diff options
-rw-r--r-- | drivers/scsi/Kconfig | 60 | ||||
-rw-r--r-- | drivers/scsi/Makefile | 7 | ||||
-rw-r--r-- | drivers/scsi/blz1230.c | 353 | ||||
-rw-r--r-- | drivers/scsi/blz2060.c | 306 | ||||
-rw-r--r-- | drivers/scsi/cyberstorm.c | 377 | ||||
-rw-r--r-- | drivers/scsi/cyberstormII.c | 314 | ||||
-rw-r--r-- | drivers/scsi/fastlane.c | 421 | ||||
-rw-r--r-- | drivers/scsi/mac_esp.c | 751 | ||||
-rw-r--r-- | drivers/scsi/oktagon_esp.c | 606 | ||||
-rw-r--r-- | drivers/scsi/oktagon_io.S | 194 |
10 files changed, 0 insertions, 3389 deletions
diff --git a/drivers/scsi/Kconfig b/drivers/scsi/Kconfig index 9680f82b3ec..510bedb3757 100644 --- a/drivers/scsi/Kconfig +++ b/drivers/scsi/Kconfig @@ -1578,45 +1578,6 @@ config GVP11_SCSI To compile this driver as a module, choose M here: the module will be called gvp11. -config CYBERSTORM_SCSI - tristate "CyberStorm SCSI support" - depends on ZORRO && SCSI - help - If you have an Amiga with an original (MkI) Phase5 Cyberstorm - accelerator board and the optional Cyberstorm SCSI controller, - answer Y. Otherwise, say N. - -config CYBERSTORMII_SCSI - tristate "CyberStorm Mk II SCSI support" - depends on ZORRO && SCSI - help - If you have an Amiga with a Phase5 Cyberstorm MkII accelerator board - and the optional Cyberstorm SCSI controller, say Y. Otherwise, - answer N. - -config BLZ2060_SCSI - tristate "Blizzard 2060 SCSI support" - depends on ZORRO && SCSI - help - If you have an Amiga with a Phase5 Blizzard 2060 accelerator board - and want to use the onboard SCSI controller, say Y. Otherwise, - answer N. - -config BLZ1230_SCSI - tristate "Blizzard 1230IV/1260 SCSI support" - depends on ZORRO && SCSI - help - If you have an Amiga 1200 with a Phase5 Blizzard 1230IV or Blizzard - 1260 accelerator, and the optional SCSI module, say Y. Otherwise, - say N. - -config FASTLANE_SCSI - tristate "Fastlane SCSI support" - depends on ZORRO && SCSI - help - If you have the Phase5 Fastlane Z3 SCSI controller, or plan to use - one in the near future, say Y to this question. Otherwise, say N. - config SCSI_A4000T tristate "A4000T NCR53c710 SCSI support (EXPERIMENTAL)" depends on AMIGA && SCSI && EXPERIMENTAL @@ -1644,15 +1605,6 @@ config SCSI_ZORRO7XX accelerator card for the Amiga 1200, - the SCSI controller on the GVP Turbo 040/060 accelerator. -config OKTAGON_SCSI - tristate "BSC Oktagon SCSI support (EXPERIMENTAL)" - depends on ZORRO && SCSI && EXPERIMENTAL - help - If you have the BSC Oktagon SCSI disk controller for the Amiga, say - Y to this question. If you're in doubt about whether you have one, - see the picture at - <http://amiga.resource.cx/exp/search.pl?product=oktagon>. - config ATARI_SCSI tristate "Atari native SCSI support" depends on ATARI && SCSI @@ -1705,18 +1657,6 @@ config MAC_SCSI SCSI-HOWTO, available from <http://www.tldp.org/docs.html#howto>. -config SCSI_MAC_ESP - tristate "Macintosh NCR53c9[46] SCSI" - depends on MAC && SCSI - help - This is the NCR 53c9x SCSI controller found on most of the 68040 - based Macintoshes. If you have one of these say Y and read the - SCSI-HOWTO, available from - <http://www.tldp.org/docs.html#howto>. - - To compile this driver as a module, choose M here: the - module will be called mac_esp. - config MVME147_SCSI bool "WD33C93 SCSI driver for MVME147" depends on MVME147 && SCSI=y diff --git a/drivers/scsi/Makefile b/drivers/scsi/Makefile index 576cfc68d46..118dc525e26 100644 --- a/drivers/scsi/Makefile +++ b/drivers/scsi/Makefile @@ -44,15 +44,8 @@ obj-$(CONFIG_A2091_SCSI) += a2091.o wd33c93.o obj-$(CONFIG_GVP11_SCSI) += gvp11.o wd33c93.o obj-$(CONFIG_MVME147_SCSI) += mvme147.o wd33c93.o obj-$(CONFIG_SGIWD93_SCSI) += sgiwd93.o wd33c93.o -obj-$(CONFIG_CYBERSTORM_SCSI) += NCR53C9x.o cyberstorm.o -obj-$(CONFIG_CYBERSTORMII_SCSI) += NCR53C9x.o cyberstormII.o -obj-$(CONFIG_BLZ2060_SCSI) += NCR53C9x.o blz2060.o -obj-$(CONFIG_BLZ1230_SCSI) += NCR53C9x.o blz1230.o -obj-$(CONFIG_FASTLANE_SCSI) += NCR53C9x.o fastlane.o -obj-$(CONFIG_OKTAGON_SCSI) += NCR53C9x.o oktagon_esp_mod.o obj-$(CONFIG_ATARI_SCSI) += atari_scsi.o obj-$(CONFIG_MAC_SCSI) += mac_scsi.o -obj-$(CONFIG_SCSI_MAC_ESP) += mac_esp.o NCR53C9x.o obj-$(CONFIG_SUN3_SCSI) += sun3_scsi.o sun3_scsi_vme.o obj-$(CONFIG_MVME16x_SCSI) += 53c700.o mvme16x_scsi.o obj-$(CONFIG_BVME6000_SCSI) += 53c700.o bvme6000_scsi.o diff --git a/drivers/scsi/blz1230.c b/drivers/scsi/blz1230.c deleted file mode 100644 index 23f7c24ab80..00000000000 --- a/drivers/scsi/blz1230.c +++ /dev/null @@ -1,353 +0,0 @@ -/* blz1230.c: Driver for Blizzard 1230 SCSI IV Controller. - * - * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk) - * - * This driver is based on the CyberStorm driver, hence the occasional - * reference to CyberStorm. - */ - -/* TODO: - * - * 1) Figure out how to make a cleaner merge with the sparc driver with regard - * to the caches and the Sparc MMU mapping. - * 2) Make as few routines required outside the generic driver. A lot of the - * routines in this file used to be inline! - */ - -#include <linux/module.h> - -#include <linux/init.h> -#include <linux/kernel.h> -#include <linux/delay.h> -#include <linux/types.h> -#include <linux/string.h> -#include <linux/slab.h> -#include <linux/blkdev.h> -#include <linux/proc_fs.h> -#include <linux/stat.h> -#include <linux/interrupt.h> - -#include "scsi.h" -#include <scsi/scsi_host.h> -#include "NCR53C9x.h" - -#include <linux/zorro.h> -#include <asm/irq.h> -#include <asm/amigaints.h> -#include <asm/amigahw.h> - -#include <asm/pgtable.h> - -#define MKIV 1 - -/* The controller registers can be found in the Z2 config area at these - * offsets: - */ -#define BLZ1230_ESP_ADDR 0x8000 -#define BLZ1230_DMA_ADDR 0x10000 -#define BLZ1230II_ESP_ADDR 0x10000 -#define BLZ1230II_DMA_ADDR 0x10021 - - -/* The Blizzard 1230 DMA interface - * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - * Only two things can be programmed in the Blizzard DMA: - * 1) The data direction is controlled by the status of bit 31 (1 = write) - * 2) The source/dest address (word aligned, shifted one right) in bits 30-0 - * - * Program DMA by first latching the highest byte of the address/direction - * (i.e. bits 31-24 of the long word constructed as described in steps 1+2 - * above). Then write each byte of the address/direction (starting with the - * top byte, working down) to the DMA address register. - * - * Figure out interrupt status by reading the ESP status byte. - */ -struct blz1230_dma_registers { - volatile unsigned char dma_addr; /* DMA address [0x0000] */ - unsigned char dmapad2[0x7fff]; - volatile unsigned char dma_latch; /* DMA latch [0x8000] */ -}; - -struct blz1230II_dma_registers { - volatile unsigned char dma_addr; /* DMA address [0x0000] */ - unsigned char dmapad2[0xf]; - volatile unsigned char dma_latch; /* DMA latch [0x0010] */ -}; - -#define BLZ1230_DMA_WRITE 0x80000000 - -static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count); -static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp); -static void dma_dump_state(struct NCR_ESP *esp); -static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length); -static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length); -static void dma_ints_off(struct NCR_ESP *esp); -static void dma_ints_on(struct NCR_ESP *esp); -static int dma_irq_p(struct NCR_ESP *esp); -static int dma_ports_p(struct NCR_ESP *esp); -static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write); - -static volatile unsigned char cmd_buffer[16]; - /* This is where all commands are put - * before they are transferred to the ESP chip - * via PIO. - */ - -/***************************************************************** Detection */ -int __init blz1230_esp_detect(struct scsi_host_template *tpnt) -{ - struct NCR_ESP *esp; - struct zorro_dev *z = NULL; - unsigned long address; - struct ESP_regs *eregs; - unsigned long board; - -#if MKIV -#define REAL_BLZ1230_ID ZORRO_PROD_PHASE5_BLIZZARD_1230_IV_1260 -#define REAL_BLZ1230_ESP_ADDR BLZ1230_ESP_ADDR -#define REAL_BLZ1230_DMA_ADDR BLZ1230_DMA_ADDR -#else -#define REAL_BLZ1230_ID ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060 -#define REAL_BLZ1230_ESP_ADDR BLZ1230II_ESP_ADDR -#define REAL_BLZ1230_DMA_ADDR BLZ1230II_DMA_ADDR -#endif - - if ((z = zorro_find_device(REAL_BLZ1230_ID, z))) { - board = z->resource.start; - if (request_mem_region(board+REAL_BLZ1230_ESP_ADDR, - sizeof(struct ESP_regs), "NCR53C9x")) { - /* Do some magic to figure out if the blizzard is - * equipped with a SCSI controller - */ - address = ZTWO_VADDR(board); - eregs = (struct ESP_regs *)(address + REAL_BLZ1230_ESP_ADDR); - esp = esp_allocate(tpnt, (void *)board + REAL_BLZ1230_ESP_ADDR, - 0); - - esp_write(eregs->esp_cfg1, (ESP_CONFIG1_PENABLE | 7)); - udelay(5); - if(esp_read(eregs->esp_cfg1) != (ESP_CONFIG1_PENABLE | 7)) - goto err_out; - - /* Do command transfer with programmed I/O */ - esp->do_pio_cmds = 1; - - /* Required functions */ - esp->dma_bytes_sent = &dma_bytes_sent; - esp->dma_can_transfer = &dma_can_transfer; - esp->dma_dump_state = &dma_dump_state; - esp->dma_init_read = &dma_init_read; - esp->dma_init_write = &dma_init_write; - esp->dma_ints_off = &dma_ints_off; - esp->dma_ints_on = &dma_ints_on; - esp->dma_irq_p = &dma_irq_p; - esp->dma_ports_p = &dma_ports_p; - esp->dma_setup = &dma_setup; - - /* Optional functions */ - esp->dma_barrier = 0; - esp->dma_drain = 0; - esp->dma_invalidate = 0; - esp->dma_irq_entry = 0; - esp->dma_irq_exit = 0; - esp->dma_led_on = 0; - esp->dma_led_off = 0; - esp->dma_poll = 0; - esp->dma_reset = 0; - - /* SCSI chip speed */ - esp->cfreq = 40000000; - - /* The DMA registers on the Blizzard are mapped - * relative to the device (i.e. in the same Zorro - * I/O block). - */ - esp->dregs = (void *)(address + REAL_BLZ1230_DMA_ADDR); - - /* ESP register base */ - esp->eregs = eregs; - - /* Set the command buffer */ - esp->esp_command = cmd_buffer; - esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer); - - esp->irq = IRQ_AMIGA_PORTS; - esp->slot = board+REAL_BLZ1230_ESP_ADDR; - if (request_irq(IRQ_AMIGA_PORTS, esp_intr, IRQF_SHARED, - "Blizzard 1230 SCSI IV", esp->ehost)) - goto err_out; - - /* Figure out our scsi ID on the bus */ - esp->scsi_id = 7; - - /* We don't have a differential SCSI-bus. */ - esp->diff = 0; - - esp_initialize(esp); - - printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use); - esps_running = esps_in_use; - return esps_in_use; - } - } - return 0; - - err_out: - scsi_unregister(esp->ehost); - esp_deallocate(esp); - release_mem_region(board+REAL_BLZ1230_ESP_ADDR, - sizeof(struct ESP_regs)); - return 0; -} - -/************************************************************* DMA Functions */ -static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count) -{ - /* Since the Blizzard DMA is fully dedicated to the ESP chip, - * the number of bytes sent (to the ESP chip) equals the number - * of bytes in the FIFO - there is no buffering in the DMA controller. - * XXXX Do I read this right? It is from host to ESP, right? - */ - return fifo_count; -} - -static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp) -{ - /* I don't think there's any limit on the Blizzard DMA. So we use what - * the ESP chip can handle (24 bit). - */ - unsigned long sz = sp->SCp.this_residual; - if(sz > 0x1000000) - sz = 0x1000000; - return sz; -} - -static void dma_dump_state(struct NCR_ESP *esp) -{ - ESPLOG(("intreq:<%04x>, intena:<%04x>\n", - amiga_custom.intreqr, amiga_custom.intenar)); -} - -void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length) -{ -#if MKIV - struct blz1230_dma_registers *dregs = - (struct blz1230_dma_registers *) (esp->dregs); -#else - struct blz1230II_dma_registers *dregs = - (struct blz1230II_dma_registers *) (esp->dregs); -#endif - - cache_clear(addr, length); - - addr >>= 1; - addr &= ~(BLZ1230_DMA_WRITE); - - /* First set latch */ - dregs->dma_latch = (addr >> 24) & 0xff; - - /* Then pump the address to the DMA address register */ -#if MKIV - dregs->dma_addr = (addr >> 24) & 0xff; -#endif - dregs->dma_addr = (addr >> 16) & 0xff; - dregs->dma_addr = (addr >> 8) & 0xff; - dregs->dma_addr = (addr ) & 0xff; -} - -void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length) -{ -#if MKIV - struct blz1230_dma_registers *dregs = - (struct blz1230_dma_registers *) (esp->dregs); -#else - struct blz1230II_dma_registers *dregs = - (struct blz1230II_dma_registers *) (esp->dregs); -#endif - - cache_push(addr, length); - - addr >>= 1; - addr |= BLZ1230_DMA_WRITE; - - /* First set latch */ - dregs->dma_latch = (addr >> 24) & 0xff; - - /* Then pump the address to the DMA address register */ -#if MKIV - dregs->dma_addr = (addr >> 24) & 0xff; -#endif - dregs->dma_addr = (addr >> 16) & 0xff; - dregs->dma_addr = (addr >> 8) & 0xff; - dregs->dma_addr = (addr ) & 0xff; -} - -static void dma_ints_off(struct NCR_ESP *esp) -{ - disable_irq(esp->irq); -} - -static void dma_ints_on(struct NCR_ESP *esp) -{ - enable_irq(esp->irq); -} - -static int dma_irq_p(struct NCR_ESP *esp) -{ - return (esp_read(esp->eregs->esp_status) & ESP_STAT_INTR); -} - -static int dma_ports_p(struct NCR_ESP *esp) -{ - return ((amiga_custom.intenar) & IF_PORTS); -} - -static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write) -{ - /* On the Sparc, DMA_ST_WRITE means "move data from device to memory" - * so when (write) is true, it actually means READ! - */ - if(write){ - dma_init_read(esp, addr, count); - } else { - dma_init_write(esp, addr, count); - } -} - -#define HOSTS_C - -int blz1230_esp_release(struct Scsi_Host *instance) -{ -#ifdef MODULE - unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev; - esp_deallocate((struct NCR_ESP *)instance->hostdata); - esp_release(); - release_mem_region(address, sizeof(struct ESP_regs)); - free_irq(IRQ_AMIGA_PORTS, esp_intr); -#endif - return 1; -} - - -static struct scsi_host_template driver_template = { - .proc_name = "esp-blz1230", - .proc_info = esp_proc_info, - .name = "Blizzard1230 SCSI IV", - .detect = blz1230_esp_detect, - .slave_alloc = esp_slave_alloc, - .slave_destroy = esp_slave_destroy, - .release = blz1230_esp_release, - .queuecommand = esp_queue, - .eh_abort_handler = esp_abort, - .eh_bus_reset_handler = esp_reset, - .can_queue = 7, - .this_id = 7, - .sg_tablesize = SG_ALL, - .cmd_per_lun = 1, - .use_clustering = ENABLE_CLUSTERING -}; - - -#include "scsi_module.c" - -MODULE_LICENSE("GPL"); diff --git a/drivers/scsi/blz2060.c b/drivers/scsi/blz2060.c deleted file mode 100644 index b6203ec0096..00000000000 --- a/drivers/scsi/blz2060.c +++ /dev/null @@ -1,306 +0,0 @@ -/* blz2060.c: Driver for Blizzard 2060 SCSI Controller. - * - * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk) - * - * This driver is based on the CyberStorm driver, hence the occasional - * reference to CyberStorm. - */ - -/* TODO: - * - * 1) Figure out how to make a cleaner merge with the sparc driver with regard - * to the caches and the Sparc MMU mapping. - * 2) Make as few routines required outside the generic driver. A lot of the - * routines in this file used to be inline! - */ - -#include <linux/module.h> - -#include <linux/init.h> -#include <linux/kernel.h> -#include <linux/delay.h> -#include <linux/types.h> -#include <linux/string.h> -#include <linux/slab.h> -#include <linux/blkdev.h> -#include <linux/proc_fs.h> -#include <linux/stat.h> -#include <linux/interrupt.h> - -#include "scsi.h" -#include <scsi/scsi_host.h> -#include "NCR53C9x.h" - -#include <linux/zorro.h> -#include <asm/irq.h> -#include <asm/amigaints.h> -#include <asm/amigahw.h> - -#include <asm/pgtable.h> - -/* The controller registers can be found in the Z2 config area at these - * offsets: - */ -#define BLZ2060_ESP_ADDR 0x1ff00 -#define BLZ2060_DMA_ADDR 0x1ffe0 - - -/* The Blizzard 2060 DMA interface - * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - * Only two things can be programmed in the Blizzard DMA: - * 1) The data direction is controlled by the status of bit 31 (1 = write) - * 2) The source/dest address (word aligned, shifted one right) in bits 30-0 - * - * Figure out interrupt status by reading the ESP status byte. - */ -struct blz2060_dma_registers { - volatile unsigned char dma_led_ctrl; /* DMA led control [0x000] */ - unsigned char dmapad1[0x0f]; - volatile unsigned char dma_addr0; /* DMA address (MSB) [0x010] */ - unsigned char dmapad2[0x03]; - volatile unsigned char dma_addr1; /* DMA address [0x014] */ - unsigned char dmapad3[0x03]; - volatile unsigned char dma_addr2; /* DMA address [0x018] */ - unsigned char dmapad4[0x03]; - volatile unsigned char dma_addr3; /* DMA address (LSB) [0x01c] */ -}; - -#define BLZ2060_DMA_WRITE 0x80000000 - -/* DMA control bits */ -#define BLZ2060_DMA_LED 0x02 /* HD led control 1 = off */ - -static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count); -static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp); -static void dma_dump_state(struct NCR_ESP *esp); -static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length); -static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length); -static void dma_ints_off(struct NCR_ESP *esp); -static void dma_ints_on(struct NCR_ESP *esp); -static int dma_irq_p(struct NCR_ESP *esp); -static void dma_led_off(struct NCR_ESP *esp); -static void dma_led_on(struct NCR_ESP *esp); -static int dma_ports_p(struct NCR_ESP *esp); -static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write); - -static volatile unsigned char cmd_buffer[16]; - /* This is where all commands are put - * before they are transferred to the ESP chip - * via PIO. - */ - -/***************************************************************** Detection */ -int __init blz2060_esp_detect(struct scsi_host_template *tpnt) -{ - struct NCR_ESP *esp; - struct zorro_dev *z = NULL; - unsigned long address; - - if ((z = zorro_find_device(ZORRO_PROD_PHASE5_BLIZZARD_2060, z))) { - unsigned long board = z->resource.start; - if (request_mem_region(board+BLZ2060_ESP_ADDR, - sizeof(struct ESP_regs), "NCR53C9x")) { - esp = esp_allocate(tpnt, (void *)board + BLZ2060_ESP_ADDR, 0); - - /* Do command transfer with programmed I/O */ - esp->do_pio_cmds = 1; - - /* Required functions */ - esp->dma_bytes_sent = &dma_bytes_sent; - esp->dma_can_transfer = &dma_can_transfer; - esp->dma_dump_state = &dma_dump_state; - esp->dma_init_read = &dma_init_read; - esp->dma_init_write = &dma_init_write; - esp->dma_ints_off = &dma_ints_off; - esp->dma_ints_on = &dma_ints_on; - esp->dma_irq_p = &dma_irq_p; - esp->dma_ports_p = &dma_ports_p; - esp->dma_setup = &dma_setup; - - /* Optional functions */ - esp->dma_barrier = 0; - esp->dma_drain = 0; - esp->dma_invalidate = 0; - esp->dma_irq_entry = 0; - esp->dma_irq_exit = 0; - esp->dma_led_on = &dma_led_on; - esp->dma_led_off = &dma_led_off; - esp->dma_poll = 0; - esp->dma_reset = 0; - - /* SCSI chip speed */ - esp->cfreq = 40000000; - - /* The DMA registers on the Blizzard are mapped - * relative to the device (i.e. in the same Zorro - * I/O block). - */ - address = (unsigned long)ZTWO_VADDR(board); - esp->dregs = (void *)(address + BLZ2060_DMA_ADDR); - - /* ESP register base */ - esp->eregs = (struct ESP_regs *)(address + BLZ2060_ESP_ADDR); - - /* Set the command buffer */ - esp->esp_command = cmd_buffer; - esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer); - - esp->irq = IRQ_AMIGA_PORTS; - request_irq(IRQ_AMIGA_PORTS, esp_intr, IRQF_SHARED, - "Blizzard 2060 SCSI", esp->ehost); - - /* Figure out our scsi ID on the bus */ - esp->scsi_id = 7; - - /* We don't have a differential SCSI-bus. */ - esp->diff = 0; - - esp_initialize(esp); - - printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use); - esps_running = esps_in_use; - return esps_in_use; - } - } - return 0; -} - -/************************************************************* DMA Functions */ -static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count) -{ - /* Since the Blizzard DMA is fully dedicated to the ESP chip, - * the number of bytes sent (to the ESP chip) equals the number - * of bytes in the FIFO - there is no buffering in the DMA controller. - * XXXX Do I read this right? It is from host to ESP, right? - */ - return fifo_count; -} - -static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp) -{ - /* I don't think there's any limit on the Blizzard DMA. So we use what - * the ESP chip can handle (24 bit). - */ - unsigned long sz = sp->SCp.this_residual; - if(sz > 0x1000000) - sz = 0x1000000; - return sz; -} - -static void dma_dump_state(struct NCR_ESP *esp) -{ - ESPLOG(("intreq:<%04x>, intena:<%04x>\n", - amiga_custom.intreqr, amiga_custom.intenar)); -} - -static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length) -{ - struct blz2060_dma_registers *dregs = - (struct blz2060_dma_registers *) (esp->dregs); - - cache_clear(addr, length); - - addr >>= 1; - addr &= ~(BLZ2060_DMA_WRITE); - dregs->dma_addr3 = (addr ) & 0xff; - dregs->dma_addr2 = (addr >> 8) & 0xff; - dregs->dma_addr1 = (addr >> 16) & 0xff; - dregs->dma_addr0 = (addr >> 24) & 0xff; -} - -static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length) -{ - struct blz2060_dma_registers *dregs = - (struct blz2060_dma_registers *) (esp->dregs); - - cache_push(addr, length); - - addr >>= 1; - addr |= BLZ2060_DMA_WRITE; - dregs->dma_addr3 = (addr ) & 0xff; - dregs->dma_addr2 = (addr >> 8) & 0xff; - dregs->dma_addr1 = (addr >> 16) & 0xff; - dregs->dma_addr0 = (addr >> 24) & 0xff; -} - -static void dma_ints_off(struct NCR_ESP *esp) -{ - disable_irq(esp->irq); -} - -static void dma_ints_on(struct NCR_ESP *esp) -{ - enable_irq(esp->irq); -} - -static int dma_irq_p(struct NCR_ESP *esp) -{ - return (esp_read(esp->eregs->esp_status) & ESP_STAT_INTR); -} - -static void dma_led_off(struct NCR_ESP *esp) -{ - ((struct blz2060_dma_registers *) (esp->dregs))->dma_led_ctrl = - BLZ2060_DMA_LED; -} - -static void dma_led_on(struct NCR_ESP *esp) -{ - ((struct blz2060_dma_registers *) (esp->dregs))->dma_led_ctrl = 0; -} - -static int dma_ports_p(struct NCR_ESP *esp) -{ - return ((amiga_custom.intenar) & IF_PORTS); -} - -static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write) -{ - /* On the Sparc, DMA_ST_WRITE means "move data from device to memory" - * so when (write) is true, it actually means READ! - */ - if(write){ - dma_init_read(esp, addr, count); - } else { - dma_init_write(esp, addr, count); - } -} - -#define HOSTS_C - -int blz2060_esp_release(struct Scsi_Host *instance) -{ -#ifdef MODULE - unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev; - - esp_deallocate((struct NCR_ESP *)instance->hostdata); - esp_release(); - release_mem_region(address, sizeof(struct ESP_regs)); - free_irq(IRQ_AMIGA_PORTS, esp_intr); -#endif - return 1; -} - - -static struct scsi_host_template driver_template = { - .proc_name = "esp-blz2060", - .proc_info = esp_proc_info, - .name = "Blizzard2060 SCSI", - .detect = blz2060_esp_detect, - .slave_alloc = esp_slave_alloc, - .slave_destroy = esp_slave_destroy, - .release = blz2060_esp_release, - .queuecommand = esp_queue, - .eh_abort_handler = esp_abort, - .eh_bus_reset_handler = esp_reset, - .can_queue = 7, - .this_id = 7, - .sg_tablesize = SG_ALL, - .cmd_per_lun = 1, - .use_clustering = ENABLE_CLUSTERING -}; - - -#include "scsi_module.c" - -MODULE_LICENSE("GPL"); diff --git a/drivers/scsi/cyberstorm.c b/drivers/scsi/cyberstorm.c deleted file mode 100644 index c6b98a42e89..00000000000 --- a/drivers/scsi/cyberstorm.c +++ /dev/null @@ -1,377 +0,0 @@ -/* cyberstorm.c: Driver for CyberStorm SCSI Controller. - * - * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk) - * - * The CyberStorm SCSI driver is based on David S. Miller's ESP driver - * for the Sparc computers. - * - * This work was made possible by Phase5 who willingly (and most generously) - * supported me with hardware and all the information I needed. - */ - -/* TODO: - * - * 1) Figure out how to make a cleaner merge with the sparc driver with regard - * to the caches and the Sparc MMU mapping. - * 2) Make as few routines required outside the generic driver. A lot of the - * routines in this file used to be inline! - */ - -#include <linux/module.h> - -#include <linux/init.h> -#include <linux/kernel.h> -#include <linux/delay.h> -#include <linux/types.h> -#include <linux/string.h> -#include <linux/slab.h> -#include <linux/blkdev.h> -#include <linux/proc_fs.h> -#include <linux/stat.h> -#include <linux/interrupt.h> - -#include "scsi.h" -#include <scsi/scsi_host.h> -#include "NCR53C9x.h" - -#include <linux/zorro.h> -#include <asm/irq.h> -#include <asm/amigaints.h> -#include <asm/amigahw.h> - -#include <asm/pgtable.h> - -/* The controller registers can be found in the Z2 config area at these - * offsets: - */ -#define CYBER_ESP_ADDR 0xf400 -#define CYBER_DMA_ADDR 0xf800 - - -/* The CyberStorm DMA interface */ -struct cyber_dma_registers { - volatile unsigned char dma_addr0; /* DMA address (MSB) [0x000] */ - unsigned char dmapad1[1]; - volatile unsigned char dma_addr1; /* DMA address [0x002] */ - unsigned char dmapad2[1]; - volatile unsigned char dma_addr2; /* DMA address [0x004] */ - unsigned char dmapad3[1]; - volatile unsigned char dma_addr3; /* DMA address (LSB) [0x006] */ - unsigned char dmapad4[0x3fb]; - volatile unsigned char cond_reg; /* DMA cond (ro) [0x402] */ -#define ctrl_reg cond_reg /* DMA control (wo) [0x402] */ -}; - -/* DMA control bits */ -#define CYBER_DMA_LED 0x80 /* HD led control 1 = on */ -#define CYBER_DMA_WRITE 0x40 /* DMA direction. 1 = write */ -#define CYBER_DMA_Z3 0x20 /* 16 (Z2) or 32 (CHIP/Z3) bit DMA transfer */ - -/* DMA status bits */ -#define CYBER_DMA_HNDL_INTR 0x80 /* DMA IRQ pending? */ - -/* The bits below appears to be Phase5 Debug bits only; they were not - * described by Phase5 so using them may seem a bit stupid... - */ -#define CYBER_HOST_ID 0x02 /* If set, host ID should be 7, otherwise - * it should be 6. - */ -#define CYBER_SLOW_CABLE 0x08 /* If *not* set, assume SLOW_CABLE */ - -static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count); -static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp); -static void dma_dump_state(struct NCR_ESP *esp); -static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length); -static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length); -static void dma_ints_off(struct NCR_ESP *esp); -static void dma_ints_on(struct NCR_ESP *esp); -static int dma_irq_p(struct NCR_ESP *esp); -static void dma_led_off(struct NCR_ESP *esp); -static void dma_led_on(struct NCR_ESP *esp); -static int dma_ports_p(struct NCR_ESP *esp); -static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write); - -static unsigned char ctrl_data = 0; /* Keep backup of the stuff written - * to ctrl_reg. Always write a copy - * to this register when writing to - * the hardware register! - */ - -static volatile unsigned char cmd_buffer[16]; - /* This is where all commands are put - * before they are transferred to the ESP chip - * via PIO. - */ - -/***************************************************************** Detection */ -int __init cyber_esp_detect(struct scsi_host_template *tpnt) -{ - struct NCR_ESP *esp; - struct zorro_dev *z = NULL; - unsigned long address; - - while ((z = zorro_find_device(ZORRO_WILDCARD, z))) { - unsigned long board = z->resource.start; - if ((z->id == ZORRO_PROD_PHASE5_BLIZZARD_1220_CYBERSTORM || - z->id == ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060) && - request_mem_region(board+CYBER_ESP_ADDR, - sizeof(struct ESP_regs), "NCR53C9x")) { - /* Figure out if this is a CyberStorm or really a - * Fastlane/Blizzard Mk II by looking at the board size. - * CyberStorm maps 64kB - * (ZORRO_PROD_PHASE5_BLIZZARD_1220_CYBERSTORM does anyway) - */ - if(z->resource.end-board != 0xffff) { - release_mem_region(board+CYBER_ESP_ADDR, - sizeof(struct ESP_regs)); - return 0; - } - esp = esp_allocate(tpnt, (void *)board + CYBER_ESP_ADDR, 0); - - /* Do command transfer with programmed I/O */ - esp->do_pio_cmds = 1; - - /* Required functions */ - esp->dma_bytes_sent = &dma_bytes_sent; - esp->dma_can_transfer = &dma_can_transfer; - esp->dma_dump_state = &dma_dump_state; - esp->dma_init_read = &dma_init_read; - esp->dma_init_write = &dma_init_write; - esp->dma_ints_off = &dma_ints_off; - esp->dma_ints_on = &dma_ints_on; - esp->dma_irq_p = &dma_irq_p; - esp->dma_ports_p = &dma_ports_p; - esp->dma_setup = &dma_setup; - - /* Optional functions */ - esp->dma_barrier = 0; - esp->dma_drain = 0; - esp->dma_invalidate = 0; - esp->dma_irq_entry = 0; - esp->dma_irq_exit = 0; - esp->dma_led_on = &dma_led_on; - esp->dma_led_off = &dma_led_off; - esp->dma_poll = 0; - esp->dma_reset = 0; - - /* SCSI chip speed */ - esp->cfreq = 40000000; - - /* The DMA registers on the CyberStorm are mapped - * relative to the device (i.e. in the same Zorro - * I/O block). - */ - address = (unsigned long)ZTWO_VADDR(board); - esp->dregs = (void *)(address + CYBER_DMA_ADDR); - - /* ESP register base */ - esp->eregs = (struct ESP_regs *)(address + CYBER_ESP_ADDR); - - /* Set the command buffer */ - esp->esp_command = cmd_buffer; - esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer); - - esp->irq = IRQ_AMIGA_PORTS; - request_irq(IRQ_AMIGA_PORTS, esp_intr, IRQF_SHARED, - "CyberStorm SCSI", esp->ehost); - /* Figure out our scsi ID on the bus */ - /* The DMA cond flag contains a hardcoded jumper bit - * which can be used to select host number 6 or 7. - * However, even though it may change, we use a hardcoded - * value of 7. - */ - esp->scsi_id = 7; - - /* We don't have a differential SCSI-bus. */ - esp->diff = 0; - - esp_initialize(esp); - - printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use); - esps_running = esps_in_use; - return esps_in_use; - } - } - return 0; -} - -/************************************************************* DMA Functions */ -static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count) -{ - /* Since the CyberStorm DMA is fully dedicated to the ESP chip, - * the number of bytes sent (to the ESP chip) equals the number - * of bytes in the FIFO - there is no buffering in the DMA controller. - * XXXX Do I read this right? It is from host to ESP, right? - */ - return fifo_count; -} - -static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp) -{ - /* I don't think there's any limit on the CyberDMA. So we use what - * the ESP chip can handle (24 bit). - */ - unsigned long sz = sp->SCp.this_residual; - if(sz > 0x1000000) - sz = 0x1000000; - return sz; -} - -static void dma_dump_state(struct NCR_ESP *esp) -{ - ESPLOG(("esp%d: dma -- cond_reg<%02x>\n", - esp->esp_id, ((struct cyber_dma_registers *) - (esp->dregs))->cond_reg)); - ESPLOG(("intreq:<%04x>, intena:<%04x>\n", - amiga_custom.intreqr, amiga_custom.intenar)); -} - -static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length) -{ - struct cyber_dma_registers *dregs = - (struct cyber_dma_registers *) esp->dregs; - - cache_clear(addr, length); - - addr &= ~(1); - dregs->dma_addr0 = (addr >> 24) & 0xff; - dregs->dma_addr1 = (addr >> 16) & 0xff; - dregs->dma_addr2 = (addr >> 8) & 0xff; - dregs->dma_addr3 = (addr ) & 0xff; - ctrl_data &= ~(CYBER_DMA_WRITE); - - /* Check if physical address is outside Z2 space and of - * block length/block aligned in memory. If this is the - * case, enable 32 bit transfer. In all other cases, fall back - * to 16 bit transfer. - * Obviously 32 bit transfer should be enabled if the DMA address - * and length are 32 bit aligned. However, this leads to some - * strange behavior. Even 64 bit aligned addr/length fails. - * Until I've found a reason for this, 32 bit transfer is only - * used for full-block transfers (1kB). - * -jskov - */ -#if 0 - if((addr & 0x3fc) || length & 0x3ff || ((addr > 0x200000) && - (addr < 0xff0000))) - ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */ - else - ctrl_data |= CYBER_DMA_Z3; /* CHIP/Z3, do 32 bit DMA */ -#else - ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */ -#endif - dregs->ctrl_reg = ctrl_data; -} - -static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length) -{ |