volume (where Front
+indicates the front-channels). In addition, there can be individual
+"Headphone" and "Speaker" controls.
+
+Ditto for the speaker output. There can be "External Amplifier"
+switch on some codecs. Turn on this if present.
+
+Another related problem is the automatic mute of speaker output by
+headphone plugging. This feature is implemented in most cases, but
+not on every preset model or codec-support code.
+
+In anyway, try a different model option if you have such a problem.
+Some other models may match better and give you more matching
+functionality. If none of the available models works, send a bug
+report. See the bug report section for details.
+
+If you are masochistic enough to debug the driver problem, note the
+following:
+
+- The speaker (and the headphone, too) output often requires the
+ external amplifier. This can be set usually via EAPD verb or a
+ certain GPIO. If the codec pin supports EAPD, you have a better
+ chance via SET_EAPD_BTL verb (0x70c). On others, GPIO pin (mostly
+ it's either GPIO0 or GPIO1) may turn on/off EAPD.
+- Some Realtek codecs require special vendor-specific coefficients to
+ turn on the amplifier. See patch_realtek.c.
+- IDT codecs may have extra power-enable/disable controls on each
+ analog pin. See patch_sigmatel.c.
+- Very rare but some devices don't accept the pin-detection verb until
+ triggered. Issuing GET_PIN_SENSE verb (0xf09) may result in the
+ codec-communication stall. Some examples are found in
+ patch_realtek.c.
+
+
+Capture Problems
+~~~~~~~~~~~~~~~~
+The capture problems are often because of missing setups of mixers.
+Thus, before submitting a bug report, make sure that you set up the
+mixer correctly. For example, both "Capture Volume" and "Capture
+Switch" have to be set properly in addition to the right "Capture
+Source" or "Input Source" selection. Some devices have "Mic Boost"
+volume or switch.
+
+When the PCM device is opened via "default" PCM (without pulse-audio
+plugin), you'll likely have "Digital Capture Volume" control as well.
+This is provided for the extra gain/attenuation of the signal in
+software, especially for the inputs without the hardware volume
+control such as digital microphones. Unless really needed, this
+should be set to exactly 50%, corresponding to 0dB -- neither extra
+gain nor attenuation. When you use "hw" PCM, i.e., a raw access PCM,
+this control will have no influence, though.
+
+It's known that some codecs / devices have fairly bad analog circuits,
+and the recorded sound contains a certain DC-offset. This is no bug
+of the driver.
+
+Most of modern laptops have no analog CD-input connection. Thus, the
+recording from CD input won't work in many cases although the driver
+provides it as the capture source. Use CDDA instead.
+
+The automatic switching of the built-in and external mic per plugging
+is implemented on some codec models but not on every model. Partly
+because of my laziness but mostly lack of testers. Feel free to
+submit the improvement patch to the author.
+
+
+Direct Debugging
+~~~~~~~~~~~~~~~~
+If no model option gives you a better result, and you are a tough guy
+to fight against evil, try debugging via hitting the raw HD-audio
+codec verbs to the device. Some tools are available: hda-emu and
+hda-analyzer. The detailed description is found in the sections
+below. You'd need to enable hwdep for using these tools. See "Kernel
+Configuration" section.
+
+
+OTHER ISSUES
+------------
+
+Kernel Configuration
+~~~~~~~~~~~~~~~~~~~~
+In general, I recommend you to enable the sound debug option,
+`CONFIG_SND_DEBUG=y`, no matter whether you are debugging or not.
+This enables snd_printd() macro and others, and you'll get additional
+kernel messages at probing.
+
+In addition, you can enable `CONFIG_SND_DEBUG_VERBOSE=y`. But this
+will give you far more messages. Thus turn this on only when you are
+sure to want it.
+
+Don't forget to turn on the appropriate `CONFIG_SND_HDA_CODEC_*`
+options. Note that each of them corresponds to the codec chip, not
+the controller chip. Thus, even if lspci shows the Nvidia controller,
+you may need to choose the option for other vendors. If you are
+unsure, just select all yes.
+
+`CONFIG_SND_HDA_HWDEP` is a useful option for debugging the driver.
+When this is enabled, the driver creates hardware-dependent devices
+(one per each codec), and you have a raw access to the device via
+these device files. For example, `hwC0D2` will be created for the
+codec slot #2 of the first card (#0). For debug-tools such as
+hda-verb and hda-analyzer, the hwdep device has to be enabled.
+Thus, it'd be better to turn this on always.
+
+`CONFIG_SND_HDA_RECONFIG` is a new option, and this depends on the
+hwdep option above. When enabled, you'll have some sysfs files under
+the corresponding hwdep directory. See "HD-audio reconfiguration"
+section below.
+
+`CONFIG_SND_HDA_POWER_SAVE` option enables the power-saving feature.
+See "Power-saving" section below.
+
+
+Codec Proc-File
+~~~~~~~~~~~~~~~
+The codec proc-file is a treasure-chest for debugging HD-audio.
+It shows most of useful information of each codec widget.
+
+The proc file is located in /proc/asound/card*/codec#*, one file per
+each codec slot. You can know the codec vendor, product id and
+names, the type of each widget, capabilities and so on.
+This file, however, doesn't show the jack sensing state, so far. This
+is because the jack-sensing might be depending on the trigger state.
+
+This file will be picked up by the debug tools, and also it can be fed
+to the emulator as the primary codec information. See the debug tools
+section below.
+
+This proc file can be also used to check whether the generic parser is
+used. When the generic parser is used, the vendor/product ID name
+will appear as "Realtek ID 0262", instead of "Realtek ALC262".
+
+
+HD-Audio Reconfiguration
+~~~~~~~~~~~~~~~~~~~~~~~~
+This is an experimental feature to allow you re-configure the HD-audio
+codec dynamically without reloading the driver. The following sysfs
+files are available under each codec-hwdep device directory (e.g.
+/sys/class/sound/hwC0D0):
+
+vendor_id::
+ Shows the 32bit codec vendor-id hex number. You can change the
+ vendor-id value by writing to this file.
+subsystem_id::
+ Shows the 32bit codec subsystem-id hex number. You can change the
+ subsystem-id value by writing to this file.
+revision_id::
+ Shows the 32bit codec revision-id hex number. You can change the
+ revision-id value by writing to this file.
+afg::
+ Shows the AFG ID. This is read-only.
+mfg::
+ Shows the MFG ID. This is read-only.
+name::
+ Shows the codec name string. Can be changed by writing to this
+ file.
+modelname::
+ Shows the currently set `model` option. Can be changed by writing
+ to this file.
+init_verbs::
+ The extra verbs to execute at initialization. You can add a verb by
+ writing to this file. Pass tree numbers, nid, verb and parameter.
+hints::
+ Shows hint strings for codec parsers for any use. Right now it's
+ not used.
+reconfig::
+ Triggers the codec re-configuration. When any value is written to
+ this file, the driver re-initialize and parses the codec tree
+ again. All the changes done by the sysfs entries above are taken
+ into account.
+clear::
+ Resets the codec, removes the mixer elements and PCM stuff of the
+ specified codec, and clear all init verbs and hints.
+
+
+Power-Saving
+~~~~~~~~~~~~
+The power-saving is a kind of auto-suspend of the device. When the
+device is inactive for a certain time, the device is automatically
+turned off to save the power. The time to go down is specified via
+`power_save` module option, and this option can be changed dynamically
+via sysfs.
+
+The power-saving won't work when the analog loopback is enabled on
+some codecs. Make sure that you mute all unneeded signal routes when
+you want the power-saving.
+
+The power-saving feature might cause audible click noises at each
+power-down/up depending on the device. Some of them might be
+solvable, but some are hard, I'm afraid. Some distros such as
+openSUSE enables the power-saving feature automatically when the power
+cable is unplugged. Thus, if you hear noises, suspect first the
+power-saving. See /sys/module/snd_hda_intel/parameters/power_save to
+check the current value. If it's non-zero, the feature is turned on.
+
+
+Development Tree
+~~~~~~~~~~~~~~~~
+The latest development codes for HD-audio are found on sound git tree:
+
+- git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6.git
+
+The master branch or for-next branches can be used as the main
+development branches in general while the HD-audio specific patches
+are committed in topic/hda branch.
+
+If you are using the latest Linus tree, it'd be better to pull the
+above GIT tree onto it. If you are using the older kernels, an easy
+way to try the latest ALSA code is to build from the snapshot
+tarball. There are daily tarballs and the latest snapshot tarball.
+All can be built just like normal alsa-driver release packages, that
+is, installed via the usual spells: configure, make and make
+install(-modules). See INSTALL in the package. The snapshot tarballs
+are found at:
+
+- ftp://ftp.kernel.org/pub/linux/kernel/people/tiwai/snapshot/
+
+
+Sending a Bug Report
+~~~~~~~~~~~~~~~~~~~~
+If any model or module options don't work for your device, it's time
+to send a bug report to the developers. Give the following in your
+bug report:
+
+- Hardware vendor, product and model names
+- Kernel version (and ALSA-driver version if you built externally)
+- `alsa-info.sh` output; run with `--no-upload` option. See the
+ section below about alsa-info
+
+If it's a regression, at best, send alsa-info outputs of both working
+and non-working kernels. This is really helpful because we can
+compare the codec registers directly.
+
+Send a bug report either the followings:
+
+kernel-bugzilla::
+ http://bugme.linux-foundation.org/
+alsa-devel ML::
+ alsa-devel@alsa-project.org
+
+
+DEBUG TOOLS
+-----------
+
+This section describes some tools available for debugging HD-audio
+problems.
+
+alsa-info
+~~~~~~~~~
+The script `alsa-info.sh` is a very useful tool to gather the audio
+device information. You can fetch the latest version from:
+
+- http://www.alsa-project.org/alsa-info.sh
+
+Run this script as root, and it will gather the important information
+such as the module lists, module parameters, proc file contents
+including the codec proc files, mixer outputs and the control
+elements. As default, it will store the information onto a web server
+on alsa-project.org. But, if you send a bug report, it'd be better to
+run with `--no-upload` option, and attach the generated file.
+
+There are some other useful options. See `--help` option output for
+details.
+
+
+hda-verb
+~~~~~~~~
+hda-verb is a tiny program that allows you to access the HD-audio
+codec directly. You can execute a raw HD-audio codec verb with this.
+This program accesses the hwdep device, thus you need to enable the
+kernel config `CONFIG_SND_HDA_HWDEP=y` beforehand.
+
+The hda-verb program takes four arguments: the hwdep device file, the
+widget NID, the verb and the parameter. When you access to the codec
+on the slot 2 of the card 0, pass /dev/snd/hwC0D2 to the first
+argument, typically. (However, the real path name depends on the
+system.)
+
+The second parameter is the widget number-id to access. The third
+parameter can be either a hex/digit number or a string corresponding
+to a verb. Similarly, the last parameter is the value to write, or
+can be a string for the parameter type.
+
+------------------------------------------------------------------------
+ % hda-verb /dev/snd/hwC0D0 0x12 0x701 2
+ nid = 0x12, verb = 0x701, param = 0x2
+ value = 0x0
+
+ % hda-verb /dev/snd/hwC0D0 0x0 PARAMETERS VENDOR_ID
+ nid = 0x0, verb = 0xf00, param = 0x0
+ value = 0x10ec0262
+
+ % hda-verb /dev/snd/hwC0D0 2 set_a 0xb080
+ nid = 0x2, verb = 0x300, param = 0xb080
+ value = 0x0
+------------------------------------------------------------------------
+
+Although you can issue any verbs with this program, the driver state
+won't be always updated. For example, the volume values are usually
+cached in the driver, and thus changing the widget amp value directly
+via hda-verb won't change the mixer value.
+
+The hda-verb program is found in the ftp directory:
+
+- ftp://ftp.kernel.org/pub/linux/kernel/people/tiwai/misc/
+
+Also a git repository is available:
+
+- git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/hda-verb.git
+
+See README file in the tarball for more details about hda-verb
+program.
+
+
+hda-analyzer
+~~~~~~~~~~~~
+hda-analyzer provides a graphical interface to access the raw HD-audio
+control, based on pyGTK2 binding. It's a more powerful version of
+hda-verb. The program gives you an easy-to-use GUI stuff for showing
+the widget information and adjusting the amp values, as well as the
+proc-compatible output.
+
+The hda-analyzer is a part of alsa.git repository in
+alsa-project.org:
+
+- http://git.alsa-project.org/?p=alsa.git;a=tree;f=hda-analyzer
+
+
+Codecgraph
+~~~~~~~~~~
+Codecgraph is a utility program to generate a graph and visualizes the
+codec-node connection of a codec chip. It's especially useful when
+you analyze or debug a codec without a proper datasheet. The program
+parses the given codec proc file and converts to SVG via graphiz
+program.
+
+The tarball and GIT trees are found in the web page at:
+
+- http://helllabs.org/codecgraph/
+
+
+hda-emu
+~~~~~~~
+hda-emu is an HD-audio emulator. The main purpose of this program is
+to debug an HD-audio codec without the real hardware. Thus, it
+doesn't emulate the behavior with the real audio I/O, but it just
+dumps the codec register changes and the ALSA-driver internal changes
+at probing and operating the HD-audio driver.
+
+The program requires a codec proc-file to simulate. Get a proc file
+for the target codec beforehand, or pick up an example codec from the
+codec proc collections in the tarball. Then, run the program with the
+proc file, and the hda-emu program will start parsing the codec file
+and simulates the HD-audio driver:
+
+------------------------------------------------------------------------
+ % hda-emu codecs/stac9200-dell-d820-laptop
+ # Parsing..
+ hda_codec: Unknown model for STAC9200, using BIOS defaults
+ hda_codec: pin nid 08 bios pin config 40c003fa
+ ....
+------------------------------------------------------------------------
+
+The program gives you only a very dumb command-line interface. You
+can get a proc-file dump at the current state, get a list of control
+(mixer) elements, set/get the control element value, simulate the PCM
+operation, the jack plugging simulation, etc.
+
+The package is found in:
+
+- ftp://ftp.kernel.org/pub/linux/kernel/people/tiwai/misc/
+
+A git repository is available:
+
+- git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/hda-emu.git
+
+See README file in the tarball for more details about hda-emu
+program.
diff --git a/Documentation/sound/alsa/Procfile.txt b/Documentation/sound/alsa/Procfile.txt
index f738b296440..bba2dbb79d8 100644
--- a/Documentation/sound/alsa/Procfile.txt
+++ b/Documentation/sound/alsa/Procfile.txt
@@ -153,6 +153,16 @@ card*/codec#*
Shows the general codec information and the attribute of each
widget node.
+card*/eld#*
+ Available for HDMI or DisplayPort interfaces.
+ Shows ELD(EDID Like Data) info retrieved from the attached HDMI sink,
+ and describes its audio capabilities and configurations.
+
+ Some ELD fields may be modified by doing `echo name hex_value > eld#*`.
+ Only do this if you are sure the HDMI sink provided value is wrong.
+ And if that makes your HDMI audio work, please report to us so that we
+ can fix it in future kernel releases.
+
Sequencer Information
---------------------