diff options
Diffstat (limited to 'Documentation/arm/OMAP')
| -rw-r--r-- | Documentation/arm/OMAP/DSS | 56 | ||||
| -rw-r--r-- | Documentation/arm/OMAP/omap_pm | 2 |
2 files changed, 51 insertions, 7 deletions
diff --git a/Documentation/arm/OMAP/DSS b/Documentation/arm/OMAP/DSS index 888ae7b83ae..4484e021290 100644 --- a/Documentation/arm/OMAP/DSS +++ b/Documentation/arm/OMAP/DSS @@ -47,6 +47,51 @@ flexible way to enable non-common multi-display configuration. In addition to modelling the hardware overlays, omapdss supports virtual overlays and overlay managers. These can be used when updating a display with CPU or system DMA. +omapdss driver support for audio +-------------------------------- +There exist several display technologies and standards that support audio as +well. Hence, it is relevant to update the DSS device driver to provide an audio +interface that may be used by an audio driver or any other driver interested in +the functionality. + +The audio_enable function is intended to prepare the relevant +IP for playback (e.g., enabling an audio FIFO, taking in/out of reset +some IP, enabling companion chips, etc). It is intended to be called before +audio_start. The audio_disable function performs the reverse operation and is +intended to be called after audio_stop. + +While a given DSS device driver may support audio, it is possible that for +certain configurations audio is not supported (e.g., an HDMI display using a +VESA video timing). The audio_supported function is intended to query whether +the current configuration of the display supports audio. + +The audio_config function is intended to configure all the relevant audio +parameters of the display. In order to make the function independent of any +specific DSS device driver, a struct omap_dss_audio is defined. Its purpose +is to contain all the required parameters for audio configuration. At the +moment, such structure contains pointers to IEC-60958 channel status word +and CEA-861 audio infoframe structures. This should be enough to support +HDMI and DisplayPort, as both are based on CEA-861 and IEC-60958. + +The audio_enable/disable, audio_config and audio_supported functions could be +implemented as functions that may sleep. Hence, they should not be called +while holding a spinlock or a readlock. + +The audio_start/audio_stop function is intended to effectively start/stop audio +playback after the configuration has taken place. These functions are designed +to be used in an atomic context. Hence, audio_start should return quickly and be +called only after all the needed resources for audio playback (audio FIFOs, +DMA channels, companion chips, etc) have been enabled to begin data transfers. +audio_stop is designed to only stop the audio transfers. The resources used +for playback are released using audio_disable. + +The enum omap_dss_audio_state may be used to help the implementations of +the interface to keep track of the audio state. The initial state is _DISABLED; +then, the state transitions to _CONFIGURED, and then, when it is ready to +play audio, to _ENABLED. The state _PLAYING is used when the audio is being +rendered. + + Panel and controller drivers ---------------------------- @@ -156,6 +201,7 @@ timings Display timings (pixclock,xres/hfp/hbp/hsw,yres/vfp/vbp/vsw) "pal" and "ntsc" panel_name tear_elim Tearing elimination 0=off, 1=on +output_type Output type (video encoder only): "composite" or "svideo" There are also some debugfs files at <debugfs>/omapdss/ which show information about clocks and registers. @@ -239,7 +285,10 @@ FB0 +-- GFX ---- LCD ---- LCD Misc notes ---------- -OMAP FB allocates the framebuffer memory using the OMAP VRAM allocator. +OMAP FB allocates the framebuffer memory using the standard dma allocator. You +can enable Contiguous Memory Allocator (CONFIG_CMA) to improve the dma +allocator, and if CMA is enabled, you use "cma=" kernel parameter to increase +the global memory area for CMA. Using DSI DPLL to generate pixel clock it is possible produce the pixel clock of 86.5MHz (max possible), and with that you get 1280x1024@57 output from DVI. @@ -255,11 +304,6 @@ framebuffer parameters. Kernel boot arguments --------------------- -vram=<size>[,<physaddr>] - - Amount of total VRAM to preallocate and optionally a physical start - memory address. For example, "10M". omapfb allocates memory for - framebuffers from VRAM. - omapfb.mode=<display>:<mode>[,...] - Default video mode for specified displays. For example, "dvi:800x400MR-24@60". See drivers/video/modedb.c. diff --git a/Documentation/arm/OMAP/omap_pm b/Documentation/arm/OMAP/omap_pm index 9012bb03909..4ae915a9f89 100644 --- a/Documentation/arm/OMAP/omap_pm +++ b/Documentation/arm/OMAP/omap_pm @@ -78,7 +78,7 @@ to NULL. Drivers should use the following idiom: The most common usage of these functions will probably be to specify the maximum time from when an interrupt occurs, to when the device becomes accessible. To accomplish this, driver writers should use the -set_max_mpu_wakeup_lat() function to to constrain the MPU wakeup +set_max_mpu_wakeup_lat() function to constrain the MPU wakeup latency, and the set_max_dev_wakeup_lat() function to constrain the device wakeup latency (from clk_enable() to accessibility). For example, |
