aboutsummaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/DocBook/drm.tmpl2835
1 files changed, 2226 insertions, 609 deletions
diff --git a/Documentation/DocBook/drm.tmpl b/Documentation/DocBook/drm.tmpl
index 196b8b9dba1..b0300529ab1 100644
--- a/Documentation/DocBook/drm.tmpl
+++ b/Documentation/DocBook/drm.tmpl
@@ -6,11 +6,36 @@
<bookinfo>
<title>Linux DRM Developer's Guide</title>
+ <authorgroup>
+ <author>
+ <firstname>Jesse</firstname>
+ <surname>Barnes</surname>
+ <contrib>Initial version</contrib>
+ <affiliation>
+ <orgname>Intel Corporation</orgname>
+ <address>
+ <email>jesse.barnes@intel.com</email>
+ </address>
+ </affiliation>
+ </author>
+ <author>
+ <firstname>Laurent</firstname>
+ <surname>Pinchart</surname>
+ <contrib>Driver internals</contrib>
+ <affiliation>
+ <orgname>Ideas on board SPRL</orgname>
+ <address>
+ <email>laurent.pinchart@ideasonboard.com</email>
+ </address>
+ </affiliation>
+ </author>
+ </authorgroup>
+
<copyright>
<year>2008-2009</year>
- <holder>
- Intel Corporation (Jesse Barnes &lt;jesse.barnes@intel.com&gt;)
- </holder>
+ <year>2012</year>
+ <holder>Intel Corporation</holder>
+ <holder>Laurent Pinchart</holder>
</copyright>
<legalnotice>
@@ -20,6 +45,17 @@
the kernel source COPYING file.
</para>
</legalnotice>
+
+ <revhistory>
+ <!-- Put document revisions here, newest first. -->
+ <revision>
+ <revnumber>1.0</revnumber>
+ <date>2012-07-13</date>
+ <authorinitials>LP</authorinitials>
+ <revremark>Added extensive documentation about driver internals.
+ </revremark>
+ </revision>
+ </revhistory>
</bookinfo>
<toc></toc>
@@ -72,342 +108,361 @@
submission &amp; fencing, suspend/resume support, and DMA
services.
</para>
- <para>
- The core of every DRM driver is struct drm_driver. Drivers
- typically statically initialize a drm_driver structure,
- then pass it to drm_init() at load time.
- </para>
<!-- Internals: driver init -->
<sect1>
- <title>Driver initialization</title>
- <para>
- Before calling the DRM initialization routines, the driver must
- first create and fill out a struct drm_driver structure.
- </para>
- <programlisting>
- static struct drm_driver driver = {
- /* Don't use MTRRs here; the Xserver or userspace app should
- * deal with them for Intel hardware.
- */
- .driver_features =
- DRIVER_USE_AGP | DRIVER_REQUIRE_AGP |
- DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_MODESET,
- .load = i915_driver_load,
- .unload = i915_driver_unload,
- .firstopen = i915_driver_firstopen,
- .lastclose = i915_driver_lastclose,
- .preclose = i915_driver_preclose,
- .save = i915_save,
- .restore = i915_restore,
- .device_is_agp = i915_driver_device_is_agp,
- .get_vblank_counter = i915_get_vblank_counter,
- .enable_vblank = i915_enable_vblank,
- .disable_vblank = i915_disable_vblank,
- .irq_preinstall = i915_driver_irq_preinstall,
- .irq_postinstall = i915_driver_irq_postinstall,
- .irq_uninstall = i915_driver_irq_uninstall,
- .irq_handler = i915_driver_irq_handler,
- .reclaim_buffers = drm_core_reclaim_buffers,
- .get_map_ofs = drm_core_get_map_ofs,
- .get_reg_ofs = drm_core_get_reg_ofs,
- .fb_probe = intelfb_probe,
- .fb_remove = intelfb_remove,
- .fb_resize = intelfb_resize,
- .master_create = i915_master_create,
- .master_destroy = i915_master_destroy,
-#if defined(CONFIG_DEBUG_FS)
- .debugfs_init = i915_debugfs_init,
- .debugfs_cleanup = i915_debugfs_cleanup,
-#endif
- .gem_init_object = i915_gem_init_object,
- .gem_free_object = i915_gem_free_object,
- .gem_vm_ops = &amp;i915_gem_vm_ops,
- .ioctls = i915_ioctls,
- .fops = {
- .owner = THIS_MODULE,
- .open = drm_open,
- .release = drm_release,
- .ioctl = drm_ioctl,
- .mmap = drm_mmap,
- .poll = drm_poll,
- .fasync = drm_fasync,
-#ifdef CONFIG_COMPAT
- .compat_ioctl = i915_compat_ioctl,
-#endif
- .llseek = noop_llseek,
- },
- .pci_driver = {
- .name = DRIVER_NAME,
- .id_table = pciidlist,
- .probe = probe,
- .remove = __devexit_p(drm_cleanup_pci),
- },
- .name = DRIVER_NAME,
- .desc = DRIVER_DESC,
- .date = DRIVER_DATE,
- .major = DRIVER_MAJOR,
- .minor = DRIVER_MINOR,
- .patchlevel = DRIVER_PATCHLEVEL,
- };
- </programlisting>
- <para>
- In the example above, taken from the i915 DRM driver, the driver
- sets several flags indicating what core features it supports;
- we go over the individual callbacks in later sections. Since
- flags indicate which features your driver supports to the DRM
- core, you need to set most of them prior to calling drm_init(). Some,
- like DRIVER_MODESET can be set later based on user supplied parameters,
- but that's the exception rather than the rule.
- </para>
- <variablelist>
- <title>Driver flags</title>
- <varlistentry>
- <term>DRIVER_USE_AGP</term>
- <listitem><para>
- Driver uses AGP interface
- </para></listitem>
- </varlistentry>
- <varlistentry>
- <term>DRIVER_REQUIRE_AGP</term>
- <listitem><para>
- Driver needs AGP interface to function.
- </para></listitem>
- </varlistentry>
- <varlistentry>
- <term>DRIVER_USE_MTRR</term>
- <listitem>
- <para>
- Driver uses MTRR interface for mapping memory. Deprecated.
- </para>
- </listitem>
- </varlistentry>
- <varlistentry>
- <term>DRIVER_PCI_DMA</term>
- <listitem><para>
- Driver is capable of PCI DMA. Deprecated.
- </para></listitem>
- </varlistentry>
- <varlistentry>
- <term>DRIVER_SG</term>
- <listitem><para>
- Driver can perform scatter/gather DMA. Deprecated.
- </para></listitem>
- </varlistentry>
- <varlistentry>
- <term>DRIVER_HAVE_DMA</term>
- <listitem><para>Driver supports DMA. Deprecated.</para></listitem>
- </varlistentry>
- <varlistentry>
- <term>DRIVER_HAVE_IRQ</term><term>DRIVER_IRQ_SHARED</term>
- <listitem>
- <para>
- DRIVER_HAVE_IRQ indicates whether the driver has an IRQ
- handler. DRIVER_IRQ_SHARED indicates whether the device &amp;
- handler support shared IRQs (note that this is required of
- PCI drivers).
- </para>
- </listitem>
- </varlistentry>
- <varlistentry>
- <term>DRIVER_DMA_QUEUE</term>
- <listitem>
- <para>
- Should be set if the driver queues DMA requests and completes them
- asynchronously. Deprecated.
- </para>
- </listitem>
- </varlistentry>
- <varlistentry>
- <term>DRIVER_FB_DMA</term>
- <listitem>
- <para>
- Driver supports DMA to/from the framebuffer. Deprecated.
- </para>
- </listitem>
- </varlistentry>
- <varlistentry>
- <term>DRIVER_MODESET</term>
- <listitem>
- <para>
- Driver supports mode setting interfaces.
- </para>
- </listitem>
- </varlistentry>
- </variablelist>
- <para>
- In this specific case, the driver requires AGP and supports
- IRQs. DMA, as discussed later, is handled by device-specific ioctls
- in this case. It also supports the kernel mode setting APIs, though
- unlike in the actual i915 driver source, this example unconditionally
- exports KMS capability.
+ <title>Driver Initialization</title>
+ <para>
+ At the core of every DRM driver is a <structname>drm_driver</structname>
+ structure. Drivers typically statically initialize a drm_driver structure,
+ and then pass it to one of the <function>drm_*_init()</function> functions
+ to register it with the DRM subsystem.
</para>
- </sect1>
-
- <!-- Internals: driver load -->
-
- <sect1>
- <title>Driver load</title>
- <para>
- In the previous section, we saw what a typical drm_driver
- structure might look like. One of the more important fields in
- the structure is the hook for the load function.
- </para>
- <programlisting>
- static struct drm_driver driver = {
- ...
- .load = i915_driver_load,
- ...
- };
- </programlisting>
- <para>
- The load function has many responsibilities: allocating a driver
- private structure, specifying supported performance counters,
- configuring the device (e.g. mapping registers &amp; command
- buffers), initializing the memory manager, and setting up the
- initial output configuration.
- </para>
- <para>
- If compatibility is a concern (e.g. with drivers converted over
- to the new interfaces from the old ones), care must be taken to
- prevent device initialization and control that is incompatible with
- currently active userspace drivers. For instance, if user
- level mode setting drivers are in use, it would be problematic
- to perform output discovery &amp; configuration at load time.
- Likewise, if user-level drivers unaware of memory management are
- in use, memory management and command buffer setup may need to
- be omitted. These requirements are driver-specific, and care
- needs to be taken to keep both old and new applications and
- libraries working. The i915 driver supports the "modeset"
- module parameter to control whether advanced features are
- enabled at load time or in legacy fashion.
+ <para>
+ The <structname>drm_driver</structname> structure contains static
+ information that describes the driver and features it supports, and
+ pointers to methods that the DRM core will call to implement the DRM API.
+ We will first go through the <structname>drm_driver</structname> static
+ information fields, and will then describe individual operations in
+ details as they get used in later sections.
</para>
-
<sect2>
- <title>Driver private &amp; performance counters</title>
- <para>
- The driver private hangs off the main drm_device structure and
- can be used for tracking various device-specific bits of
- information, like register offsets, command buffer status,
- register state for suspend/resume, etc. At load time, a
- driver may simply allocate one and set drm_device.dev_priv
- appropriately; it should be freed and drm_device.dev_priv set
- to NULL when the driver is unloaded.
- </para>
+ <title>Driver Information</title>
+ <sect3>
+ <title>Driver Features</title>
+ <para>
+ Drivers inform the DRM core about their requirements and supported
+ features by setting appropriate flags in the
+ <structfield>driver_features</structfield> field. Since those flags
+ influence the DRM core behaviour since registration time, most of them
+ must be set to registering the <structname>drm_driver</structname>
+ instance.
+ </para>
+ <synopsis>u32 driver_features;</synopsis>
+ <variablelist>
+ <title>Driver Feature Flags</title>
+ <varlistentry>
+ <term>DRIVER_USE_AGP</term>
+ <listitem><para>
+ Driver uses AGP interface, the DRM core will manage AGP resources.
+ </para></listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>DRIVER_REQUIRE_AGP</term>
+ <listitem><para>
+ Driver needs AGP interface to function. AGP initialization failure
+ will become a fatal error.
+ </para></listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>DRIVER_USE_MTRR</term>
+ <listitem><para>
+ Driver uses MTRR interface for mapping memory, the DRM core will
+ manage MTRR resources. Deprecated.
+ </para></listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>DRIVER_PCI_DMA</term>
+ <listitem><para>
+ Driver is capable of PCI DMA, mapping of PCI DMA buffers to
+ userspace will be enabled. Deprecated.
+ </para></listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>DRIVER_SG</term>
+ <listitem><para>
+ Driver can perform scatter/gather DMA, allocation and mapping of
+ scatter/gather buffers will be enabled. Deprecated.
+ </para></listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>DRIVER_HAVE_DMA</term>
+ <listitem><para>
+ Driver supports DMA, the userspace DMA API will be supported.
+ Deprecated.
+ </para></listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>DRIVER_HAVE_IRQ</term><term>DRIVER_IRQ_SHARED</term>
+ <listitem><para>
+ DRIVER_HAVE_IRQ indicates whether the driver has an IRQ handler. The
+ DRM core will automatically register an interrupt handler when the
+ flag is set. DRIVER_IRQ_SHARED indicates whether the device &amp;
+ handler support shared IRQs (note that this is required of PCI
+ drivers).
+ </para></listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>DRIVER_IRQ_VBL</term>
+ <listitem><para>Unused. Deprecated.</para></listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>DRIVER_DMA_QUEUE</term>
+ <listitem><para>
+ Should be set if the driver queues DMA requests and completes them
+ asynchronously. Deprecated.
+ </para></listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>DRIVER_FB_DMA</term>
+ <listitem><para>
+ Driver supports DMA to/from the framebuffer, mapping of frambuffer
+ DMA buffers to userspace will be supported. Deprecated.
+ </para></listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>DRIVER_IRQ_VBL2</term>
+ <listitem><para>Unused. Deprecated.</para></listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>DRIVER_GEM</term>
+ <listitem><para>
+ Driver use the GEM memory manager.
+ </para></listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>DRIVER_MODESET</term>
+ <listitem><para>
+ Driver supports mode setting interfaces (KMS).
+ </para></listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>DRIVER_PRIME</term>
+ <listitem><para>
+ Driver implements DRM PRIME buffer sharing.
+ </para></listitem>
+ </varlistentry>
+ </variablelist>
+ </sect3>
+ <sect3>
+ <title>Major, Minor and Patchlevel</title>
+ <synopsis>int major;
+int minor;
+int patchlevel;</synopsis>
+ <para>
+ The DRM core identifies driver versions by a major, minor and patch
+ level triplet. The information is printed to the kernel log at
+ initialization time and passed to userspace through the
+ DRM_IOCTL_VERSION ioctl.
+ </para>
+ <para>
+ The major and minor numbers are also used to verify the requested driver
+ API version passed to DRM_IOCTL_SET_VERSION. When the driver API changes
+ between minor versions, applications can call DRM_IOCTL_SET_VERSION to
+ select a specific version of the API. If the requested major isn't equal
+ to the driver major, or the requested minor is larger than the driver
+ minor, the DRM_IOCTL_SET_VERSION call will return an error. Otherwise
+ the driver's set_version() method will be called with the requested
+ version.
+ </para>
+ </sect3>
+ <sect3>
+ <title>Name, Description and Date</title>
+ <synopsis>char *name;
+char *desc;
+char *date;</synopsis>
+ <para>
+ The driver name is printed to the kernel log at initialization time,
+ used for IRQ registration and passed to userspace through
+ DRM_IOCTL_VERSION.
+ </para>
+ <para>
+ The driver description is a purely informative string passed to
+ userspace through the DRM_IOCTL_VERSION ioctl and otherwise unused by
+ the kernel.
+ </para>
+ <para>
+ The driver date, formatted as YYYYMMDD, is meant to identify the date of
+ the latest modification to the driver. However, as most drivers fail to
+ update it, its value is mostly useless. The DRM core prints it to the
+ kernel log at initialization time and passes it to userspace through the
+ DRM_IOCTL_VERSION ioctl.
+ </para>
+ </sect3>
+ </sect2>
+ <sect2>
+ <title>Driver Load</title>
<para>
- The DRM supports several counters which may be used for rough
- performance characterization. Note that the DRM stat counter
- system is not often used by applications, and supporting
- additional counters is completely optional.
+ The <methodname>load</methodname> method is the driver and device
+ initialization entry point. The method is responsible for allocating and
+ initializing driver private data, specifying supported performance
+ counters, performing resource allocation and mapping (e.g. acquiring
+ clocks, mapping registers or allocating command buffers), initializing
+ the memory manager (<xref linkend="drm-memory-management"/>), installing
+ the IRQ handler (<xref linkend="drm-irq-registration"/>), setting up
+ vertical blanking handling (<xref linkend="drm-vertical-blank"/>), mode
+ setting (<xref linkend="drm-mode-setting"/>) and initial output
+ configuration (<xref linkend="drm-kms-init"/>).
</para>
+ <note><para>
+ If compatibility is a concern (e.g. with drivers converted over from
+ User Mode Setting to Kernel Mode Setting), care must be taken to prevent
+ device initialization and control that is incompatible with currently
+ active userspace drivers. For instance, if user level mode setting
+ drivers are in use, it would be problematic to perform output discovery
+ &amp; configuration at load time. Likewise, if user-level drivers
+ unaware of memory management are in use, memory management and command
+ buffer setup may need to be omitted. These requirements are
+ driver-specific, and care needs to be taken to keep both old and new
+ applications and libraries working.
+ </para></note>
+ <synopsis>int (*load) (struct drm_device *, unsigned long flags);</synopsis>
<para>
- These interfaces are deprecated and should not be used. If performance
- monitoring is desired, the developer should investigate and
- potentially enhance the kernel perf and tracing infrastructure to export
- GPU related performance information for consumption by performance
- monitoring tools and applications.
+ The method takes two arguments, a pointer to the newly created
+ <structname>drm_device</structname> and flags. The flags are used to
+ pass the <structfield>driver_data</structfield> field of the device id
+ corresponding to the device passed to <function>drm_*_init()</function>.
+ Only PCI devices currently use this, USB and platform DRM drivers have
+ their <methodname>load</methodname> method called with flags to 0.
</para>
+ <sect3>
+ <title>Driver Private &amp; Performance Counters</title>
+ <para>
+ The driver private hangs off the main
+ <structname>drm_device</structname> structure and can be used for
+ tracking various device-specific bits of information, like register
+ offsets, command buffer status, register state for suspend/resume, etc.
+ At load time, a driver may simply allocate one and set
+ <structname>drm_device</structname>.<structfield>dev_priv</structfield>
+ appropriately; it should be freed and
+ <structname>drm_device</structname>.<structfield>dev_priv</structfield>
+ set to NULL when the driver is unloaded.
+ </para>
+ <para>
+ DRM supports several counters which were used for rough performance
+ characterization. This stat counter system is deprecated and should not
+ be used. If performance monitoring is desired, the developer should
+ investigate and potentially enhance the kernel perf and tracing
+ infrastructure to export GPU related performance information for
+ consumption by performance monitoring tools and applications.
+ </para>
+ </sect3>
+ <sect3 id="drm-irq-registration">
+ <title>IRQ Registration</title>
+ <para>
+ The DRM core tries to facilitate IRQ handler registration and
+ unregistration by providing <function>drm_irq_install</function> and
+ <function>drm_irq_uninstall</function> functions. Those functions only
+ support a single interrupt per device.
+ </para>
+ <!--!Fdrivers/char/drm/drm_irq.c drm_irq_install-->
+ <para>
+ Both functions get the device IRQ by calling
+ <function>drm_dev_to_irq</function>. This inline function will call a
+ bus-specific operation to retrieve the IRQ number. For platform devices,
+ <function>platform_get_irq</function>(..., 0) is used to retrieve the
+ IRQ number.
+ </para>
+ <para>
+ <function>drm_irq_install</function> starts by calling the
+ <methodname>irq_preinstall</methodname> driver operation. The operation
+ is optional and must make sure that the interrupt will not get fired by
+ clearing all pending interrupt flags or disabling the interrupt.
+ </para>
+ <para>
+ The IRQ will then be requested by a call to
+ <function>request_irq</function>. If the DRIVER_IRQ_SHARED driver
+ feature flag is set, a shared (IRQF_SHARED) IRQ handler will be
+ requested.
+ </para>
+ <para>
+ The IRQ handler function must be provided as the mandatory irq_handler
+ driver operation. It will get passed directly to
+ <function>request_irq</function> and thus has the same prototype as all
+ IRQ handlers. It will get called with a pointer to the DRM device as the
+ second argument.
+ </para>
+ <para>
+ Finally the function calls the optional
+ <methodname>irq_postinstall</methodname> driver operation. The operation
+ usually enables interrupts (excluding the vblank interrupt, which is
+ enabled separately), but drivers may choose to enable/disable interrupts
+ at a different time.
+ </para>
+ <para>
+ <function>drm_irq_uninstall</function> is similarly used to uninstall an
+ IRQ handler. It starts by waking up all processes waiting on a vblank
+ interrupt to make sure they don't hang, and then calls the optional
+ <methodname>irq_uninstall</methodname> driver operation. The operation
+ must disable all hardware interrupts. Finally the function frees the IRQ
+ by calling <function>free_irq</function>.
+ </para>
+ </sect3>
+ <sect3>
+ <title>Memory Manager Initialization</title>
+ <para>
+ Every DRM driver requires a memory manager which must be initialized at
+ load time. DRM currently contains two memory managers, the Translation
+ Table Manager (TTM) and the Graphics Execution Manager (GEM).
+ This document describes the use of the GEM memory manager only. See
+ <xref linkend="drm-memory-management"/> for details.
+ </para>
+ </sect3>
+ <sect3>
+ <title>Miscellaneous Device Configuration</title>
+ <para>
+ Another task that may be necessary for PCI devices during configuration
+ is mapping the video BIOS. On many devices, the VBIOS describes device
+ configuration, LCD panel timings (if any), and contains flags indicating
+ device state. Mapping the BIOS can be done using the pci_map_rom() call,
+ a convenience function that takes care of mapping the actual ROM,
+ whether it has been shadowed into memory (typically at address 0xc0000)
+ or exists on the PCI device in the ROM BAR. Note that after the ROM has
+ been mapped and any necessary information has been extracted, it should
+ be unmapped; on many devices, the ROM address decoder is shared with
+ other BARs, so leaving it mapped could cause undesired behaviour like
+ hangs or memory corruption.
+ <!--!Fdrivers/pci/rom.c pci_map_rom-->
+ </para>
+ </sect3>
</sect2>
+ </sect1>
- <sect2>
- <title>Configuring the device</title>
- <para>
- Obviously, device configuration is device-specific.
- However, there are several common operations: finding a
- device's PCI resources, mapping them, and potentially setting
- up an IRQ handler.
- </para>
- <para>
- Finding &amp; mapping resources is fairly straightforward. The
- DRM wrapper functions, drm_get_resource_start() and
- drm_get_resource_len(), may be used to find BARs on the given
- drm_device struct. Once those values have been retrieved, the
- driver load function can call drm_addmap() to create a new
- mapping for the BAR in question. Note that you probably want a
- drm_local_map_t in your driver private structure to track any
- mappings you create.
-<!-- !Fdrivers/gpu/drm/drm_bufs.c drm_get_resource_* -->
-<!-- !Finclude/drm/drmP.h drm_local_map_t -->
- </para>
- <para>
- if compatibility with other operating systems isn't a concern
- (DRM drivers can run under various BSD variants and OpenSolaris),
- native Linux calls may be used for the above, e.g. pci_resource_*
- and iomap*/iounmap. See the Linux device driver book for more
- info.
- </para>
- <para>
- Once you have a register map, you may use the DRM_READn() and
- DRM_WRITEn() macros to access the registers on your device, or
- use driver-specific versions to offset into your MMIO space
- relative to a driver-specific base pointer (see I915_READ for
- an example).
- </para>
- <para>
- If your device supports interrupt generation, you may want to
- set up an interrupt handler when the driver is loaded. This
- is done using the drm_irq_install() function. If your device
- supports vertical blank interrupts, it should call
- drm_vblank_init() to initialize the core vblank handling code before
- enabling interrupts on your device. This ensures the vblank related
- structures are allocated and allows the core to handle vblank events.
- </para>
-<!--!Fdrivers/char/drm/drm_irq.c drm_irq_install-->
- <para>
- Once your interrupt handler is registered (it uses your
- drm_driver.irq_handler as the actual interrupt handling
- function), you can safely enable interrupts on your device,
- assuming any other state your interrupt handler uses is also
- initialized.
- </para>
- <para>
- Another task that may be necessary during configuration is
- mapping the video BIOS. On many devices, the VBIOS describes
- device configuration, LCD panel timings (if any), and contains
- flags indicating device state. Mapping the BIOS can be done
- using the pci_map_rom() call, a convenience function that
- takes care of mapping the actual ROM, whether it has been
- shadowed into memory (typically at address 0xc0000) or exists
- on the PCI device in the ROM BAR. Note that after the ROM
- has been mapped and any necessary information has been extracted,
- it should be unmapped; on many devices, the ROM address decoder is
- shared with other BARs, so leaving it mapped could cause
- undesired behavior like hangs or memory corruption.
-<!--!Fdrivers/pci/rom.c pci_map_rom-->
- </para>
- </sect2>
+ <!-- Internals: memory management -->
+ <sect1 id="drm-memory-management">
+ <title>Memory management</title>
+ <para>
+ Modern Linux systems require large amount of graphics memory to store
+ frame buffers, textures, vertices and other graphics-related data. Given
+ the very dynamic nature of many of that data, managing graphics memory
+ efficiently is thus crucial for the graphics stack and plays a central
+ role in the DRM infrastructure.
+ </para>
+ <para>
+ The DRM core includes two memory managers, namely Translation Table Maps
+ (TTM) and Graphics Execution Manager (GEM). TTM was the first DRM memory
+ manager to be developed and tried to be a one-size-fits-them all
+ solution. It provides a single userspace API to accomodate the need of
+ all hardware, supporting both Unified Memory Architecture (UMA) devices
+ and devices with dedicated video RAM (i.e. most discrete video cards).
+ This resulted in a large, complex piece of code that turned out to be
+ hard to use for driver development.
+ </para>
+ <para>
+ GEM started as an Intel-sponsored project in reaction to TTM's
+ complexity. Its design philosophy is completely different: instead of
+ providing a solution to every graphics memory-related problems, GEM
+ identified common code between drivers and created a support library to
+ share it. GEM has simpler initialization and execution requirements than
+ TTM, but has no video RAM management capabitilies and is thus limited to
+ UMA devices.
+ </para>
<sect2>
- <title>Memory manager initialization</title>
- <para>
- In order to allocate command buffers, cursor memory, scanout
- buffers, etc., as well as support the latest features provided
- by packages like Mesa and the X.Org X server, your driver
- should support a memory manager.
- </para>
+ <title>The Translation Table Manager (TTM)</title>
<para>
- If your driver supports memory management (it should!), you
- need to set that up at load time as well. How you initialize
- it depends on which memory manager you're using: TTM or GEM.
+ TTM design background and information belongs here.
</para>
<sect3>
<title>TTM initialization</title>
- <para>
- TTM (for Translation Table Manager) manages video memory and
- aperture space for graphics devices. TTM supports both UMA devices
- and devices with dedicated video RAM (VRAM), i.e. most discrete
- graphics devices. If your device has dedicated RAM, supporting
- TTM is desirable. TTM also integrates tightly with your
- driver-specific buffer execution function. See the radeon
- driver for examples.
- </para>
- <para>
- The core TTM structure is the ttm_bo_driver struct. It contains
- several fields with function pointers for initializing the TTM,
- allocating and freeing memory, waiting for command completion
- and fence synchronization, and memory migration. See the
- radeon_ttm.c file for an example of usage.
+ <warning><para>This section is outdated.</para></warning>
+ <para>
+ Drivers wishing to support TTM must fill out a drm_bo_driver
+ structure. The structure contains several fields with function
+ pointers for initializing the TTM, allocating and freeing memory,
+ waiting for command completion and fence synchronization, and memory
+ migration. See the radeon_ttm.c file for an example of usage.
</para>
<para>
The ttm_global_reference structure is made up of several fields:
@@ -445,82 +500,1081 @@
count for the TTM, which will call your initialization function.
</para>
</sect3>
+ </sect2>
+ <sect2 id="drm-gem">
+ <title>The Graphics Execution Manager (GEM)</title>
+ <para>
+ The GEM design approach has resulted in a memory manager that doesn't
+ provide full coverage of all (or even all common) use cases in its
+ userspace or kernel API. GEM exposes a set of standard memory-related
+ operations to userspace and a set of helper functions to drivers, and let
+ drivers implement hardware-specific operations with their own private API.
+ </para>
+ <para>
+ The GEM userspace API is described in the
+ <ulink url="http://lwn.net/Articles/283798/"><citetitle>GEM - the Graphics
+ Execution Manager</citetitle></ulink> article on LWN. While slightly
+ outdated, the document provides a good overview of the GEM API principles.
+ Buffer allocation and read and write operations, described as part of the
+ common GEM API, are currently implemented using driver-specific ioctls.
+ </para>
+ <para>
+ GEM is data-agnostic. It manages abstract buffer objects without knowing
+ what individual buffers contain. APIs that require knowledge of buffer
+ contents or purpose, such as buffer allocation or synchronization
+ primitives, are thus outside of the scope of GEM and must be implemented
+ using driver-specific ioctls.
+ </para>
+ <para>
+ On a fundamental level, GEM involves several operations:
+ <itemizedlist>
+ <listitem>Memory allocation and freeing</listitem>
+ <listitem>Command execution</listitem>
+ <listitem>Aperture management at command execution time</listitem>
+ </itemizedlist>
+ Buffer object allocation is relatively straightforward and largely
+ provided by Linux's shmem layer, which provides memory to back each
+ object.
+ </para>
+ <para>
+ Device-specific operations, such as command execution, pinning, buffer
+ read &amp; write, mapping, and domain ownership transfers are left to
+ driver-specific ioctls.
+ </para>
+ <sect3>
+ <title>GEM Initialization</title>
+ <para>
+ Drivers that use GEM must set the DRIVER_GEM bit in the struct
+ <structname>drm_driver</structname>
+ <structfield>driver_features</structfield> field. The DRM core will
+ then automatically initialize the GEM core before calling the
+ <methodname>load</methodname> operation. Behind the scene, this will
+ create a DRM Memory Manager object which provides an address space
+ pool for object allocation.
+ </para>
+ <para>
+ In a KMS configuration, drivers need to allocate and initialize a
+ command ring buffer following core GEM initialization if required by
+ the hardware. UMA devices usually have what is called a "stolen"
+ memory region, which provides space for the initial framebuffer and
+ large, contiguous memory regions required by the device. This space is
+ typically not managed by GEM, and must be initialized separately into
+ its own DRM MM object.
+ </para>
+ </sect3>
<sect3>
- <title>GEM initialization</title>
- <para>
- GEM is an alternative to TTM, designed specifically for UMA
- devices. It has simpler initialization and execution requirements
- than TTM, but has no VRAM management capability. Core GEM
- is initialized by calling drm_mm_init() to create
- a GTT DRM MM object, which provides an address space pool for
- object allocation. In a KMS configuration, the driver
- needs to allocate and initialize a command ring buffer following
- core GEM initialization. A UMA device usually has what is called a
- "stolen" memory region, which provides space for the initial
- framebuffer and large, contiguous memory regions required by the
- device. This space is not typically managed by GEM, and it must
- be initialized separately into its own DRM MM object.
- </para>
- <para>
- Initialization is driver-specific. In the case of Intel
- integrated graphics chips like 965GM, GEM initialization can
- be done by calling the internal GEM init function,
- i915_gem_do_init(). Since the 965GM is a UMA device
- (i.e. it doesn't have dedicated VRAM), GEM manages
- making regular RAM available for GPU operations. Memory set
- aside by the BIOS (called "stolen" memory by the i915
- driver) is managed by the DRM memrange allocator; the
- rest of the aperture is managed by GEM.
- <programlisting>
- /* Basic memrange allocator for stolen space (aka vram) */
- drm_memrange_init(&amp;dev_priv->vram, 0, prealloc_size);
- /* Let GEM Manage from end of prealloc space to end of aperture */
- i915_gem_do_init(dev, prealloc_size, agp_size);
- </programlisting>
-<!--!Edrivers/char/drm/drm_memrange.c-->
- </para>
- <para>
- Once the memory manager has been set up, we may allocate the
- command buffer. In the i915 case, this is also done with a
- GEM function, i915_gem_init_ringbuffer().
- </para>
+ <title>GEM Objects Creation</title>
+ <para>
+ GEM splits creation of GEM objects and allocation of the memory that
+ backs them in two distinct operations.
+ </para>
+ <para>
+ GEM objects are represented by an instance of struct
+ <structname>drm_gem_object</structname>. Drivers usually need to extend
+ GEM objects with private information and thus create a driver-specific
+ GEM object structure type that embeds an instance of struct
+ <structname>drm_gem_object</structname>.
+ </para>
+ <para>
+ To create a GEM object, a driver allocates memory for an instance of its
+ specific GEM object type and initializes the embedded struct
+ <structname>drm_gem_object</structname> with a call to
+ <function>drm_gem_object_init</function>. The function takes a pointer to
+ the DRM device, a pointer to the GEM object and the buffer object size
+ in bytes.
+ </para>