diff options
Diffstat (limited to 'Documentation')
49 files changed, 2740 insertions, 509 deletions
diff --git a/Documentation/ABI/obsolete/dv1394 b/Documentation/ABI/obsolete/dv1394 deleted file mode 100644 index 2ee36864ca1..00000000000 --- a/Documentation/ABI/obsolete/dv1394 +++ /dev/null @@ -1,9 +0,0 @@ -What: dv1394 (a.k.a. "OHCI-DV I/O support" for FireWire) -Contact: linux1394-devel@lists.sourceforge.net -Description: - New application development should use raw1394 + userspace libraries - instead, notably libiec61883 which is functionally equivalent. - -Users: - ffmpeg/libavformat (used by a variety of media players) - dvgrab v1.x (replaced by dvgrab2 on top of raw1394 and resp. libraries) diff --git a/Documentation/ABI/removed/dv1394 b/Documentation/ABI/removed/dv1394 new file mode 100644 index 00000000000..c2310b6676f --- /dev/null +++ b/Documentation/ABI/removed/dv1394 @@ -0,0 +1,14 @@ +What: dv1394 (a.k.a. "OHCI-DV I/O support" for FireWire) +Date: May 2010 (scheduled), finally removed in kernel v2.6.37 +Contact: linux1394-devel@lists.sourceforge.net +Description: + /dev/dv1394/* were character device files, one for each FireWire + controller and for NTSC and PAL respectively, from which DV data + could be received by read() or transmitted by write(). A few + ioctl()s allowed limited control. + This special-purpose interface has been superseded by libraw1394 + + libiec61883 which are functionally equivalent, support HDV, and + transparently work on top of the newer firewire kernel drivers. + +Users: + ffmpeg/libavformat (if configured for DV1394) diff --git a/Documentation/ABI/removed/raw1394 b/Documentation/ABI/removed/raw1394 new file mode 100644 index 00000000000..490aa1efc4a --- /dev/null +++ b/Documentation/ABI/removed/raw1394 @@ -0,0 +1,15 @@ +What: raw1394 (a.k.a. "Raw IEEE1394 I/O support" for FireWire) +Date: May 2010 (scheduled), finally removed in kernel v2.6.37 +Contact: linux1394-devel@lists.sourceforge.net +Description: + /dev/raw1394 was a character device file that allowed low-level + access to FireWire buses. Its major drawbacks were its inability + to implement sensible device security policies, and its low level + of abstraction that required userspace clients do duplicate much + of the kernel's ieee1394 core functionality. + Replaced by /dev/fw*, i.e. the <linux/firewire-cdev.h> ABI of + firewire-core. + +Users: + libraw1394 (works with firewire-cdev too, transparent to library ABI + users) diff --git a/Documentation/ABI/removed/raw1394_legacy_isochronous b/Documentation/ABI/removed/raw1394_legacy_isochronous deleted file mode 100644 index 1b629622d88..00000000000 --- a/Documentation/ABI/removed/raw1394_legacy_isochronous +++ /dev/null @@ -1,16 +0,0 @@ -What: legacy isochronous ABI of raw1394 (1st generation iso ABI) -Date: June 2007 (scheduled), removed in kernel v2.6.23 -Contact: linux1394-devel@lists.sourceforge.net -Description: - The two request types RAW1394_REQ_ISO_SEND, RAW1394_REQ_ISO_LISTEN have - been deprecated for quite some time. They are very inefficient as they - come with high interrupt load and several layers of callbacks for each - packet. Because of these deficiencies, the video1394 and dv1394 drivers - and the 3rd-generation isochronous ABI in raw1394 (rawiso) were created. - -Users: - libraw1394 users via the long deprecated API raw1394_iso_write, - raw1394_start_iso_write, raw1394_start_iso_rcv, raw1394_stop_iso_rcv - - libdc1394, which optionally uses these old libraw1394 calls - alternatively to the more efficient video1394 ABI diff --git a/Documentation/ABI/removed/video1394 b/Documentation/ABI/removed/video1394 new file mode 100644 index 00000000000..c39c25aee77 --- /dev/null +++ b/Documentation/ABI/removed/video1394 @@ -0,0 +1,16 @@ +What: video1394 (a.k.a. "OHCI-1394 Video support" for FireWire) +Date: May 2010 (scheduled), finally removed in kernel v2.6.37 +Contact: linux1394-devel@lists.sourceforge.net +Description: + /dev/video1394/* were character device files, one for each FireWire + controller, which were used for isochronous I/O. It was added as an + alternative to raw1394's isochronous I/O functionality which had + performance issues in its first generation. Any video1394 user had + to use raw1394 + libraw1394 too because video1394 did not provide + asynchronous I/O for device discovery and configuration. + Replaced by /dev/fw*, i.e. the <linux/firewire-cdev.h> ABI of + firewire-core. + +Users: + libdc1394 (works with firewire-cdev too, transparent to library ABI + users) diff --git a/Documentation/ABI/testing/sysfs-devices-system-ibm-rtl b/Documentation/ABI/testing/sysfs-devices-system-ibm-rtl new file mode 100644 index 00000000000..b82deeaec31 --- /dev/null +++ b/Documentation/ABI/testing/sysfs-devices-system-ibm-rtl @@ -0,0 +1,22 @@ +What: state +Date: Sep 2010 +KernelVersion: 2.6.37 +Contact: Vernon Mauery <vernux@us.ibm.com> +Description: The state file allows a means by which to change in and + out of Premium Real-Time Mode (PRTM), as well as the + ability to query the current state. + 0 => PRTM off + 1 => PRTM enabled +Users: The ibm-prtm userspace daemon uses this interface. + + +What: version +Date: Sep 2010 +KernelVersion: 2.6.37 +Contact: Vernon Mauery <vernux@us.ibm.com> +Description: The version file provides a means by which to query + the RTL table version that lives in the Extended + BIOS Data Area (EBDA). +Users: The ibm-prtm userspace daemon uses this interface. + + diff --git a/Documentation/ABI/testing/sysfs-driver-hid-roccat-pyra b/Documentation/ABI/testing/sysfs-driver-hid-roccat-pyra new file mode 100644 index 00000000000..ad1125b02ff --- /dev/null +++ b/Documentation/ABI/testing/sysfs-driver-hid-roccat-pyra @@ -0,0 +1,98 @@ +What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/actual_cpi +Date: August 2010 +Contact: Stefan Achatz <erazor_de@users.sourceforge.net> +Description: It is possible to switch the cpi setting of the mouse with the + press of a button. + When read, this file returns the raw number of the actual cpi + setting reported by the mouse. This number has to be further + processed to receive the real dpi value. + + VALUE DPI + 1 400 + 2 800 + 4 1600 + + This file is readonly. + +What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/actual_profile +Date: August 2010 +Contact: Stefan Achatz <erazor_de@users.sourceforge.net> +Description: When read, this file returns the number of the actual profile in + range 0-4. + This file is readonly. + +What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/firmware_version +Date: August 2010 +Contact: Stefan Achatz <erazor_de@users.sourceforge.net> +Description: When read, this file returns the raw integer version number of the + firmware reported by the mouse. Using the integer value eases + further usage in other programs. To receive the real version + number the decimal point has to be shifted 2 positions to the + left. E.g. a returned value of 138 means 1.38 + This file is readonly. + +What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/profile_settings +Date: August 2010 +Contact: Stefan Achatz <erazor_de@users.sourceforge.net> +Description: The mouse can store 5 profiles which can be switched by the + press of a button. A profile is split in settings and buttons. + profile_settings holds informations like resolution, sensitivity + and light effects. + When written, this file lets one write the respective profile + settings back to the mouse. The data has to be 13 bytes long. + The mouse will reject invalid data. + Which profile to write is determined by the profile number + contained in the data. + This file is writeonly. + +What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/profile[1-5]_settings +Date: August 2010 +Contact: Stefan Achatz <erazor_de@users.sourceforge.net> +Description: The mouse can store 5 profiles which can be switched by the + press of a button. A profile is split in settings and buttons. + profile_settings holds informations like resolution, sensitivity + and light effects. + When read, these files return the respective profile settings. + The returned data is 13 bytes in size. + This file is readonly. + +What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/profile_buttons +Date: August 2010 +Contact: Stefan Achatz <erazor_de@users.sourceforge.net> +Description: The mouse can store 5 profiles which can be switched by the + press of a button. A profile is split in settings and buttons. + profile_buttons holds informations about button layout. + When written, this file lets one write the respective profile + buttons back to the mouse. The data has to be 19 bytes long. + The mouse will reject invalid data. + Which profile to write is determined by the profile number + contained in the data. + This file is writeonly. + +What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/profile[1-5]_buttons +Date: August 2010 +Contact: Stefan Achatz <erazor_de@users.sourceforge.net> +Description: The mouse can store 5 profiles which can be switched by the + press of a button. A profile is split in settings and buttons. + profile_buttons holds informations about button layout. + When read, these files return the respective profile buttons. + The returned data is 19 bytes in size. + This file is readonly. + +What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/startup_profile +Date: August 2010 +Contact: Stefan Achatz <erazor_de@users.sourceforge.net> +Description: The integer value of this attribute ranges from 0-4. + When read, this attribute returns the number of the profile + that's active when the mouse is powered on. + This file is readonly. + +What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/settings +Date: August 2010 +Contact: Stefan Achatz <erazor_de@users.sourceforge.net> +Description: When read, this file returns the settings stored in the mouse. + The size of the data is 3 bytes and holds information on the + startup_profile. + When written, this file lets write settings back to the mouse. + The data has to be 3 bytes long. The mouse will reject invalid + data. diff --git a/Documentation/DocBook/80211.tmpl b/Documentation/DocBook/80211.tmpl new file mode 100644 index 00000000000..19a1210c253 --- /dev/null +++ b/Documentation/DocBook/80211.tmpl @@ -0,0 +1,495 @@ +<?xml version="1.0" encoding="UTF-8"?> +<!DOCTYPE set PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" + "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> +<set> + <setinfo> + <title>The 802.11 subsystems – for kernel developers</title> + <subtitle> + Explaining wireless 802.11 networking in the Linux kernel + </subtitle> + + <copyright> + <year>2007-2009</year> + <holder>Johannes Berg</holder> + </copyright> + + <authorgroup> + <author> + <firstname>Johannes</firstname> + <surname>Berg</surname> + <affiliation> + <address><email>johannes@sipsolutions.net</email></address> + </affiliation> + </author> + </authorgroup> + + <legalnotice> + <para> + This documentation is free software; you can redistribute + it and/or modify it under the terms of the GNU General Public + License version 2 as published by the Free Software Foundation. + </para> + <para> + This documentation is distributed in the hope that it will be + useful, but WITHOUT ANY WARRANTY; without even the implied + warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + See the GNU General Public License for more details. + </para> + <para> + You should have received a copy of the GNU General Public + License along with this documentation; if not, write to the Free + Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, + MA 02111-1307 USA + </para> + <para> + For more details see the file COPYING in the source + distribution of Linux. + </para> + </legalnotice> + + <abstract> + <para> + These books attempt to give a description of the + various subsystems that play a role in 802.11 wireless + networking in Linux. Since these books are for kernel + developers they attempts to document the structures + and functions used in the kernel as well as giving a + higher-level overview. + </para> + <para> + The reader is expected to be familiar with the 802.11 + standard as published by the IEEE in 802.11-2007 (or + possibly later versions). References to this standard + will be given as "802.11-2007 8.1.5". + </para> + </abstract> + </setinfo> + <book id="cfg80211-developers-guide"> + <bookinfo> + <title>The cfg80211 subsystem</title> + + <abstract> +!Pinclude/net/cfg80211.h Introduction + </abstract> + </bookinfo> + <chapter> + <title>Device registration</title> +!Pinclude/net/cfg80211.h Device registration +!Finclude/net/cfg80211.h ieee80211_band +!Finclude/net/cfg80211.h ieee80211_channel_flags +!Finclude/net/cfg80211.h ieee80211_channel +!Finclude/net/cfg80211.h ieee80211_rate_flags +!Finclude/net/cfg80211.h ieee80211_rate +!Finclude/net/cfg80211.h ieee80211_sta_ht_cap +!Finclude/net/cfg80211.h ieee80211_supported_band +!Finclude/net/cfg80211.h cfg80211_signal_type +!Finclude/net/cfg80211.h wiphy_params_flags +!Finclude/net/cfg80211.h wiphy_flags +!Finclude/net/cfg80211.h wiphy +!Finclude/net/cfg80211.h wireless_dev +!Finclude/net/cfg80211.h wiphy_new +!Finclude/net/cfg80211.h wiphy_register +!Finclude/net/cfg80211.h wiphy_unregister +!Finclude/net/cfg80211.h wiphy_free + +!Finclude/net/cfg80211.h wiphy_name +!Finclude/net/cfg80211.h wiphy_dev +!Finclude/net/cfg80211.h wiphy_priv +!Finclude/net/cfg80211.h priv_to_wiphy +!Finclude/net/cfg80211.h set_wiphy_dev +!Finclude/net/cfg80211.h wdev_priv + </chapter> + <chapter> + <title>Actions and configuration</title> +!Pinclude/net/cfg80211.h Actions and configuration +!Finclude/net/cfg80211.h cfg80211_ops +!Finclude/net/cfg80211.h vif_params +!Finclude/net/cfg80211.h key_params +!Finclude/net/cfg80211.h survey_info_flags +!Finclude/net/cfg80211.h survey_info +!Finclude/net/cfg80211.h beacon_parameters +!Finclude/net/cfg80211.h plink_actions +!Finclude/net/cfg80211.h station_parameters +!Finclude/net/cfg80211.h station_info_flags +!Finclude/net/cfg80211.h rate_info_flags +!Finclude/net/cfg80211.h rate_info +!Finclude/net/cfg80211.h station_info +!Finclude/net/cfg80211.h monitor_flags +!Finclude/net/cfg80211.h mpath_info_flags +!Finclude/net/cfg80211.h mpath_info +!Finclude/net/cfg80211.h bss_parameters +!Finclude/net/cfg80211.h ieee80211_txq_params +!Finclude/net/cfg80211.h cfg80211_crypto_settings +!Finclude/net/cfg80211.h cfg80211_auth_request +!Finclude/net/cfg80211.h cfg80211_assoc_request +!Finclude/net/cfg80211.h cfg80211_deauth_request +!Finclude/net/cfg80211.h cfg80211_disassoc_request +!Finclude/net/cfg80211.h cfg80211_ibss_params +!Finclude/net/cfg80211.h cfg80211_connect_params +!Finclude/net/cfg80211.h cfg80211_pmksa +!Finclude/net/cfg80211.h cfg80211_send_rx_auth +!Finclude/net/cfg80211.h cfg80211_send_auth_timeout +!Finclude/net/cfg80211.h __cfg80211_auth_canceled +!Finclude/net/cfg80211.h cfg80211_send_rx_assoc +!Finclude/net/cfg80211.h cfg80211_send_assoc_timeout +!Finclude/net/cfg80211.h cfg80211_send_deauth +!Finclude/net/cfg80211.h __cfg80211_send_deauth +!Finclude/net/cfg80211.h cfg80211_send_disassoc +!Finclude/net/cfg80211.h __cfg80211_send_disassoc +!Finclude/net/cfg80211.h cfg80211_ibss_joined +!Finclude/net/cfg80211.h cfg80211_connect_result +!Finclude/net/cfg80211.h cfg80211_roamed +!Finclude/net/cfg80211.h cfg80211_disconnected +!Finclude/net/cfg80211.h cfg80211_ready_on_channel +!Finclude/net/cfg80211.h cfg80211_remain_on_channel_expired +!Finclude/net/cfg80211.h cfg80211_new_sta +!Finclude/net/cfg80211.h cfg80211_rx_mgmt +!Finclude/net/cfg80211.h cfg80211_mgmt_tx_status +!Finclude/net/cfg80211.h cfg80211_cqm_rssi_notify +!Finclude/net/cfg80211.h cfg80211_michael_mic_failure + </chapter> + <chapter> + <title>Scanning and BSS list handling</title> +!Pinclude/net/cfg80211.h Scanning and BSS list handling +!Finclude/net/cfg80211.h cfg80211_ssid +!Finclude/net/cfg80211.h cfg80211_scan_request +!Finclude/net/cfg80211.h cfg80211_scan_done +!Finclude/net/cfg80211.h cfg80211_bss +!Finclude/net/cfg80211.h cfg80211_inform_bss_frame +!Finclude/net/cfg80211.h cfg80211_inform_bss +!Finclude/net/cfg80211.h cfg80211_unlink_bss +!Finclude/net/cfg80211.h cfg80211_find_ie +!Finclude/net/cfg80211.h ieee80211_bss_get_ie + </chapter> + <chapter> + <title>Utility functions</title> +!Pinclude/net/cfg80211.h Utility functions +!Finclude/net/cfg80211.h ieee80211_channel_to_frequency +!Finclude/net/cfg80211.h ieee80211_frequency_to_channel +!Finclude/net/cfg80211.h ieee80211_get_channel +!Finclude/net/cfg80211.h ieee80211_get_response_rate +!Finclude/net/cfg80211.h ieee80211_hdrlen +!Finclude/net/cfg80211.h ieee80211_get_hdrlen_from_skb +!Finclude/net/cfg80211.h ieee80211_radiotap_iterator + </chapter> + <chapter> + <title>Data path helpers</title> +!Pinclude/net/cfg80211.h Data path helpers +!Finclude/net/cfg80211.h ieee80211_data_to_8023 +!Finclude/net/cfg80211.h ieee80211_data_from_8023 +!Finclude/net/cfg80211.h ieee80211_amsdu_to_8023s +!Finclude/net/cfg80211.h cfg80211_classify8021d + </chapter> + <chapter> + <title>Regulatory enforcement infrastructure</title> +!Pinclude/net/cfg80211.h Regulatory enforcement infrastructure +!Finclude/net/cfg80211.h regulatory_hint +!Finclude/net/cfg80211.h wiphy_apply_custom_regulatory +!Finclude/net/cfg80211.h freq_reg_info + </chapter> + <chapter> + <title>RFkill integration</title> +!Pinclude/net/cfg80211.h RFkill integration +!Finclude/net/cfg80211.h wiphy_rfkill_set_hw_state +!Finclude/net/cfg80211.h wiphy_rfkill_start_polling +!Finclude/net/cfg80211.h wiphy_rfkill_stop_polling + </chapter> + <chapter> + <title>Test mode</title> +!Pinclude/net/cfg80211.h Test mode +!Finclude/net/cfg80211.h cfg80211_testmode_alloc_reply_skb +!Finclude/net/cfg80211.h cfg80211_testmode_reply +!Finclude/net/cfg80211.h cfg80211_testmode_alloc_event_skb +!Finclude/net/cfg80211.h cfg80211_testmode_event + </chapter> + </book> + <book id="mac80211-developers-guide"> + <bookinfo> + <title>The mac80211 subsystem</title> + <abstract> +!Pinclude/net/mac80211.h Introduction +!Pinclude/net/mac80211.h Warning + </abstract> + </bookinfo> + + <toc></toc> + + <!-- + Generally, this document shall be ordered by increasing complexity. + It is important to note that readers should be able to read only + the first few sections to get a working driver and only advanced + usage should require reading the full document. + --> + + <part> + <title>The basic mac80211 driver interface</title> + <partintro> + <para> + You should read and understand the information contained + within this part of the book while implementing a driver. + In some chapters, advanced usage is noted, that may be + skipped at first. + </para> + <para> + This part of the book only covers station and monitor mode + functionality, additional information required to implement + the other modes is covered in the second part of the book. + </para> + </partintro> + + <chapter id="basics"> + <title>Basic hardware handling</title> + <para>TBD</para> + <para> + This chapter shall contain information on getting a hw + struct allocated and registered with mac80211. + </para> + <para> + Since it is required to allocate rates/modes before registering + a hw struct, this chapter shall also contain information on setting + up the rate/mode structs. + </para> + <para> + Additionally, some discussion about the callbacks and + the general programming model should be in here, including + the definition of ieee80211_ops which will be referred to + a lot. + </para> + <para> + Finally, a discussion of hardware capabilities should be done + with references to other parts of the book. + </para> + <!-- intentionally multiple !F lines to get proper order --> +!Finclude/net/mac80211.h ieee80211_hw +!Finclude/net/mac80211.h ieee80211_hw_flags +!Finclude/net/mac80211.h SET_IEEE80211_DEV +!Finclude/net/mac80211.h SET_IEEE80211_PERM_ADDR +!Finclude/net/mac80211.h ieee80211_ops +!Finclude/net/mac80211.h ieee80211_alloc_hw +!Finclude/net/mac80211.h ieee80211_register_hw +!Finclude/net/mac80211.h ieee80211_get_tx_led_name +!Finclude/net/mac80211.h ieee80211_get_rx_led_name +!Finclude/net/mac80211.h ieee80211_get_assoc_led_name +!Finclude/net/mac80211.h ieee80211_get_radio_led_name +!Finclude/net/mac80211.h ieee80211_unregister_hw +!Finclude/net/mac80211.h ieee80211_free_hw + </chapter> + + <chapter id="phy-handling"> + <title>PHY configuration</title> + <para>TBD</para> + <para> + This chapter should describe PHY handling including + start/stop callbacks and the various structures used. + </para> +!Finclude/net/mac80211.h ieee80211_conf +!Finclude/net/mac80211.h ieee80211_conf_flags + </chapter> + + <chapter id="iface-handling"> + <title>Virtual interfaces</title> + <para>TBD</para> + <para> + This chapter should describe virtual interface basics + that are relevant to the driver (VLANs, MGMT etc are not.) + It should explain the use of the add_iface/remove_iface + callbacks as well as the interface configuration callbacks. + </para> + <para>Things related to AP mode should be discussed there.</para> + <para> + Things related to supporting multiple interfaces should be + in the appropriate chapter, a BIG FAT note should be here about + this though and the recommendation to allow only a single + interface in STA mode at first! + </para> +!Finclude/net/mac80211.h ieee80211_vif + </chapter> + + <chapter id="rx-tx"> + <title>Receive and transmit processing</title> + <sect1> + <title>what should be here</title> + <para>TBD</para> + <para> + This should describe the receive and transmit + paths in mac80211/the drivers as well as + transmit status handling. + </para> + </sect1> + <sect1> + <title>Frame format</title> +!Pinclude/net/mac80211.h Frame format + </sect1> + <sect1> + <title>Packet alignment</title> +!Pnet/mac80211/rx.c Packet alignment + </sect1> + <sect1> + <title>Calling into mac80211 from interrupts</title> +!Pinclude/net/mac80211.h Calling mac80211 from interrupts + </sect1> + <sect1> + <title>functions/definitions</title> +!Finclude/net/mac80211.h ieee80211_rx_status +!Finclude/net/mac80211.h mac80211_rx_flags +!Finclude/net/mac80211.h ieee80211_tx_info +!Finclude/net/mac80211.h ieee80211_rx +!Finclude/net/mac80211.h ieee80211_rx_irqsafe +!Finclude/net/mac80211.h ieee80211_tx_status +!Finclude/net/mac80211.h ieee80211_tx_status_irqsafe +!Finclude/net/mac80211.h ieee80211_rts_get +!Finclude/net/mac80211.h ieee80211_rts_duration +!Finclude/net/mac80211.h ieee80211_ctstoself_get +!Finclude/net/mac80211.h ieee80211_ctstoself_duration +!Finclude/net/mac80211.h ieee80211_generic_frame_duration +!Finclude/net/mac80211.h ieee80211_wake_queue +!Finclude/net/mac80211.h ieee80211_stop_queue +!Finclude/net/mac80211.h ieee80211_wake_queues +!Finclude/net/mac80211.h ieee80211_stop_queues + </sect1> + </chapter> + + <chapter id="filters"> + <title>Frame filtering</title> +!Pinclude/net/mac80211.h Frame filtering +!Finclude/net/mac80211.h ieee80211_filter_flags + </chapter> + </part> + + <part id="advanced"> + <title>Advanced driver interface</title> + <partintro> + <para> + Information contained within this part of the book is + of interest only for advanced interaction of mac80211 + with drivers to exploit more hardware capabilities and + improve performance. + </para> + </partintro> + + <chapter id="hardware-crypto-offload"> + <title>Hardware crypto acceleration</title> +!Pinclude/net/mac80211.h Hardware crypto acceleration + <!-- intentionally multiple !F lines to get proper order --> +!Finclude/net/mac80211.h set_key_cmd +!Finclude/net/mac80211.h ieee80211_key_conf +!Finclude/net/mac80211.h ieee80211_key_flags + </chapter> + + <chapter id="powersave"> + <title>Powersave support</title> +!Pinclude/net/mac80211.h Powersave support + </chapter> + + <chapter id="beacon-filter"> + <title>Beacon filter support</title> +!Pinclude/net/mac80211.h Beacon filter support +!Finclude/net/mac80211.h ieee80211_beacon_loss + </chapter> + + <chapter id="qos"> + <title>Multiple queues and QoS support</title> + <para>TBD</para> +!Finclude/net/mac80211.h ieee80211_tx_queue_params + </chapter> + + <chapter id="AP"> + <title>Access point mode support</title> + <para>TBD</para> + <para>Some parts of the if_conf should be discussed here instead</para> + <para> + Insert notes about VLAN interfaces with hw crypto here or + in the hw crypto chapter. + </para> +!Finclude/net/mac80211.h ieee80211_get_buffered_bc +!Finclude/net/mac80211.h ieee80211_beacon_get + </chapter> + + <chapter id="multi-iface"> + <title>Supporting multiple virtual interfaces</title> + <para>TBD</para> + <para> + Note: WDS with identical MAC address should almost always be OK + </para> + <para> + Insert notes about having multiple virtual interfaces with + different MAC addresses here, note which configurations are + supported by mac80211, add notes about supporting hw crypto + with it. + </para> + </chapter> + + <chapter id="hardware-scan-offload"> + <title>Hardware scan offload</title> + <para>TBD</para> +!Finclude/net/mac80211.h ieee80211_scan_completed + </chapter> + </part> + + <part id="rate-control"> + <title>Rate control interface</title> + <partintro> + <para>TBD</para> + <para> + This part of the book describes the rate control algorithm + interface and how it relates to mac80211 and drivers. + </para> + </partintro> + <chapter id="dummy"> + <title>dummy chapter</title> + <para>TBD</para> + </chapter> + </part> + + <part id="internal"> + <title>Internals</title> + <partintro> + <para>TBD</para> + <para> + This part of the book describes mac80211 internals. + </para> + </partintro> + + <chapter id="key-handling"> + <title>Key handling</title> + <sect1> + <title>Key handling basics</title> +!Pnet/mac80211/key.c Key handling basics + </sect1> + <sect1> + <title>MORE TBD</title> + <para>TBD</para> + </sect1> + </chapter> + + <chapter id="rx-processing"> + <title>Receive processing</title> + <para>TBD</para> + </chapter> + + <chapter id="tx-processing"> + <title>Transmit processing</title> + <para>TBD</para> + </chapter> + + <chapter id="sta-info"> + <title>Station info handling</title> + <sect1> + <title>Programming information</title> +!Fnet/mac80211/sta_info.h sta_info +!Fnet/mac80211/sta_info.h ieee80211_sta_info_flags + </sect1> + <sect1> + <title>STA information lifetime rules</title> +!Pnet/mac80211/sta_info.c STA information lifetime rules + </sect1> + </chapter> + + <chapter id="synchronisation"> + <title>Synchronisation</title> + <para>TBD</para> + <para>Locking, lots of RCU</para> + </chapter> + </part> + </book> +</set> diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile index 34929f24c28..8b6e00a7103 100644 --- a/Documentation/DocBook/Makefile +++ b/Documentation/DocBook/Makefile @@ -12,7 +12,7 @@ DOCBOOKS := z8530book.xml mcabook.xml device-drivers.xml \ kernel-api.xml filesystems.xml lsm.xml usb.xml kgdb.xml \ gadget.xml libata.xml mtdnand.xml librs.xml rapidio.xml \ genericirq.xml s390-drivers.xml uio-howto.xml scsi.xml \ - mac80211.xml debugobjects.xml sh.xml regulator.xml \ + 80211.xml debugobjects.xml sh.xml regulator.xml \ alsa-driver-api.xml writing-an-alsa-driver.xml \ tracepoint.xml media.xml drm.xml diff --git a/Documentation/DocBook/device-drivers.tmpl b/Documentation/DocBook/device-drivers.tmpl index feca0758391..22edcbb9dda 100644 --- a/Documentation/DocBook/device-drivers.tmpl +++ b/Documentation/DocBook/device-drivers.tmpl @@ -51,8 +51,13 @@ <sect1><title>Delaying, scheduling, and timer routines</title> !Iinclude/linux/sched.h !Ekernel/sched.c +!Iinclude/linux/completion.h !Ekernel/timer.c </sect1> + <sect1><title>Wait queues and Wake events</title> +!Iinclude/linux/wait.h +!Ekernel/wait.c + </sect1> <sect1><title>High-resolution timers</title> !Iinclude/linux/ktime.h !Iinclude/linux/hrtimer.h diff --git a/Documentation/DocBook/kernel-api.tmpl b/Documentation/DocBook/kernel-api.tmpl index 6b4e07f28b6..7160652a873 100644 --- a/Documentation/DocBook/kernel-api.tmpl +++ b/Documentation/DocBook/kernel-api.tmpl @@ -93,6 +93,12 @@ X!Ilib/string.c !Elib/crc32.c !Elib/crc-ccitt.c </sect1> + + <sect1 id="idr"><title>idr/ida Functions</title> +!Pinclude/linux/idr.h idr sync +!Plib/idr.c IDA description +!Elib/idr.c + </sect1> </chapter> <chapter id="mm"> diff --git a/Documentation/DocBook/mac80211.tmpl b/Documentation/DocBook/mac80211.tmpl deleted file mode 100644 index affb15a344a..00000000000 --- a/Documentation/DocBook/mac80211.tmpl +++ /dev/null @@ -1,337 +0,0 @@ -<?xml version="1.0" encoding="UTF-8"?> -<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" - "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> - -<book id="mac80211-developers-guide"> - <bookinfo> - <title>The mac80211 subsystem for kernel developers</title> - - <authorgroup> - <author> - <firstname>Johannes</firstname> - <surname>Berg</surname> - <affiliation> - <address><email>johannes@sipsolutions.net</email></address> - </affiliation> - </author> - </authorgroup> - - <copyright> - <year>2007-2009</year> - <holder>Johannes Berg</holder> - </copyright> - - <legalnotice> - <para> - This documentation is free software; you can redistribute - it and/or modify it under the terms of the GNU General Public - License version 2 as published by the Free Software Foundation. - </para> - - <para> - This documentation is distributed in the hope that it will be - useful, but WITHOUT ANY WARRANTY; without even the implied - warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. - See the GNU General Public License for more details. - </para> - - <para> - You should have received a copy of the GNU General Public - License along with this documentation; if not, write to the Free - Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, - MA 02111-1307 USA - </para> - - <para> - For more details see the file COPYING in the source - distribution of Linux. - </para> - </legalnotice> - - <abstract> -!Pinclude/net/mac80211.h Introduction -!Pinclude/net/mac80211.h Warning - </abstract> - </bookinfo> - - <toc></toc> - -<!-- -Generally, this document shall be ordered by increasing complexity. -It is important to note that readers should be able to read only -the first few sections to get a working driver and only advanced -usage should require reading the full document. ---> - - <part> - <title>The basic mac80211 driver interface</title> - <partintro> - <para> - You should read and understand the information contained - within this part of the book while implementing a driver. - In some chapters, advanced usage is noted, that may be - skipped at first. - </para> - <para> - This part of the book only covers station and monitor mode - functionality, additional information required to implement - the other modes is covered in the second part of the book. - </para> - </partintro> - - <chapter id="basics"> - <title>Basic hardware handling</title> - <para>TBD</para> - <para> - This chapter shall contain information on getting a hw - struct allocated and registered with mac80211. - </para> - <para> - Since it is required to allocate rates/modes before registering - a hw struct, this chapter shall also contain information on setting - up the rate/mode structs. - </para> - <para> - Additionally, some discussion about the callbacks and - the general programming model should be in here, including - the definition of ieee80211_ops which will be referred to - a lot. - </para> - <para> - Finally, a discussion of hardware capabilities should be done - with references to other parts of the book. - </para> -<!-- intentionally multiple !F lines to get proper order --> -!Finclude/net/mac80211.h ieee80211_hw -!Finclude/net/mac80211.h ieee80211_hw_flags -!Finclude/net/mac80211.h SET_IEEE80211_DEV -!Finclude/net/mac80211.h SET_IEEE80211_PERM_ADDR -!Finclude/net/mac80211.h ieee80211_ops -!Finclude/net/mac80211.h ieee80211_alloc_hw -!Finclude/net/mac80211.h ieee80211_register_hw -!Finclude/net/mac80211.h ieee80211_get_tx_led_name -!Finclude/net/mac80211.h ieee80211_get_rx_led_name -!Finclude/net/mac80211.h ieee80211_get_assoc_led_name -!Finclude/net/mac80211.h ieee80211_get_radio_led_name -!Finclude/net/mac80211.h ieee80211_unregister_hw -!Finclude/net/mac80211.h ieee80211_free_hw - </chapter> - - <chapter id="phy-handling"> - <title>PHY configuration</title> - <para>TBD</para> - <para> - This chapter should describe PHY handling including - start/stop callbacks and the various structures used. - </para> -!Finclude/net/mac80211.h ieee80211_conf -!Finclude/net/mac80211.h ieee80211_conf_flags - </chapter> - - <chapter id="iface-handling"> - <title>Virtual interfaces</title> - <para>TBD</para> - <para> - This chapter should describe virtual interface basics - that are relevant to the driver (VLANs, MGMT etc are not.) - It should explain the use of the add_iface/remove_iface - callbacks as well as the interface configuration callbacks. - </para> - <para>Things related to AP mode should be discussed there.</para> - <para> - Things related to supporting multiple interfaces should be - in the appropriate chapter, a BIG FAT note should be here about - this though and the recommendation to allow only a single - interface in STA mode at first! - </para> -!Finclude/net/mac80211.h ieee80211_vif - </chapter> - - <chapter id="rx-tx"> - <title>Receive and transmit processing</title> - <sect1> - <title>what should be here</title> - <para>TBD</para> - <para> - This should describe the receive and transmit - paths in mac80211/the drivers as well as - transmit status handling. - </para> - </sect1> - <sect1> - <title>Frame format</title> -!Pinclude/net/mac80211.h Frame format - </sect1> - <sect1> - <title>Packet alignment</title> -!Pnet/mac80211/rx.c Packet alignment - </sect1> - <sect1> - <title>Calling into mac80211 from interrupts</title> -!Pinclude/net/mac80211.h Calling mac80211 from interrupts - </sect1> - <sect1> - <title>functions/definitions</title> -!Finclude/net/mac80211.h ieee80211_rx_status -!Finclude/net/mac80211.h mac80211_rx_flags -!Finclude/net/mac80211.h ieee80211_tx_info -!Finclude/net/mac80211.h ieee80211_rx -!Finclude/net/mac80211.h ieee80211_rx_irqsafe -!Finclude/net/mac80211.h ieee80211_tx_status -!Finclude/net/mac80211.h ieee80211_tx_status_irqsafe -!Finclude/net/mac80211.h ieee80211_rts_get -!Finclude/net/mac80211.h ieee80211_rts_duration -!Finclude/net/mac80211.h ieee80211_ctstoself_get -!Finclude/net/mac80211.h ieee80211_ctstoself_duration -!Finclude/net/mac80211.h ieee80211_generic_frame_duration -!Finclude/net/mac80211.h ieee80211_wake_queue -!Finclude/net/mac80211.h ieee80211_stop_queue -!Finclude/net/mac80211.h ieee80211_wake_queues -!Finclude/net/mac80211.h ieee80211_stop_queues - </sect1> - </chapter> - - <chapter id="filters"> - <title>Frame filtering</title> -!Pinclude/net/mac80211.h Frame filtering -!Finclude/net/mac80211.h ieee80211_filter_flags - </chapter> - </part> - - <part id="advanced"> - <title>Advanced driver interface</title> - <partintro> - <para> - Information contained within this part of the book is - of interest only for advanced interaction of mac80211 - with drivers to exploit more hardware capabilities and - improve performance. - </para> - </partintro> - - <chapter id="hardware-crypto-offload"> - <title>Hardware crypto acceleration</title> -!Pinclude/net/mac80211.h Hardware crypto acceleration -<!-- intentionally multiple !F lines to get proper order --> -!Finclude/net/mac80211.h set_key_cmd -!Finclude/net/mac80211.h ieee80211_key_conf -!Finclude/net/mac80211.h ieee80211_key_alg -!Finclude/net/mac80211.h ieee80211_key_flags - </chapter> - - <chapter id="powersave"> - <title>Powersave support</title> -!Pinclude/net/mac80211.h Powersave support - </chapter> - - <chapter id="beacon-filter"> - <title>Beacon filter support</title> -!Pinclude/net/mac80211.h Beacon filter support -!Finclude/net/mac80211.h ieee80211_beacon_loss - </chapter> - - <chapter id="qos"> - <title>Multiple queues and QoS support</title> - <para>TBD</para> -!Finclude/net/mac80211.h ieee80211_tx_queue_params - </chapter> - - <chapter id="AP"> - <title>Access point mode support</title> - <para>TBD</para> - <para>Some parts of the if_conf should be discussed here instead</para> - <para> - Insert notes about VLAN interfaces with hw crypto here or - in the hw crypto chapter. - </para> -!Finclude/net/mac80211.h ieee80211_get_buffered_bc -!Finclude/net/mac80211.h ieee80211_beacon_get - </chapter> - - <chapter id="multi-iface"> - <title>Supporting multiple virtual interfaces</title> - <para>TBD</para> - <para> - Note: WDS with identical MAC address should almost always be OK - </para> - <para> - Insert notes about having multiple virtual interfaces with - different MAC addresses here, note which configurations are - supported by mac80211, add notes about supporting hw crypto - with it. - </para> - </chapter> - - <chapter id="hardware-scan-offload"> - <title>Hardware scan offload</title> - <para>TBD</para> -!Finclude/net/mac80211.h ieee80211_scan_completed - </chapter> - </part> - - <part id="rate-control"> - <title>Rate control interface</title> - <partintro> - <para>TBD</para> - <para> - This part of the book describes the rate control algorithm - interface and how it relates to mac80211 and drivers. - </para> - </partintro> - <chapter id="dummy"> - <title>dummy chapter</title> - <para>TBD</para> - </chapter> - </part> - - <part id="internal"> - <title>Internals</title> - <partintro> - <para>TBD</para> - <para> - This part of the book describes mac80211 internals. - </para> - </partintro> - - <chapter id="key-handling"> - <title>Key handling</title> - <sect1> - <title>Key handling basics</title> -!Pnet/mac80211/key.c Key handling basics - </sect1> - <sect1> - <title>MORE TBD</title> - <para>TBD</para> - </sect1> - </chapter> - - <chapter id="rx-processing"> - <title>Receive processing</title> - <para>TBD</para> - </chapter> - - <chapter id="tx-processing"> - <title>Transmit processing</title> - <para>TBD</para> - </chapter> - - <chapter id="sta-info"> - <title>Station info handling</title> - <sect1> - <title>Programming information</title> -!Fnet/mac80211/sta_info.h sta_info -!Fnet/mac80211/sta_info.h ieee80211_sta_info_flags - </sect1> - <sect1> - <title>STA information lifetime rules</title> -!Pnet/mac80211/sta_info.c STA information lifetime rules - </sect1> - </chapter> - - <chapter id="synchronisation"> - <title>Synchronisation</title> - <para>TBD</para> - <para>Locking, lots of RCU</para> - </chapter> - </part> -</book> diff --git a/Documentation/accounting/getdelays.c b/Documentation/accounting/getdelays.c index 6e25c2659e0..a2976a6de03 100644 --- a/Documentation/accounting/getdelays.c +++ b/Documentation/accounting/getdelays.c @@ -21,6 +21,7 @@ #include <sys/types.h> #include <sys/stat.h> #include <sys/socket.h> +#include <sys/wait.h> #include <signal.h> #include <linux/genetlink.h> @@ -266,11 +267,13 @@ int main(int argc, char *argv[]) int containerset = 0; char containerpath[1024]; int cfd = 0; + int forking = 0; + sigset_t sigset; struct msgtemplate msg; - while (1) { - c = getopt(argc, argv, "qdiw:r:m:t:p:vlC:"); + while (!forking) { + c = getopt(argc, argv, "qdiw:r:m:t:p:vlC:c:"); if (c < 0) break; @@ -319,6 +322,28 @@ int main(int argc, char *argv[]) err(1, "Invalid pid\n"); cmd_type = TASKSTATS_CMD_ATTR_PID; break; + case 'c': + + /* Block SIGCHLD for sigwait() later */ + if (sigemptyset(&sigset) == -1) + err(1, "Failed to empty sigset"); + if (sigaddset(&sigset, SIGCHLD)) + err(1, "Failed to set sigchld in sigset"); + sigprocmask(SIG_BLOCK, &sigset, NULL); + + /* fork/exec a child */ + tid = fork(); + if (tid < 0) + err(1, "Fork failed\n"); + if (tid == 0) + if (execvp(argv[optind - 1], + &argv[optind - 1]) < 0) + exit(-1); + + /* Set the command type and avoid further processing */ + cmd_type = TASKSTATS_CMD_ATTR_PID; + forking = 1; + break; case 'v': printf("debug on\n"); dbg = 1; @@ -370,6 +395,15 @@ int main(int argc, char *argv[]) goto err; } + /* + * If we forked a child, wait for it to exit. Cannot use waitpid() + * as all the delicious data would be reaped as part of the wait + */ + if (tid && forking) { + int sig_received; + sigwait(&sigset, &sig_received); + } + if (tid) { rc = send_cmd(nl_sd, id, mypid, TASKSTATS_CMD_GET, cmd_type, &tid, sizeof(__u32)); diff --git a/Documentation/arm/SA1100/FreeBird b/Documentation/arm/SA1100/FreeBird index fb23b770aaf..ab9193663b2 100644 --- a/Documentation/arm/SA1100/FreeBird +++ b/Documentation/arm/SA1100/FreeBird @@ -1,6 +1,6 @@ -Freebird-1.1 is produced by Legned(C) ,Inc. +Freebird-1.1 is produced by Legend(C), Inc. http://web.archive.org/web/*/http://www.legend.com.cn -and software/linux mainatined by Coventive(C),Inc. +and software/linux maintained by Coventive(C), Inc. (http://www.coventive.com) Based on the Nicolas's strongarm kernel tree. diff --git a/Documentation/cgroups/cgroups.txt b/Documentation/cgroups/cgroups.txt index b34823ff164..190018b0c64 100644 --- a/Documentation/cgroups/cgroups.txt +++ b/Documentation/cgroups/cgroups.txt @@ -18,7 +18,8 @@ CONTENTS: 1.2 Why are cgroups needed ? 1.3 How are cgroups implemented ? 1.4 What does notify_on_release do ? - 1.5 How do I use cgroups ? + 1.5 What does clone_children do ? + 1.6 How do I use cgroups ? 2. Usage Examples and Syntax 2.1 Basic Usage 2.2 Attaching processes @@ -293,7 +294,16 @@ notify_on_release in the root cgroup at system boot is disabled value of their parents notify_on_release setting. The default value of a cgroup hierarchy's release_agent path is empty. -1.5 How do I use cgroups ? +1.5 What does clone_children do ? +--------------------------------- + +If the clone_children flag is enabled (1) in a cgroup, then all +cgroups created beneath will call the post_clone callbacks for each +subsystem of the newly created cgroup. Usually when this callback is +implemented for a subsystem, it copies the values of the parent +subsystem, this is the case for the cpuset. + +1.6 How do I use cgroups ? -------------------------- To start a new job that is to be contained within a cgroup, using diff --git a/Documentation/fb/viafb.txt b/Documentation/fb/viafb.txt index f3e046a6a98..1a2e8aa3fbb 100644 --- a/Documentation/fb/viafb.txt +++ b/Documentation/fb/viafb.txt @@ -197,6 +197,54 @@ Notes: example, # fbset -depth 16 + +[Configure viafb via /proc] +--------------------------- + The following files exist in /proc/viafb + + supported_output_devices + + This read-only file contains a full ',' seperated list containing all + output devices that could be available on your platform. It is likely + that not all of those have a connector on your hardware but it should + provide a good starting point to figure out which of those names match + a real connector. + Example: + # cat /proc/viafb/supported_output_devices + + iga1/output_devices + iga2/output_devices + + These two files are readable and writable. iga1 and iga2 are the two + independent units that produce the screen image. Those images can be + forwarded to one or more output devices. Reading those files is a way + to query which output devices are currently used by an iga. + Example: + # cat /proc/viafb/iga1/output_devices + If there are no output devices printed the output of this iga is lost. + This can happen for example if only one (the other) iga is used. + Writing to these files allows adjusting the output devices during + runtime. One can add new devices, remove existing ones or switch + between igas. Essentially you can write a ',' seperated list of device + names (or a single one) in the same format as the output to those + files. You can add a '+' or '-' as a prefix allowing simple addition + and removal of devices. So a prefix '+' adds the devices from your list + to the already existing ones, '-' removes the listed devices from the + existing ones and if no prefix is given it replaces all existing ones + with the listed ones. If you remove devices they are expected to turn + off. If you add devices that are already part of the other iga they are + removed there and added to the new one. + Examples: + Add CRT as output device to iga1 + # echo +CRT > /proc/viafb/iga1/output_devices + + Remove (turn off) DVP1 and LVDS1 as output devices of iga2 + # echo -DVP1,LVDS1 > /proc/viafb/iga2/output_devices + + Replace all iga1 output devices by CRT + # echo CRT > /proc/viafb/iga1/output_devices + + [Bootup with viafb]: -------------------- Add the following line to your grub.conf: diff --git a/Documentation/feature-removal-schedule.txt b/Documentation/feature-removal-schedule.txt index 5e2bc4ab897..f3da8c0a3af 100644 --- a/Documentation/feature-removal-schedule.txt +++ b/Documentation/feature-removal-schedule.txt @@ -502,16 +502,6 @@ Who: Thomas Gleixner <tglx@linutronix.de> ---------------------------- -What: old ieee1394 subsystem (CONFIG_IEEE1394) -When: 2.6.37 -Files: drivers/ieee1394/ except init_ohci1394_dma.c -Why: superseded by drivers/firewire/ (CONFIG_FIREWIRE) which offers more - features, better performance, and better security, all with smaller - and more modern code base -Who: Stefan Richter <stefanr@s5r6.in-berlin.de> - ----------------------------- - What: The acpi_sleep=s4_nonvs command line option When: 2.6.37 Files: arch/x86/kernel/acpi/sleep.c @@ -536,3 +526,39 @@ Who: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> ---------------------------- +What: namespace cgroup (ns_cgroup) +When: 2.6.38 +Why: The ns_cgroup leads to some problems: + * cgroup creation is out-of-control + * cgroup name can conflict when pids are looping + * it is not possible to have a single process handling + a lot of namespaces without falling in a exponential creation time + * we may want to create a namespace without creating a cgroup + + The ns_cgroup is replaced by a compatibility flag 'clone_children', + where a newly created cgroup will copy the parent cgroup values. + The userspace has to manually create a cgroup and add a task to + the 'tasks' file. +Who: Daniel Lezcano <daniel.lezcano@free.fr> + +---------------------------- + +What: iwlwifi disable_hw_scan module parameters +When: 2.6.40 +Why: Hareware scan is the prefer method for iwlwifi devices for + scanning operation. Remove software scan support for all the + iwlwifi devices. + +Who: Wey-Yi Guy <wey-yi.w.guy@intel.com> + +---------------------------- + +What: access to nfsd auth cache through sys_nfsservctl or '.' files + in the 'nfsd' filesystem. +When: 2.6.40 +Why: This is a legacy interface which have been replaced by a more + dynamic cache. Continuing to maintain this interface is an + unnecessary burden. +Who: NeilBrown <neilb@suse.de> + +---------------------------- diff --git a/Documentation/filesystems/9p.txt b/Documentation/filesystems/9p.txt index f9765e8cf08..b22abba78fe 100644 --- a/Documentation/filesystems/9p.txt +++ b/Documentation/filesystems/9p.txt @@ -111,7 +111,7 @@ OPTIONS This can be used to share devices/named pipes/sockets between hosts. This functionality will be expanded in later versions. - access there are three access modes. + access there are four access modes. user = if a user tries to access a file on v9fs filesystem for the first time, v9fs sends an attach command (Tattach) for that user. @@ -120,6 +120,8 @@ OPTIONS the files on the mounted filesystem any = v9fs does single attach and performs all operations as one user + client = ACL based access check on the 9p client + side for access validation cachetag cache tag to use the specified persistent cache. cache tags for existing cache sessions can be listed at diff --git a/Documentation/filesystems/Locking b/Documentation/filesystems/Locking index 2db4283efa8..8a817f656f0 100644 --- a/Documentation/filesystems/Locking +++ b/Documentation/filesystems/Locking @@ -349,21 +349,36 @@ call this method upon the IO completion. --------------------------- block_device_operations ----------------------- prototypes: - int (*open) (struct inode *, struct file *); - int (*release) (struct inode *, struct file *); - int (*ioctl) (struct inode *, struct file *, unsigned, unsigned long); + int (*open) (struct block_device *, fmode_t); + int (*release) (struct gendisk *, fmode_t); + int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); + int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); + int (*direct_access) (struct block_device *, sector_t, void **, unsigned long *); int (*media_changed) (struct gendisk *); + void (*unlock_native_capacity) (struct gendisk *); int (*revalidate_disk) (struct gendisk *); + int (*getgeo)(struct block_device *, struct hd_geometry *); + void (*swap_slot_free_notify) (struct block_device *, unsigned long); locking rules: - BKL bd_sem -open: yes yes -release: yes yes -ioctl: yes no + BKL bd_mutex +open: no yes +release: no yes +ioctl: no no +compat_ioctl: no no +direct_access: no no media_changed: no no +unlock_native_capacity: no no revalidate_disk: no no +getgeo: no no +swap_slot_free_notify: no no (see below) + +media_changed, unlock_native_capacity and revalidate_disk are called only from +check_disk_change(). + +swap_slot_free_notify is called with swap_lock and sometimes the page lock +held. -The last two are called only from check_disk_change(). --------------------------- file_operations ------------------------------- prototypes: diff --git a/Documentation/filesystems/ext4.txt b/Documentation/filesystems/ext4.txt index e1def1786e5..6ab9442d7ee 100644 --- a/Documentation/filesystems/ext4.txt +++ b/Documentation/filesystems/ext4.txt @@ -353,6 +353,20 @@ noauto_da_alloc replacing existing files via patterns such as system crashes before the delayed allocation blocks are forced to disk. +noinit_itable Do not initialize any uninitialized inode table + blocks in the background. This feature may be + used by installation CD's so that the install + process can complete as quickly as possible; the + inode table initialization process would then be + deferred until the next time the file system + is unmounted. + +init_itable=n The lazy itable init code will wait n times the + number of milliseconds it took to zero out the + previous block group's inode table. This + minimizes the impact on the systme performance + while file system's inode table is being initialized. + discard Controls whether ext4 should issue discard/TRIM nodiscard(*) commands to the underlying block device when blocks are freed. This is useful for SSD devices diff --git a/Documentation/filesystems/nfs/00-INDEX b/Documentation/filesystems/nfs/00-INDEX index 2f68cd68876..a57e12411d2 100644 --- a/Documentation/filesystems/nfs/00-INDEX +++ b/Documentation/filesystems/nfs/00-INDEX @@ -12,5 +12,9 @@ nfs-rdma.txt - how to install and setup the Linux NFS/RDMA client and server software nfsroot.txt - short guide on setting up a diskless box with NFS root filesystem. +pnfs.txt + - short explanation of some of the internals of the pnfs client code rpc-cache.txt - introduction to the caching mechanisms in the sunrpc layer. +idmapper.txt + - information for configuring request-keys to be used by idmapper diff --git a/Documentation/filesystems/nfs/idmapper.txt b/Documentation/filesystems/nfs/idmapper.txt new file mode 100644 index 00000000000..b9b4192ea8b --- /dev/null +++ b/Documentation/filesystems/nfs/idmapper.txt @@ -0,0 +1,67 @@ + +========= +ID Mapper +========= +Id mapper is used by NFS to translate user and group ids into names, and to +translate user and group names into ids. Part of this translation involves +performing an upcall to userspace to request the information. Id mapper will +user request-key to perform this upcall and cache the result. The program +/usr/sbin/nfs.idmap should be called by request-key, and will perform the +translation and initialize a key with the resulting information. + + NFS_USE_NEW_IDMAPPER must be selected when configuring the kernel to use this + feature. + +=========== +Configuring +=========== +The file /etc/request-key.conf will need to be modified so /sbin/request-key can +direct the upcall. The following line should be added: + +#OP TYPE DESCRIPTION CALLOUT INFO PROGRAM ARG1 ARG2 ARG3 ... +#====== ======= =============== =============== =============================== +create id_resolver * * /usr/sbin/nfs.idmap %k %d 600 + +This will direct all id_resolver requests to the program /usr/sbin/nfs.idmap. +The last parameter, 600, defines how many seconds into the future the key will +expire. This parameter is optional for /usr/sbin/nfs.idmap. When the timeout +is not specified, nfs.idmap will default to 600 seconds. + +id mapper uses for key descriptions: + uid: Find the UID for the given user + gid: Find the GID for the given group + user: Find the user name for the given UID + group: Find the group name for the given GID + +You can handle any of these individually, rather than using the generic upcall +program. If you would like to use your own program for a uid lookup then you +would edit your request-key.conf so it look similar to this: + +#OP TYPE DESCRIPTION CALLOUT INFO PROGRAM ARG1 ARG2 ARG3 ... +#====== ======= =============== =============== =============================== +create id_resolver uid:* * /some/other/program %k %d 600 +create id_resolver * * /usr/sbin/nfs.idmap %k %d 600 + +Notice that the new line was added above the line for the generic program. +request-key will find the first matching line and corresponding program. In +this case, /some/other/program will handle all uid lookups and +/usr/sbin/nfs.idmap will handle gid, user, and group lookups. + +See <file:Documentation/keys-request-keys.txt> for more information about the +request-key function. + + +========= +nfs.idmap +========= +nfs.idmap is designed to be called by request-key, and should not be run "by +hand". This program takes two arguments, a serialized key and a key +description. The serialized key is first converted into a key_serial_t, and +then passed as an argument to keyctl_instantiate (both are part of keyutils.h). + +The actual lookups are performed by functions found in nfsidmap.h. nfs.idmap +determines the correct function to call by looking at the first part of the +description string. For example, a uid lookup description will appear as +"uid:user@domain". + +nfs.idmap will return 0 if the key was instantiated, and non-zero otherwise. diff --git a/Documentation/filesystems/nfs/nfsroot.txt b/Documentation/filesystems/nfs/nfsroot.txt index f2430a7974e..90c71c6f0d0 100644 --- a/Documentation/filesystems/nfs/nfsroot.txt +++ b/Documentation/filesystems/nfs/nfsroot.txt @@ -159,6 +159,28 @@ ip=<client-ip>:<server-ip>:<gw-ip>:<netmask>:<hostname>:<device>:<autoconf> Default: any +nfsrootdebug + + This parameter enables debugging messages to appear in the kernel + log at boot time so that administrators can verify that the correct + NFS mount options, server address, and root path are passed to the + NFS client. + + +rdinit=<executable file> + + To specify which file contains the program that starts system + initialization, administrators can use this command line parameter. + The default value of this parameter is "/init". If the specified + file exists and the kernel can execute it, root filesystem related + kernel command line parameters, including `nfsroot=', are ignored. + + A description of the process of mounting the root file system can be + found in: + + Documentation/early-userspace/README + + 3.) Boot Loader diff --git a/Documentation/filesystems/nfs/pnfs.txt b/Documentation/filesystems/nfs/pnfs.txt new file mode 100644 index 00000000000..bc0b9cfe095 --- /dev/null +++ b/Documentation/filesystems/nfs/pnfs.txt @@ -0,0 +1,48 @@ +Reference counting in pnfs: +========================== + +The are several inter-related caches. We have layouts which can +reference multiple devices, each of which can reference multiple data servers. +Each data server can be referenced by multiple devices. Each device +can be referenced by multiple layouts. To keep all of this straight, +we need to reference count. + + +struct pnfs_layout_hdr +---------------------- +The on-the-wire command LAYOUTGET corresponds to struct +pnfs_layout_segment, usually referred to by the variable name lseg. +Each nfs_inode may hold a pointer to a cache of of these layout +segments in nfsi->layout, of type struct pnfs_layout_hdr. + +We reference the header for the inode pointing to it, across each +outstanding RPC call that references it (LAYOUTGET, LAYOUTRETURN, +LAYOUTCOMMIT), and for each lseg held within. + +Each header is also (when non-empty) put on a list associated with +struct nfs_client (cl_layouts). Being put on this list does not bump +the reference count, as the layout is kept around by the lseg that +keeps it in the list. + +deviceid_cache +-------------- +lsegs reference device ids, which are resolved per nfs_client and +layout driver type. The device ids are held in a RCU cache (struct +nfs4_deviceid_cache). The cache itself is referenced across each +mount. The entries (struct nfs4_deviceid) themselves are held across +the lifetime of each lseg referencing them. + +RCU is used because the deviceid is basically a write once, read many +data structure. The hlist size of 32 buckets needs better +justification, but seems reasonable given that we can have multiple +deviceid's per filesystem, and multiple filesystems per nfs_client. + +The hash code is copied from the nfsd code base. A discussion of +hashing and variations of this algorithm can be found at: +http://groups.google.com/group/comp.lang.c/browse_thread/thread/9522965e2b8d3809 + +data server cache +----------------- +file driver devices refer to data servers, which are kept in a module +level cache. Its reference is held over the lifetime of the deviceid +pointing to it. diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt index 98223a67694..e73df2722ff 100644 --- a/Documentation/filesystems/proc.txt +++ b/Documentation/filesystems/proc.txt @@ -136,6 +136,7 @@ Table 1-1: Process specific entries in /proc statm Process memory status information status Process status in human readable form wchan If CONFIG_KALLSYMS is set, a pre-decoded wchan + pagemap Page table stack Report full stack trace, enable via CONFIG_STACKTRACE smaps a extension based on maps, showing the memory consumption of each mapping @@ -370,17 +371,24 @@ Shared_Dirty: 0 kB Private_Clean: 0 kB Private_Dirty: 0 kB Referenced: 892 kB +Anonymous: 0 kB Swap: 0 kB KernelPageSize: 4 kB MMUPageSize: 4 kB -The first of these lines shows the same information as is displayed for the -mapping in /proc/PID/maps. The remaining lines show the size of the mapping, -the amount of the mapping that is currently resident in RAM, the "proportional -set size” (divide each shared page by the number of processes sharing it), the -number of clean and dirty shared pages in the mapping, and the number of clean -and dirty private pages in the mapping. The "Referenced" indicates the amount -of memory currently marked as referenced or accessed. +The first of these lines shows the same information as is displayed for the +mapping in /proc/PID/maps. The remaining lines show the size of the mapping +(size), the amount of the mapping that is currently resident in RAM (RSS), the +process' proportional share of this mapping (PSS), the number of clean and +dirty private pages in the mapping. Note that even a page which is part of a +MAP_SHARED mapping, but has only a single pte mapped, i.e. is currently used +by only one process, is accounted as private and not as shared. "Referenced" +indicates the amount of memory currently marked as referenced or accessed. +"Anonymous" shows the amount of memory that does not belong to any file. Even +a mapping associated with a file may contain anonymous pages: when MAP_PRIVATE +and a page is modified, the file page is replaced by a private anonymous copy. +"Swap" shows how much would-be-anonymous memory is also used, but out on +swap. This file is only present if the CONFIG_MMU kernel configuration option is enabled. @@ -397,6 +405,9 @@ To clear the bits for the file mapped pages associated with the process > echo 3 > /proc/PID/clear_refs Any other value written to /proc/PID/clear_refs will have no effect. +The /proc/pid/pagemap gives the PFN, which can be used to find the pageflags +using /proc/kpageflags and number of times a page is mapped using +/proc/kpagecount. For detailed explanation, see Documentation/vm/pagemap.txt. 1.2 Kernel data --------------- @@ -1075,7 +1086,6 @@ Table 1-11: Files in /proc/tty drivers list of drivers and their usage ldiscs registered line disciplines driver/serial usage statistic and status of single tty lines - consoles registered system console lines .............................................................................. To see which tty's are currently in use, you can simply look into the file @@ -1094,37 +1104,6 @@ To see which tty's are currently in use, you can simply look into the file /dev/tty /dev/tty 5 0 system:/dev/tty unknown /dev/tty 4 1-63 console -To see which character device lines are currently used for the system console -/dev/console, you may simply look into the file /proc/tty/consoles: - - > cat /proc/tty/consoles - tty0 -WU (ECp) 4:7 - ttyS0 -W- (Ep) 4:64 - -The columns are: - - device name of the device - operations R = can do read operations - W = can do write operations - U = can do unblank - flags E = it is enabled - C = it is prefered console - B = it is primary boot console - p = it is used for printk buffer - b = it is not a TTY but a Braille device - a = it is safe to use when cpu is offline - * = it is standard input of the reading process - major:minor major and minor number of the device separated by a colon - -If the reading process holds /dev/console open at the regular standard input -stream the active device will be marked by an asterisk: - - > cat /proc/tty/consoles < /dev/console - tty0 -WU (ECp*) 4:7 - ttyS0 -W- (Ep) 4:64 - > tty - /dev/pts/3 - 1.8 Miscellaneous kernel statistics in /proc/stat ------------------------------------------------- diff --git a/Documentation/filesystems/sharedsubtree.txt b/Documentation/filesystems/sharedsubtree.txt index fc0e39af43c..4ede421c968 100644 --- a/Documentation/filesystems/sharedsubtree.txt +++ b/Documentation/filesystems/sharedsubtree.txt @@ -62,10 +62,10 @@ replicas continue to be exactly same. # mount /dev/sd0 /tmp/a #ls /tmp/a - t1 t2 t2 + t1 t2 t3 #ls /mnt/a - t1 t2 t2 + t1 t2 t3 Note that the mount has propagated to the mount at /mnt as well. diff --git a/Documentation/hwmon/ltc4261 b/Documentation/hwmon/ltc4261 new file mode 100644 index 00000000000..eba2e2c4b94 --- /dev/null +++ b/Documentation/hwmon/ltc4261 @@ -0,0 +1,63 @@ +Kernel driver ltc4261 +===================== + +Supported chips: + * Linear Technology LTC4261 + Prefix: 'ltc4261' + Addresses scanned: - + Datasheet: + http://cds.linear.com/docs/Datasheet/42612fb.pdf + +Author: Guenter Roeck <guenter.roeck@ericsson.com> + + +Description +----------- + +The LTC4261/LTC4261-2 negative voltage Hot Swap controllers allow a board +to be safely inserted and removed from a live backplane. + + +Usage Notes +----------- + +This driver does not probe for LTC4261 devices, since there is no register +which can be safely used to identify the chip. You will have to instantiate +the devices explicitly. + +Example: the following will load the driver for an LTC4261 at address 0x10 +on I2C bus #1: +$ modprobe ltc4261 +$ echo ltc4261 0x10 > /sys/bus/i2c/devices/i2c-1/new_device + + +Sysfs entries +------------- + +Voltage readings provided by this driver are reported as obtained from the ADC +registers. If a set of voltage divider resistors is installed, calculate the +real voltage by multiplying the reported value with (R1+R2)/R2, where R1 is the +value of the divider resistor against the measured voltage and R2 is the value +of the divider resistor against Ground. + +Current reading provided by this driver is reported as obtained from the ADC +Current Sense register. The reported value assumes that a 1 mOhm sense resistor +is installed. If a different sense resistor is installed, calculate the real +current by dividing the reported value by the sense resistor value in mOhm. + +The chip has two voltage sensors, but only one set of voltage alarm status bits. +In many many designs, those alarms are associated with the ADIN2 sensor, due to +the proximity of the ADIN2 pin to the OV pin. ADIN2 is, however, not available +on all chip variants. To ensure that the alarm condition is reported to the user, +report it with both voltage sensors. + +in1_input ADIN2 voltage (mV) +in1_min_alarm ADIN/ADIN2 Undervoltage alarm +in1_max_alarm ADIN/ADIN2 Overvoltage alarm + +in2_input ADIN voltage (mV) +in2_min_alarm ADIN/ADIN2 Undervoltage alarm +in2_max_alarm ADIN/ADIN2 Overvoltage alarm + +curr1_input SENSE current (mA) +curr1_alarm SENSE overcurrent alarm diff --git a/Documentation/input/ntrig.txt b/Documentation/input/ntrig.txt new file mode 100644 index 00000000000..be1fd981f73 --- /dev/null +++ b/Documentation/input/ntrig.txt @@ -0,0 +1,126 @@ +N-Trig touchscreen Driver +------------------------- + Copyright (c) 2008-2010 Rafi Rubin <rafi@seas.upenn.edu> + Copyright (c) 2009-2010 Stephane Chatty + +This driver provides support for N-Trig pen and multi-touch sensors. Single +and multi-touch events are translated to the appropriate protocols for +the hid and input systems. Pen events are sufficiently hid compliant and +are left to the hid core. The driver also provides additional filtering +and utility functions accessible with sysfs and module parameters. + +This driver has been reported to work properly with multiple N-Trig devices +attached. + + +Parameters +---------- + +Note: values set at load time are global and will apply to all applicable +devices. Adjusting parameters with sysfs will override the load time values, +but only for that one device. + +The following parameters are used to configure filters to reduce noise: + +activate_slack number of fingers to ignore before processing events + +activation_height size threshold to activate immediately +activation_width + +min_height size threshold bellow which fingers are ignored +min_width both to decide activation and during activity + +deactivate_slack the number of "no contact" frames to ignore before + propagating the end of activity events + +When the last finger is removed from the device, it sends a number of empty +frames. By holding off on deactivation for a few frames we can tolerate false +erroneous disconnects, where the sensor may mistakenly not detect a finger that +is still present. Thus deactivate_slack addresses problems where a users might +see breaks in lines during drawing, or drop an object during a long drag. + + +Additional sysfs items +---------------------- + +These nodes just provide easy access to the ranges reported by the device. +sensor_logical_height the range for positions reported during activity +sensor_logical_width + +sensor_physical_height internal ranges not used for normal events but +sensor_physical_width useful for tuning + +All N-Trig devices with product id of 1 report events in the ranges of +X: 0-9600 +Y: 0-7200 +However not all of these devices have the same physical dimensions. Most +seem to be 12" sensors (Dell Latitude XT and XT2 and the HP TX2), and +at least one model (Dell Studio 17) has a 17" sensor. The ratio of physical +to logical sizes is used to adjust the size based filter parameters. + + +Filtering +--------- + +With the release of the early multi-touch firmwares it became increasingly +obvious that these sensors were prone to erroneous events. Users reported +seeing both inappropriately dropped contact and ghosts, contacts reported +where no finger was actually touching the screen. + +Deactivation slack helps prevent dropped contact for single touch use, but does +not address the problem of dropping one of more contacts while other contacts +are still active. Drops in the multi-touch context require additional +processing and should be handled in tandem with tacking. + +As observed ghost contacts are similar to actual use of the sensor, but they +seem to have different profiles. Ghost activity typically shows up as small +short lived touches. As such, I assume that the longer the continuous stream +of events the more likely those events are from a real contact, and that the +larger the size of each contact the more likely it is real. Balancing the +goals of preventing ghosts and accepting real events quickly (to minimize +user observable latency), the filter accumulates confidence for incoming +events until it hits thresholds and begins propagating. In the interest in +minimizing stored state as well as the cost of operations to make a decision, +I've kept that decision simple. + +Time is measured in terms of the number of fingers reported, not frames since +the probability of multiple simultaneous ghosts is expected to drop off +dramatically with increasing numbers. Rather than accumulate weight as a +function of size, I just use it as a binary threshold. A sufficiently large +contact immediately overrides the waiting period and leads to activation. + +Setting the activation size thresholds to large values will result in deciding +primarily on activation slack. If you see longer lived ghosts, turning up the +activation slack while reducing the size thresholds may suffice to eliminate +the ghosts while keeping the screen quite responsive to firm taps. + +Contacts continue to be filtered with min_height and min_width even after +the initial activation filter is satisfied. The intent is to provide +a mechanism for filtering out ghosts in the form of an extra finger while +you actually are using the screen. In practice this sort of ghost has +been far less problematic or relatively rare and I've left the defaults +set to 0 for both parameters, effectively turning off that filter. + +I don't know what the optimal values are for these filters. If the defaults +don't work for you, please play with the parameters. If you do find other +values more comfortable, I would appreciate feedback. + +The calibration of these devices does drift over time. If ghosts or contact +dropping worsen and interfere with the normal usage of your device, try +recalibrating it. + + +Calibration +----------- + +The N-Trig windows tools provide calibration and testing routines. Also an +unofficial unsupported set of user space tools including a calibrator is +available at: +http://code.launchpad.net/~rafi-seas/+junk/ntrig_calib + + +Tracking +-------- + +As of yet, all tested N-Trig firmwares do not track fingers. When multiple +contacts are active they seem to be sorted primarily by Y position. diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index 4cd8b86e00e..4bc2f3c3da5 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt @@ -1131,9 +1131,13 @@ and is between 256 and 4096 characters. It is defined in the file kvm.oos_shadow= [KVM] Disable out-of-sync shadow paging. Default is 1 (enabled) - kvm-amd.nested= [KVM,AMD] Allow nested virtualization in KVM/SVM. + kvm.mmu_audit= [KVM] This is a R/W parameter which allows audit + KVM MMU at runtime. Default is 0 (off) + kvm-amd.nested= [KVM,AMD] Allow nested virtualization in KVM/SVM. + Default is 1 (enabled) + kvm-amd.npt= [KVM,AMD] Disable nested paging (virtualized MMU) for all guests. Default is 1 (enabled) if in 64bit or 32bit-PAE mode @@ -1537,12 +1541,15 @@ and is between 256 and 4096 characters. It is defined in the file 1 to enable accounting Default value is 0. - nfsaddrs= [NFS] + nfsaddrs= [NFS] Deprecated. Use ip= instead. See Documentation/filesystems/nfs/nfsroot.txt. nfsroot= [NFS] nfs root filesystem for disk-less boxes. See Documentation/filesystems/nfs/nfsroot.txt. + nfsrootdebug [NFS] enable nfsroot debugging messages. + See Documentation/filesystems/nfs/nfsroot.txt. + nfs.callback_tcpport= [NFS] set the TCP port on which the NFSv4 callback channel should listen. @@ -1698,6 +1705,8 @@ and is between 256 and 4096 characters. It is defined in the file nojitter [IA64] Disables jitter checking for ITC timers. + no-kvmclock [X86,KVM] Disable paravirtualized KVM clock driver + nolapic [X86-32,APIC] Do not enable or use the local APIC. nolapic_timer [X86-32,APIC] Do not use the local APIC timer. @@ -1718,7 +1727,7 @@ and is between 256 and 4096 characters. It is defined in the file norandmaps Don't use address space randomization. Equivalent to echo 0 > /proc/sys/kernel/randomize_va_space - noreplace-paravirt [X86-32,PV_OPS] Don't patch paravirt_ops + noreplace-paravirt [X86,IA-64,PV_OPS] Don't patch paravirt_ops noreplace-smp [X86-32,SMP] Don't replace SMP instructions with UP alternatives @@ -2432,7 +2441,7 @@ and is between 256 and 4096 characters. It is defined in the file topology informations if the hardware supports these. The scheduler will make use of these informations and e.g. base its process migration decisions on it. - Default is off. + Default is on. tp720= [HW,PS2] diff --git a/Documentation/kvm/api.txt b/Documentation/kvm/api.txt index 5f5b64982b1..b336266bea5 100644 --- a/Documentation/kvm/api.txt +++ b/Documentation/kvm/api.txt @@ -320,13 +320,13 @@ struct kvm_translation { 4.15 KVM_INTERRUPT Capability: basic -Architectures: x86 +Architectures: x86, ppc Type: vcpu ioctl Parameters: struct kvm_interrupt (in) Returns: 0 on success, -1 on error Queues a hardware interrupt vector to be injected. This is only -useful if in-kernel local APIC is not used. +useful if in-kernel local APIC or equivalent is not used. /* for KVM_INTERRUPT */ struct kvm_interrupt { @@ -334,8 +334,37 @@ struct kvm_interrupt { __u32 irq; }; +X86: + Note 'irq' is an interrupt vector, not an interrupt pin or line. +PPC: + +Queues an external interrupt to be injected. This ioctl is overleaded +with 3 different irq values: + +a) KVM_INTERRUPT_SET + + This injects an edge type external interrupt into the guest once it's ready + to receive interrupts. When injected, the interrupt is done. + +b) KVM_INTERRUPT_UNSET + + This unsets any pending interrupt. + + Only available with KVM_CAP_PPC_UNSET_IRQ. + +c) KVM_INTERRUPT_SET_LEVEL + + This injects a level type external interrupt into the guest context. The + interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET + is triggered. + + Only available with KVM_CAP_PPC_IRQ_LEVEL. + +Note that any value for 'irq' other than the ones stated above is invalid +and incurs unexpected behavior. + 4.16 KVM_DEBUG_GUEST Capability: basic @@ -1013,8 +1042,9 @@ number is just right, the 'nent' field is adjusted to the number of valid entries in the 'entries' array, which is then filled. The entries returned are the host cpuid as returned by the cpuid instruction, -with unknown or unsupported features masked out. The fields in each entry -are defined as follows: +with unknown or unsupported features masked out. Some features (for example, +x2apic), may not be present in the host cpu, but are exposed by kvm if it can +emulate them efficiently. The fields in each entry are defined as follows: function: the eax value used to obtain the entry index: the ecx value used to obtain the entry (for entries that are @@ -1032,6 +1062,29 @@ are defined as follows: eax, ebx, ecx, edx: the values returned by the cpuid instruction for this function/index combination +4.46 KVM_PPC_GET_PVINFO + +Capability: KVM_CAP_PPC_GET_PVINFO +Architectures: ppc +Type: vm ioctl +Parameters: struct kvm_ppc_pvinfo (out) +Returns: 0 on success, !0 on error + +struct kvm_ppc_pvinfo { + __u32 flags; + __u32 hcall[4]; + __u8 pad[108]; +}; + +This ioctl fetches PV specific information that need to be passed to the guest +using the device tree or other means from vm context. + +For now the only implemented piece of information distributed here is an array +of 4 instructions that make up a hypercall. + +If any additional field gets added to this structure later on, a bit for that +additional piece of information will be set in the flags bitmap. + 5. The kvm_run structure Application code obtains a pointer to the kvm_run structure by diff --git a/Documentation/kvm/ppc-pv.txt b/Documentation/kvm/ppc-pv.txt new file mode 100644 index 00000000000..a7f2244b3be --- /dev/null +++ b/Documentation/kvm/ppc-pv.txt @@ -0,0 +1,196 @@ +The PPC KVM paravirtual interface +================================= + +The basic execution principle by which KVM on PowerPC works is to run all kernel +space code in PR=1 which is user space. This way we trap all privileged +instructions and can emulate them accordingly. + +Unfortunately that is also the downfall. There are quite some privileged +instructions that needlessly return us to the hypervisor even though they +could be handled differently. + +This is what the PPC PV interface helps with. It takes privileged instructions +and transforms them into unprivileged ones with some help from the hypervisor. +This cuts down virtualization costs by about 50% on some of my benchmarks. + +The code for that interface can be found in arch/powerpc/kernel/kvm* + +Querying for existence +====================== + +To find out if we're running on KVM or not, we leverage the device tree. When +Linux is running on KVM, a node /hypervisor exists. That node contains a +compatible property with the value "linux,kvm". + +Once you determined you're running under a PV capable KVM, you can now use +hypercalls as described below. + +KVM hypercalls +============== + +Inside the device tree's /hypervisor node there's a property called +'hypercall-instructions'. This property contains at most 4 opcodes that make +up the hypercall. To call a hypercall, just call these instructions. + +The parameters are as follows: + + Register IN OUT + + r0 - volatile + r3 1st parameter Return code + r4 2nd parameter 1st output value + r5 3rd parameter 2nd output value + r6 4th parameter 3rd output value + r7 5th parameter 4th output value + r8 6th parameter 5th output value + r9 7th parameter 6th output value + r10 8th parameter 7th output value + r11 hypercall number 8th output value + r12 - volatile + +Hypercall definitions are shared in generic code, so the same hypercall numbers +apply for x86 and powerpc alike with the exception that each KVM hypercall +also needs to be ORed with the KVM vendor code which is (42 << 16). + +Return codes can be as follows: + + Code Meaning + + 0 Success + 12 Hypercall not implemented + <0 Error + +The magic page +============== + +To enable communication between the hypervisor and guest there is a new shared +page that contains parts of supervisor visible register state. The guest can +map this shared page using the KVM hypercall KVM_HC_PPC_MAP_MAGIC_PAGE. + +With this hypercall issued the guest always gets the magic page mapped at the +desired location in effective and physical address space. For now, we always +map the page to -4096. This way we can access it using absolute load and store +functions. The following instruction reads the first field of the magic page: + + ld rX, -4096(0) + +The interface is designed to be extensible should there be need later to add +additional registers to the magic page. If you add fields to the magic page, +also define a new hypercall feature to indicate that the host can give you more +registers. Only if the host supports the additional features, make use of them. + +The magic page has the following layout as described in +arch/powerpc/include/asm/kvm_para.h: + +struct kvm_vcpu_arch_shared { + __u64 scratch1; + __u64 scratch2; + __u64 scratch3; + __u64 critical; /* Guest may not get interrupts if == r1 */ + __u64 sprg0; + __u64 sprg1; + __u64 sprg2; + __u64 sprg3; + __u64 srr0; + __u64 srr1; + __u64 dar; + __u64 msr; + __u32 dsisr; + __u32 int_pending; /* Tells the guest if we have an interrupt */ +}; + +Additions to the page must only occur at the end. Struct fields are always 32 +or 64 bit aligned, depending on them being 32 or 64 bit wide respectively. + +Magic page features +=================== + +When mapping the magic page using the KVM hypercall KVM_HC_PPC_MAP_MAGIC_PAGE, +a second return value is passed to the guest. This second return value contains +a bitmap of available features inside the magic page. + +The following enhancements to the magic page are currently available: + + KVM_MAGIC_FEAT_SR Maps SR registers r/w in the magic page + +For enhanced features in the magic page, please check for the existence of the +feature before using them! + +MSR bits +======== + +The MSR contains bits that require hypervisor intervention and bits that do +not require direct hypervisor intervention because they only get interpreted +when entering the guest or don't have any impact on the hypervisor's behavior. + +The following bits are safe to be set inside the guest: + + MSR_EE + MSR_RI + MSR_CR + MSR_ME + +If any other bit changes in the MSR, please still use mtmsr(d). + +Patched instructions +==================== + +The "ld" and "std" instructions are transormed to "lwz" and "stw" instructions +respectively on 32 bit systems with an added offset of 4 to accomodate for big +endianness. + +The following is a list of mapping the Linux kernel performs when running as +guest. Implementing any of those mappings is optional, as the instruction traps +also act on the shared page. So calling privileged instructions still works as +before. + +From To +==== == + +mfmsr rX ld rX, magic_page->msr +mfsprg rX, 0 ld rX, magic_page->sprg0 +mfsprg rX, 1 ld rX, magic_page->sprg1 +mfsprg rX, 2 ld rX, magic_page->sprg2 +mfsprg rX, 3 ld rX, magic_page->sprg3 +mfsrr0 rX ld rX, magic_page->srr0 +mfsrr1 rX ld rX, magic_page->srr1 +mfdar rX ld rX, magic_page->dar +mfdsisr rX lwz rX, magic_page->dsisr + +mtmsr rX std rX, magic_page->msr +mtsprg 0, rX std rX, magic_page->sprg0 +mtsprg 1, rX std rX, magic_page->sprg1 +mtsprg 2, rX std rX, magic_page->sprg2 +mtsprg 3, rX std rX, magic_page->sprg3 +mtsrr0 rX std rX, magic_page->srr0 +mtsrr1 rX std rX, magic_page->srr1 +mtdar rX std rX, magic_page->dar +mtdsisr rX stw rX, magic_page->dsisr + +tlbsync nop + +mtmsrd rX, 0 b <special mtmsr section> +mtmsr rX b <special mtmsr section> + +mtmsrd rX, 1 b <special mtmsrd section> + +[Book3S only] +mtsrin rX, rY b <special mtsrin section> + +[BookE only] +wrteei [0|1] b <special wrteei section> + + +Some instructions require more logic to determine what's going on than a load +or store instruction can deliver. To enable patching of those, we keep some +RAM around where we can live translate instructions to. What happens is the +following: + + 1) copy emulation code to memory + 2) patch that code to fit the emulated instruction + 3) patch that code to return to the original pc + 4 + 4) patch the original instruction to branch to the new code + +That way we can inject an arbitrary amount of code as replacement for a single +instruction. This allows us to check for pending interrupts when setting EE=1 +for example. diff --git a/Documentation/kvm/timekeeping.txt b/Documentation/kvm/timekeeping.txt new file mode 100644 index 00000000000..0c5033a58c9 --- /dev/null +++ b/Documentation/kvm/timekeeping.txt @@ -0,0 +1,612 @@ + + Timekeeping Virtualization for X86-Based Architectures + + Zachary Amsden <zamsden@redhat.com> + Copyright (c) 2010, Red Hat. All rights reserved. + +1) Overview +2) Timing Devices +3) TSC Hardware +4) Virtualization Problems + +========================================================================= + +1) Overview + +One of the most complicated parts of the X86 platform, and specifically, +the virtualization of this platform is the plethora of timing devices available +and the complexity of emulating those devices. In addition, virtualization of +time introduces a new set of challenges because it introduces a multiplexed +division of time beyond the control of the guest CPU. + +First, we will describe the various timekeeping hardware available, then +present some of the problems which arise and solutions available, giving +specific recommendations for certain classes of KVM guests. + +The purpose of this document is to collect data and information relevant to +timekeeping which may be difficult to find elsewhere, specifically, +information relevant to KVM and hardware-based virtualization. + +========================================================================= + +2) Timing Devices + +First we discuss the basic hardware devices available. TSC and the related +KVM clock are special enough to warrant a full exposition and are described in +the following section. + +2.1) i8254 - PIT + +One of the first timer devices available is the programmable interrupt timer, +or PIT. The PIT has a fixed frequency 1.193182 MHz base clock and three +channels which can be programmed to deliver periodic or one-shot interrupts. +These three channels can be configured in different modes and have individual +counters. Channel 1 and 2 were not available for general use in the original +IBM PC, and historically were connected to control RAM refresh and the PC +speaker. Now the PIT is typically integrated as part of an emulated chipset +and a separate physical PIT is not used. + +The PIT uses I/O ports 0x40 - 0x43. Access to the 16-bit counters is done +using single or multiple byte access to the I/O ports. There are 6 modes +available, but not all modes are available to all timers, as only timer 2 +has a connected gate input, required for modes 1 and 5. The gate line is +controlled by port 61h, bit 0, as illustrated in the following diagram. + + -------------- ---------------- +| | | | +| 1.1932 MHz |---------->| CLOCK OUT | ---------> IRQ 0 +| Clock | | | | + -------------- | +->| GATE TIMER 0 | + | ---------------- + | + | ---------------- + | | | + |------>| CLOCK OUT | ---------> 66.3 KHZ DRAM + | | | (aka /dev/null) + | +->| GATE TIMER 1 | + | ---------------- + | + | ---------------- + | | | + |------>| CLOCK OUT | ---------> Port 61h, bit 5 + | | | +Port 61h, bit 0 ---------->| GATE TIMER 2 | \_.---- ____ + ---------------- _| )--|LPF|---Speaker + / *---- \___/ +Port 61h, bit 1 -----------------------------------/ + +The timer modes are now described. + +Mode 0: Single Timeout. This is a one-shot software timeout that counts down + when the gate is high (always true for timers 0 and 1). When the count + reaches zero, the output goes high. + +Mode 1: Triggered One-shot. The output is intially set high. When the gate + line is set high, a countdown is initiated (which does not stop if the gate is + lowered), during which the output is set low. When the count reaches zero, + the output goes high. + +Mode 2: Rate Generator. The output is initially set high. When the countdown + reaches 1, the output goes low for one count and then returns high. The value + is reloaded and the countdown automatically resumes. If the gate line goes + low, the count is halted. If the output is low when the gate is lowered, the + output automatically goes high (this only affects timer 2). + +Mode 3: Square Wave. This generates a high / low square wave. The count + determines the length of the pulse, which alternates between high and low + when zero is reached. The count only proceeds when gate is high and is + automatically reloaded on reaching zero. The count is decremented twice at + each clock to generate a full high / low cycle at the full periodic rate. + If the count is even, the clock remains high for N/2 counts and low for N/2 + counts; if the clock is odd, the clock is high for (N+1)/2 counts and low + for (N-1)/2 counts. Only even values are latched by the counter, so odd + values are not observed when reading. This is the intended mode for timer 2, + which generates sine-like tones by low-pass filtering the square wave output. + +Mode 4: Software Strobe. After programming this mode and loading the counter, + the output remains high until the counter reaches zero. Then the output + goes low for 1 clock cycle and returns high. The counter is not reloaded. + Counting only occurs when gate is high. + +Mode 5: Hardware Strobe. After programming and loading the counter, the + output remains high. When the gate is raised, a countdown is initiated + (which does not stop if the gate is lowered). When the counter reaches zero, + the output goes low for 1 clock cycle and then returns high. The counter is + not reloaded. + +In addition to normal binary counting, the PIT supports BCD counting. The +command port, 0x43 is used to set the counter and mode for each of the three +timers. + +PIT commands, issued to port 0x43, using the following bit encoding: + +Bit 7-4: Command (See table below) +Bit 3-1: Mode (000 = Mode 0, 101 = Mode 5, 11X = undefined) +Bit 0 : Binary (0) / BCD (1) + +Command table: + +0000 - Latch Timer 0 count for port 0x40 + sample and hold the count to be read in port 0x40; + additional commands ignored until counter is read; + mode bits ignored. + +0001 - Set Timer 0 LSB mode for port 0x40 + set timer to read LSB only and force MSB to zero; + mode bits set timer mode + +0010 - Set Timer 0 MSB mode for port 0x40 + set timer to read MSB only and force LSB to zero; + mode bits set timer mode + +0011 - Set Timer 0 16-bit mode for port 0x40 + set timer to read / write LSB first, then MSB; + mode bits set timer mode + +0100 - Latch Timer 1 count for port 0x41 - as described above +0101 - Set Timer 1 LSB mode for port 0x41 - as described above +0110 - Set Timer 1 MSB mode for port 0x41 - as described above +0111 - Set Timer 1 16-bit mode for port 0x41 - as described above + +1000 - Latch Timer 2 count for port 0x42 - as described above +1001 - Set Timer 2 LSB mode for port 0x42 - as described above +1010 - Set Timer 2 MSB mode for port 0x42 - as described above +1011 - Set Timer 2 16-bit mode for port 0x42 as described above + +1101 - General counter latch + Latch combination of counters into corresponding ports + Bit 3 = Counter 2 + Bit 2 = Counter 1 + Bit 1 = Counter 0 + Bit 0 = Unused + +1110 - Latch timer status + Latch combination of counter mode into corresponding ports + Bit 3 = Counter 2 + Bit 2 = Counter 1 + Bit 1 = Counter 0 + + The output of ports 0x40-0x42 following this command will be: + + Bit 7 = Output pin + Bit 6 = Count loaded (0 if timer has expired) + Bit 5-4 = Read / Write mode + 01 = MSB only + 10 = LSB only + 11 = LSB / MSB (16-bit) + Bit 3-1 = Mode + Bit 0 = Binary (0) / BCD mode (1) + +2.2) RTC + +The second device which was available in the original PC was the MC146818 real +time clock. The original device is now obsolete, and usually emulated by the +system chipset, sometimes by an HPET and some frankenstein IRQ routing. + +The RTC is accessed through CMOS variables, which uses an index register to +control which bytes are read. Since there is only one index register, read +of the CMOS and read of the RTC require lock protection (in addition, it is +dangerous to allow userspace utilities such as hwclock to have direct RTC +access, as they could corrupt kernel reads and writes of CMOS memory). + +The RTC generates an interrupt which is usually routed to IRQ 8. The interrupt +can function as a periodic timer, an additional once a day alarm, and can issue +interrupts after an update of the CMOS registers by the MC146818 is complete. +The type of interrupt is signalled in the RTC status registers. + +The RTC will update the current time fields by battery power even while the +system is off. The current time fields should not be read while an update is +in progress, as indicated in the status register. + +The clock uses a 32.768kHz crystal, so bits 6-4 of register A should be +programmed to a 32kHz divider if the RTC is to count seconds. + +This is the RAM map originally used for the RTC/CMOS: + +Location Size Description +------------------------------------------ +00h byte Current second (BCD) +01h byte Seconds alarm (BCD) +02h byte Current minute (BCD) +03h byte Minutes alarm (BCD) +04h byte Current hour (BCD) +05h byte Hours alarm (BCD) +06h byte Current day of week (BCD) +07h byte Current day of month (BCD) +08h byte Current month (BCD) +09h byte Current year (BCD) +0Ah byte Register A + bit 7 = Update in progress + bit 6-4 = Divider for clock + 000 = 4.194 MHz + 001 = 1.049 MHz + 010 = 32 kHz + 10X = test modes + 110 = reset / disable + 111 = reset / disable + bit 3-0 = Rate selection for periodic interrupt + 000 = periodic timer disabled + 001 = 3.90625 uS + 010 = 7.8125 uS + 011 = .122070 mS + 100 = .244141 mS + ... + 1101 = 125 mS + 1110 = 250 mS + 1111 = 500 mS +0Bh byte Register B + bit 7 = Run (0) / Halt (1) + bit 6 = Periodic interrupt enable + bit 5 = Alarm interrupt enable + bit 4 = Update-ended interrupt enable + bit 3 = Square wave interrupt enable + bit 2 = BCD calendar (0) / Binary (1) + bit 1 = 12-hour mode (0) / 24-hour mode (1) + bit 0 = 0 (DST off) / 1 (DST enabled) +OCh byte Register C (read only) + bit 7 = interrupt request flag (IRQF) + bit 6 = periodic interrupt flag (PF) + bit 5 = alarm interrupt flag (AF) + bit 4 = update interrupt flag (UF) + bit 3-0 = reserved +ODh byte Register D (read only) + bit 7 = RTC has power + bit 6-0 = reserved +32h byte Current century BCD (*) + (*) location vendor specific and now determined from ACPI global tables + +2.3) APIC + +On Pentium and later processors, an on-board timer is available to each CPU +as part of the Advanced Programmable Interrupt Controller. The APIC is +accessed through memory-mapped registers and provides interrupt service to each +CPU, used for IPIs and local timer interrupts. + +Although in theory the APIC is a safe and stable source for local interrupts, +in practice, many bugs and glitches have occurred due to the special nature of +the APIC CPU-local memory-mapped hardware. Beware that CPU errata may affect +the use of the APIC and that workarounds may be required. In addition, some of +these workarounds pose unique constraints for virtualization - requiring either +extra overhead incurred from extra reads of memory-mapped I/O or additional +functionality that may be more computationally expensive to implement. + +Since the APIC is documented quite well in the Intel and AMD manuals, we will +avoid repetition of the detail here. It should be pointed out that the APIC +timer is programmed through the LVT (local vector timer) register, is capable +of one-shot or periodic operation, and is based on the bus clock divided down +by the programmable divider register. + +2.4) HPET + +HPET is quite complex, and was originally intended to replace the PIT / RTC +support of the X86 PC. It remains to be seen whether that will be the case, as +the de facto standard of PC hardware is to emulate these older devices. Some +systems designated as legacy free may support only the HPET as a hardware timer +device. + +The HPET spec is rather loose and vague, requiring at least 3 hardware timers, +but allowing implementation freedom to support many more. It also imposes no +fixed rate on the timer frequency, but does impose some extremal values on +frequency, error and slew. + +In general, the HPET is recommended as a high precision (compared to PIT /RTC) +time source which is independent of local variation (as there is only one HPET +in any given system). The HPET is also memory-mapped, and its presence is +indicated through ACPI tables by the BIOS. + +Detailed specification of the HPET is beyond the current scope of this +document, as it is also very well documented elsewhere. + +2.5) Offboard Timers + +Several cards, both proprietary (watchdog boards) and commonplace (e1000) have +timing chips built into the cards which may have registers which are accessible +to kernel or user drivers. To the author's knowledge, using these to generate +a clocksource for a Linux or other kernel has not yet been attempted and is in +general frowned upon as not playing by the agreed rules of the game. Such a +timer device would require additional support to be virtualized properly and is +not considered important at this time as no known operating system does this. + +========================================================================= + +3) TSC Hardware + +The TSC or time stamp counter is relatively simple in theory; it counts +instruction cycles issued by the processor, which can be used as a measure of +time. In practice, due to a number of problems, it is the most complicated +timekeeping device to use. + +The TSC is represented internally as a 64-bit MSR which can be read with the +RDMSR, RDTSC, or RDTSCP (when available) instructions. In the past, hardware +limitations made it possible to write the TSC, but generally on old hardware it +was only possible to write the low 32-bits of the 64-bit counter, and the upper +32-bits of the counter were cleared. Now, however, on Intel processors family +0Fh, for models 3, 4 and 6, and family 06h, models e and f, this restriction +has been lifted and all 64-bits are writable. On AMD systems, the ability to +write the TSC MSR is not an architectural guarantee. + +The TSC is accessible from CPL-0 and conditionally, for CPL > 0 software by +means of the CR4.TSD bit, which when enabled, disables CPL > 0 TSC access. + +Some vendors have implemented an additional instruction, RDTSCP, which returns +atomically not just the TSC, but an indicator which corresponds to the +processor number. This can be used to index into an array of TSC variables to +determine offset information in SMP systems where TSCs are not synchronized. +The presence of this instruction must be determined by consulting CPUID feature +bits. + +Both VMX and SVM provide extension fields in the virtualization hardware which +allows the guest visible TSC to be offset by a constant. Newer implementations +promise to allow the TSC to additionally be scaled, but this hardware is not +yet widely available. + +3.1) TSC synchronization + +The TSC is a CPU-local clock in most implementations. This means, on SMP +platforms, the TSCs of different CPUs may start at different times depending +on when the CPUs are powered on. Generally, CPUs on the same die will share +the same clock, however, this is not always the case. + +The BIOS may attempt to resynchronize the TSCs during the poweron process and +the operating system or other system software may attempt to do this as well. +Several hardware limitations make the problem worse - if it is not possible to +write the full 64-bits of the TSC, it may be impossible to match the TSC in +newly arriving CPUs to that of the rest of the system, resulting in +unsynchronized TSCs. This may be done by BIOS or system software, but in +practice, getting a perfectly synchronized TSC will not be possible unless all +values are read from the same clock, which generally only is possible on single +socket systems or those with special hardware support. + +3.2) TSC and CPU hotplug + +As touched on already, CPUs which arrive later than the boot time of the system +may not have a TSC value that is synchronized with the rest of the system. +Either system software, BIOS, or SMM code may actually try to establish the TSC +to a value matching the rest of the system, but a perfect match is usually not +a guarantee. This can have the effect of bringing a system from a state where +TSC is synchronized back to a state where TSC synchronization flaws, however +small, may be exposed to the OS and any virtualization environment. + +3.3) TSC and multi-socket / NUMA + +Multi-socket systems, especially large multi-socket systems are likely to have +individual clocksources rather than a single, universally distributed clock. +Since these clocks are driven by different crystals, they will not have +perfectly matched frequency, and temperature and electrical variations will +cause the CPU clocks, and thus the TSCs to drift over time. Depending on the +exact clock and bus design, the drift may or may not be fixed in absolute +error, and may accumulate over time. + +In addition, very large systems may deliberately slew the clocks of individual +cores. This technique, known as spread-spectrum clocking, reduces EMI at the +clock frequency and harmonics of it, which may be required to pass FCC +standards for telecommunications and computer equipment. + +It is recommended not to trust the TSCs to remain synchronized on NUMA or +multiple socket systems for these reasons. + +3.4) TSC and C-states + +C-states, or idling states of the processor, especially C1E and deeper sleep +states may be problematic for TSC as well. The TSC may stop advancing in such +a state, resulting in a TSC which is behind that of other CPUs when execution +is resumed. Such CPUs must be detected and flagged by the operating system +based on CPU and chipset identifications. + +The TSC in such a case may be corrected by catching it up to a known external +clocksource. + +3.5) TSC frequency change / P-states + +To make things slightly more interesting, some CPUs may change frequency. They +may or may not run the TSC at the same rate, and because the frequency change +may be staggered or slewed, at some points in time, the TSC rate may not be +known other than falling within a range of values. In this case, the TSC will +not be a stable time source, and must be calibrated against a known, stable, +external clock to be a usable source of time. + +Whether the TSC runs at a constant rate or scales with the P-state is model +dependent and must be determined by inspecting CPUID, chipset or vendor +specific MSR fields. + +In addition, some vendors have known bugs where the P-state is actually +compensated for properly during normal operation, but when the processor is +inactive, the P-state may be raised temporarily to service cache misses from +other processors. In such cases, the TSC on halted CPUs could advance faster +than that of non-halted processors. AMD Turion processors are known to have +this problem. + +3.6) TSC and STPCLK / T-states + +External signals given to the processor may also have the effect of stopping +the TSC. This is typically done for thermal emergency power control to prevent +an overheating condition, and typically, there is no way to detect that this +condition has happened. + +3.7) TSC virtualization - VMX + +VMX provides conditional trapping of RDTSC, RDMSR, WRMSR and RDTSCP +instructions, which is enough for full virtualization of TSC in any manner. In +addition, VMX allows passing through the host TSC plus an additional TSC_OFFSET +field specified in the VMCS. Special instructions must be used to read and +write the VMCS field. + +3.8) TSC virtualization - SVM + +SVM provides conditional trapping of RDTSC, RDMSR, WRMSR and RDTSCP +instructions, which is enough for full virtualization of TSC in any manner. In +addition, SVM allows passing through the host TSC plus an additional offset +field specified in the SVM control block. + +3.9) TSC feature bits in Linux + +In summary, there is no way to guarantee the TSC remains in perfect +synchronization unless it is explicitly guaranteed by the architecture. Even +if so, the TSCs in multi-sockets or NUMA systems may still run independently +despite being locally consistent. + +The following feature bits are used by Linux to signal various TSC attributes, +but they can only be taken to be meaningful for UP or single node systems. + +X86_FEATURE_TSC : The TSC is available in hardware +X86_FEATURE_RDTSCP : The RDTSCP instruction is available +X86_FEATURE_CONSTANT_TSC : The TSC rate is unchanged with P-states +X86_FEATURE_NONSTOP_TSC : The TSC does not stop in C-states +X86_FEATURE_TSC_RELIABLE : TSC sync checks are skipped (VMware) + +4) Virtualization Problems + +Timekeeping is especially problematic for virtualization because a number of +challenges arise. The most obvious problem is that time is now shared between +the host and, potentially, a number of virtual machines. Thus the virtual +operating system does not run with 100% usage of the CPU, despite the fact that +it may very well make that assumption. It may expect it to remain true to very +exacting bounds when interrupt sources are disabled, but in reality only its +virtual interrupt sources are disabled, and the machine may still be preempted +at any time. This causes problems as the passage of real time, the injection +of machine interrupts and the associated clock sources are no longer completely +synchronized with real time. + +This same problem can occur on native harware to a degree, as SMM mode may +steal cycles from the naturally on X86 systems when SMM mode is used by the +BIOS, but not in such an extreme fashion. However, the fact that SMM mode may +cause similar problems to virtualization makes it a good justification for +solving many of these problems on bare metal. + +4.1) Interrupt clocking + +One of the most immediate problems that occurs with legacy operating systems +is that the system timekeeping routines are often designed to keep track of +time by counting periodic interrupts. These interrupts may come from the PIT +or the RTC, but the problem is the same: the host virtualization engine may not +be able to deliver the proper number of interrupts per second, and so guest +time may fall behind. This is especially problematic if a high interrupt rate +is selected, such as 1000 HZ, which is unfortunately the default for many Linux +guests. + +There are three approaches to solving this problem; first, it may be possible +to simply ignore it. Guests which have a separate time source for tracking +'wall clock' or 'real time' may not need any adjustment of their interrupts to +maintain proper time. If this is not sufficient, it may be necessary to inject +additional interrupts into the guest in order to increase the effective +interrupt rate. This approach leads to complications in extreme conditions, +where host load or guest lag is too much to compensate for, and thus another +solution to the problem has risen: the guest may need to become aware of lost +ticks and compensate for them internally. Although promising in theory, the +implementation of this policy in Linux has been extremely error prone, and a +number of buggy variants of lost tick compensation are distributed across +commonly used Linux systems. + +Windows uses periodic RTC clocking as a means of keeping time internally, and +thus requires interrupt slewing to keep proper time. It does use a low enough +rate (ed: is it 18.2 Hz?) however that it has not yet been a problem in +practice. + +4.2) TSC sampling and serialization + +As the highest precision time source available, the cycle counter of the CPU +has aroused much interest from developers. As explained above, this timer has +many problems unique to its nature as a local, potentially unstable and +potentially unsynchronized source. One issue which is not unique to the TSC, +but is highlighted because of its very precise nature is sampling delay. By +definition, the counter, once read is already old. However, it is also +possible for the counter to be read ahead of the actual use of the result. +This is a consequence of the superscalar execution of the instruction stream, +which may execute instructions out of order. Such execution is called +non-serialized. Forcing serialized execution is necessary for precise +measurement with the TSC, and requires a serializing instruction, such as CPUID +or an MSR read. + +Since CPUID may actually be virtualized by a trap and emulate mechanism, this +serialization can pose a performance issue for hardware virtualization. An +accurate time stamp counter reading may therefore not always be available, and +it may be necessary for an implementation to guard against "backwards" reads of +the TSC as seen from other CPUs, even in an otherwise perfectly synchronized +system. + +4.3) Timespec aliasing + +Additionally, this lack of serialization from the TSC poses another challenge +when using results of the TSC when measured against another time source. As +the TSC is much higher precision, many possible values of the TSC may be read +while another clock is still expressing the same value. + +That is, you may read (T,T+10) while external clock C maintains the same value. +Due to non-serialized reads, you may actually end up with a range which +fluctuates - from (T-1.. T+10). Thus, any time calculated from a TSC, but +calibrated against an external value may have a range of valid values. +Re-calibrating this computation may actually cause time, as computed after the +calibration, to go backwards, compared with time computed before the +calibration. + +This problem is particularly pronounced with an internal time source in Linux, +the kernel time, which is expressed in the theoretically high resolution +timespec - but which advances in much larger granularity intervals, sometimes +at the rate of jiffies, and possibly in catchup modes, at a much larger step. + +This aliasing requires care in the computation and recalibration of kvmclock +and any other values derived from TSC computation (such as TSC virtualization +itself). + +4.4) Migration + +Migration of a virtual machine raises problems for timekeeping in two ways. +First, the migration itself may take time, during which interrupts cannot be +delivered, and after which, the guest time may need to be caught up. NTP may +be able to help to some degree here, as the clock correction required is +typically small enough to fall in the NTP-correctable window. + +An additional concern is that timers based off the TSC (or HPET, if the raw bus +clock is exposed) may now be running at different rates, requiring compensation +in some way in the hypervisor by virtualizing these timers. In addition, +migrating to a faster machine may preclude the use of a passthrough TSC, as a +faster clock cannot be made visible to a guest without the potential of time +advancing faster than usual. A slower clock is less of a problem, as it can +always be caught up to the original rate. KVM clock avoids these problems by +simply storing multipliers and offsets against the TSC for the guest to convert +back into nanosecond resolution values. + +4.5) Scheduling + +Since scheduling may be based on precise timing and firing of interrupts, the +scheduling algorithms of an operating system may be adversely affected by +virtualization. In theory, the effect is random and should be universally +distributed, but in contrived as well as real scenarios (guest device access, +causes of virtualization exits, possible context switch), this may not always +be the case. The effect of this has not been well studied. + +In an attempt to work around this, several implementations have provided a +paravirtualized scheduler clock, which reveals the true amount of CPU time for +which a virtual machine has been running. + +4.6) Watchdogs + +Watchdog timers, such as the lock detector in Linux may fire accidentally when +running under hardware virtualization due to timer interrupts being delayed or +misinterpretation of the passage of real time. Usually, these warnings are +spurious and can be ignored, but in some circumstances it may be necessary to +disable such detection. + +4.7) Delays and precision timing + +Precise timing and delays may not be possible in a virtualized system. This +can happen if the system is controlling physical hardware, or issues delays to +compensate for slower I/O to and from devices. The first issue is not solvable +in general for a virtualized system; hardware control software can't be +adequately virtualized without a full real-time operating system, which would +require an RT aware virtualization platform. + +The second issue may cause performance problems, but this is unlikely to be a +significant issue. In many cases these delays may be eliminated through +configuration or paravirtualization. + +4.8) Covert channels and leaks + +In addition to the above problems, time information will inevitably leak to the +guest about the host in anything but a perfect implementation of virtualized +time. This may allow the guest to infer the presence of a hypervisor (as in a +red-pill type detection), and it may allow information to leak between guests +by using CPU utilization itself as a signalling channel. Preventing such +problems would require completely isolated virtual time which may not track +real time any longer. This may be useful in certain security or QA contexts, +but in general isn't recommended for real-world deployment scenarios. diff --git a/Documentation/misc-devices/apds990x.txt b/Documentation/misc-devices/apds990x.txt new file mode 100644 index 00000000000..d5408cade32 --- /dev/null +++ b/Documentation/misc-devices/apds990x.txt @@ -0,0 +1,111 @@ +Kernel driver apds990x +====================== + +Supported chips: +Avago APDS990X + +Data sheet: +Not freely available + +Author: +Samu Onkalo <samu.p.onkalo@nokia.com> + +Description +----------- + +APDS990x is a combined ambient light and proximity sensor. ALS and proximity +functionality are highly connected. ALS measurement path must be running +while the proximity functionality is enabled. + +ALS produces raw measurement values for two channels: Clear channel +(infrared + visible light) and IR only. However, threshold comparisons happen +using clear channel only. Lux value and the threshold level on the HW +might vary quite much depending the spectrum of the light source. + +Driver makes necessary conversions to both directions so that user handles +only lux values. Lux value is calculated using information from the both +channels. HW threshold level is calculated from the given lux value to match +with current type of the lightning. Sometimes inaccuracy of the estimations +lead to false interrupt, but that doesn't harm. + +ALS contains 4 different gain steps. Driver automatically +selects suitable gain step. After each measurement, reliability of the results +is estimated and new measurement is trigged if necessary. + +Platform data can provide tuned values to the conversion formulas if +values are known. Otherwise plain sensor default values are used. + +Proximity side is little bit simpler. There is no need for complex conversions. +It produces directly usable values. + +Driver controls chip operational state using pm_runtime framework. +Voltage regulators are controlled based on chip operational state. + +SYSFS +----- + + +chip_id + RO - shows detected chip type and version + +power_state + RW - enable / disable chip. Uses counting logic + 1 enables the chip + 0 disables the chip +lux0_input + RO - measured lux value + sysfs_notify called when threshold interrupt occurs + +lux0_sensor_range + RO - lux0_input max value. Actually never reaches since sensor tends + to saturate much before that. Real max value varies depending + on the light spectrum etc. + +lux0_rate + RW - measurement rate in Hz + +lux0_rate_avail + RO - supported measurement rates + +lux0_calibscale + RW - calibration value. Set to neutral value by default. + Output results are multiplied with calibscale / calibscale_default + value. + +lux0_calibscale_default + RO - neutral calibration value + +lux0_thresh_above_value + RW - HI level threshold value. All results above the value + trigs an interrupt. 65535 (i.e. sensor_range) disables the above + interrupt. + +lux0_thresh_below_value + RW - LO level threshold value. All results below the value + trigs an interrupt. 0 disables the below interrupt. + +prox0_raw + RO - measured proximity value + sysfs_notify called when threshold interrupt occurs + +prox0_sensor_range + RO - prox0_raw max value (1023) + +prox0_raw_en + RW - enable / disable proximity - uses counting logic + 1 enables the proximity + 0 disables the proximity + +prox0_reporting_mode + RW - trigger / periodic. In "trigger" mode the driver tells two possible + values: 0 or prox0_sensor_range value. 0 means no proximity, + 1023 means proximity. This causes minimal number of interrupts. + In "periodic" mode the driver reports all values above + prox0_thresh_above. This causes more interrupts, but it can give + _rough_ estimate about the distance. + +prox0_reporting_mode_avail + RO - accepted values to prox0_reporting_mode (trigger, periodic) + +prox0_thresh_above_value + RW - threshold level which trigs proximity events. diff --git a/Documentation/misc-devices/bh1770glc.txt b/Documentation/misc-devices/bh1770glc.txt new file mode 100644 index 00000000000..7d64c014dc7 --- /dev/null +++ b/Documentation/misc-devices/bh1770glc.txt @@ -0,0 +1,116 @@ +Kernel driver bh1770glc +======================= + +Supported chips: +ROHM BH1770GLC +OSRAM SFH7770 + +Data sheet: +Not freely available + +Author: +Samu Onkalo <samu.p.onkalo@nokia.com> + +Description +----------- +BH1770GLC and SFH7770 are combined ambient light and proximity sensors. +ALS and proximity parts operates on their own, but they shares common I2C +interface and interrupt logic. In principle they can run on their own, +but ALS side results are used to estimate reliability of the proximity sensor. + +ALS produces 16 bit lux values. The chip contains interrupt logic to produce +low and high threshold interrupts. + +Proximity part contains IR-led driver up to 3 IR leds. The chip measures +amount of reflected IR light and produces proximity result. Resolution is +8 bit. Driver supports only one channel. Driver uses ALS results to estimate +reliability of the proximity results. Thus ALS is always running while +proximity detection is needed. + +Driver uses threshold interrupts to avoid need for polling the values. +Proximity low interrupt doesn't exists in the chip. This is simulated +by using a delayed work. As long as there is proximity threshold above +interrupts the delayed work is pushed forward. So, when proximity level goes +below the threshold value, there is no interrupt and the delayed work will +finally run. This is handled as no proximity indication. + +Chip state is controlled via runtime pm framework when enabled in config. + +Calibscale factor is used to hide differences between the chips. By default +value set to neutral state meaning factor of 1.00. To get proper values, +calibrated source of light is needed as a reference. Calibscale factor is set +so that measurement produces about the expected lux value. + +SYSFS +----- + +chip_id + RO - shows detected chip type and version + +power_state + RW - enable / disable chip. Uses counting logic + 1 enables the chip + 0 disables the chip + +lux0_input + RO - measured lux value + sysfs_notify called when threshold interrupt occurs + +lux0_sensor_range + RO - lux0_input max value + +lux0_rate + RW - measurement rate in Hz + +lux0_rate_avail + RO - supported measurement rates + +lux0_thresh_above_value + RW - HI level threshold value. All results above the value + trigs an interrupt. 65535 (i.e. sensor_range) disables the above + interrupt. + +lux0_thresh_below_value + RW - LO level threshold value. All results below the value + trigs an interrupt. 0 disables the below interrupt. + +lux0_calibscale + RW - calibration value. Set to neutral value by default. + Output results are multiplied with calibscale / calibscale_default + value. + +lux0_calibscale_default + RO - neutral calibration value + +prox0_raw + RO - measured proximity value + sysfs_notify called when threshold interrupt occurs + +prox0_sensor_range + RO - prox0_raw max value + +prox0_raw_en + RW - enable / disable proximity - uses counting logic + 1 enables the proximity + 0 disables the proximity + +prox0_thresh_above_count + RW - number of proximity interrupts needed before triggering the event + +prox0_rate_above + RW - Measurement rate (in Hz) when the level is above threshold + i.e. when proximity on has been reported. + +prox0_rate_below + RW - Measurement rate (in Hz) when the level is below threshold + i.e. when proximity off has been reported. + +prox0_rate_avail + RO - Supported proximity measurement rates in Hz + +prox0_thresh_above0_value + RW - threshold level which trigs proximity events. + Filtered by persistence filter (prox0_thresh_above_count) + +prox0_thresh_above1_value + RW - threshold level which trigs event immediately diff --git a/Documentation/networking/bonding.txt b/Documentation/networking/bonding.txt index d2b62b71b61..5dc638791d9 100644 --- a/Documentation/networking/bonding.txt +++ b/Documentation/networking/bonding.txt @@ -765,6 +765,14 @@ xmit_hash_policy does not exist, and the layer2 policy is the only policy. The layer2+3 value was added for bonding version 3.2.2. +resend_igmp + + Specifies the number of IGMP membership reports to be issued after + a failover event. One membership report is issued immediately after + the failover, subsequent packets are sent in each 200ms interval. + + The valid range is 0 - 255; the default value is 1. This option + was added for bonding version 3.7.0. 3. Configuring Bonding Devices ============================== diff --git a/Documentation/networking/can.txt b/Documentation/networking/can.txt index cd79735013f..5b04b67ddca 100644 --- a/Documentation/networking/can.txt +++ b/Documentation/networking/can.txt @@ -22,6 +22,7 @@ This file contains 4.1.2 RAW socket option CAN_RAW_ERR_FILTER 4.1.3 RAW socket option CAN_RAW_LOOPBACK 4.1.4 RAW socket option CAN_RAW_RECV_OWN_MSGS + 4.1.5 RAW socket returned message flags 4.2 Broadcast Manager protocol sockets (SOCK_DGRAM) 4.3 connected transport protocols (SOCK_SEQPACKET) 4.4 unconnected transport protocols (SOCK_DGRAM) @@ -471,6 +472,17 @@ solution for a couple of reasons: setsockopt(s, SOL_CAN_RAW, CAN_RAW_RECV_OWN_MSGS, &recv_own_msgs, sizeof(recv_own_msgs)); + 4.1.5 RAW socket returned message flags + + When using recvmsg() call, the msg->msg_flags may contain following flags: + + MSG_DONTROUTE: set when the received frame was created on the local host. + + MSG_CONFIRM: set when the frame was sent via the socket it is received on. + This flag can be interpreted as a 'transmission confirmation' when the + CAN driver supports the echo of frames on driver level, see 3.2 and 6.2. + In order to receive such messages, CAN_RAW_RECV_OWN_MSGS must be set. + 4.2 Broadcast Manager protocol sockets (SOCK_DGRAM) 4.3 connected transport protocols (SOCK_SEQPACKET) 4.4 unconnected transport protocols (SOCK_DGRAM) diff --git a/Documentation/networking/dccp.txt b/Documentation/networking/dccp.txt index a62fdf7a6bf..271d524a4c8 100644 --- a/Documentation/networking/dccp.txt +++ b/Documentation/networking/dccp.txt @@ -1,18 +1,20 @@ DCCP protocol -============ +============= Contents ======== - - Introduction - Missing features - Socket options +- Sysctl variables +- IOCTLs +- Other tunables - Notes + Introduction ============ - Datagram Congestion Control Protocol (DCCP) is an unreliable, connection oriented protocol designed to solve issues present in UDP and TCP, particularly for real-time and multimedia (streaming) traffic. @@ -29,9 +31,9 @@ It has a base protocol and pluggable congestion control IDs (CCIDs). DCCP is a Proposed Standard (RFC 2026), and the homepage for DCCP as a protocol is at http://www.ietf.org/html.charters/dccp-charter.html + Missing features ================ - The Linux DCCP implementation does not currently support all the features that are specified in RFCs 4340...42. @@ -45,7 +47,6 @@ http://linux-net.osdl.org/index.php/DCCP_Testing#Experimental_DCCP_source_tree Socket options ============== - DCCP_SOCKOPT_SERVICE sets the service. The specification mandates use of service codes (RFC 4340, sec. 8.1.2); if this socket option is not set, the socket will fall back to 0 (which means that no meaningful service code @@ -112,6 +113,7 @@ DCCP_SOCKOPT_CCID_TX_INFO On unidirectional connections it is useful to close the unused half-connection via shutdown (SHUT_WR or SHUT_RD): this will reduce per-packet processing costs. + Sysctl variables ================ Several DCCP default parameters can be managed by the following sysctls @@ -155,15 +157,30 @@ sync_ratelimit = 125 ms sequence-invalid packets on the same socket (RFC 4340, 7.5.4). The unit of this parameter is milliseconds; a value of 0 disables rate-limiting. + IOCTLS ====== FIONREAD Works as in udp(7): returns in the `int' argument pointer the size of the next pending datagram in bytes, or 0 when no datagram is pending. + +Other tunables +============== +Per-route rto_min support + CCID-2 supports the RTAX_RTO_MIN per-route setting for the minimum value + of the RTO timer. This setting can be modified via the 'rto_min' option + of iproute2; for example: + > ip route change 10.0.0.0/24 rto_min 250j dev wlan0 + > ip route add 10.0.0.254/32 rto_min 800j dev wlan0 + > ip route show dev wlan0 + CCID-3 also supports the rto_min setting: it is used to define the lower + bound for the expiry of the nofeedback timer. This can be useful on LANs + with very low RTTs (e.g., loopback, Gbit ethernet). + + Notes ===== - DCCP does not travel through NAT successfully at present on many boxes. This is because the checksum covers the pseudo-header as per TCP and UDP. Linux NAT support for DCCP has been added. diff --git a/Documentation/networking/ip-sysctl.txt b/Documentation/networking/ip-sysctl.txt index f350c69b2bb..c7165f4cb79 100644 --- a/Documentation/networking/ip-sysctl.txt +++ b/Documentation/networking/ip-sysctl.txt @@ -1014,6 +1014,12 @@ conf/interface/*: accept_ra - BOOLEAN Accept Router Advertisements; autoconfigure using them. + Possible values are: + 0 Do not accept Router Advertisements. + 1 Accept Router Advertisements if forwarding is disabled. + 2 Overrule forwarding behaviour. Accept Router Advertisements + even if forwarding is enabled. + Functional default: enabled if local forwarding is disabled. disabled if local forwarding is enabled. @@ -1075,7 +1081,12 @@ forwarding - BOOLEAN Note: It is recommended to have the same setting on all interfaces; mixed router/host scenarios are rather uncommon. - FALSE: + Possible values are: + 0 Forwarding disabled + 1 Forwarding enabled + 2 Forwarding enabled (Hybrid Mode) + + FALSE (0): By default, Host behaviour is assumed. This means: @@ -1085,18 +1096,24 @@ forwarding - BOOLEAN Advertisements (and do autoconfiguration). 4. If accept_redirects is TRUE (default), accept Redirects. - TRUE: + TRUE (1): If local forwarding is enabled, Router behaviour is assumed. This means exactly the reverse from the above: 1. IsRouter flag is set in Neighbour Advertisements. 2. Router Solicitations are not sent. - 3. Router Advertisements are ignored. + 3. Router Advertisements are ignored unless accept_ra is 2. 4. Redirects are ignored. - Default: FALSE if global forwarding is disabled (default), - otherwise TRUE. + TRUE (2): + + Hybrid mode. Same behaviour as TRUE, except for: + + 2. Router Solicitations are being sent when necessary. + + Default: 0 (disabled) if global forwarding is disabled (default), + otherwise 1 (enabled). hop_limit - INTEGER Default Hop Limit to set. diff --git a/Documentation/networking/phonet.txt b/Documentation/networking/phonet.txt index 6e8ce09f9c7..24ad2adba6e 100644 --- a/Documentation/networking/phonet.txt +++ b/Documentation/networking/phonet.txt @@ -112,6 +112,22 @@ However, connect() and getpeername() are not supported, as they did not seem useful with Phonet usages (could be added easily). +Resource subscription +--------------------- + +A Phonet datagram socket can be subscribed to any number of 8-bits +Phonet resources, as follow: + + uint32_t res = 0xXX; + ioctl(fd, SIOCPNADDRESOURCE, &res); + +Subscription is similarly cancelled using the SIOCPNDELRESOURCE I/O +control request, or when the socket is closed. + +Note that no more than one socket can be subcribed to any given +resource at a time. If not, ioctl() will return EBUSY. + + Phonet Pipe protocol -------------------- @@ -166,6 +182,46 @@ The pipe protocol provides two socket options at the SOL_PNPIPE level: or zero if encapsulation is off. +Phonet Pipe-controller Implementation +------------------------------------- + +Phonet Pipe-controller is enabled by selecting the CONFIG_PHONET_PIPECTRLR Kconfig +option. It is useful when communicating with those Nokia Modems which do not +implement Pipe controller in them e.g. Nokia Slim Modem used in ST-Ericsson +U8500 platform. + +The implementation is based on the Data Connection Establishment Sequence +depicted in 'Nokia Wireless Modem API - Wireless_modem_user_guide.pdf' +document. + +It allows a phonet sequenced socket (host-pep) to initiate a Pipe connection +between itself and a remote pipe-end point (e.g. modem). + +The implementation adds socket options at SOL_PNPIPE level: + + PNPIPE_PIPE_HANDLE + It accepts an integer argument for setting value of pipe handle. + + PNPIPE_ENABLE accepts one integer value (int). If set to zero, the pipe + is disabled. If the value is non-zero, the pipe is enabled. If the pipe + is not (yet) connected, ENOTCONN is error is returned. + +The implementation also adds socket 'connect'. On calling the 'connect', pipe +will be created between the source socket and the destination, and the pipe +state will be set to PIPE_DISABLED. + +After a pipe has been created and enabled successfully, the Pipe data can be +exchanged between the host-pep and remote-pep (modem). + +User-space would typically follow below sequence with Pipe controller:- +-socket +-bind +-setsockopt for PNPIPE_PIPE_HANDLE +-connect +-setsockopt for PNPIPE_ENCAP_IP +-setsockopt for PNPIPE_ENABLE + + Authors ------- diff --git a/Documentation/networking/phy.txt b/Documentation/networking/phy.txt index 88bb71b46da..9eb1ba52013 100644 --- a/Documentation/networking/phy.txt +++ b/Documentation/networking/phy.txt @@ -177,18 +177,6 @@ Doing it all yourself A convenience function to print out the PHY status neatly. - int phy_clear_interrupt(struct phy_device *phydev); - int phy_config_interrupt(struct phy_device *phydev, u32 interrupts); - - Clear the PHY's interrupt, and configure which ones are allowed, - respectively. Currently only supports all on, or all off. - - int phy_enable_interrupts(struct phy_device *phydev); - int phy_disable_interrupts(struct phy_device *phydev); - - Functions which enable/disable PHY interrupts, clearing them - before and after, respectively. - int phy_start_interrupts(struct phy_device *phydev); int phy_stop_interrupts(struct phy_device *phydev); @@ -213,12 +201,6 @@ Doing it all yourself Fills the phydev structure with up-to-date information about the current settings in the PHY. - void phy_sanitize_settings(struct phy_device *phydev) - - Resolves differences between currently desired settings, and - supported settings for the given PHY device. Does not make - the changes in the hardware, though. - int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd); int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd); diff --git a/Documentation/networking/timestamping.txt b/Documentation/networking/timestamping.txt index e8c8f4f06c6..98097d8cb91 100644 --- a/Documentation/networking/timestamping.txt +++ b/Documentation/networking/timestamping.txt @@ -172,15 +172,19 @@ struct skb_shared_hwtstamps { }; Time stamps for outgoing packets are to be generated as follows: -- In hard_start_xmit(), check if skb_tx(skb)->hardware is set no-zero. - If yes, then the driver is expected to do hardware time stamping. +- In hard_start_xmit(), check if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) + is set no-zero. If yes, then the driver is expected to do hardware time + stamping. - If this is possible for the skb and requested, then declare - that the driver is doing the time stamping by setting the field - skb_tx(skb)->in_progress non-zero. You might want to keep a pointer - to the associated skb for the next step and not free the skb. A driver - not supporting hardware time stamping doesn't do that. A driver must - never touch sk_buff::tstamp! It is used to store software generated - time stamps by the network subsystem. + that the driver is doing the time stamping by setting the flag + SKBTX_IN_PROGRESS in skb_shinfo(skb)->tx_flags , e.g. with + + skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; + + You might want to keep a pointer to the associated skb for the next step + and not free the skb. A driver not supporting hardware time stamping doesn't + do that. A driver must never touch sk_buff::tstamp! It is used to store + software generated time stamps by the network subsystem. - As soon as the driver has sent the packet and/or obtained a hardware time stamp for it, it passes the time stamp back by calling skb_hwtstamp_tx() with the original skb, the raw @@ -191,6 +195,6 @@ Time stamps for outgoing packets are to be generated as follows: this would occur at a later time in the processing pipeline than other software time stamping and therefore could lead to unexpected deltas between time stamps. -- If the driver did not call set skb_tx(skb)->in_progress, then +- If the driver did not set the SKBTX_IN_PROGRESS flag (see above), then dev_hard_start_xmit() checks whether software time stamping is wanted as fallback and potentially generates the time stamp. diff --git a/Documentation/sound/alsa/ALSA-Configuration.txt b/Documentation/sound/alsa/ALSA-Configuration.txt index 7f4dcebda9c..d0eb696d32e 100644 --- a/Documentation/sound/alsa/ALSA-Configuration.txt +++ b/Documentation/sound/alsa/ALSA-Configuration.txt @@ -300,6 +300,74 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. control correctly. If you have problems regarding this, try another ALSA compliant mixer (alsamixer works). + Module snd-azt1605 + ------------------ + + Module for Aztech Sound Galaxy soundcards based on the Aztech AZT1605 + chipset. + + port - port # for BASE (0x220,0x240,0x260,0x280) + wss_port - port # for WSS (0x530,0x604,0xe80,0xf40) + irq - IRQ # for WSS (7,9,10,11) + dma1 - DMA # for WSS playback (0,1,3) + dma2 - DMA # for WSS capture (0,1), -1 = disabled (default) + mpu_port - port # for MPU-401 UART (0x300,0x330), -1 = disabled (default) + mpu_irq - IRQ # for MPU-401 UART (3,5,7,9), -1 = disabled (default) + fm_port - port # for OPL3 (0x388), -1 = disabled (default) + + This module supports multiple cards. It does not support autoprobe: port, + wss_port, irq and dma1 have to be specified. The other values are + optional. + + "port" needs to match the BASE ADDRESS jumper on the card (0x220 or 0x240) + or the value stored in the card's EEPROM for cards that have an EEPROM and + their "CONFIG MODE" jumper set to "EEPROM SETTING". The other values can + be choosen freely from the options enumerated above. + + If dma2 is specified and different from dma1, the card will operate in + full-duplex mode. When dma1=3, only dma2=0 is valid and the only way to + enable capture since only channels 0 and 1 are available for capture. + + Generic settings are "port=0x220 wss_port=0x530 irq=10 dma1=1 dma2=0 + mpu_port=0x330 mpu_irq=9 fm_port=0x388". + + Whatever IRQ and DMA channels you pick, be sure to reserve them for + legacy ISA in your BIOS. + + Module snd-azt2316 + ------------------ + + Module for Aztech Sound Galaxy soundcards based on the Aztech AZT2316 + chipset. + + port - port # for BASE (0x220,0x240,0x260,0x280) + wss_port - port # for WSS (0x530,0x604,0xe80,0xf40) + irq - IRQ # for WSS (7,9,10,11) + dma1 - DMA # for WSS playback (0,1,3) + dma2 - DMA # for WSS capture (0,1), -1 = disabled (default) + mpu_port - port # for MPU-401 UART (0x300,0x330), -1 = disabled (default) + mpu_irq - IRQ # for MPU-401 UART (5,7,9,10), -1 = disabled (default) + fm_port - port # for OPL3 (0x388), -1 = disabled (default) + + This module supports multiple cards. It does not support autoprobe: port, + wss_port, irq and dma1 have to be specified. The other values are + optional. + + "port" needs to match the BASE ADDRESS jumper on the card (0x220 or 0x240) + or the value stored in the card's EEPROM for cards that have an EEPROM and + their "CONFIG MODE" jumper set to "EEPROM SETTING". The other values can + be choosen freely from the options enumerated above. + + If dma2 is specified and different from dma1, the card will operate in + full-duplex mode. When dma1=3, only dma2=0 is valid and the only way to + enable capture since only channels 0 and 1 are available for capture. + + Generic settings are "port=0x220 wss_port=0x530 irq=10 dma1=1 dma2=0 + mpu_port=0x330 mpu_irq=9 fm_port=0x388". + + Whatever IRQ and DMA channels you pick, be sure to reserve them for + legacy ISA in your BIOS. + Module snd-aw2 -------------- @@ -1641,20 +1709,6 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. This card is also known as Audio Excel DSP 16 or Zoltrix AV302. - Module snd-sgalaxy - ------------------ - - Module for Aztech Sound Galaxy sound card. - - sbport - Port # for SB16 interface (0x220,0x240) - wssport - Port # for WSS interface (0x530,0xe80,0xf40,0x604) - irq - IRQ # (7,9,10,11) - dma1 - DMA # - - This module supports multiple cards. - - The power-management is supported. - Module snd-sscape ----------------- diff --git a/Documentation/sound/alsa/HD-Audio.txt b/Documentation/sound/alsa/HD-Audio.txt index 278cc2122ea..c82beb00763 100644 --- a/Documentation/sound/alsa/HD-Audio.txt +++ b/Documentation/sound/alsa/HD-Audio.txt @@ -57,9 +57,11 @@ dead. However, this detection isn't perfect on some devices. In such a case, you can change the default method via `position_fix` option. `position_fix=1` means to use LPIB method explicitly. -`position_fix=2` means to use the position-buffer. 0 is the default -value, the automatic check and fallback to LPIB as described in the -above. If you get a problem of repeated sounds, this option might +`position_fix=2` means to use the position-buffer. +`position_fix=3` means to use a combination of both methods, needed +for some VIA and ATI controllers. 0 is the default value for all other +controllers, the automatic check and fallback to LPIB as described in +the above. If you get a problem of repeated sounds, this option might help. In addition to that, every controller is known to be broken regarding diff --git a/Documentation/sysctl/vm.txt b/Documentation/sysctl/vm.txt index b606c2c4dd3..30289fab86e 100644 --- a/Documentation/sysctl/vm.txt +++ b/Documentation/sysctl/vm.txt @@ -80,8 +80,10 @@ dirty_background_bytes Contains the amount of dirty memory at which the pdflush background writeback daemon will start writeback. -If dirty_background_bytes is written, dirty_background_ratio becomes a function -of its value (dirty_background_bytes / the amount of dirtyable system memory). +Note: dirty_background_bytes is the counterpart of dirty_background_ratio. Only +one of them may be specified at a time. When one sysctl is written it is +immediately taken into account to evaluate the dirty memory limits and the +other appears as 0 when read. ============================================================== @@ -97,8 +99,10 @@ dirty_bytes Contains the amount of dirty memory at which a process generating disk writes will itself start writeback. -If dirty_bytes is written, dirty_ratio becomes a function of its value -(dirty_bytes / the amount of dirtyable system memory). +Note: dirty_bytes is the counterpart of dirty_ratio. Only one of them may be +specified at a time. When one sysctl is written it is immediately taken into +account to evaluate the dirty memory limits and the other appears as 0 when +read. Note: the minimum value allowed for dirty_bytes is two pages (in bytes); any value lower than this limit will be ignored and the old configuration will be diff --git a/Documentation/sysrq.txt b/Documentation/sysrq.txt index 5c17196c8fe..312e3754e8c 100644 --- a/Documentation/sysrq.txt +++ b/Documentation/sysrq.txt @@ -75,7 +75,7 @@ On all - write a character to /proc/sysrq-trigger. e.g.: 'f' - Will call oom_kill to kill a memory hog process. -'g' - Used by kgdb on ppc and sh platforms. +'g' - Used by kgdb (kernel debugger) 'h' - Will display help (actually any other key than those listed here will display help. but 'h' is easy to remember :-) @@ -110,12 +110,15 @@ On all - write a character to /proc/sysrq-trigger. e.g.: 'u' - Will attempt to remount all mounted filesystems read-only. -'v' - Dumps Voyager SMP processor info to your console. +'v' - Forcefully restores framebuffer console +'v' - Causes ETM buffer dump [ARM-specific] 'w' - Dumps tasks that are in uninterruptable (blocked) state. 'x' - Used by xmon interface on ppc/powerpc platforms. +'y' - Show global CPU Registers [SPARC-64 specific] + 'z' - Dump the ftrace buffer '0'-'9' - Sets the console log level, controlling which kernel messages diff --git a/Documentation/timers/hpet_example.c b/Documentation/timers/hpet_example.c index 4bfafb7bc4c..9a3e7012c19 100644 --- a/Documentation/timers/hpet_example.c +++ b/Documentation/timers/hpet_example.c @@ -97,6 +97,33 @@ hpet_open_close(int argc, const char **argv) void hpet_info(int argc, const char **argv) { + struct hpet_info info; + int fd; + + if (argc != 1) { + fprintf(stderr, "hpet_info: device-name\n"); + return; + } + + fd = open(argv[0], O_RDONLY); + if (fd < 0) { + fprintf(stderr, "hpet_info: open of %s failed\n", argv[0]); + return; + } + + if (ioctl(fd, HPET_INFO, &info) < 0) { + fprintf(stderr, "hpet_info: failed to get info\n"); + goto out; + } + + fprintf(stderr, "hpet_info: hi_irqfreq 0x%lx hi_flags 0x%lx ", + info.hi_ireqfreq, info.hi_flags); + fprintf(stderr, "hi_hpet %d hi_timer %d\n", + info.hi_hpet, info.hi_timer); + +out: + close(fd); + return; } void diff --git a/Documentation/trace/postprocess/trace-vmscan-postprocess.pl b/Documentation/trace/postprocess/trace-vmscan-postprocess.pl index 1b55146d1c8..b3e73ddb156 100644 --- a/Documentation/trace/postprocess/trace-vmscan-postprocess.pl +++ b/Documentation/trace/postprocess/trace-vmscan-postprocess.pl @@ -46,7 +46,7 @@ use constant HIGH_KSWAPD_LATENCY => 20; use constant HIGH_KSWAPD_REWAKEUP => 21; use constant HIGH_NR_SCANNED => 22; use constant HIGH_NR_TAKEN => 23; -use constant HIGH_NR_RECLAIM => 24; +use constant HIGH_NR_RECLAIMED => 24; use constant HIGH_NR_CONTIG_DIRTY => 25; my %perprocesspid; @@ -58,11 +58,13 @@ my $opt_read_procstat; my $total_wakeup_kswapd; my ($total_direct_reclaim, $total_direct_nr_scanned); my ($total_direct_latency, $total_kswapd_latency); +my ($total_direct_nr_reclaimed); my ($total_direct_writepage_file_sync, $total_direct_writepage_file_async); my ($total_direct_writepage_anon_sync, $total_direct_writepage_anon_async); my ($total_kswapd_nr_scanned, $total_kswapd_wake); my ($total_kswapd_writepage_file_sync, $total_kswapd_writepage_file_async); my ($total_kswapd_writepage_anon_sync, $total_kswapd_writepage_anon_async); +my ($total_kswapd_nr_reclaimed); # Catch sigint and exit on request my $sigint_report = 0; @@ -104,7 +106,7 @@ my $regex_kswapd_wake_default = 'nid=([0-9]*) order=([0-9]*)'; my $regex_kswapd_sleep_default = 'nid=([0-9]*)'; my $regex_wakeup_kswapd_default = 'nid=([0-9]*) zid=([0-9]*) order=([0-9]*)'; my $regex_lru_isolate_default = 'isolate_mode=([0-9]*) order=([0-9]*) nr_requested=([0-9]*) nr_scanned=([0-9]*) nr_taken=([0-9]*) contig_taken=([0-9]*) contig_dirty=([0-9]*) contig_failed=([0-9]*)'; -my $regex_lru_shrink_inactive_default = 'lru=([A-Z_]*) nr_scanned=([0-9]*) nr_reclaimed=([0-9]*) priority=([0-9]*)'; +my $regex_lru_shrink_inactive_default = 'nid=([0-9]*) zid=([0-9]*) nr_scanned=([0-9]*) nr_reclaimed=([0-9]*) priority=([0-9]*) flags=([A-Z_|]*)'; my $regex_lru_shrink_active_default = 'lru=([A-Z_]*) nr_scanned=([0-9]*) nr_rotated=([0-9]*) priority=([0-9]*)'; my $regex_writepage_default = 'page=([0-9a-f]*) pfn=([0-9]*) flags=([A-Z_|]*)'; @@ -203,8 +205,8 @@ $regex_lru_shrink_inactive = generate_traceevent_regex( "vmscan/mm_vmscan_lru_shrink_inactive", $regex_lru_shrink_inactive_default, "nid", "zid", - "lru", - "nr_scanned", "nr_reclaimed", "priority"); + "nr_scanned", "nr_reclaimed", "priority", + "flags"); $regex_lru_shrink_active = generate_traceevent_regex( "vmscan/mm_vmscan_lru_shrink_active", $regex_lru_shrink_active_default, @@ -375,6 +377,16 @@ EVENT_PROCESS: my $nr_contig_dirty = $7; $perprocesspid{$process_pid}->{HIGH_NR_SCANNED} += $nr_scanned; $perprocesspid{$process_pid}->{HIGH_NR_CONTIG_DIRTY} += $nr_contig_dirty; + } elsif ($tracepoint eq "mm_vmscan_lru_shrink_inactive") { + $details = $5; + if ($details !~ /$regex_lru_shrink_inactive/o) { + print "WARNING: Failed to parse mm_vmscan_lru_shrink_inactive as expected\n"; + print " $details\n"; + print " $regex_lru_shrink_inactive/o\n"; + next; + } + my $nr_reclaimed = $4; + $perprocesspid{$process_pid}->{HIGH_NR_RECLAIMED} += $nr_reclaimed; } elsif ($tracepoint eq "mm_vmscan_writepage") { $details = $5; if ($details !~ /$regex_writepage/o) { @@ -464,8 +476,8 @@ sub dump_stats { # Print out process activity printf("\n"); - printf("%-" . $max_strlen . "s %8s %10s %8s %8s %8s %8s %8s\n", "Process", "Direct", "Wokeup", "Pages", "Pages", "Pages", "Time"); - printf("%-" . $max_strlen . "s %8s %10s %8s %8s %8s %8s %8s\n", "details", "Rclms", "Kswapd", "Scanned", "Sync-IO", "ASync-IO", "Stalled"); + printf("%-" . $max_strlen . "s %8s %10s %8s %8s %8s %8s %8s %8s\n", "Process", "Direct", "Wokeup", "Pages", "Pages", "Pages", "Pages", "Time"); + printf("%-" . $max_strlen . "s %8s %10s %8s %8s %8s %8s %8s %8s\n", "details", "Rclms", "Kswapd", "Scanned", "Rclmed", "Sync-IO", "ASync-IO", "Stalled"); foreach $process_pid (keys %stats) { if (!$stats{$process_pid}->{MM_VMSCAN_DIRECT_RECLAIM_BEGIN}) { @@ -475,6 +487,7 @@ sub dump_stats { $total_direct_reclaim += $stats{$process_pid}->{MM_VMSCAN_DIRECT_RECLAIM_BEGIN}; $total_wakeup_kswapd += $stats{$process_pid}->{MM_VMSCAN_WAKEUP_KSWAPD}; $total_direct_nr_scanned += $stats{$process_pid}->{HIGH_NR_SCANNED}; + $total_direct_nr_reclaimed += $stats{$process_pid}->{HIGH_NR_RECLAIMED}; $total_direct_writepage_file_sync += $stats{$process_pid}->{MM_VMSCAN_WRITEPAGE_FILE_SYNC}; $total_direct_writepage_anon_sync += $stats{$process_pid}->{MM_VMSCAN_WRITEPAGE_ANON_SYNC}; $total_direct_writepage_file_async += $stats{$process_pid}->{MM_VMSCAN_WRITEPAGE_FILE_ASYNC}; @@ -489,11 +502,12 @@ sub dump_stats { $index++; } - printf("%-" . $max_strlen . "s %8d %10d %8u %8u %8u %8.3f", + printf("%-" . $max_strlen . "s %8d %10d %8u %8u %8u %8u %8.3f", $process_pid, $stats{$process_pid}->{MM_VMSCAN_DIRECT_RECLAIM_BEGIN}, $stats{$process_pid}->{MM_VMSCAN_WAKEUP_KSWAPD}, $stats{$process_pid}->{HIGH_NR_SCANNED}, + $stats{$process_pid}->{HIGH_NR_RECLAIMED}, $stats{$process_pid}->{MM_VMSCAN_WRITEPAGE_FILE_SYNC} + $stats{$process_pid}->{MM_VMSCAN_WRITEPAGE_ANON_SYNC}, $stats{$process_pid}->{MM_VMSCAN_WRITEPAGE_FILE_ASYNC} + $stats{$process_pid}->{MM_VMSCAN_WRITEPAGE_ANON_ASYNC}, $this_reclaim_delay / 1000); @@ -529,8 +543,8 @@ sub dump_stats { # Print out kswapd activity printf("\n"); - printf("%-" . $max_strlen . "s %8s %10s %8s %8s %8s %8s\n", "Kswapd", "Kswapd", "Order", "Pages", "Pages", "Pages"); - printf("%-" . $max_strlen . "s %8s %10s %8s %8s %8s %8s\n", "Instance", "Wakeups", "Re-wakeup", "Scanned", "Sync-IO", "ASync-IO"); + printf("%-" . $max_strlen . "s %8s %10s %8s %8s %8s %8s\n", "Kswapd", "Kswapd", "Order", "Pages", "Pages", "Pages", "Pages"); + printf("%-" . $max_strlen . "s %8s %10s %8s %8s %8s %8s\n", "Instance", "Wakeups", "Re-wakeup", "Scanned", "Rclmed", "Sync-IO", "ASync-IO"); foreach $process_pid (keys %stats) { if (!$stats{$process_pid}->{MM_VMSCAN_KSWAPD_WAKE}) { @@ -539,16 +553,18 @@ sub dump_stats { $total_kswapd_wake += $stats{$process_pid}->{MM_VMSCAN_KSWAPD_WAKE}; $total_kswapd_nr_scanned += $stats{$process_pid}->{HIGH_NR_SCANNED}; + $total_kswapd_nr_reclaimed += $stats{$process_pid}->{HIGH_NR_RECLAIMED}; $total_kswapd_writepage_file_sync += $stats{$process_pid}->{MM_VMSCAN_WRITEPAGE_FILE_SYNC}; $total_kswapd_writepage_anon_sync += $stats{$process_pid}->{MM_VMSCAN_WRITEPAGE_ANON_SYNC}; $total_kswapd_writepage_file_async += $stats{$process_pid}->{MM_VMSCAN_WRITEPAGE_FILE_ASYNC}; $total_kswapd_writepage_anon_async += $stats{$process_pid}->{MM_VMSCAN_WRITEPAGE_ANON_ASYNC}; - printf("%-" . $max_strlen . "s %8d %10d %8u %8i %8u", + printf("%-" . $max_strlen . "s %8d %10d %8u %8u %8i %8u", $process_pid, $stats{$process_pid}->{MM_VMSCAN_KSWAPD_WAKE}, $stats{$process_pid}->{HIGH_KSWAPD_REWAKEUP}, $stats{$process_pid}->{HIGH_NR_SCANNED}, + $stats{$process_pid}->{HIGH_NR_RECLAIMED}, $stats{$process_pid}->{MM_VMSCAN_WRITEPAGE_FILE_SYNC} + $stats{$process_pid}->{MM_VMSCAN_WRITEPAGE_ANON_SYNC}, $stats{$process_pid}->{MM_VMSCAN_WRITEPAGE_FILE_ASYNC} + $stats{$process_pid}->{MM_VMSCAN_WRITEPAGE_ANON_ASYNC}); @@ -579,6 +595,7 @@ sub dump_stats { print "\nSummary\n"; print "Direct reclaims: $total_direct_reclaim\n"; print "Direct reclaim pages scanned: $total_direct_nr_scanned\n"; + print "Direct reclaim pages reclaimed: $total_direct_nr_reclaimed\n"; print "Direct reclaim write file sync I/O: $total_direct_writepage_file_sync\n"; print "Direct reclaim write anon sync I/O: $total_direct_writepage_anon_sync\n"; print "Direct reclaim write file async I/O: $total_direct_writepage_file_async\n"; @@ -588,6 +605,7 @@ sub dump_stats { print "\n"; print "Kswapd wakeups: $total_kswapd_wake\n"; print "Kswapd pages scanned: $total_kswapd_nr_scanned\n"; + print "Kswapd pages reclaimed: $total_kswapd_nr_reclaimed\n"; print "Kswapd reclaim write file sync I/O: $total_kswapd_writepage_file_sync\n"; print "Kswapd reclaim write anon sync I/O: $total_kswapd_writepage_anon_sync\n"; print "Kswapd reclaim write file async I/O: $total_kswapd_writepage_file_async\n"; @@ -612,6 +630,7 @@ sub aggregate_perprocesspid() { $perprocess{$process}->{MM_VMSCAN_WAKEUP_KSWAPD} += $perprocesspid{$process_pid}->{MM_VMSCAN_WAKEUP_KSWAPD}; $perprocess{$process}->{HIGH_KSWAPD_REWAKEUP} += $perprocesspid{$process_pid}->{HIGH_KSWAPD_REWAKEUP}; $perprocess{$process}->{HIGH_NR_SCANNED} += $perprocesspid{$process_pid}->{HIGH_NR_SCANNED}; + $perprocess{$process}->{HIGH_NR_RECLAIMED} += $perprocesspid{$process_pid}->{HIGH_NR_RECLAIMED}; $perprocess{$process}->{MM_VMSCAN_WRITEPAGE_FILE_SYNC} += $perprocesspid{$process_pid}->{MM_VMSCAN_WRITEPAGE_FILE_SYNC}; $perprocess{$process}->{MM_VMSCAN_WRITEPAGE_ANON_SYNC} += $perprocesspid{$process_pid}->{MM_VMSCAN_WRITEPAGE_ANON_SYNC}; $perprocess{$process}->{MM_VMSCAN_WRITEPAGE_FILE_ASYNC} += $perprocesspid{$process_pid}->{MM_VMSCAN_WRITEPAGE_FILE_ASYNC}; diff --git a/Documentation/vm/highmem.txt b/Documentation/vm/highmem.txt new file mode 100644 index 00000000000..4324d24ffac --- /dev/null +++ b/Documentation/vm/highmem.txt @@ -0,0 +1,162 @@ + + ==================== + HIGH MEMORY HANDLING + ==================== + +By: Peter Zijlstra <a.p.zijlstra@chello.nl> + +Contents: + + (*) What is high memory? + + (*) Temporary virtual mappings. + + (*) Using kmap_atomic. + + (*) Cost of temporary mappings. + + (*) i386 PAE. + + +==================== +WHAT IS HIGH MEMORY? +==================== + +High memory (highmem) is used when the size of physical memory approaches or +exceeds the maximum size of virtual memory. At that point it becomes +impossible for the kernel to keep all of the available physical memory mapped +at all times. This means the kernel needs to start using temporary mappings of +the pieces of physical memory that it wants to access. + +The part of (physical) memory not covered by a permanent mapping is what we +refer to as 'highmem'. There are various architecture dependent constraints on +where exactly that border lies. + +In the i386 arch, for example, we choose to map the kernel into every process's +VM space so that we don't have to pay the full TLB invalidation costs for +kernel entry/exit. This means the available virtual memory space (4GiB on +i386) has to be divided between user and kernel space. + +The traditional split for architectures using this approach is 3:1, 3GiB for +userspace and the top 1GiB for kernel space: + + +--------+ 0xffffffff + | Kernel | + +--------+ 0xc0000000 + | | + | User | + | | + +--------+ 0x00000000 + +This means that the kernel can at most map 1GiB of physical memory at any one +time, but because we need virtual address space for other things - including +temporary maps to access the rest of the physical memory - the actual direct +map will typically be less (usually around ~896MiB). + +Other architectures that have mm context tagged TLBs can have separate kernel +and user maps. Some hardware (like some ARMs), however, have limited virtual +space when they use mm context tags. + + +========================== +TEMPORARY VIRTUAL MAPPINGS +========================== + +The kernel contains several ways of creating temporary mappings: + + (*) vmap(). This can be used to make a long duration mapping of multiple + physical pages into a contiguous virtual space. It needs global + synchronization to unmap. + + (*) kmap(). This permits a short duration mapping of a single page. It needs + global synchronization, but is amortized somewhat. It is also prone to + deadlocks when using in a nested fashion, and so it is not recommended for + new code. + + (*) kmap_atomic(). This permits a very short duration mapping of a single + page. Since the mapping is restricted to the CPU that issued it, it + performs well, but the issuing task is therefore required to stay on that + CPU until it has finished, lest some other task displace its mappings. + + kmap_atomic() may also be used by interrupt contexts, since it is does not + sleep and the caller may not sleep until after kunmap_atomic() is called. + + It may be assumed that k[un]map_atomic() won't fail. + + +================= +USING KMAP_ATOMIC +================= + +When and where to use kmap_atomic() is straightforward. It is used when code +wants to access the contents of a page that might be allocated from high memory +(see __GFP_HIGHMEM), for example a page in the pagecache. The API has two +functions, and they can be used in a manner similar to the following: + + /* Find the page of interest. */ + struct page *page = find_get_page(mapping, offset); + + /* Gain access to the contents of that page. */ + void *vaddr = kmap_atomic(page); + + /* Do something to the contents of that page. */ + memset(vaddr, 0, PAGE_SIZE); + + /* Unmap that page. */ + kunmap_atomic(vaddr); + +Note that the kunmap_atomic() call takes the result of the kmap_atomic() call +not the argument. + +If you need to map two pages because you want to copy from one page to +another you need to keep the kmap_atomic calls strictly nested, like: + + vaddr1 = kmap_atomic(page1); + vaddr2 = kmap_atomic(page2); + + memcpy(vaddr1, vaddr2, PAGE_SIZE); + + kunmap_atomic(vaddr2); + kunmap_atomic(vaddr1); + + +========================== +COST OF TEMPORARY MAPPINGS +========================== + +The cost of creating temporary mappings can be quite high. The arch has to +manipulate the kernel's page tables, the data TLB and/or the MMU's registers. + +If CONFIG_HIGHMEM is not set, then the kernel will try and create a mapping +simply with a bit of arithmetic that will convert the page struct address into +a pointer to the page contents rather than juggling mappings about. In such a +case, the unmap operation may be a null operation. + +If CONFIG_MMU is not set, then there can be no temporary mappings and no +highmem. In such a case, the arithmetic approach will also be used. + + +======== +i386 PAE +======== + +The i386 arch, under some circumstances, will permit you to stick up to 64GiB +of RAM into your 32-bit machine. This has a number of consequences: + + (*) Linux needs a page-frame structure for each page in the system and the + pageframes need to live in the permanent mapping, which means: + + (*) you can have 896M/sizeof(struct page) page-frames at most; with struct + page being 32-bytes that would end up being something in the order of 112G + worth of pages; the kernel, however, needs to store more than just + page-frames in that memory... + + (*) PAE makes your page tables larger - which slows the system down as more + data has to be accessed to traverse in TLB fills and the like. One + advantage is that PAE has more PTE bits and can provide advanced features + like NX and PAT. + +The general recommendation is that you don't use more than 8GiB on a 32-bit +machine - although more might work for you and your workload, you're pretty +much on your own - don't expect kernel developers to really care much if things +come apart. diff --git a/Documentation/vm/numa_memory_policy.txt b/Documentation/vm/numa_memory_policy.txt index 6690fc34ef6..4e7da654342 100644 --- a/Documentation/vm/numa_memory_policy.txt +++ b/Documentation/vm/numa_memory_policy.txt @@ -424,7 +424,7 @@ a command line tool, numactl(8), exists that allows one to: + set the shared policy for a shared memory segment via mbind(2) -The numactl(8) tool is packages with the run-time version of the library +The numactl(8) tool is packaged with the run-time version of the library containing the memory policy system call wrappers. Some distributions package the headers and compile-time libraries in a separate development package. |