aboutsummaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/00-INDEX4
-rw-r--r--Documentation/SubmittingPatches56
-rw-r--r--Documentation/filesystems/00-INDEX6
-rw-r--r--Documentation/filesystems/nfsroot.txt (renamed from Documentation/nfsroot.txt)0
-rw-r--r--Documentation/filesystems/rpc-cache.txt (renamed from Documentation/rpc-cache.txt)0
-rw-r--r--Documentation/filesystems/seq_file.txt283
-rw-r--r--Documentation/hrtimers/highres.txt2
-rw-r--r--Documentation/i386/IO-APIC.txt2
-rw-r--r--Documentation/kernel-parameters.txt15
-rw-r--r--Documentation/lguest/lguest.c70
-rw-r--r--Documentation/lguest/lguest.txt19
-rw-r--r--Documentation/networking/00-INDEX3
-rw-r--r--Documentation/networking/sk98lin.txt568
-rw-r--r--Documentation/nmi_watchdog.txt3
-rw-r--r--Documentation/scheduler/00-INDEX2
-rw-r--r--Documentation/scheduler/sched-rt-group.txt (renamed from Documentation/sched-rt-group.txt)0
-rw-r--r--Documentation/spi/spi-summary15
-rw-r--r--Documentation/spinlocks.txt22
-rw-r--r--Documentation/unaligned-memory-access.txt4
19 files changed, 441 insertions, 633 deletions
diff --git a/Documentation/00-INDEX b/Documentation/00-INDEX
index fc8e7c7d182..e8fb2467196 100644
--- a/Documentation/00-INDEX
+++ b/Documentation/00-INDEX
@@ -271,8 +271,6 @@ netlabel/
- directory with information on the NetLabel subsystem.
networking/
- directory with info on various aspects of networking with Linux.
-nfsroot.txt
- - short guide on setting up a diskless box with NFS root filesystem.
nmi_watchdog.txt
- info on NMI watchdog for SMP systems.
nommu-mmap.txt
@@ -321,8 +319,6 @@ robust-futexes.txt
- a description of what robust futexes are.
rocket.txt
- info on the Comtrol RocketPort multiport serial driver.
-rpc-cache.txt
- - introduction to the caching mechanisms in the sunrpc layer.
rt-mutex-design.txt
- description of the RealTime mutex implementation design.
rt-mutex.txt
diff --git a/Documentation/SubmittingPatches b/Documentation/SubmittingPatches
index 08a1ed1cb5d..1fc4e7144dc 100644
--- a/Documentation/SubmittingPatches
+++ b/Documentation/SubmittingPatches
@@ -328,7 +328,7 @@ now, but you can do this to mark internal company procedures or just
point out some special detail about the sign-off.
-13) When to use Acked-by:
+13) When to use Acked-by: and Cc:
The Signed-off-by: tag indicates that the signer was involved in the
development of the patch, or that he/she was in the patch's delivery path.
@@ -349,11 +349,59 @@ Acked-by: does not necessarily indicate acknowledgement of the entire patch.
For example, if a patch affects multiple subsystems and has an Acked-by: from
one subsystem maintainer then this usually indicates acknowledgement of just
the part which affects that maintainer's code. Judgement should be used here.
- When in doubt people should refer to the original discussion in the mailing
+When in doubt people should refer to the original discussion in the mailing
list archives.
+If a person has had the opportunity to comment on a patch, but has not
+provided such comments, you may optionally add a "Cc:" tag to the patch.
+This is the only tag which might be added without an explicit action by the
+person it names. This tag documents that potentially interested parties
+have been included in the discussion
-14) The canonical patch format
+
+14) Using Test-by: and Reviewed-by:
+
+A Tested-by: tag indicates that the patch has been successfully tested (in
+some environment) by the person named. This tag informs maintainers that
+some testing has been performed, provides a means to locate testers for
+future patches, and ensures credit for the testers.
+
+Reviewed-by:, instead, indicates that the patch has been reviewed and found
+acceptable according to the Reviewer's Statement:
+
+ Reviewer's statement of oversight
+
+ By offering my Reviewed-by: tag, I state that:
+
+ (a) I have carried out a technical review of this patch to
+ evaluate its appropriateness and readiness for inclusion into
+ the mainline kernel.
+
+ (b) Any problems, concerns, or questions relating to the patch
+ have been communicated back to the submitter. I am satisfied
+ with the submitter's response to my comments.
+
+ (c) While there may be things that could be improved with this
+ submission, I believe that it is, at this time, (1) a
+ worthwhile modification to the kernel, and (2) free of known
+ issues which would argue against its inclusion.
+
+ (d) While I have reviewed the patch and believe it to be sound, I
+ do not (unless explicitly stated elsewhere) make any
+ warranties or guarantees that it will achieve its stated
+ purpose or function properly in any given situation.
+
+A Reviewed-by tag is a statement of opinion that the patch is an
+appropriate modification of the kernel without any remaining serious
+technical issues. Any interested reviewer (who has done the work) can
+offer a Reviewed-by tag for a patch. This tag serves to give credit to
+reviewers and to inform maintainers of the degree of review which has been
+done on the patch. Reviewed-by: tags, when supplied by reviewers known to
+understand the subject area and to perform thorough reviews, will normally
+increase the liklihood of your patch getting into the kernel.
+
+
+15) The canonical patch format
The canonical patch subject line is:
@@ -512,7 +560,7 @@ They provide type safety, have no length limitations, no formatting
limitations, and under gcc they are as cheap as macros.
Macros should only be used for cases where a static inline is clearly
-suboptimal [there a few, isolated cases of this in fast paths],
+suboptimal [there are a few, isolated cases of this in fast paths],
or where it is impossible to use a static inline function [such as
string-izing].
diff --git a/Documentation/filesystems/00-INDEX b/Documentation/filesystems/00-INDEX
index e68021c08fb..52cd611277a 100644
--- a/Documentation/filesystems/00-INDEX
+++ b/Documentation/filesystems/00-INDEX
@@ -66,6 +66,8 @@ mandatory-locking.txt
- info on the Linux implementation of Sys V mandatory file locking.
ncpfs.txt
- info on Novell Netware(tm) filesystem using NCP protocol.
+nfsroot.txt
+ - short guide on setting up a diskless box with NFS root filesystem.
ntfs.txt
- info and mount options for the NTFS filesystem (Windows NT).
ocfs2.txt
@@ -82,6 +84,10 @@ relay.txt
- info on relay, for efficient streaming from kernel to user space.
romfs.txt
- description of the ROMFS filesystem.
+rpc-cache.txt
+ - introduction to the caching mechanisms in the sunrpc layer.
+seq_file.txt
+ - how to use the seq_file API
sharedsubtree.txt
- a description of shared subtrees for namespaces.
smbfs.txt
diff --git a/Documentation/nfsroot.txt b/Documentation/filesystems/nfsroot.txt
index 31b32917234..31b32917234 100644
--- a/Documentation/nfsroot.txt
+++ b/Documentation/filesystems/nfsroot.txt
diff --git a/Documentation/rpc-cache.txt b/Documentation/filesystems/rpc-cache.txt
index 8a382bea680..8a382bea680 100644
--- a/Documentation/rpc-cache.txt
+++ b/Documentation/filesystems/rpc-cache.txt
diff --git a/Documentation/filesystems/seq_file.txt b/Documentation/filesystems/seq_file.txt
new file mode 100644
index 00000000000..cc6cdb95b73
--- /dev/null
+++ b/Documentation/filesystems/seq_file.txt
@@ -0,0 +1,283 @@
+The seq_file interface
+
+ Copyright 2003 Jonathan Corbet <corbet@lwn.net>
+ This file is originally from the LWN.net Driver Porting series at
+ http://lwn.net/Articles/driver-porting/
+
+
+There are numerous ways for a device driver (or other kernel component) to
+provide information to the user or system administrator. One useful
+technique is the creation of virtual files, in debugfs, /proc or elsewhere.
+Virtual files can provide human-readable output that is easy to get at
+without any special utility programs; they can also make life easier for
+script writers. It is not surprising that the use of virtual files has
+grown over the years.
+
+Creating those files correctly has always been a bit of a challenge,
+however. It is not that hard to make a virtual file which returns a
+string. But life gets trickier if the output is long - anything greater
+than an application is likely to read in a single operation. Handling
+multiple reads (and seeks) requires careful attention to the reader's
+position within the virtual file - that position is, likely as not, in the
+middle of a line of output. The kernel has traditionally had a number of
+implementations that got this wrong.
+
+The 2.6 kernel contains a set of functions (implemented by Alexander Viro)
+which are designed to make it easy for virtual file creators to get it
+right.
+
+The seq_file interface is available via <linux/seq_file.h>. There are
+three aspects to seq_file:
+
+ * An iterator interface which lets a virtual file implementation
+ step through the objects it is presenting.
+
+ * Some utility functions for formatting objects for output without
+ needing to worry about things like output buffers.
+
+ * A set of canned file_operations which implement most operations on
+ the virtual file.
+
+We'll look at the seq_file interface via an extremely simple example: a
+loadable module which creates a file called /proc/sequence. The file, when
+read, simply produces a set of increasing integer values, one per line. The
+sequence will continue until the user loses patience and finds something
+better to do. The file is seekable, in that one can do something like the
+following:
+
+ dd if=/proc/sequence of=out1 count=1
+ dd if=/proc/sequence skip=1 out=out2 count=1
+
+Then concatenate the output files out1 and out2 and get the right
+result. Yes, it is a thoroughly useless module, but the point is to show
+how the mechanism works without getting lost in other details. (Those
+wanting to see the full source for this module can find it at
+http://lwn.net/Articles/22359/).
+
+
+The iterator interface
+
+Modules implementing a virtual file with seq_file must implement a simple
+iterator object that allows stepping through the data of interest.
+Iterators must be able to move to a specific position - like the file they
+implement - but the interpretation of that position is up to the iterator
+itself. A seq_file implementation that is formatting firewall rules, for
+example, could interpret position N as the Nth rule in the chain.
+Positioning can thus be done in whatever way makes the most sense for the
+generator of the data, which need not be aware of how a position translates
+to an offset in the virtual file. The one obvious exception is that a
+position of zero should indicate the beginning of the file.
+
+The /proc/sequence iterator just uses the count of the next number it
+will output as its position.
+
+Four functions must be implemented to make the iterator work. The first,
+called start() takes a position as an argument and returns an iterator
+which will start reading at that position. For our simple sequence example,
+the start() function looks like:
+
+ static void *ct_seq_start(struct seq_file *s, loff_t *pos)
+ {
+ loff_t *spos = kmalloc(sizeof(loff_t), GFP_KERNEL);
+ if (! spos)
+ return NULL;
+ *spos = *pos;
+ return spos;
+ }
+
+The entire data structure for this iterator is a single loff_t value
+holding the current position. There is no upper bound for the sequence
+iterator, but that will not be the case for most other seq_file
+implementations; in most cases the start() function should check for a
+"past end of file" condition and return NULL if need be.
+
+For more complicated applications, the private field of the seq_file
+structure can be used. There is also a special value whch can be returned
+by the start() function called SEQ_START_TOKEN; it can be used if you wish
+to instruct your show() function (described below) to print a header at the
+top of the output. SEQ_START_TOKEN should only be used if the offset is
+zero, however.
+
+The next function to implement is called, amazingly, next(); its job is to
+move the iterator forward to the next position in the sequence. The
+example module can simply increment the position by one; more useful
+modules will do what is needed to step through some data structure. The
+next() function returns a new iterator, or NULL if the sequence is
+complete. Here's the example version:
+
+ static void *ct_seq_next(struct seq_file *s, void *v, loff_t *pos)
+ {
+ loff_t *spos = v;
+ *pos = ++*spos;
+ return spos;
+ }
+
+The stop() function is called when iteration is complete; its job, of
+course, is to clean up. If dynamic memory is allocated for the iterator,
+stop() is the place to free it.
+
+ static void ct_seq_stop(struct seq_file *s, void *v)
+ {
+ kfree(v);
+ }
+
+Finally, the show() function should format the object currently pointed to
+by the iterator for output. It should return zero, or an error code if
+something goes wrong. The example module's show() function is:
+
+ static int ct_seq_show(struct seq_file *s, void *v)
+ {
+ loff_t *spos = v;
+ seq_printf(s, "%lld\n", (long long)*spos);
+ return 0;
+ }
+
+We will look at seq_printf() in a moment. But first, the definition of the
+seq_file iterator is finished by creating a seq_operations structure with
+the four functions we have just defined:
+
+ static const struct seq_operations ct_seq_ops = {
+ .start = ct_seq_start,
+ .next = ct_seq_next,
+ .stop = ct_seq_stop,
+ .show = ct_seq_show
+ };
+
+This structure will be needed to tie our iterator to the /proc file in
+a little bit.
+
+It's worth noting that the interator value returned by start() and
+manipulated by the other functions is considered to be completely opaque by
+the seq_file code. It can thus be anything that is useful in stepping
+through the data to be output. Counters can be useful, but it could also be
+a direct pointer into an array or linked list. Anything goes, as long as
+the programmer is aware that things can happen between calls to the
+iterator function. However, the seq_file code (by design) will not sleep
+between the calls to start() and stop(), so holding a lock during that time
+is a reasonable thing to do. The seq_file code will also avoid taking any
+other locks while the iterator is active.
+
+
+Formatted output
+
+The seq_file code manages positioning within the output created by the
+iterator and getting it into the user's buffer. But, for that to work, that
+output must be passed to the seq_file code. Some utility functions have
+been defined which make this task easy.
+
+Most code will simply use seq_printf(), which works pretty much like
+printk(), but which requires the seq_file pointer as an argument. It is
+common to ignore the return value from seq_printf(), but a function
+producing complicated output may want to check that value and quit if
+something non-zero is returned; an error return means that the seq_file
+buffer has been filled and further output will be discarded.
+
+For straight character output, the following functions may be used:
+
+ int seq_putc(struct seq_file *m, char c);
+ int seq_puts(struct seq_file *m, const char *s);
+ int seq_escape(struct seq_file *m, const char *s, const char *esc);
+
+The first two output a single character and a string, just like one would
+expect. seq_escape() is like seq_puts(), except that any character in s
+which is in the string esc will be represented in octal form in the output.
+
+There is also a function for printing filenames:
+
+ int seq_path(struct seq_file *m, struct path *path, char *esc);
+
+Here, path indicates the file of interest, and esc is a set of characters
+which should be escaped in the output.
+
+
+Making it all work
+
+So far, we have a nice set of functions which can produce output within the
+seq_file system, but we have not yet turned them into a file that a user
+can see. Creating a file within the kernel requires, of course, the
+creation of a set of file_operations which implement the operations on that
+file. The seq_file interface provides a set of canned operations which do
+most of the work. The virtual file author still must implement the open()
+method, however, to hook everything up. The open function is often a single
+line, as in the example module:
+
+ static int ct_open(struct inode *inode, struct file *file)
+ {
+ return seq_open(file, &ct_seq_ops);
+ }
+
+Here, the call to seq_open() takes the seq_operations structure we created
+before, and gets set up to iterate through the virtual file.
+
+On a successful open, seq_open() stores the struct seq_file pointer in
+file->private_data. If you have an application where the same iterator can
+be used for more than one file, you can store an arbitrary pointer in the
+private field of the seq_file structure; that value can then be retrieved
+by the iterator functions.
+
+The other operations of interest - read(), llseek(), and release() - are
+all implemented by the seq_file code itself. So a virtual file's
+file_operations structure will look like:
+
+ static const struct file_operations ct_file_ops = {
+ .owner = THIS_MODULE,
+ .open = ct_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = seq_release
+ };
+
+There is also a seq_release_private() which passes the contents of the
+seq_file private field to kfree() before releasing the structure.
+
+The final step is the creation of the /proc file itself. In the example
+code, that is done in the initialization code in the usual way:
+
+ static int ct_init(void)
+ {
+ struct proc_dir_entry *entry;
+
+ entry = create_proc_entry("sequence", 0, NULL);
+ if (entry)
+ entry->proc_fops = &ct_file_ops;
+ return 0;
+ }
+
+ module_init(ct_init);
+
+And that is pretty much it.
+
+
+seq_list
+
+If your file will be iterating through a linked list, you may find these
+routines useful:
+
+ struct list_head *seq_list_start(struct list_head *head,
+ loff_t pos);
+ struct list_head *seq_list_start_head(struct list_head *head,
+ loff_t pos);
+ struct list_head *seq_list_next(void *v, struct list_head *head,
+ loff_t *ppos);
+
+These helpers will interpret pos as a position within the list and iterate
+accordingly. Your start() and next() functions need only invoke the
+seq_list_* helpers with a pointer to the appropriate list_head structure.
+
+
+The extra-simple version
+
+For extremely simple virtual files, there is an even easier interface. A
+module can define only the show() function, which should create all the
+output that the virtual file will contain. The file's open() method then
+calls:
+
+ int single_open(struct file *file,
+ int (*show)(struct seq_file *m, void *p),
+ void *data);
+
+When output time comes, the show() function will be called once. The data
+value given to single_open() can be found in the private field of the
+seq_file structure. When using single_open(), the programmer should use
+single_release() instead of seq_release() in the file_operations structure
+to avoid a memory leak.
diff --git a/Documentation/hrtimers/highres.txt b/Documentation/hrtimers/highres.txt
index ce0e9a91e15..a73ecf5b4bd 100644
--- a/Documentation/hrtimers/highres.txt
+++ b/Documentation/hrtimers/highres.txt
@@ -98,7 +98,7 @@ System-level global event devices are used for the Linux periodic tick. Per-CPU
event devices are used to provide local CPU functionality such as process
accounting, profiling, and high resolution timers.
-The management layer assignes one or more of the folliwing functions to a clock
+The management layer assigns one or more of the following functions to a clock
event device:
- system global periodic tick (jiffies update)
- cpu local update_process_times
diff --git a/Documentation/i386/IO-APIC.txt b/Documentation/i386/IO-APIC.txt
index f95166645d2..30b4c714fbe 100644
--- a/Documentation/i386/IO-APIC.txt
+++ b/Documentation/i386/IO-APIC.txt
@@ -70,7 +70,7 @@ Every PCI card emits a PCI IRQ, which can be INTA, INTB, INTC or INTD:
These INTA-D PCI IRQs are always 'local to the card', their real meaning
depends on which slot they are in. If you look at the daisy chaining diagram,
-a card in slot4, issuing INTA IRQ, it will end up as a signal on PIRQ2 of
+a card in slot4, issuing INTA IRQ, it will end up as a signal on PIRQ4 of
the PCI chipset. Most cards issue INTA, this creates optimal distribution
between the PIRQ lines. (distributing IRQ sources properly is not a
necessity, PCI IRQs can be shared at will, but it's a good for performance
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index 508e2a2c986..dafd001bf83 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -170,11 +170,6 @@ and is between 256 and 4096 characters. It is defined in the file
acpi_irq_isa= [HW,ACPI] If irq_balance, mark listed IRQs used by ISA
Format: <irq>,<irq>...
- acpi_new_pts_ordering [HW,ACPI]
- Enforce the ACPI 2.0 ordering of the _PTS control
- method wrt putting devices into low power states
- default: pre ACPI 2.0 ordering of _PTS
-
acpi_no_auto_ssdt [HW,ACPI] Disable automatic loading of SSDT
acpi_os_name= [HW,ACPI] Tell ACPI BIOS the name of the OS
@@ -380,6 +375,10 @@ and is between 256 and 4096 characters. It is defined in the file
ccw_timeout_log [S390]
See Documentation/s390/CommonIO for details.
+ cgroup_disable= [KNL] Disable a particular controller
+ Format: {name of the controller(s) to disable}
+ {Currently supported controllers - "memory"}
+
checkreqprot [SELINUX] Set initial checkreqprot flag value.
Format: { "0" | "1" }
See security/selinux/Kconfig help text.
@@ -845,7 +844,7 @@ and is between 256 and 4096 characters. It is defined in the file
arch/alpha/kernel/core_marvel.c.
ip= [IP_PNP]
- See Documentation/nfsroot.txt.
+ See Documentation/filesystems/nfsroot.txt.
ip2= [HW] Set IO/IRQ pairs for up to 4 IntelliPort boards
See comment before ip2_setup() in
@@ -1199,10 +1198,10 @@ and is between 256 and 4096 characters. It is defined in the file
file if at all.
nfsaddrs= [NFS]
- See Documentation/nfsroot.txt.
+ See Documentation/filesystems/nfsroot.txt.
nfsroot= [NFS] nfs root filesystem for disk-less boxes.
- See Documentation/nfsroot.txt.
+ See Documentation/filesystems/nfsroot.txt.
nfs.callback_tcpport=
[NFS] set the TCP port on which the NFSv4 callback
diff --git a/Documentation/lguest/lguest.c b/Documentation/lguest/lguest.c
index bec5a32e409..4c1fc65a8b3 100644
--- a/Documentation/lguest/lguest.c
+++ b/Documentation/lguest/lguest.c
@@ -1,7 +1,7 @@
/*P:100 This is the Launcher code, a simple program which lays out the
- * "physical" memory for the new Guest by mapping the kernel image and the
- * virtual devices, then reads repeatedly from /dev/lguest to run the Guest.
-:*/
+ * "physical" memory for the new Guest by mapping the kernel image and
+ * the virtual devices, then opens /dev/lguest to tell the kernel
+ * about the Guest and control it. :*/
#define _LARGEFILE64_SOURCE
#define _GNU_SOURCE
#include <stdio.h>
@@ -43,7 +43,7 @@
#include "linux/virtio_console.h"
#include "linux/virtio_ring.h"
#include "asm-x86/bootparam.h"
-/*L:110 We can ignore the 38 include files we need for this program, but I do
+/*L:110 We can ignore the 39 include files we need for this program, but I do
* want to draw attention to the use of kernel-style types.
*
* As Linus said, "C is a Spartan language, and so should your naming be." I
@@ -320,7 +320,7 @@ static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
err(1, "Reading program headers");
/* Try all the headers: there are usually only three. A read-only one,
- * a read-write one, and a "note" section which isn't loadable. */
+ * a read-write one, and a "note" section which we don't load. */
for (i = 0; i < ehdr->e_phnum; i++) {
/* If this isn't a loadable segment, we ignore it */
if (phdr[i].p_type != PT_LOAD)
@@ -387,7 +387,7 @@ static unsigned long load_kernel(int fd)
if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
return map_elf(fd, &hdr);
- /* Otherwise we assume it's a bzImage, and try to unpack it */
+ /* Otherwise we assume it's a bzImage, and try to load it. */
return load_bzimage(fd);
}
@@ -433,12 +433,12 @@ static unsigned long load_initrd(const char *name, unsigned long mem)
return len;
}
-/* Once we know how much memory we have, we can construct simple linear page
+/* Once we know how much memory we have we can construct simple linear page
* tables which set virtual == physical which will get the Guest far enough
* into the boot to create its own.
*
* We lay them out of the way, just below the initrd (which is why we need to
- * know its size). */
+ * know its size here). */
static unsigned long setup_pagetables(unsigned long mem,
unsigned long initrd_size)
{
@@ -850,7 +850,8 @@ static void handle_console_output(int fd, struct virtqueue *vq)
*
* Handling output for network is also simple: we get all the output buffers
* and write them (ignoring the first element) to this device's file descriptor
- * (stdout). */
+ * (/dev/net/tun).
+ */
static void handle_net_output(int fd, struct virtqueue *vq)
{
unsigned int head, out, in;
@@ -924,7 +925,7 @@ static void enable_fd(int fd, struct virtqueue *vq)
write(waker_fd, &vq->dev->fd, sizeof(vq->dev->fd));
}
-/* Resetting a device is fairly easy. */
+/* When the Guest asks us to reset a device, it's is fairly easy. */
static void reset_device(struct device *dev)
{
struct virtqueue *vq;
@@ -1003,8 +1004,8 @@ static void handle_input(int fd)
if (select(devices.max_infd+1, &fds, NULL, NULL, &poll) == 0)
break;
- /* Otherwise, call the device(s) which have readable
- * file descriptors and a method of handling them. */
+ /* Otherwise, call the device(s) which have readable file
+ * descriptors and a method of handling them. */
for (i = devices.dev; i; i = i->next) {
if (i->handle_input && FD_ISSET(i->fd, &fds)) {
int dev_fd;
@@ -1015,8 +1016,7 @@ static void handle_input(int fd)
* should no longer service it. Networking and
* console do this when there's no input
* buffers to deliver into. Console also uses
- * it when it discovers that stdin is
- * closed. */
+ * it when it discovers that stdin is closed. */
FD_CLR(i->fd, &devices.infds);
/* Tell waker to ignore it too, by sending a
* negative fd number (-1, since 0 is a valid
@@ -1033,7 +1033,8 @@ static void handle_input(int fd)
*
* All devices need a descriptor so the Guest knows it exists, and a "struct
* device" so the Launcher can keep track of it. We have common helper
- * routines to allocate and manage them. */
+ * routines to allocate and manage them.
+ */
/* The layout of the device page is a "struct lguest_device_desc" followed by a
* number of virtqueue descriptors, then two sets of feature bits, then an
@@ -1078,7 +1079,7 @@ static void add_virtqueue(struct device *dev, unsigned int num_descs,
struct virtqueue **i, *vq = malloc(sizeof(*vq));
void *p;
- /* First we need some pages for this virtqueue. */
+ /* First we need some memory for this virtqueue. */
pages = (vring_size(num_descs, getpagesize()) + getpagesize() - 1)
/ getpagesize();
p = get_pages(pages);
@@ -1122,7 +1123,7 @@ static void add_virtqueue(struct device *dev, unsigned int num_descs,
}
/* The first half of the feature bitmask is for us to advertise features. The
- * second half if for the Guest to accept features. */
+ * second half is for the Guest to accept features. */
static void add_feature(struct device *dev, unsigned bit)
{
u8 *features = get_feature_bits(dev);
@@ -1151,7 +1152,9 @@ static void set_config(struct device *dev, unsigned len, const void *conf)
}
/* This routine does all the creation and setup of a new device, including
- * calling new_dev_desc() to allocate the descriptor and device memory. */
+ * calling new_dev_desc() to allocate the descriptor and device memory.
+ *
+ * See what I mean about userspace being boring? */
static struct device *new_device(const char *name, u16 type, int fd,
bool (*handle_input)(int, struct device *))
{
@@ -1383,7 +1386,6 @@ struct vblk_info
* Launcher triggers interrupt to Guest. */
int done_fd;
};
-/*:*/
/*L:210
* The Disk
@@ -1493,7 +1495,10 @@ static int io_thread(void *_dev)
while (read(vblk->workpipe[0], &c, 1) == 1) {
/* We acknowledge each request immediately to reduce latency,
* rather than waiting until we've done them all. I haven't
- * measured to see if it makes any difference. */
+ * measured to see if it makes any difference.
+ *
+ * That would be an interesting test, wouldn't it? You could
+ * also try having more than one I/O thread. */
while (service_io(dev))
write(vblk->done_fd, &c, 1);
}
@@ -1501,7 +1506,7 @@ static int io_thread(void *_dev)
}
/* Now we've seen the I/O thread, we return to the Launcher to see what happens
- * when the thread tells us it's completed some I/O. */
+ * when that thread tells us it's completed some I/O. */
static bool handle_io_finish(int fd, struct device *dev)
{
char c;
@@ -1573,11 +1578,12 @@ static void setup_block_file(const char *filename)
* more work. */
pipe(vblk->workpipe);
- /* Create stack for thread and run it */
+ /* Create stack for thread and run it. Since stack grows upwards, we
+ * point the stack pointer to the end of this region. */
stack = malloc(32768);
/* SIGCHLD - We dont "wait" for our cloned thread, so prevent it from
* becoming a zombie. */
- if (clone(io_thread, stack + 32768, CLONE_VM | SIGCHLD, dev) == -1)
+ if (clone(io_thread, stack + 32768, CLONE_VM | SIGCHLD, dev) == -1)
err(1, "Creating clone");
/* We don't need to keep the I/O thread's end of the pipes open. */
@@ -1587,14 +1593,14 @@ static void setup_block_file(const char *filename)
verbose("device %u: virtblock %llu sectors\n",
devices.device_num, le64_to_cpu(conf.capacity));
}
-/* That's the end of device setup. :*/
+/* That's the end of device setup. */
-/* Reboot */
+/*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
static void __attribute__((noreturn)) restart_guest(void)
{
unsigned int i;
- /* Closing pipes causes the waker thread and io_threads to die, and
+ /* Closing pipes causes the Waker thread and io_threads to die, and
* closing /dev/lguest cleans up the Guest. Since we don't track all
* open fds, we simply close everything beyond stderr. */
for (i = 3; i < FD_SETSIZE; i++)
@@ -1603,7 +1609,7 @@ static void __attribute__((noreturn)) restart_guest(void)
err(1, "Could not exec %s", main_args[0]);
}
-/*L:220 Finally we reach the core of the Launcher, which runs the Guest, serves
+/*L:220 Finally we reach the core of the Launcher which runs the Guest, serves
* its input and output, and finally, lays it to rest. */
static void __attribute__((noreturn)) run_guest(int lguest_fd)
{
@@ -1644,7 +1650,7 @@ static void __attribute__((noreturn)) run_guest(int lguest_fd)
err(1, "Resetting break");
}
}
-/*
+/*L:240
* This is the end of the Launcher. The good news: we are over halfway
* through! The bad news: the most fiendish part of the code still lies ahead
* of us.
@@ -1691,8 +1697,8 @@ int main(int argc, char *argv[])
* device receive input from a file descriptor, we keep an fdset
* (infds) and the maximum fd number (max_infd) with the head of the
* list. We also keep a pointer to the last device. Finally, we keep
- * the next interrupt number to hand out (1: remember that 0 is used by
- * the timer). */
+ * the next interrupt number to use for devices (1: remember that 0 is
+ * used by the timer). */
FD_ZERO(&devices.infds);
devices.max_infd = -1;
devices.lastdev = NULL;
@@ -1793,8 +1799,8 @@ int main(int argc, char *argv[])
lguest_fd = tell_kernel(pgdir, start);
/* We fork off a child process, which wakes the Launcher whenever one
- * of the input file descriptors needs attention. Otherwise we would
- * run the Guest until it tries to output something. */
+ * of the input file descriptors needs attention. We call this the
+ * Waker, and we'll cover it in a moment. */
waker_fd = setup_waker(lguest_fd);
/* Finally, run the Guest. This doesn't return. */
diff --git a/Documentation/lguest/lguest.txt b/Documentation/lguest/lguest.txt
index 722d4e7fbeb..29510dc5151 100644
--- a/Documentation/lguest/lguest.txt
+++ b/Documentation/lguest/lguest.txt
@@ -1,6 +1,7 @@
-Rusty's Remarkably Unreliable Guide to Lguest
- - or, A Young Coder's Illustrated Hypervisor
-http://lguest.ozlabs.org
+ __
+ (___()'`; Rusty's Remarkably Unreliable Guide to Lguest
+ /, /` - or, A Young Coder's Illustrated Hypervisor
+ \\"--\\ http://lguest.ozlabs.org
Lguest is designed to be a minimal hypervisor for the Linux kernel, for
Linux developers and users to experiment with virtualization with the
@@ -41,12 +42,16 @@ Running Lguest: