aboutsummaryrefslogtreecommitdiff
path: root/Documentation/memory-barriers.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/memory-barriers.txt')
-rw-r--r--Documentation/memory-barriers.txt52
1 files changed, 33 insertions, 19 deletions
diff --git a/Documentation/memory-barriers.txt b/Documentation/memory-barriers.txt
index f8550310a6d..528d52f52ee 100644
--- a/Documentation/memory-barriers.txt
+++ b/Documentation/memory-barriers.txt
@@ -829,8 +829,8 @@ There are some more advanced barrier functions:
(*) smp_mb__after_atomic_inc();
These are for use with atomic add, subtract, increment and decrement
- functions, especially when used for reference counting. These functions
- do not imply memory barriers.
+ functions that don't return a value, especially when used for reference
+ counting. These functions do not imply memory barriers.
As an example, consider a piece of code that marks an object as being dead
and then decrements the object's reference count:
@@ -1263,15 +1263,17 @@ else.
ATOMIC OPERATIONS
-----------------
-Though they are technically interprocessor interaction considerations, atomic
-operations are noted specially as they do _not_ generally imply memory
-barriers. The possible offenders include:
+Whilst they are technically interprocessor interaction considerations, atomic
+operations are noted specially as some of them imply full memory barriers and
+some don't, but they're very heavily relied on as a group throughout the
+kernel.
+
+Any atomic operation that modifies some state in memory and returns information
+about the state (old or new) implies an SMP-conditional general memory barrier
+(smp_mb()) on each side of the actual operation. These include:
xchg();
cmpxchg();
- test_and_set_bit();
- test_and_clear_bit();
- test_and_change_bit();
atomic_cmpxchg();
atomic_inc_return();
atomic_dec_return();
@@ -1282,21 +1284,31 @@ barriers. The possible offenders include:
atomic_sub_and_test();
atomic_add_negative();
atomic_add_unless();
+ test_and_set_bit();
+ test_and_clear_bit();
+ test_and_change_bit();
+
+These are used for such things as implementing LOCK-class and UNLOCK-class
+operations and adjusting reference counters towards object destruction, and as
+such the implicit memory barrier effects are necessary.
-These may be used for such things as implementing LOCK operations or controlling
-the lifetime of objects by decreasing their reference counts. In such cases
-they need preceding memory barriers.
-The following may also be possible offenders as they may be used as UNLOCK
-operations.
+The following operation are potential problems as they do _not_ imply memory
+barriers, but might be used for implementing such things as UNLOCK-class
+operations:
+ atomic_set();
set_bit();
clear_bit();
change_bit();
- atomic_set();
+
+With these the appropriate explicit memory barrier should be used if necessary
+(smp_mb__before_clear_bit() for instance).
-The following are a little tricky:
+The following also do _not_ imply memory barriers, and so may require explicit
+memory barriers under some circumstances (smp_mb__before_atomic_dec() for
+instance)):
atomic_add();
atomic_sub();
@@ -1317,10 +1329,12 @@ specific order.
Basically, each usage case has to be carefully considered as to whether memory
-barriers are needed or not. The simplest rule is probably: if the atomic
-operation is protected by a lock, then it does not require a barrier unless
-there's another operation within the critical section with respect to which an
-ordering must be maintained.
+barriers are needed or not.
+
+[!] Note that special memory barrier primitives are available for these
+situations because on some CPUs the atomic instructions used imply full memory
+barriers, and so barrier instructions are superfluous in conjunction with them,
+and in such cases the special barrier primitives will be no-ops.
See Documentation/atomic_ops.txt for more information.