aboutsummaryrefslogtreecommitdiff
path: root/Documentation/filesystems/relay.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/filesystems/relay.txt')
-rw-r--r--Documentation/filesystems/relay.txt25
1 files changed, 20 insertions, 5 deletions
diff --git a/Documentation/filesystems/relay.txt b/Documentation/filesystems/relay.txt
index d6788dae034..33e2f369473 100644
--- a/Documentation/filesystems/relay.txt
+++ b/Documentation/filesystems/relay.txt
@@ -31,7 +31,7 @@ Semantics
Each relay channel has one buffer per CPU, each buffer has one or more
sub-buffers. Messages are written to the first sub-buffer until it is
-too full to contain a new message, in which case it it is written to
+too full to contain a new message, in which case it is written to
the next (if available). Messages are never split across sub-buffers.
At this point, userspace can be notified so it empties the first
sub-buffer, while the kernel continues writing to the next.
@@ -140,7 +140,7 @@ close() decrements the channel buffer's refcount. When the refcount
In order for a user application to make use of relay files, the
host filesystem must be mounted. For example,
- mount -t debugfs debugfs /debug
+ mount -t debugfs debugfs /sys/kernel/debug
NOTE: the host filesystem doesn't need to be mounted for kernel
clients to create or use channels - it only needs to be
@@ -157,7 +157,7 @@ TBD(curr. line MT:/API/)
channel management functions:
relay_open(base_filename, parent, subbuf_size, n_subbufs,
- callbacks)
+ callbacks, private_data)
relay_close(chan)
relay_flush(chan)
relay_reset(chan)
@@ -251,7 +251,7 @@ static struct rchan_callbacks relay_callbacks =
And an example relay_open() invocation using them:
- chan = relay_open("cpu", NULL, SUBBUF_SIZE, N_SUBBUFS, &relay_callbacks);
+ chan = relay_open("cpu", NULL, SUBBUF_SIZE, N_SUBBUFS, &relay_callbacks, NULL);
If the create_buf_file() callback fails, or isn't defined, channel
creation and thus relay_open() will fail.
@@ -289,6 +289,21 @@ they use the proper locking for such a buffer, either by wrapping
writes in a spinlock, or by copying a write function from relay.h and
creating a local version that internally does the proper locking.
+The private_data passed into relay_open() allows clients to associate
+user-defined data with a channel, and is immediately available
+(including in create_buf_file()) via chan->private_data or
+buf->chan->private_data.
+
+Buffer-only channels
+--------------------
+
+These channels have no files associated and can be created with
+relay_open(NULL, NULL, ...). Such channels are useful in scenarios such
+as when doing early tracing in the kernel, before the VFS is up. In these
+cases, one may open a buffer-only channel and then call
+relay_late_setup_files() when the kernel is ready to handle files,
+to expose the buffered data to the userspace.
+
Channel 'modes'
---------------
@@ -346,7 +361,7 @@ If the current buffer is full, i.e. all sub-buffers remain unconsumed,
the callback returns 0 to indicate that the buffer switch should not
occur yet, i.e. until the consumer has had a chance to read the
current set of ready sub-buffers. For the relay_buf_full() function
-to make sense, the consumer is reponsible for notifying the relay
+to make sense, the consumer is responsible for notifying the relay
interface when sub-buffers have been consumed via
relay_subbufs_consumed(). Any subsequent attempts to write into the
buffer will again invoke the subbuf_start() callback with the same