diff options
Diffstat (limited to 'Documentation')
20 files changed, 723 insertions, 19 deletions
diff --git a/Documentation/DocBook/writing-an-alsa-driver.tmpl b/Documentation/DocBook/writing-an-alsa-driver.tmpl index 5de23c00707..cab4ec58e46 100644 --- a/Documentation/DocBook/writing-an-alsa-driver.tmpl +++ b/Documentation/DocBook/writing-an-alsa-driver.tmpl @@ -404,7 +404,7 @@ /* SNDRV_CARDS: maximum number of cards supported by this module */ static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; - static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; + static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* definition of the chip-specific record */ struct mychip { diff --git a/Documentation/devicetree/bindings/power_supply/olpc_battery.txt b/Documentation/devicetree/bindings/power_supply/olpc_battery.txt new file mode 100644 index 00000000000..c8901b3992d --- /dev/null +++ b/Documentation/devicetree/bindings/power_supply/olpc_battery.txt @@ -0,0 +1,5 @@ +OLPC battery +~~~~~~~~~~~~ + +Required properties: + - compatible : "olpc,xo1-battery" diff --git a/Documentation/devicetree/bindings/power_supply/sbs_sbs-battery.txt b/Documentation/devicetree/bindings/power_supply/sbs_sbs-battery.txt new file mode 100644 index 00000000000..c40e8926fac --- /dev/null +++ b/Documentation/devicetree/bindings/power_supply/sbs_sbs-battery.txt @@ -0,0 +1,23 @@ +SBS sbs-battery +~~~~~~~~~~ + +Required properties : + - compatible : "sbs,sbs-battery" + +Optional properties : + - sbs,i2c-retry-count : The number of times to retry i2c transactions on i2c + IO failure. + - sbs,poll-retry-count : The number of times to try looking for new status + after an external change notification. + - sbs,battery-detect-gpios : The gpio which signals battery detection and + a flag specifying its polarity. + +Example: + + bq20z75@b { + compatible = "sbs,sbs-battery"; + reg = < 0xb >; + sbs,i2c-retry-count = <2>; + sbs,poll-retry-count = <10>; + sbs,battery-detect-gpios = <&gpio-controller 122 1>; + } diff --git a/Documentation/devicetree/bindings/sound/tegra-audio-wm8903.txt b/Documentation/devicetree/bindings/sound/tegra-audio-wm8903.txt new file mode 100644 index 00000000000..d5b0da8bf1d --- /dev/null +++ b/Documentation/devicetree/bindings/sound/tegra-audio-wm8903.txt @@ -0,0 +1,71 @@ +NVIDIA Tegra audio complex + +Required properties: +- compatible : "nvidia,tegra-audio-wm8903" +- nvidia,model : The user-visible name of this sound complex. +- nvidia,audio-routing : A list of the connections between audio components. + Each entry is a pair of strings, the first being the connection's sink, + the second being the connection's source. Valid names for sources and + sinks are the WM8903's pins, and the jacks on the board: + + WM8903 pins: + + * IN1L + * IN1R + * IN2L + * IN2R + * IN3L + * IN3R + * DMICDAT + * HPOUTL + * HPOUTR + * LINEOUTL + * LINEOUTR + * LOP + * LON + * ROP + * RON + * MICBIAS + + Board connectors: + + * Headphone Jack + * Int Spk + * Mic Jack + +- nvidia,i2s-controller : The phandle of the Tegra I2S1 controller +- nvidia,audio-codec : The phandle of the WM8903 audio codec + +Optional properties: +- nvidia,spkr-en-gpios : The GPIO that enables the speakers +- nvidia,hp-mute-gpios : The GPIO that mutes the headphones +- nvidia,hp-det-gpios : The GPIO that detect headphones are plugged in +- nvidia,int-mic-en-gpios : The GPIO that enables the internal microphone +- nvidia,ext-mic-en-gpios : The GPIO that enables the external microphone + +Example: + +sound { + compatible = "nvidia,tegra-audio-wm8903-harmony", + "nvidia,tegra-audio-wm8903" + nvidia,model = "tegra-wm8903-harmony"; + + nvidia,audio-routing = + "Headphone Jack", "HPOUTR", + "Headphone Jack", "HPOUTL", + "Int Spk", "ROP", + "Int Spk", "RON", + "Int Spk", "LOP", + "Int Spk", "LON", + "Mic Jack", "MICBIAS", + "IN1L", "Mic Jack"; + + nvidia,i2s-controller = <&i2s1>; + nvidia,audio-codec = <&wm8903>; + + nvidia,spkr-en-gpios = <&codec 2 0>; + nvidia,hp-det-gpios = <&gpio 178 0>; /* gpio PW2 */ + nvidia,int-mic-en-gpios = <&gpio 184 0>; /*gpio PX0 */ + nvidia,ext-mic-en-gpios = <&gpio 185 0>; /* gpio PX1 */ +}; + diff --git a/Documentation/devicetree/bindings/sound/tegra20-das.txt b/Documentation/devicetree/bindings/sound/tegra20-das.txt new file mode 100644 index 00000000000..6de3a7ee4ef --- /dev/null +++ b/Documentation/devicetree/bindings/sound/tegra20-das.txt @@ -0,0 +1,12 @@ +NVIDIA Tegra 20 DAS (Digital Audio Switch) controller + +Required properties: +- compatible : "nvidia,tegra20-das" +- reg : Should contain DAS registers location and length + +Example: + +das@70000c00 { + compatible = "nvidia,tegra20-das"; + reg = <0x70000c00 0x80>; +}; diff --git a/Documentation/devicetree/bindings/sound/tegra20-i2s.txt b/Documentation/devicetree/bindings/sound/tegra20-i2s.txt new file mode 100644 index 00000000000..0df2b5c816e --- /dev/null +++ b/Documentation/devicetree/bindings/sound/tegra20-i2s.txt @@ -0,0 +1,17 @@ +NVIDIA Tegra 20 I2S controller + +Required properties: +- compatible : "nvidia,tegra20-i2s" +- reg : Should contain I2S registers location and length +- interrupts : Should contain I2S interrupt +- nvidia,dma-request-selector : The Tegra DMA controller's phandle and + request selector for this I2S controller + +Example: + +i2s@70002800 { + compatible = "nvidia,tegra20-i2s"; + reg = <0x70002800 0x200>; + interrupts = < 45 >; + nvidia,dma-request-selector = < &apbdma 2 >; +}; diff --git a/Documentation/devicetree/bindings/sound/wm8903.txt b/Documentation/devicetree/bindings/sound/wm8903.txt new file mode 100644 index 00000000000..f102cbc4269 --- /dev/null +++ b/Documentation/devicetree/bindings/sound/wm8903.txt @@ -0,0 +1,50 @@ +WM8903 audio CODEC + +This device supports I2C only. + +Required properties: + + - compatible : "wlf,wm8903" + + - reg : the I2C address of the device. + + - gpio-controller : Indicates this device is a GPIO controller. + + - #gpio-cells : Should be two. The first cell is the pin number and the + second cell is used to specify optional parameters (currently unused). + +Optional properties: + + - interrupts : The interrupt line the codec is connected to. + + - micdet-cfg : Default register value for R6 (Mic Bias). If absent, the + default is 0. + + - micdet-delay : The debounce delay for microphone detection in mS. If + absent, the default is 100. + + - gpio-cfg : A list of GPIO configuration register values. The list must + be 5 entries long. If absent, no configuration of these registers is + performed. If any entry has the value 0xffffffff, that GPIO's + configuration will not be modified. + +Example: + +codec: wm8903@1a { + compatible = "wlf,wm8903"; + reg = <0x1a>; + interrupts = < 347 >; + + gpio-controller; + #gpio-cells = <2>; + + micdet-cfg = <0>; + micdet-delay = <100>; + gpio-cfg = < + 0x0600 /* DMIC_LR, output */ + 0x0680 /* DMIC_DAT, input */ + 0x0000 /* GPIO, output, low */ + 0x0200 /* Interrupt, output */ + 0x01a0 /* BCLK, input, active high */ + >; +}; diff --git a/Documentation/devicetree/bindings/sound/wm8994.txt b/Documentation/devicetree/bindings/sound/wm8994.txt new file mode 100644 index 00000000000..7a7eb1e7bda --- /dev/null +++ b/Documentation/devicetree/bindings/sound/wm8994.txt @@ -0,0 +1,18 @@ +WM1811/WM8994/WM8958 audio CODEC + +These devices support both I2C and SPI (configured with pin strapping +on the board). + +Required properties: + + - compatible : "wlf,wm1811", "wlf,wm8994", "wlf,wm8958" + + - reg : the I2C address of the device for I2C, the chip select + number for SPI. + +Example: + +codec: wm8994@1a { + compatible = "wlf,wm8994"; + reg = <0x1a>; +}; diff --git a/Documentation/devicetree/bindings/vendor-prefixes.txt b/Documentation/devicetree/bindings/vendor-prefixes.txt index 18626965159..ecc6a6cd26c 100644 --- a/Documentation/devicetree/bindings/vendor-prefixes.txt +++ b/Documentation/devicetree/bindings/vendor-prefixes.txt @@ -34,6 +34,7 @@ powervr Imagination Technologies qcom Qualcomm, Inc. ramtron Ramtron International samsung Samsung Semiconductor +sbs Smart Battery System schindler Schindler sil Silicon Image simtek @@ -41,4 +42,5 @@ sirf SiRF Technology, Inc. st STMicroelectronics stericsson ST-Ericsson ti Texas Instruments +wlf Wolfson Microelectronics xlnx Xilinx diff --git a/Documentation/digsig.txt b/Documentation/digsig.txt new file mode 100644 index 00000000000..3f682889068 --- /dev/null +++ b/Documentation/digsig.txt @@ -0,0 +1,96 @@ +Digital Signature Verification API + +CONTENTS + +1. Introduction +2. API +3. User-space utilities + + +1. Introduction + +Digital signature verification API provides a method to verify digital signature. +Currently digital signatures are used by the IMA/EVM integrity protection subsystem. + +Digital signature verification is implemented using cut-down kernel port of +GnuPG multi-precision integers (MPI) library. The kernel port provides +memory allocation errors handling, has been refactored according to kernel +coding style, and checkpatch.pl reported errors and warnings have been fixed. + +Public key and signature consist of header and MPIs. + +struct pubkey_hdr { + uint8_t version; /* key format version */ + time_t timestamp; /* key made, always 0 for now */ + uint8_t algo; + uint8_t nmpi; + char mpi[0]; +} __packed; + +struct signature_hdr { + uint8_t version; /* signature format version */ + time_t timestamp; /* signature made */ + uint8_t algo; + uint8_t hash; + uint8_t keyid[8]; + uint8_t nmpi; + char mpi[0]; +} __packed; + +keyid equals to SHA1[12-19] over the total key content. +Signature header is used as an input to generate a signature. +Such approach insures that key or signature header could not be changed. +It protects timestamp from been changed and can be used for rollback +protection. + +2. API + +API currently includes only 1 function: + + digsig_verify() - digital signature verification with public key + + +/** + * digsig_verify() - digital signature verification with public key + * @keyring: keyring to search key in + * @sig: digital signature + * @sigen: length of the signature + * @data: data + * @datalen: length of the data + * @return: 0 on success, -EINVAL otherwise + * + * Verifies data integrity against digital signature. + * Currently only RSA is supported. + * Normally hash of the content is used as a data for this function. + * + */ +int digsig_verify(struct key *keyring, const char *sig, int siglen, + const char *data, int datalen); + +3. User-space utilities + +The signing and key management utilities evm-utils provide functionality +to generate signatures, to load keys into the kernel keyring. +Keys can be in PEM or converted to the kernel format. +When the key is added to the kernel keyring, the keyid defines the name +of the key: 5D2B05FC633EE3E8 in the example bellow. + +Here is example output of the keyctl utility. + +$ keyctl show +Session Keyring + -3 --alswrv 0 0 keyring: _ses +603976250 --alswrv 0 -1 \_ keyring: _uid.0 +817777377 --alswrv 0 0 \_ user: kmk +891974900 --alswrv 0 0 \_ encrypted: evm-key +170323636 --alswrv 0 0 \_ keyring: _module +548221616 --alswrv 0 0 \_ keyring: _ima +128198054 --alswrv 0 0 \_ keyring: _evm + +$ keyctl list 128198054 +1 key in keyring: +620789745: --alswrv 0 0 user: 5D2B05FC633EE3E8 + + +Dmitry Kasatkin +06.10.2011 diff --git a/Documentation/feature-removal-schedule.txt b/Documentation/feature-removal-schedule.txt index 5575759b84e..d49c2ec72d1 100644 --- a/Documentation/feature-removal-schedule.txt +++ b/Documentation/feature-removal-schedule.txt @@ -544,3 +544,15 @@ When: 3.5 Why: The iwlagn module has been renamed iwlwifi. The alias will be around for backward compatibility for several cycles and then dropped. Who: Don Fry <donald.h.fry@intel.com> + +---------------------------- + +What: pci_scan_bus_parented() +When: 3.5 +Why: The pci_scan_bus_parented() interface creates a new root bus. The + bus is created with default resources (ioport_resource and + iomem_resource) that are always wrong, so we rely on arch code to + correct them later. Callers of pci_scan_bus_parented() should + convert to using pci_scan_root_bus() so they can supply a list of + bus resources when the bus is created. +Who: Bjorn Helgaas <bhelgaas@google.com> diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index c92b1532f05..eb93fd0ec73 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt @@ -1824,6 +1824,10 @@ bytes respectively. Such letter suffixes can also be entirely omitted. nomfgpt [X86-32] Disable Multi-Function General Purpose Timer usage (for AMD Geode machines). + nonmi_ipi [X86] Disable using NMI IPIs during panic/reboot to + shutdown the other cpus. Instead use the REBOOT_VECTOR + irq. + nopat [X86] Disable PAT (page attribute table extension of pagetables) support. @@ -2395,6 +2399,12 @@ bytes respectively. Such letter suffixes can also be entirely omitted. slram= [HW,MTD] + slab_max_order= [MM, SLAB] + Determines the maximum allowed order for slabs. + A high setting may cause OOMs due to memory + fragmentation. Defaults to 1 for systems with + more than 32MB of RAM, 0 otherwise. + slub_debug[=options[,slabs]] [MM, SLUB] Enabling slub_debug allows one to determine the culprit if slab objects become corrupted. Enabling diff --git a/Documentation/power/charger-manager.txt b/Documentation/power/charger-manager.txt new file mode 100644 index 00000000000..fdcca991df3 --- /dev/null +++ b/Documentation/power/charger-manager.txt @@ -0,0 +1,163 @@ +Charger Manager + (C) 2011 MyungJoo Ham <myungjoo.ham@samsung.com>, GPL + +Charger Manager provides in-kernel battery charger management that +requires temperature monitoring during suspend-to-RAM state +and where each battery may have multiple chargers attached and the userland +wants to look at the aggregated information of the multiple chargers. + +Charger Manager is a platform_driver with power-supply-class entries. +An instance of Charger Manager (a platform-device created with Charger-Manager) +represents an independent battery with chargers. If there are multiple +batteries with their own chargers acting independently in a system, +the system may need multiple instances of Charger Manager. + +1. Introduction +=============== + +Charger Manager supports the following: + +* Support for multiple chargers (e.g., a device with USB, AC, and solar panels) + A system may have multiple chargers (or power sources) and some of + they may be activated at the same time. Each charger may have its + own power-supply-class and each power-supply-class can provide + different information about the battery status. This framework + aggregates charger-related information from multiple sources and + shows combined information as a single power-supply-class. + +* Support for in suspend-to-RAM polling (with suspend_again callback) + While the battery is being charged and the system is in suspend-to-RAM, + we may need to monitor the battery health by looking at the ambient or + battery temperature. We can accomplish this by waking up the system + periodically. However, such a method wakes up devices unncessary for + monitoring the battery health and tasks, and user processes that are + supposed to be kept suspended. That, in turn, incurs unnecessary power + consumption and slow down charging process. Or even, such peak power + consumption can stop chargers in the middle of charging + (external power input < device power consumption), which not + only affects the charging time, but the lifespan of the battery. + + Charger Manager provides a function "cm_suspend_again" that can be + used as suspend_again callback of platform_suspend_ops. If the platform + requires tasks other than cm_suspend_again, it may implement its own + suspend_again callback that calls cm_suspend_again in the middle. + Normally, the platform will need to resume and suspend some devices + that are used by Charger Manager. + +2. Global Charger-Manager Data related with suspend_again +======================================================== +In order to setup Charger Manager with suspend-again feature +(in-suspend monitoring), the user should provide charger_global_desc +with setup_charger_manager(struct charger_global_desc *). +This charger_global_desc data for in-suspend monitoring is global +as the name suggests. Thus, the user needs to provide only once even +if there are multiple batteries. If there are multiple batteries, the +multiple instances of Charger Manager share the same charger_global_desc +and it will manage in-suspend monitoring for all instances of Charger Manager. + +The user needs to provide all the two entries properly in order to activate +in-suspend monitoring: + +struct charger_global_desc { + +char *rtc_name; + : The name of rtc (e.g., "rtc0") used to wakeup the system from + suspend for Charger Manager. The alarm interrupt (AIE) of the rtc + should be able to wake up the system from suspend. Charger Manager + saves and restores the alarm value and use the previously-defined + alarm if it is going to go off earlier than Charger Manager so that + Charger Manager does not interfere with previously-defined alarms. + +bool (*rtc_only_wakeup)(void); + : This callback should let CM know whether + the wakeup-from-suspend is caused only by the alarm of "rtc" in the + same struct. If there is any other wakeup source triggered the + wakeup, it should return false. If the "rtc" is the only wakeup + reason, it should return true. +}; + +3. How to setup suspend_again +============================= +Charger Manager provides a function "extern bool cm_suspend_again(void)". +When cm_suspend_again is called, it monitors every battery. The suspend_ops +callback of the system's platform_suspend_ops can call cm_suspend_again +function to know whether Charger Manager wants to suspend again or not. +If there are no other devices or tasks that want to use suspend_again +feature, the platform_suspend_ops may directly refer to cm_suspend_again +for its suspend_again callback. + +The cm_suspend_again() returns true (meaning "I want to suspend again") +if the system was woken up by Charger Manager and the polling +(in-suspend monitoring) results in "normal". + +4. Charger-Manager Data (struct charger_desc) +============================================= +For each battery charged independently from other batteries (if a series of +batteries are charged by a single charger, they are counted as one independent +battery), an instance of Charger Manager is attached to it. + +struct charger_desc { + +char *psy_name; + : The power-supply-class name of the battery. Default is + "battery" if psy_name is NULL. Users can access the psy entries + at "/sys/class/power_supply/[psy_name]/". + +enum polling_modes polling_mode; + : CM_POLL_DISABLE: do not poll this battery. + CM_POLL_ALWAYS: always poll this battery. + CM_POLL_EXTERNAL_POWER_ONLY: poll this battery if and only if + an external power source is attached. + CM_POLL_CHARGING_ONLY: poll this battery if and only if the + battery is being charged. + +unsigned int fullbatt_uV; + : If specified with a non-zero value, Charger Manager assumes + that the battery is full (capacity = 100) if the battery is not being + charged and the battery voltage is equal to or greater than + fullbatt_uV. + +unsigned int polling_interval_ms; + : Required polling interval in ms. Charger Manager will poll + this battery every polling_interval_ms or more frequently. + +enum data_source battery_present; + CM_FUEL_GAUGE: get battery presence information from fuel gauge. + CM_CHARGER_STAT: get battery presence from chargers. + +char **psy_charger_stat; + : An array ending with NULL that has power-supply-class names of + chargers. Each power-supply-class should provide "PRESENT" (if + battery_present is "CM_CHARGER_STAT"), "ONLINE" (shows whether an + external power source is attached or not), and "STATUS" (shows whether + the battery is {"FULL" or not FULL} or {"FULL", "Charging", + "Discharging", "NotCharging"}). + +int num_charger_regulators; +struct regulator_bulk_data *charger_regulators; + : Regulators representing the chargers in the form for + regulator framework's bulk functions. + +char *psy_fuel_gauge; + : Power-supply-class name of the fuel gauge. + +int (*temperature_out_of_range)(int *mC); +bool measure_battery_temp; + : This callback returns 0 if the temperature is safe for charging, + a positive number if it is too hot to charge, and a negative number + if it is too cold to charge. With the variable mC, the callback returns + the temperature in 1/1000 of centigrade. + The source of temperature can be battery or ambient one according to + the value of measure_battery_temp. +}; + +5. Other Considerations +======================= + +At the charger/battery-related events such as battery-pulled-out, +charger-pulled-out, charger-inserted, DCIN-over/under-voltage, charger-stopped, +and others critical to chargers, the system should be configured to wake up. +At least the following should wake up the system from a suspend: +a) charger-on/off b) external-power-in/out c) battery-in/out (while charging) + +It is usually accomplished by configuring the PMIC as a wakeup source. diff --git a/Documentation/security/00-INDEX b/Documentation/security/00-INDEX index 19bc49439ca..99b85d39751 100644 --- a/Documentation/security/00-INDEX +++ b/Documentation/security/00-INDEX @@ -1,5 +1,7 @@ 00-INDEX - this file. +LSM.txt + - description of the Linux Security Module framework. SELinux.txt - how to get started with the SELinux security enhancement. Smack.txt diff --git a/Documentation/security/LSM.txt b/Documentation/security/LSM.txt new file mode 100644 index 00000000000..c335a763a2e --- /dev/null +++ b/Documentation/security/LSM.txt @@ -0,0 +1,34 @@ +Linux Security Module framework +------------------------------- + +The Linux Security Module (LSM) framework provides a mechanism for +various security checks to be hooked by new kernel extensions. The name +"module" is a bit of a misnomer since these extensions are not actually +loadable kernel modules. Instead, they are selectable at build-time via +CONFIG_DEFAULT_SECURITY and can be overridden at boot-time via the +"security=..." kernel command line argument, in the case where multiple +LSMs were built into a given kernel. + +The primary users of the LSM interface are Mandatory Access Control +(MAC) extensions which provide a comprehensive security policy. Examples +include SELinux, Smack, Tomoyo, and AppArmor. In addition to the larger +MAC extensions, other extensions can be built using the LSM to provide +specific changes to system operation when these tweaks are not available +in the core functionality of Linux itself. + +Without a specific LSM built into the kernel, the default LSM will be the +Linux capabilities system. Most LSMs choose to extend the capabilities +system, building their checks on top of the defined capability hooks. +For more details on capabilities, see capabilities(7) in the Linux +man-pages project. + +Based on http://kerneltrap.org/Linux/Documenting_Security_Module_Intent, +a new LSM is accepted into the kernel when its intent (a description of +what it tries to protect against and in what cases one would expect to +use it) has been appropriately documented in Documentation/security/. +This allows an LSM's code to be easily compared to its goals, and so +that end users and distros can make a more informed decision about which +LSMs suit their requirements. + +For extensive documentation on the available LSM hook interfaces, please +see include/linux/security.h. diff --git a/Documentation/security/credentials.txt b/Documentation/security/credentials.txt index fc0366cbd7c..86257052e31 100644 --- a/Documentation/security/credentials.txt +++ b/Documentation/security/credentials.txt @@ -221,10 +221,10 @@ The Linux kernel supports the following types of credentials: (5) LSM The Linux Security Module allows extra controls to be placed over the - operations that a task may do. Currently Linux supports two main - alternate LSM options: SELinux and Smack. + operations that a task may do. Currently Linux supports several LSM + options. - Both work by labelling the objects in a system and then applying sets of + Some work by labelling the objects in a system and then applying sets of rules (policies) that say what operations a task with one label may do to an object with another label. diff --git a/Documentation/sound/alsa/HD-Audio-Models.txt b/Documentation/sound/alsa/HD-Audio-Models.txt index edad99abec2..c8c54544abc 100644 --- a/Documentation/sound/alsa/HD-Audio-Models.txt +++ b/Documentation/sound/alsa/HD-Audio-Models.txt @@ -42,19 +42,7 @@ ALC260 ALC262 ====== - fujitsu Fujitsu Laptop - benq Benq ED8 - benq-t31 Benq T31 - hippo Hippo (ATI) with jack detection, Sony UX-90s - hippo_1 Hippo (Benq) with jack detection - toshiba-s06 Toshiba S06 - toshiba-rx1 Toshiba RX1 - tyan Tyan Thunder n6650W (S2915-E) - ultra Samsung Q1 Ultra Vista model - lenovo-3000 Lenovo 3000 y410 - nec NEC Versa S9100 - basic fixed pin assignment w/o SPDIF - auto auto-config reading BIOS (default) + N/A ALC267/268 ========== @@ -350,7 +338,6 @@ STAC92HD83* mic-ref Reference board with power management for ports dell-s14 Dell laptop dell-vostro-3500 Dell Vostro 3500 laptop - hp HP laptops with (inverted) mute-LED hp-dv7-4000 HP dv-7 4000 auto BIOS setup (default) diff --git a/Documentation/sound/alsa/compress_offload.txt b/Documentation/sound/alsa/compress_offload.txt new file mode 100644 index 00000000000..c83a835350f --- /dev/null +++ b/Documentation/sound/alsa/compress_offload.txt @@ -0,0 +1,188 @@ + compress_offload.txt + ===================== + Pierre-Louis.Bossart <pierre-louis.bossart@linux.intel.com> + Vinod Koul <vinod.koul@linux.intel.com> + +Overview + +Since its early days, the ALSA API was defined with PCM support or +constant bitrates payloads such as IEC61937 in mind. Arguments and +returned values in frames are the norm, making it a challenge to +extend the existing API to compressed data streams. + +In recent years, audio digital signal processors (DSP) were integrated +in system-on-chip designs, and DSPs are also integrated in audio +codecs. Processing compressed data on such DSPs results in a dramatic +reduction of power consumption compared to host-based +processing. Support for such hardware has not been very good in Linux, +mostly because of a lack of a generic API available in the mainline +kernel. + +Rather than requiring a compability break with an API change of the +ALSA PCM interface, a new 'Compressed Data' API is introduced to +provide a control and data-streaming interface for audio DSPs. + +The design of this API was inspired by the 2-year experience with the +Intel Moorestown SOC, with many corrections required to upstream the +API in the mainline kernel instead of the staging tree and make it +usable by others. + +Requirements + +The main requirements are: + +- separation between byte counts and time. Compressed formats may have + a header per file, per frame, or no header at all. The payload size + may vary from frame-to-frame. As a result, it is not possible to + estimate reliably the duration of audio buffers when handling + compressed data. Dedicated mechanisms are required to allow for + reliable audio-video synchronization, which requires precise + reporting of the number of samples rendered at any given time. + +- Handling of multiple formats. PCM data only requires a specification + of the sampling rate, number of channels and bits per sample. In + contrast, compressed data comes in a variety of formats. Audio DSPs + may also provide support for a limited number of audio encoders and + decoders embedded in firmware, or may support more choices through + dynamic download of libraries. + +- Focus on main formats. This API provides support for the most + popular formats used for audio and video capture and playback. It is + likely that as audio compression technology advances, new formats + will be added. + +- Handling of multiple configurations. Even for a given format like + AAC, some implementations may support AAC multichannel but HE-AAC + stereo. Likewise WMA10 level M3 may require too much memory and cpu + cycles. The new API needs to provide a generic way of listing these + formats. + +- Rendering/Grabbing only. This API does not provide any means of + hardware acceleration, where PCM samples are provided back to + user-space for additional processing. This API focuses instead on + streaming compressed data to a DSP, with the assumption that the + decoded samples are routed to a physical output or logical back-end. + + - Complexity hiding. Existing user-space multimedia frameworks all + have existing enums/structures for each compressed format. This new + API assumes the existence of a platform-specific compatibility layer + to expose, translate and make use of the capabilities of the audio + DSP, eg. Android HAL or PulseAudio sinks. By construction, regular + applications are not supposed to make use of this API. + + +Design + +The new API shares a number of concepts with with the PCM API for flow +control. Start, pause, resume, drain and stop commands have the same +semantics no matter what the content is. + +The concept of memory ring buffer divided in a set of fragments is +borrowed from the ALSA PCM API. However, only sizes in bytes can be +specified. + +Seeks/trick modes are assumed to be handled by the host. + +The notion of rewinds/forwards is not supported. Data committed to the +ring buffer cannot be invalidated, except when dropping all buffers. + +The Compressed Data API does not make any assumptions on how the data +is transmitted to the audio DSP. DMA transfers from main memory to an +embedded audio cluster or to a SPI interface for external DSPs are +possible. As in the ALSA PCM case, a core set of routines is exposed; +each driver implementer will have to write support for a set of +mandatory routines and possibly make use of optional ones. + +The main additions are + +- get_caps +This routine returns the list of audio formats supported. Querying the +codecs on a capture stream will return encoders, decoders will be +listed for playback streams. + +- get_codec_caps For each codec, this routine returns a list of +capabilities. The intent is to make sure all the capabilities +correspond to valid settings, and to minimize the risks of +configuration failures. For example, for a complex codec such as AAC, +the number of channels supported may depend on a specific profile. If +the capabilities were exposed with a single descriptor, it may happen +that a specific combination of profiles/channels/formats may not be +supported. Likewise, embedded DSPs have limited memory and cpu cycles, +it is likely that some implementations make the list of capabilities +dynamic and dependent on existing workloads. In addition to codec +settings, this routine returns the minimum buffer size handled by the +implementation. This information can be a function of the DMA buffer +sizes, the number of bytes required to synchronize, etc, and can be +used by userspace to define how much needs to be written in the ring +buffer before playback can start. + +- set_params +This routine sets the configuration chosen for a specific codec. The +most important field in the parameters is the codec type; in most +cases decoders will ignore other fields, while encoders will strictly +comply to the settings + +- get_params +This routines returns the actual settings used by the DSP. Changes to +the settings should remain the exception. + +- get_timestamp +The timestamp becomes a multiple field structure. It lists the number +of bytes transferred, the number of samples processed and the number +of samples rendered/grabbed. All these values can be used to determine +the avarage bitrate, figure out if the ring buffer needs to be +refilled or the delay due to decoding/encoding/io on the DSP. + +Note that the list of codecs/profiles/modes was derived from the +OpenMAX AL specification instead of reinventing the wheel. +Modifications include: +- Addition of FLAC and IEC formats +- Merge of encoder/decoder capabilities +- Profiles/modes listed as bitmasks to make descriptors more compact +- Addition of set_params for decoders (missing in OpenMAX AL) +- Addition of AMR/AMR-WB encoding modes (missing in OpenMAX AL) +- Addition of format information for WMA +- Addition of encoding options when required (derived from OpenMAX IL) +- Addition of rateControlSupported (missing in OpenMAX AL) + +Not supported: + +- Support for VoIP/circuit-switched calls is not the target of this + API. Support for dynamic bit-rate changes would require a tight + coupling between the DSP and the host stack, limiting power savings. + +- Packet-loss concealment is not supported. This would require an + additional interface to let the decoder synthesize data when frames + are lost during transmission. This may be added in the future. + +- Volume control/routing is not handled by this API. Devices exposing a + compressed data interface will be considered as regular ALSA devices; + volume changes and routing information will be provided with regular + ALSA kcontrols. + +- Embedded audio effects. Such effects should be enabled in the same + manner, no matter if the input was PCM or compressed. + +- multichannel IEC encoding. Unclear if this is required. + +- Encoding/decoding acceleration is not supported as mentioned + above. It is possible to route the output of a decoder to a capture + stream, or even implement transcoding capabilities. This routing + would be enabled with ALSA kcontrols. + +- Audio policy/resource management. This API does not provide any + hooks to query the utilization of the audio DSP, nor any premption + mechanisms. + +- No notion of underun/overrun. Since the bytes written are compressed + in nature and data written/read doesn't translate directly to + rendered output in time, this does not deal with underrun/overun and + maybe dealt in user-library + +Credits: +- Mark Brown and Liam Girdwood for discussions on the need for this API +- Harsha Priya for her work on intel_sst compressed API +- Rakesh Ughreja for valuable feedback +- Sing Nallasellan, Sikkandar Madar and Prasanna Samaga for + demonstrating and quantifying the benefits of audio offload on a + real platform. diff --git a/Documentation/sysctl/kernel.txt b/Documentation/sysctl/kernel.txt index 1f2463671a1..6d8cd8b2c30 100644 --- a/Documentation/sysctl/kernel.txt +++ b/Documentation/sysctl/kernel.txt @@ -49,6 +49,7 @@ show up in /proc/sys/kernel: - panic - panic_on_oops - panic_on_unrecovered_nmi +- panic_on_stackoverflow - pid_max - powersave-nap [ PPC only ] - printk @@ -393,6 +394,19 @@ Controls the kernel's behaviour when an oops or BUG is encountered. ============================================================== +panic_on_stackoverflow: + +Controls the kernel's behavior when detecting the overflows of +kernel, IRQ and exception stacks except a user stack. +This file shows up if CONFIG_DEBUG_STACKOVERFLOW is enabled. + +0: try to continue operation. + +1: panic immediately. + +============================================================== + + pid_max: PID allocation wrap value. When the kernel's next PID value diff --git a/Documentation/vm/slub.txt b/Documentation/vm/slub.txt index f464f47bc60..2acdda9601b 100644 --- a/Documentation/vm/slub.txt +++ b/Documentation/vm/slub.txt @@ -117,7 +117,7 @@ can be influenced by kernel parameters: slub_min_objects=x (default 4) slub_min_order=x (default 0) -slub_max_order=x (default 1) +slub_max_order=x (default 3 (PAGE_ALLOC_COSTLY_ORDER)) slub_min_objects allows to specify how many objects must at least fit into one slab in order for the allocation order to be acceptable. |