aboutsummaryrefslogtreecommitdiff
path: root/Documentation/scsi/cxgb3i.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/scsi/cxgb3i.txt')
-rw-r--r--Documentation/scsi/cxgb3i.txt85
1 files changed, 85 insertions, 0 deletions
diff --git a/Documentation/scsi/cxgb3i.txt b/Documentation/scsi/cxgb3i.txt
new file mode 100644
index 00000000000..8141fa01978
--- /dev/null
+++ b/Documentation/scsi/cxgb3i.txt
@@ -0,0 +1,85 @@
+Chelsio S3 iSCSI Driver for Linux
+
+Introduction
+============
+
+The Chelsio T3 ASIC based Adapters (S310, S320, S302, S304, Mezz cards, etc.
+series of products) supports iSCSI acceleration and iSCSI Direct Data Placement
+(DDP) where the hardware handles the expensive byte touching operations, such
+as CRC computation and verification, and direct DMA to the final host memory
+destination:
+
+ - iSCSI PDU digest generation and verification
+
+ On transmitting, Chelsio S3 h/w computes and inserts the Header and
+ Data digest into the PDUs.
+ On receiving, Chelsio S3 h/w computes and verifies the Header and
+ Data digest of the PDUs.
+
+ - Direct Data Placement (DDP)
+
+ S3 h/w can directly place the iSCSI Data-In or Data-Out PDU's
+ payload into pre-posted final destination host-memory buffers based
+ on the Initiator Task Tag (ITT) in Data-In or Target Task Tag (TTT)
+ in Data-Out PDUs.
+
+ - PDU Transmit and Recovery
+
+ On transmitting, S3 h/w accepts the complete PDU (header + data)
+ from the host driver, computes and inserts the digests, decomposes
+ the PDU into multiple TCP segments if necessary, and transmit all
+ the TCP segments onto the wire. It handles TCP retransmission if
+ needed.
+
+ On receving, S3 h/w recovers the iSCSI PDU by reassembling TCP
+ segments, separating the header and data, calculating and verifying
+ the digests, then forwards the header to the host. The payload data,
+ if possible, will be directly placed into the pre-posted host DDP
+ buffer. Otherwise, the payload data will be sent to the host too.
+
+The cxgb3i driver interfaces with open-iscsi initiator and provides the iSCSI
+acceleration through Chelsio hardware wherever applicable.
+
+Using the cxgb3i Driver
+=======================
+
+The following steps need to be taken to accelerates the open-iscsi initiator:
+
+1. Load the cxgb3i driver: "modprobe cxgb3i"
+
+ The cxgb3i module registers a new transport class "cxgb3i" with open-iscsi.
+
+ * in the case of recompiling the kernel, the cxgb3i selection is located at
+ Device Drivers
+ SCSI device support --->
+ [*] SCSI low-level drivers --->
+ <M> Chelsio S3xx iSCSI support
+
+2. Create an interface file located under /etc/iscsi/ifaces/ for the new
+ transport class "cxgb3i".
+
+ The content of the file should be in the following format:
+ iface.transport_name = cxgb3i
+ iface.net_ifacename = <ethX>
+ iface.ipaddress = <iscsi ip address>
+
+ * if iface.ipaddress is specified, <iscsi ip address> needs to be either the
+ same as the ethX's ip address or an address on the same subnet. Make
+ sure the ip address is unique in the network.
+
+3. edit /etc/iscsi/iscsid.conf
+ The default setting for MaxRecvDataSegmentLength (131072) is too big,
+ replace "node.conn[0].iscsi.MaxRecvDataSegmentLength" to be a value no
+ bigger than 15360 (for example 8192):
+
+ node.conn[0].iscsi.MaxRecvDataSegmentLength = 8192
+
+ * The login would fail for a normal session if MaxRecvDataSegmentLength is
+ too big. A error message in the format of
+ "cxgb3i: ERR! MaxRecvSegmentLength <X> too big. Need to be <= <Y>."
+ would be logged to dmesg.
+
+4. To direct open-iscsi traffic to go through cxgb3i's accelerated path,
+ "-I <iface file name>" option needs to be specified with most of the
+ iscsiadm command. <iface file name> is the transport interface file created
+ in step 2.