aboutsummaryrefslogtreecommitdiff
path: root/Documentation/filesystems
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/filesystems')
-rw-r--r--Documentation/filesystems/caching/cachefiles.txt501
1 files changed, 501 insertions, 0 deletions
diff --git a/Documentation/filesystems/caching/cachefiles.txt b/Documentation/filesystems/caching/cachefiles.txt
new file mode 100644
index 00000000000..c78a49b7bba
--- /dev/null
+++ b/Documentation/filesystems/caching/cachefiles.txt
@@ -0,0 +1,501 @@
+ ===============================================
+ CacheFiles: CACHE ON ALREADY MOUNTED FILESYSTEM
+ ===============================================
+
+Contents:
+
+ (*) Overview.
+
+ (*) Requirements.
+
+ (*) Configuration.
+
+ (*) Starting the cache.
+
+ (*) Things to avoid.
+
+ (*) Cache culling.
+
+ (*) Cache structure.
+
+ (*) Security model and SELinux.
+
+ (*) A note on security.
+
+ (*) Statistical information.
+
+ (*) Debugging.
+
+
+========
+OVERVIEW
+========
+
+CacheFiles is a caching backend that's meant to use as a cache a directory on
+an already mounted filesystem of a local type (such as Ext3).
+
+CacheFiles uses a userspace daemon to do some of the cache management - such as
+reaping stale nodes and culling. This is called cachefilesd and lives in
+/sbin.
+
+The filesystem and data integrity of the cache are only as good as those of the
+filesystem providing the backing services. Note that CacheFiles does not
+attempt to journal anything since the journalling interfaces of the various
+filesystems are very specific in nature.
+
+CacheFiles creates a misc character device - "/dev/cachefiles" - that is used
+to communication with the daemon. Only one thing may have this open at once,
+and whilst it is open, a cache is at least partially in existence. The daemon
+opens this and sends commands down it to control the cache.
+
+CacheFiles is currently limited to a single cache.
+
+CacheFiles attempts to maintain at least a certain percentage of free space on
+the filesystem, shrinking the cache by culling the objects it contains to make
+space if necessary - see the "Cache Culling" section. This means it can be
+placed on the same medium as a live set of data, and will expand to make use of
+spare space and automatically contract when the set of data requires more
+space.
+
+
+============
+REQUIREMENTS
+============
+
+The use of CacheFiles and its daemon requires the following features to be
+available in the system and in the cache filesystem:
+
+ - dnotify.
+
+ - extended attributes (xattrs).
+
+ - openat() and friends.
+
+ - bmap() support on files in the filesystem (FIBMAP ioctl).
+
+ - The use of bmap() to detect a partial page at the end of the file.
+
+It is strongly recommended that the "dir_index" option is enabled on Ext3
+filesystems being used as a cache.
+
+
+=============
+CONFIGURATION
+=============
+
+The cache is configured by a script in /etc/cachefilesd.conf. These commands
+set up cache ready for use. The following script commands are available:
+
+ (*) brun <N>%
+ (*) bcull <N>%
+ (*) bstop <N>%
+ (*) frun <N>%
+ (*) fcull <N>%
+ (*) fstop <N>%
+
+ Configure the culling limits. Optional. See the section on culling
+ The defaults are 7% (run), 5% (cull) and 1% (stop) respectively.
+
+ The commands beginning with a 'b' are file space (block) limits, those
+ beginning with an 'f' are file count limits.
+
+ (*) dir <path>
+
+ Specify the directory containing the root of the cache. Mandatory.
+
+ (*) tag <name>
+
+ Specify a tag to FS-Cache to use in distinguishing multiple caches.
+ Optional. The default is "CacheFiles".
+
+ (*) debug <mask>
+
+ Specify a numeric bitmask to control debugging in the kernel module.
+ Optional. The default is zero (all off). The following values can be
+ OR'd into the mask to collect various information:
+
+ 1 Turn on trace of function entry (_enter() macros)
+ 2 Turn on trace of function exit (_leave() macros)
+ 4 Turn on trace of internal debug points (_debug())
+
+ This mask can also be set through sysfs, eg:
+
+ echo 5 >/sys/modules/cachefiles/parameters/debug
+
+
+==================
+STARTING THE CACHE
+==================
+
+The cache is started by running the daemon. The daemon opens the cache device,
+configures the cache and tells it to begin caching. At that point the cache
+binds to fscache and the cache becomes live.
+
+The daemon is run as follows:
+
+ /sbin/cachefilesd [-d]* [-s] [-n] [-f <configfile>]
+
+The flags are:
+
+ (*) -d
+
+ Increase the debugging level. This can be specified multiple times and
+ is cumulative with itself.
+
+ (*) -s
+
+ Send messages to stderr instead of syslog.
+
+ (*) -n
+
+ Don't daemonise and go into background.
+
+ (*) -f <configfile>
+
+ Use an alternative configuration file rather than the default one.
+
+
+===============
+THINGS TO AVOID
+===============
+
+Do not mount other things within the cache as this will cause problems. The
+kernel module contains its own very cut-down path walking facility that ignores
+mountpoints, but the daemon can't avoid them.
+
+Do not create, rename or unlink files and directories in the cache whilst the
+cache is active, as this may cause the state to become uncertain.
+
+Renaming files in the cache might make objects appear to be other objects (the
+filename is part of the lookup key).
+
+Do not change or remove the extended attributes attached to cache files by the
+cache as this will cause the cache state management to get confused.
+
+Do not create files or directories in the cache, lest the cache get confused or
+serve incorrect data.
+
+Do not chmod files in the cache. The module creates things with minimal
+permissions to prevent random users being able to access them directly.
+
+
+=============
+CACHE CULLING
+=============
+
+The cache may need culling occasionally to make space. This involves
+discarding objects from the cache that have been used less recently than
+anything else. Culling is based on the access time of data objects. Empty
+directories are culled if not in use.
+
+Cache culling is done on the basis of the percentage of blocks and the
+percentage of files available in the underlying filesystem. There are six
+"limits":
+
+ (*) brun
+ (*) frun
+
+ If the amount of free space and the number of available files in the cache
+ rises above both these limits, then culling is turned off.
+
+ (*) bcull
+ (*) fcull
+
+ If the amount of available space or the number of available files in the
+ cache falls below either of these limits, then culling is started.
+
+ (*) bstop
+ (*) fstop
+
+ If the amount of available space or the number of available files in the
+ cache falls below either of these limits, then no further allocation of
+ disk space or files is permitted until culling has raised things above
+ these limits again.
+
+These must be configured thusly:
+
+ 0 <= bstop < bcull < brun < 100
+ 0 <= fstop < fcull < frun < 100
+
+Note that these are percentages of available space and available files, and do
+_not_ appear as 100 minus the percentage displayed by the "df" program.
+
+The userspace daemon scans the cache to build up a table of cullable objects.
+These are then culled in least recently used order. A new scan of the cache is
+started as soon as space is made in the table. Objects will be skipped if
+their atimes have changed or if the kernel module says it is still using them.
+
+
+===============
+CACHE STRUCTURE
+===============
+
+The CacheFiles module will create two directories in the directory it was
+given:
+
+ (*) cache/
+
+ (*) graveyard/
+
+The active cache objects all reside in the first directory. The CacheFiles
+kernel module moves any retired or culled objects that it can't simply unlink
+to the graveyard from which the daemon will actually delete them.
+
+The daemon uses dnotify to monitor the graveyard directory, and will delete
+anything that appears therein.
+
+
+The module represents index objects as directories with the filename "I..." or
+"J...". Note that the "cache/" directory is itself a special index.
+
+Data objects are represented as files if they have no children, or directories
+if they do. Their filenames all begin "D..." or "E...". If represented as a
+directory, data objects will have a file in the directory called "data" that
+actually holds the data.
+
+Special objects are similar to data objects, except their filenames begin
+"S..." or "T...".
+
+
+If an object has children, then it will be represented as a directory.
+Immediately in the representative directory are a collection of directories
+named for hash values of the child object keys with an '@' prepended. Into
+this directory, if possible, will be placed the representations of the child
+objects:
+
+ INDEX INDEX INDEX DATA FILES
+ ========= ========== ================================= ================
+ cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400
+ cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400/@75/Es0g000w...DB1ry
+ cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400/@75/Es0g000w...N22ry
+ cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400/@75/Es0g000w...FP1ry
+
+
+If the key is so long that it exceeds NAME_MAX with the decorations added on to
+it, then it will be cut into pieces, the first few of which will be used to
+make a nest of directories, and the last one of which will be the objects
+inside the last directory. The names of the intermediate directories will have
+'+' prepended:
+
+ J1223/@23/+xy...z/+kl...m/Epqr
+
+
+Note that keys are raw data, and not only may they exceed NAME_MAX in size,
+they may also contain things like '/' and NUL characters, and so they may not
+be suitable for turning directly into a filename.
+
+To handle this, CacheFiles will use a suitably printable filename directly and
+"base-64" encode ones that aren't directly suitable. The two versions of
+object filenames indicate the encoding:
+
+ OBJECT TYPE PRINTABLE ENCODED
+ =============== =============== ===============
+ Index "I..." "J..."
+ Data "D..." "E..."
+ Special "S..." "T..."
+
+Intermediate directories are always "@" or "+" as appropriate.
+
+
+Each object in the cache has an extended attribute label that holds the object
+type ID (required to distinguish special objects) and the auxiliary data from
+the netfs. The latter is used to detect stale objects in the cache and update
+or retire them.
+
+
+Note that CacheFiles will erase from the cache any file it doesn't recognise or
+any file of an incorrect type (such as a FIFO file or a device file).
+
+
+==========================
+SECURITY MODEL AND SELINUX
+==========================
+
+CacheFiles is implemented to deal properly with the LSM security features of
+the Linux kernel and the SELinux facility.
+
+One of the problems that CacheFiles faces is that it is generally acting on
+behalf of a process, and running in that process's context, and that includes a
+security context that is not appropriate for accessing the cache - either
+because the files in the cache are inaccessible to that process, or because if
+the process creates a file in the cache, that file may be inaccessible to other
+processes.
+
+The way CacheFiles works is to temporarily change the security context (fsuid,
+fsgid and actor security label) that the process acts as - without changing the
+security context of the process when it the target of an operation performed by
+some other process (so signalling and suchlike still work correctly).
+
+
+When the CacheFiles module is asked to bind to its cache, it:
+
+ (1) Finds the security label attached to the root cache directory and uses
+ that as the security label with which it will create files. By default,
+ this is:
+
+ cachefiles_var_t
+
+ (2) Finds the security label of the process which issued the bind request
+ (presumed to be the cachefilesd daemon), which by default will be:
+
+ cachefilesd_t
+
+ and asks LSM to supply a security ID as which it should act given the
+ daemon's label. By default, this will be:
+
+ cachefiles_kernel_t
+
+ SELinux transitions the daemon's security ID to the module's security ID
+ based on a rule of this form in the policy.
+
+ type_transition <daemon's-ID> kernel_t : process <module's-ID>;
+
+ For instance:
+
+ type_transition cachefilesd_t kernel_t : process cachefiles_kernel_t;
+
+
+The module's security ID gives it permission to create, move and remove files
+and directories in the cache, to find and access directories and files in the
+cache, to set and access extended attributes on cache objects, and to read and
+write files in the cache.
+
+The daemon's security ID gives it only a very restricted set of permissions: it
+may scan directories, stat files and erase files and directories. It may
+not read or write files in the cache, and so it is precluded from accessing the
+data cached therein; nor is it permitted to create new files in the cache.
+
+
+There are policy source files available in:
+
+ http://people.redhat.com/~dhowells/fscache/cachefilesd-0.8.tar.bz2
+
+and later versions. In that tarball, see the files:
+
+ cachefilesd.te
+ cachefilesd.fc
+ cachefilesd.if
+
+They are built and installed directly by the RPM.
+
+If a non-RPM based system is being used, then copy the above files to their own
+directory and run:
+
+ make -f /usr/share/selinux/devel/Makefile
+ semodule -i cachefilesd.pp
+
+You will need checkpolicy and selinux-policy-devel installed prior to the
+build.
+
+
+By default, the cache is located in /var/fscache, but if it is desirable that
+it should be elsewhere, than either the above policy files must be altered, or
+an auxiliary policy must be installed to label the alternate location of the
+cache.
+
+For instructions on how to add an auxiliary policy to enable the cache to be
+located elsewhere when SELinux is in enforcing mode, please see:
+
+ /usr/share/doc/cachefilesd-*/move-cache.txt
+
+When the cachefilesd rpm is installed; alternatively, the document can be found
+in the sources.
+
+
+==================
+A NOTE ON SECURITY
+==================
+
+CacheFiles makes use of the split security in the task_struct. It allocates
+its own task_security structure, and redirects current->act_as to point to it
+when it acts on behalf of another process, in that process's context.
+
+The reason it does this is that it calls vfs_mkdir() and suchlike rather than
+bypassing security and calling inode ops directly. Therefore the VFS and LSM
+may deny the CacheFiles access to the cache data because under some
+circumstances the caching code is running in the security context of whatever
+process issued the original syscall on the netfs.
+
+Furthermore, should CacheFiles create a file or directory, the security
+parameters with that object is created (UID, GID, security label) would be
+derived from that process that issued the system call, thus potentially
+preventing other processes from accessing the cache - including CacheFiles's
+cache management daemon (cachefilesd).
+
+What is required is to temporarily override the security of the process that
+issued the system call. We can't, however, just do an in-place change of the
+security data as that affects the process as an object, not just as a subject.
+This means it may lose signals or ptrace events for example, and affects what
+the process looks like in /proc.
+
+So CacheFiles makes use of a logical split in the security between the
+objective security (task->sec) and the subjective security (task->act_as). The
+objective security holds the intrinsic security properties of a process and is
+never overridden. This is what appears in /proc, and is what is used when a
+process is the target of an operation by some other process (SIGKILL for
+example).
+
+The subjective security holds the active security properties of a process, and
+may be overridden. This is not seen externally, and is used whan a process
+acts upon another object, for example SIGKILLing another process or opening a
+file.
+
+LSM hooks exist that allow SELinux (or Smack or whatever) to reject a request
+for CacheFiles to run in a context of a specific security label, or to create
+files and directories with another security label.
+
+
+=======================
+STATISTICAL INFORMATION
+=======================
+
+If FS-Cache is compiled with the following option enabled:
+
+ CONFIG_CACHEFILES_HISTOGRAM=y
+
+then it will gather certain statistics and display them through a proc file.
+
+ (*) /proc/fs/cachefiles/histogram
+
+ cat /proc/fs/cachefiles/histogram
+ JIFS SECS LOOKUPS MKDIRS CREATES
+ ===== ===== ========= ========= =========
+
+ This shows the breakdown of the number of times each amount of time
+ between 0 jiffies and HZ-1 jiffies a variety of tasks took to run. The
+ columns are as follows:
+
+ COLUMN TIME MEASUREMENT
+ ======= =======================================================
+ LOOKUPS Length of time to perform a lookup on the backing fs
+ MKDIRS Length of time to perform a mkdir on the backing fs
+ CREATES Length of time to perform a create on the backing fs
+
+ Each row shows the number of events that took a particular range of times.
+ Each step is 1 jiffy in size. The JIFS column indicates the particular
+ jiffy range covered, and the SECS field the equivalent number of seconds.
+
+
+=========
+DEBUGGING
+=========
+
+If CONFIG_CACHEFILES_DEBUG is enabled, the CacheFiles facility can have runtime
+debugging enabled by adjusting the value in:
+
+ /sys/module/cachefiles/parameters/debug
+
+This is a bitmask of debugging streams to enable:
+
+ BIT VALUE STREAM POINT
+ ======= ======= =============================== =======================
+ 0 1 General Function entry trace
+ 1 2 Function exit trace
+ 2 4 General
+
+The appropriate set of values should be OR'd together and the result written to
+the control file. For example:
+
+ echo $((1|4|8)) >/sys/module/cachefiles/parameters/debug
+
+will turn on all function entry debugging.