aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Documentation/ABI/removed/devfs (renamed from Documentation/ABI/obsolete/devfs)5
-rw-r--r--Documentation/ABI/testing/sysfs-power88
-rw-r--r--Documentation/feature-removal-schedule.txt27
-rw-r--r--Documentation/power/devices.txt725
-rw-r--r--drivers/base/base.h2
-rw-r--r--drivers/base/bus.c133
-rw-r--r--drivers/base/class.c34
-rw-r--r--drivers/base/core.c230
-rw-r--r--drivers/base/dd.c147
-rw-r--r--drivers/base/driver.c16
-rw-r--r--drivers/base/platform.c30
-rw-r--r--drivers/base/power/resume.c37
-rw-r--r--drivers/base/power/suspend.c92
-rw-r--r--drivers/base/power/sysfs.c35
-rw-r--r--drivers/ide/ide.c6
-rw-r--r--drivers/ide/ppc/pmac.c14
-rw-r--r--drivers/media/dvb/cinergyT2/cinergyT2.c2
-rw-r--r--drivers/pci/Kconfig25
-rw-r--r--drivers/pci/hotplug/acpiphp_ibm.c4
-rw-r--r--drivers/pci/pci-driver.c38
-rw-r--r--drivers/pci/pci.c4
-rw-r--r--drivers/scsi/mesh.c15
-rw-r--r--drivers/usb/core/hcd-pci.c2
-rw-r--r--drivers/usb/host/ehci-pci.c6
-rw-r--r--drivers/usb/host/ohci-pci.c5
-rw-r--r--drivers/usb/host/sl811-hcd.c9
-rw-r--r--drivers/usb/host/uhci-hcd.c4
-rw-r--r--drivers/video/aty/radeon_pm.c15
-rw-r--r--drivers/video/i810/i810_main.c12
-rw-r--r--drivers/video/nvidia/nvidia.c13
-rw-r--r--drivers/video/savage/savagefb_driver.c14
-rw-r--r--fs/debugfs/file.c56
-rw-r--r--fs/debugfs/inode.c15
-rw-r--r--fs/namespace.c10
-rw-r--r--fs/sysfs/bin.c13
-rw-r--r--fs/sysfs/dir.c2
-rw-r--r--fs/sysfs/inode.c11
-rw-r--r--fs/sysfs/symlink.c14
-rw-r--r--fs/sysfs/sysfs.h2
-rw-r--r--include/linux/compiler.h5
-rw-r--r--include/linux/device.h99
-rw-r--r--include/linux/kobject.h16
-rw-r--r--include/linux/pci.h36
-rw-r--r--include/linux/platform_device.h2
-rw-r--r--include/linux/pm.h63
-rw-r--r--include/linux/sysfs.h28
-rw-r--r--include/media/v4l2-dev.h2
-rw-r--r--init/do_mounts.c5
-rw-r--r--kernel/power/Kconfig11
-rw-r--r--kernel/power/disk.c4
-rw-r--r--kernel/power/swsusp.c9
-rw-r--r--kernel/power/user.c2
-rw-r--r--lib/Kconfig.debug7
-rw-r--r--lib/klist.c26
-rw-r--r--lib/kobject.c9
55 files changed, 1659 insertions, 577 deletions
diff --git a/Documentation/ABI/obsolete/devfs b/Documentation/ABI/removed/devfs
index b8b87399bc8..8195c4e0d0a 100644
--- a/Documentation/ABI/obsolete/devfs
+++ b/Documentation/ABI/removed/devfs
@@ -1,13 +1,12 @@
What: devfs
-Date: July 2005
+Date: July 2005 (scheduled), finally removed in kernel v2.6.18
Contact: Greg Kroah-Hartman <gregkh@suse.de>
Description:
devfs has been unmaintained for a number of years, has unfixable
races, contains a naming policy within the kernel that is
against the LSB, and can be replaced by using udev.
- The files fs/devfs/*, include/linux/devfs_fs*.h will be removed,
+ The files fs/devfs/*, include/linux/devfs_fs*.h were removed,
along with the the assorted devfs function calls throughout the
kernel tree.
Users:
-
diff --git a/Documentation/ABI/testing/sysfs-power b/Documentation/ABI/testing/sysfs-power
new file mode 100644
index 00000000000..d882f809387
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-power
@@ -0,0 +1,88 @@
+What: /sys/power/
+Date: August 2006
+Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Description:
+ The /sys/power directory will contain files that will
+ provide a unified interface to the power management
+ subsystem.
+
+What: /sys/power/state
+Date: August 2006
+Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Description:
+ The /sys/power/state file controls the system power state.
+ Reading from this file returns what states are supported,
+ which is hard-coded to 'standby' (Power-On Suspend), 'mem'
+ (Suspend-to-RAM), and 'disk' (Suspend-to-Disk).
+
+ Writing to this file one of these strings causes the system to
+ transition into that state. Please see the file
+ Documentation/power/states.txt for a description of each of
+ these states.
+
+What: /sys/power/disk
+Date: August 2006
+Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Description:
+ The /sys/power/disk file controls the operating mode of the
+ suspend-to-disk mechanism. Reading from this file returns
+ the name of the method by which the system will be put to
+ sleep on the next suspend. There are four methods supported:
+ 'firmware' - means that the memory image will be saved to disk
+ by some firmware, in which case we also assume that the
+ firmware will handle the system suspend.
+ 'platform' - the memory image will be saved by the kernel and
+ the system will be put to sleep by the platform driver (e.g.
+ ACPI or other PM registers).
+ 'shutdown' - the memory image will be saved by the kernel and
+ the system will be powered off.
+ 'reboot' - the memory image will be saved by the kernel and
+ the system will be rebooted.
+
+ The suspend-to-disk method may be chosen by writing to this
+ file one of the accepted strings:
+
+ 'firmware'
+ 'platform'
+ 'shutdown'
+ 'reboot'
+
+ It will only change to 'firmware' or 'platform' if the system
+ supports that.
+
+What: /sys/power/image_size
+Date: August 2006
+Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Description:
+ The /sys/power/image_size file controls the size of the image
+ created by the suspend-to-disk mechanism. It can be written a
+ string representing a non-negative integer that will be used
+ as an upper limit of the image size, in bytes. The kernel's
+ suspend-to-disk code will do its best to ensure the image size
+ will not exceed this number. However, if it turns out to be
+ impossible, the kernel will try to suspend anyway using the
+ smallest image possible. In particular, if "0" is written to
+ this file, the suspend image will be as small as possible.
+
+ Reading from this file will display the current image size
+ limit, which is set to 500 MB by default.
+
+What: /sys/power/pm_trace
+Date: August 2006
+Contact: Rafael J. Wysocki <rjw@sisk.pl>
+Description:
+ The /sys/power/pm_trace file controls the code which saves the
+ last PM event point in the RTC across reboots, so that you can
+ debug a machine that just hangs during suspend (or more
+ commonly, during resume). Namely, the RTC is only used to save
+ the last PM event point if this file contains '1'. Initially
+ it contains '0' which may be changed to '1' by writing a
+ string representing a nonzero integer into it.
+
+ To use this debugging feature you should attempt to suspend
+ the machine, then reboot it and run
+
+ dmesg -s 1000000 | grep 'hash matches'
+
+ CAUTION: Using it will cause your machine's real-time (CMOS)
+ clock to be set to a random invalid time after a resume.
diff --git a/Documentation/feature-removal-schedule.txt b/Documentation/feature-removal-schedule.txt
index 552507fe9a7..611acc32fdf 100644
--- a/Documentation/feature-removal-schedule.txt
+++ b/Documentation/feature-removal-schedule.txt
@@ -6,6 +6,21 @@ be removed from this file.
---------------------------
+What: /sys/devices/.../power/state
+ dev->power.power_state
+ dpm_runtime_{suspend,resume)()
+When: July 2007
+Why: Broken design for runtime control over driver power states, confusing
+ driver-internal runtime power management with: mechanisms to support
+ system-wide sleep state transitions; event codes that distinguish
+ different phases of swsusp "sleep" transitions; and userspace policy
+ inputs. This framework was never widely used, and most attempts to
+ use it were broken. Drivers should instead be exposing domain-specific
+ interfaces either to kernel or to userspace.
+Who: Pavel Machek <pavel@suse.cz>
+
+---------------------------
+
What: RAW driver (CONFIG_RAW_DRIVER)
When: December 2005
Why: declared obsolete since kernel 2.6.3
@@ -294,3 +309,15 @@ Why: The frame diverter is included in most distribution kernels, but is
It is not clear if anyone is still using it.
Who: Stephen Hemminger <shemminger@osdl.org>
+---------------------------
+
+
+What: PHYSDEVPATH, PHYSDEVBUS, PHYSDEVDRIVER in the uevent environment
+When: Oktober 2008
+Why: The stacking of class devices makes these values misleading and
+ inconsistent.
+ Class devices should not carry any of these properties, and bus
+ devices have SUBSYTEM and DRIVER as a replacement.
+Who: Kay Sievers <kay.sievers@suse.de>
+
+---------------------------
diff --git a/Documentation/power/devices.txt b/Documentation/power/devices.txt
index fba1e05c47c..d0e79d5820a 100644
--- a/Documentation/power/devices.txt
+++ b/Documentation/power/devices.txt
@@ -1,208 +1,553 @@
+Most of the code in Linux is device drivers, so most of the Linux power
+management code is also driver-specific. Most drivers will do very little;
+others, especially for platforms with small batteries (like cell phones),
+will do a lot.
+
+This writeup gives an overview of how drivers interact with system-wide
+power management goals, emphasizing the models and interfaces that are
+shared by everything that hooks up to the driver model core. Read it as
+background for the domain-specific work you'd do with any specific driver.
+
+
+Two Models for Device Power Management
+======================================
+Drivers will use one or both of these models to put devices into low-power
+states:
+
+ System Sleep model:
+ Drivers can enter low power states as part of entering system-wide
+ low-power states like "suspend-to-ram", or (mostly for systems with
+ disks) "hibernate" (suspend-to-disk).
+
+ This is something that device, bus, and class drivers collaborate on
+ by implementing various role-specific suspend and resume methods to
+ cleanly power down hardware and software subsystems, then reactivate
+ them without loss of data.
+
+ Some drivers can manage hardware wakeup events, which make the system
+ leave that low-power state. This feature may be disabled using the
+ relevant /sys/devices/.../power/wakeup file; enabling it may cost some
+ power usage, but let the whole system enter low power states more often.
+
+ Runtime Power Management model:
+ Drivers may also enter low power states while the system is running,
+ independently of other power management activity. Upstream drivers
+ will normally not know (or care) if the device is in some low power
+ state when issuing requests; the driver will auto-resume anything
+ that's needed when it gets a request.
+
+ This doesn't have, or need much infrastructure; it's just something you
+ should do when writing your drivers. For example, clk_disable() unused
+ clocks as part of minimizing power drain for currently-unused hardware.
+ Of course, sometimes clusters of drivers will collaborate with each
+ other, which could involve task-specific power management.
+
+There's not a lot to be said about those low power states except that they
+are very system-specific, and often device-specific. Also, that if enough
+drivers put themselves into low power states (at "runtime"), the effect may be
+the same as entering some system-wide low-power state (system sleep) ... and
+that synergies exist, so that several drivers using runtime pm might put the
+system into a state where even deeper power saving options are available.
+
+Most suspended devices will have quiesced all I/O: no more DMA or irqs, no
+more data read or written, and requests from upstream drivers are no longer
+accepted. A given bus or platform may have different requirements though.
+
+Examples of hardware wakeup events include an alarm from a real time clock,
+network wake-on-LAN packets, keyboard or mouse activity, and media insertion
+or removal (for PCMCIA, MMC/SD, USB, and so on).
+
+
+Interfaces for Entering System Sleep States
+===========================================
+Most of the programming interfaces a device driver needs to know about
+relate to that first model: entering a system-wide low power state,
+rather than just minimizing power consumption by one device.
+
+
+Bus Driver Methods
+------------------
+The core methods to suspend and resume devices reside in struct bus_type.
+These are mostly of interest to people writing infrastructure for busses
+like PCI or USB, or because they define the primitives that device drivers
+may need to apply in domain-specific ways to their devices:
-Device Power Management
+struct bus_type {
+ ...
+ int (*suspend)(struct device *dev, pm_message_t state);
+ int (*suspend_late)(struct device *dev, pm_message_t state);
+ int (*resume_early)(struct device *dev);
+ int (*resume)(struct device *dev);
+};
-Device power management encompasses two areas - the ability to save
-state and transition a device to a low-power state when the system is
-entering a low-power state; and the ability to transition a device to
-a low-power state while the system is running (and independently of
-any other power management activity).
+Bus drivers implement those methods as appropriate for the hardware and
+the drivers using it; PCI works differently from USB, and so on. Not many
+people write bus drivers; most driver code is a "device driver" that
+builds on top of bus-specific framework code.
+
+For more information on these driver calls, see the description later;
+they are called in phases for every device, respecting the parent-child
+sequencing in the driver model tree. Note that as this is being written,
+only the suspend() and resume() are widely available; not many bus drivers
+leverage all of those phases, or pass them down to lower driver levels.
+
+
+/sys/devices/.../power/wakeup files
+-----------------------------------
+All devices in the driver model have two flags to control handling of
+wakeup events, which are hardware signals that can force the device and/or
+system out of a low power state. These are initialized by bus or device
+driver code using device_init_wakeup(dev,can_wakeup).
+
+The "can_wakeup" flag just records whether the device (and its driver) can
+physically support wakeup events. When that flag is clear, the sysfs
+"wakeup" file is empty, and device_may_wakeup() returns false.
+
+For devices that can issue wakeup events, a separate flag controls whether
+that device should try to use its wakeup mechanism. The initial value of
+device_may_wakeup() will be true, so that the device's "wakeup" file holds
+the value "enabled". Userspace can change that to "disabled" so that
+device_may_wakeup() returns false; or change it back to "enabled" (so that
+it returns true again).
+
+
+EXAMPLE: PCI Device Driver Methods
+-----------------------------------
+PCI framework software calls these methods when the PCI device driver bound
+to a device device has provided them:
+
+struct pci_driver {
+ ...
+ int (*suspend)(struct pci_device *pdev, pm_message_t state);
+ int (*suspend_late)(struct pci_device *pdev, pm_message_t state);
+
+ int (*resume_early)(struct pci_device *pdev);
+ int (*resume)(struct pci_device *pdev);
+};
+Drivers will implement those methods, and call PCI-specific procedures
+like pci_set_power_state(), pci_enable_wake(), pci_save_state(), and
+pci_restore_state() to manage PCI-specific mechanisms. (PCI config space
+could be saved during driver probe, if it weren't for the fact that some
+systems rely on userspace tweaking using setpci.) Devices are suspended
+before their bridges enter low power states, and likewise bridges resume
+before their devices.
+
+
+Upper Layers of Driver Stacks
+-----------------------------
+Device drivers generally have at least two interfaces, and the methods
+sketched above are the ones which apply to the lower level (nearer PCI, USB,
+or other bus hardware). The network and block layers are examples of upper
+level interfaces, as is a character device talking to userspace.
+
+Power management requests normally need to flow through those upper levels,
+which often use domain-oriented requests like "blank that screen". In
+some cases those upper levels will have power management intelligence that
+relates to end-user activity, or other devices that work in cooperation.
+
+When those interfaces are structured using class interfaces, there is a
+standard way to have the upper layer stop issuing requests to a given
+class device (and restart later):
+
+struct class {
+ ...
+ int (*suspend)(struct device *dev, pm_message_t state);
+ int (*resume)(struct device *dev);
+};
-Methods
+Those calls are issued in specific phases of the process by which the
+system enters a low power "suspend" state, or resumes from it.
+
+
+Calling Drivers to Enter System Sleep States
+============================================
+When the system enters a low power state, each device's driver is asked
+to suspend the device by putting it into state compatible with the target
+system state. That's usually some version of "off", but the details are
+system-specific. Also, wakeup-enabled devices will usually stay partly
+functional in order to wake the system.
+
+When the system leaves that low power state, the device's driver is asked
+to resume it. The suspend and resume operations always go together, and
+both are multi-phase operations.
+
+For simple drivers, suspend might quiesce the device using the class code
+and then turn its hardware as "off" as possible with late_suspend. The
+matching resume calls would then completely reinitialize the hardware
+before reactivating its class I/O queues.
+
+More power-aware drivers drivers will use more than one device low power
+state, either at runtime or during system sleep states, and might trigger
+system wakeup events.
+
+
+Call Sequence Guarantees
+------------------------
+To ensure that bridges and similar links needed to talk to a device are
+available when the device is suspended or resumed, the device tree is
+walked in a bottom-up order to suspend devices. A top-down order is
+used to resume those devices.
+
+The ordering of the device tree is defined by the order in which devices
+get registered: a child can never be registered, probed or resumed before
+its parent; and can't be removed or suspended after that parent.
+
+The policy is that the device tree should match hardware bus topology.
+(Or at least the control bus, for devices which use multiple busses.)
+
+
+Suspending Devices
+------------------
+Suspending a given device is done in several phases. Suspending the
+system always includes every phase, executing calls for every device
+before the next phase begins. Not all busses or classes support all
+these callbacks; and not all drivers use all the callbacks.
+
+The phases are seen by driver notifications issued in this order:
+
+ 1 class.suspend(dev, message) is called after tasks are frozen, for
+ devices associated with a class that has such a method. This
+ method may sleep.
+
+ Since I/O activity usually comes from such higher layers, this is
+ a good place to quiesce all drivers of a given type (and keep such
+ code out of those drivers).
+
+ 2 bus.suspend(dev, message) is called next. This method may sleep,
+ and is often morphed into a device driver call with bus-specific
+ parameters and/or rules.
+
+ This call should handle parts of device suspend logic that require
+ sleeping. It probably does work to quiesce the device which hasn't
+ been abstracted into class.suspend() or bus.suspend_late().
+
+ 3 bus.suspend_late(dev, message) is called with IRQs disabled, and
+ with only one CPU active. Until the bus.resume_early() phase
+ completes (see later), IRQs are not enabled again. This method
+ won't be exposed by all busses; for message based busses like USB,
+ I2C, or SPI, device interactions normally require IRQs. This bus
+ call may be morphed into a driver call with bus-specific parameters.
+
+ This call might save low level hardware state that might otherwise
+ be lost in the upcoming low power state, and actually put the
+ device into a low power state ... so that in some cases the device
+ may stay partly usable until this late. This "late" call may also
+ help when coping with hardware that behaves badly.
+
+The pm_message_t parameter is currently used to refine those semantics
+(described later).
+
+At the end of those phases, drivers should normally have stopped all I/O
+transactions (DMA, IRQs), saved enough state that they can re-initialize
+or restore previous state (as needed by the hardware), and placed the
+device into a low-power state. On many platforms they will also use
+clk_disable() to gate off one or more clock sources; sometimes they will
+also switch off power supplies, or reduce voltages. Drivers which have
+runtime PM support may already have performed some or all of the steps
+needed to prepare for the upcoming system sleep state.
+
+When any driver sees that its device_can_wakeup(dev), it should make sure
+to use the relevant hardware signals to trigger a system wakeup event.
+For example, enable_irq_wake() might identify GPIO signals hooked up to
+a switch or other external hardware, and pci_enable_wake() does something
+similar for PCI's PME# signal.
+
+If a driver (or bus, or class) fails it suspend method, the system won't
+enter the desired low power state; it will resume all the devices it's
+suspended so far.
+
+Note that drivers may need to perform different actions based on the target
+system lowpower/sleep state. At this writing, there are only platform
+specific APIs through which drivers could determine those target states.
+
+
+Device Low Power (suspend) States
+---------------------------------
+Device low-power states aren't very standard. One device might only handle
+"on" and "off, while another might support a dozen different versions of
+"on" (how many engines are active?), plus a state that gets back to "on"
+faster than from a full "off".
+
+Some busses define rules about what different suspend states mean. PCI
+gives one example: after the suspend sequence completes, a non-legacy
+PCI device may not perform DMA or issue IRQs, and any wakeup events it
+issues would be issued through the PME# bus signal. Plus, there are
+several PCI-standard device states, some of which are optional.
+
+In contrast, integrated system-on-chip processors often use irqs as the
+wakeup event sources (so drivers would call enable_irq_wake) and might
+be able to treat DMA completion as a wakeup event (sometimes DMA can stay
+active too, it'd only be the CPU and some peripherals that sleep).
+
+Some details here may be platform-specific. Systems may have devices that
+can be fully active in certain sleep states, such as an LCD display that's
+refreshed using DMA while most of the system is sleeping lightly ... and
+its frame buffer might even be updated by a DSP or other non-Linux CPU while
+the Linux control processor stays idle.
+
+Moreover, the specific actions taken may depend on the target system state.
+One target system state might allow a given device to be very operational;
+another might require a hard shut down with re-initialization on resume.
+And two different target systems might use the same device in different
+ways; the aforementioned LCD might be active in one product's "standby",
+but a different product using the same SOC might work differently.
+
+
+Meaning of pm_message_t.event
+-----------------------------
+Parameters to suspend calls include the device affected and a message of
+type pm_message_t, which has one field: the event. If driver does not
+recognize the event code, suspend calls may abort the request and return
+a negative errno. However, most drivers will be fine if they implement
+PM_EVENT_SUSPEND semantics for all messages.
+
+The event codes are used to refine the goal of suspending the device, and
+mostly matter when creating or resuming system memory image snapshots, as
+used with suspend-to-disk:
+
+ PM_EVENT_SUSPEND -- quiesce the driver and put hardware into a low-power
+ state. When used with system sleep states like "suspend-to-RAM" or
+ "standby", the upcoming resume() call will often be able to rely on
+ state kept in hardware, or issue system wakeup events. When used
+ instead with suspend-to-disk, few devices support this capability;
+ most are completely powered off.
+
+ PM_EVENT_FREEZE -- quiesce the driver, but don't necessarily change into
+ any low power mode. A system snapshot is about to be taken, often
+ followed by a call to the driver's resume() method. Neither wakeup
+ events nor DMA are allowed.
+
+ PM_EVENT_PRETHAW -- quiesce the driver, knowing that the upcoming resume()
+ will restore a suspend-to-disk snapshot from a different kernel image.
+ Drivers that are smart enough to look at their hardware state during
+ resume() processing need that state to be correct ... a PRETHAW could
+ be used to invalidate that state (by resetting the device), like a
+ shutdown() invocation would before a kexec() or system halt. Other
+ drivers might handle this the same way as PM_EVENT_FREEZE. Neither
+ wakeup events nor DMA are allowed.
+
+To enter "standby" (ACPI S1) or "Suspend to RAM" (STR, ACPI S3) states, or
+the similarly named APM states, only PM_EVENT_SUSPEND is used; for "Suspend
+to Disk" (STD, hibernate, ACPI S4), all of those event codes are used.
+
+There's also PM_EVENT_ON, a value which never appears as a suspend event
+but is sometimes used to record the "not suspended" device state.
+
+
+Resuming Devices
+----------------
+Resuming is done in multiple phases, much like suspending, with all
+devices processing each phase's calls before the next phase begins.
+
+The phases are seen by driver notifications issued in this order:
+
+ 1 bus.resume_early(dev) is called with IRQs disabled, and with
+ only one CPU active. As with bus.suspend_late(), this method
+ won't be supported on busses that require IRQs in order to
+ interact with devices.
+
+ This reverses the effects of bus.suspend_late().
+
+ 2 bus.resume(dev) is called next. This may be morphed into a device
+ driver call with bus-specific parameters; implementations may sleep.
+
+ This reverses the effects of bus.suspend().
+
+ 3 class.resume(dev) is called for devices associated with a class
+ that has such a method. Implementations may sleep.
+
+ This reverses the effects of class.suspend(), and would usually
+ reactivate the device's I/O queue.
+
+At the end of those phases, drivers should normally be as functional as
+they were before suspending: I/O can be performed using DMA and IRQs, and
+the relevant clocks are gated on. The device need not be "fully on"; it
+might be in a runtime lowpower/suspend state that acts as if it were.
+
+However, the details here may again be platform-specific. For example,
+some systems support multiple "run" states, and the mode in effect at
+the end of resume() might not be the one which preceded suspension.
+That means availability of certain clocks or power supplies changed,
+which could easily affect how a driver works.
+
+
+Drivers need to be able to handle hardware which has been reset since the
+suspend methods were called, for example by complete reinitialization.
+This may be the hardest part, and the one most protected by NDA'd documents
+and chip errata. It's simplest if the hardware state hasn't changed since
+the suspend() was called, but that can't always be guaranteed.
+
+Drivers must also be prepared to notice that the device has been removed
+while the system was powered off, whenever that's physically possible.
+PCMCIA, MMC, USB, Firewire, SCSI, and even IDE are common examples of busses
+where common Linux platforms will see such removal. Details of how drivers
+will notice and handle such removals are currently bus-specific, and often