diff options
-rw-r--r-- | Documentation/cgroups.txt | 526 | ||||
-rw-r--r-- | include/linux/cgroup.h | 214 | ||||
-rw-r--r-- | include/linux/cgroup_subsys.h | 10 | ||||
-rw-r--r-- | include/linux/magic.h | 1 | ||||
-rw-r--r-- | include/linux/sched.h | 34 | ||||
-rw-r--r-- | init/Kconfig | 8 | ||||
-rw-r--r-- | init/main.c | 3 | ||||
-rw-r--r-- | kernel/Makefile | 1 | ||||
-rw-r--r-- | kernel/cgroup.c | 1198 |
9 files changed, 1994 insertions, 1 deletions
diff --git a/Documentation/cgroups.txt b/Documentation/cgroups.txt new file mode 100644 index 00000000000..4717887fd75 --- /dev/null +++ b/Documentation/cgroups.txt @@ -0,0 +1,526 @@ + CGROUPS + ------- + +Written by Paul Menage <menage@google.com> based on Documentation/cpusets.txt + +Original copyright statements from cpusets.txt: +Portions Copyright (C) 2004 BULL SA. +Portions Copyright (c) 2004-2006 Silicon Graphics, Inc. +Modified by Paul Jackson <pj@sgi.com> +Modified by Christoph Lameter <clameter@sgi.com> + +CONTENTS: +========= + +1. Control Groups + 1.1 What are cgroups ? + 1.2 Why are cgroups needed ? + 1.3 How are cgroups implemented ? + 1.4 What does notify_on_release do ? + 1.5 How do I use cgroups ? +2. Usage Examples and Syntax + 2.1 Basic Usage + 2.2 Attaching processes +3. Kernel API + 3.1 Overview + 3.2 Synchronization + 3.3 Subsystem API +4. Questions + +1. Control Groups +========== + +1.1 What are cgroups ? +---------------------- + +Control Groups provide a mechanism for aggregating/partitioning sets of +tasks, and all their future children, into hierarchical groups with +specialized behaviour. + +Definitions: + +A *cgroup* associates a set of tasks with a set of parameters for one +or more subsystems. + +A *subsystem* is a module that makes use of the task grouping +facilities provided by cgroups to treat groups of tasks in +particular ways. A subsystem is typically a "resource controller" that +schedules a resource or applies per-cgroup limits, but it may be +anything that wants to act on a group of processes, e.g. a +virtualization subsystem. + +A *hierarchy* is a set of cgroups arranged in a tree, such that +every task in the system is in exactly one of the cgroups in the +hierarchy, and a set of subsystems; each subsystem has system-specific +state attached to each cgroup in the hierarchy. Each hierarchy has +an instance of the cgroup virtual filesystem associated with it. + +At any one time there may be multiple active hierachies of task +cgroups. Each hierarchy is a partition of all tasks in the system. + +User level code may create and destroy cgroups by name in an +instance of the cgroup virtual file system, specify and query to +which cgroup a task is assigned, and list the task pids assigned to +a cgroup. Those creations and assignments only affect the hierarchy +associated with that instance of the cgroup file system. + +On their own, the only use for cgroups is for simple job +tracking. The intention is that other subsystems hook into the generic +cgroup support to provide new attributes for cgroups, such as +accounting/limiting the resources which processes in a cgroup can +access. For example, cpusets (see Documentation/cpusets.txt) allows +you to associate a set of CPUs and a set of memory nodes with the +tasks in each cgroup. + +1.2 Why are cgroups needed ? +---------------------------- + +There are multiple efforts to provide process aggregations in the +Linux kernel, mainly for resource tracking purposes. Such efforts +include cpusets, CKRM/ResGroups, UserBeanCounters, and virtual server +namespaces. These all require the basic notion of a +grouping/partitioning of processes, with newly forked processes ending +in the same group (cgroup) as their parent process. + +The kernel cgroup patch provides the minimum essential kernel +mechanisms required to efficiently implement such groups. It has +minimal impact on the system fast paths, and provides hooks for +specific subsystems such as cpusets to provide additional behaviour as +desired. + +Multiple hierarchy support is provided to allow for situations where +the division of tasks into cgroups is distinctly different for +different subsystems - having parallel hierarchies allows each +hierarchy to be a natural division of tasks, without having to handle +complex combinations of tasks that would be present if several +unrelated subsystems needed to be forced into the same tree of +cgroups. + +At one extreme, each resource controller or subsystem could be in a +separate hierarchy; at the other extreme, all subsystems +would be attached to the same hierarchy. + +As an example of a scenario (originally proposed by vatsa@in.ibm.com) +that can benefit from multiple hierarchies, consider a large +university server with various users - students, professors, system +tasks etc. The resource planning for this server could be along the +following lines: + + CPU : Top cpuset + / \ + CPUSet1 CPUSet2 + | | + (Profs) (Students) + + In addition (system tasks) are attached to topcpuset (so + that they can run anywhere) with a limit of 20% + + Memory : Professors (50%), students (30%), system (20%) + + Disk : Prof (50%), students (30%), system (20%) + + Network : WWW browsing (20%), Network File System (60%), others (20%) + / \ + Prof (15%) students (5%) + +Browsers like firefox/lynx go into the WWW network class, while (k)nfsd go +into NFS network class. + +At the same time firefox/lynx will share an appropriate CPU/Memory class +depending on who launched it (prof/student). + +With the ability to classify tasks differently for different resources +(by putting those resource subsystems in different hierarchies) then +the admin can easily set up a script which receives exec notifications +and depending on who is launching the browser he can + + # echo browser_pid > /mnt/<restype>/<userclass>/tasks + +With only a single hierarchy, he now would potentially have to create +a separate cgroup for every browser launched and associate it with +approp network and other resource class. This may lead to +proliferation of such cgroups. + +Also lets say that the administrator would like to give enhanced network +access temporarily to a student's browser (since it is night and the user +wants to do online gaming :) OR give one of the students simulation +apps enhanced CPU power, + +With ability to write pids directly to resource classes, its just a +matter of : + + # echo pid > /mnt/network/<new_class>/tasks + (after some time) + # echo pid > /mnt/network/<orig_class>/tasks + +Without this ability, he would have to split the cgroup into +multiple separate ones and then associate the new cgroups with the +new resource classes. + + + +1.3 How are cgroups implemented ? +--------------------------------- + +Control Groups extends the kernel as follows: + + - Each task in the system has a reference-counted pointer to a + css_set. + + - A css_set contains a set of reference-counted pointers to + cgroup_subsys_state objects, one for each cgroup subsystem + registered in the system. There is no direct link from a task to + the cgroup of which it's a member in each hierarchy, but this + can be determined by following pointers through the + cgroup_subsys_state objects. This is because accessing the + subsystem state is something that's expected to happen frequently + and in performance-critical code, whereas operations that require a + task's actual cgroup assignments (in particular, moving between + cgroups) are less common. + + - A cgroup hierarchy filesystem can be mounted for browsing and + manipulation from user space. + + - You can list all the tasks (by pid) attached to any cgroup. + +The implementation of cgroups requires a few, simple hooks +into the rest of the kernel, none in performance critical paths: + + - in init/main.c, to initialize the root cgroups and initial + css_set at system boot. + + - in fork and exit, to attach and detach a task from its css_set. + +In addition a new file system, of type "cgroup" may be mounted, to +enable browsing and modifying the cgroups presently known to the +kernel. When mounting a cgroup hierarchy, you may specify a +comma-separated list of subsystems to mount as the filesystem mount +options. By default, mounting the cgroup filesystem attempts to +mount a hierarchy containing all registered subsystems. + +If an active hierarchy with exactly the same set of subsystems already +exists, it will be reused for the new mount. If no existing hierarchy +matches, and any of the requested subsystems are in use in an existing +hierarchy, the mount will fail with -EBUSY. Otherwise, a new hierarchy +is activated, associated with the requested subsystems. + +It's not currently possible to bind a new subsystem to an active +cgroup hierarchy, or to unbind a subsystem from an active cgroup +hierarchy. This may be possible in future, but is fraught with nasty +error-recovery issues. + +When a cgroup filesystem is unmounted, if there are any +child cgroups created below the top-level cgroup, that hierarchy +will remain active even though unmounted; if there are no +child cgroups then the hierarchy will be deactivated. + +No new system calls are added for cgroups - all support for +querying and modifying cgroups is via this cgroup file system. + +Each task under /proc has an added file named 'cgroup' displaying, +for each active hierarchy, the subsystem names and the cgroup name +as the path relative to the root of the cgroup file system. + +Each cgroup is represented by a directory in the cgroup file system +containing the following files describing that cgroup: + + - tasks: list of tasks (by pid) attached to that cgroup + - notify_on_release flag: run /sbin/cgroup_release_agent on exit? + +Other subsystems such as cpusets may add additional files in each +cgroup dir + +New cgroups are created using the mkdir system call or shell +command. The properties of a cgroup, such as its flags, are +modified by writing to the appropriate file in that cgroups +directory, as listed above. + +The named hierarchical structure of nested cgroups allows partitioning +a large system into nested, dynamically changeable, "soft-partitions". + +The attachment of each task, automatically inherited at fork by any +children of that task, to a cgroup allows organizing the work load +on a system into related sets of tasks. A task may be re-attached to +any other cgroup, if allowed by the permissions on the necessary +cgroup file system directories. + +When a task is moved from one cgroup to another, it gets a new +css_set pointer - if there's an already existing css_set with the +desired collection of cgroups then that group is reused, else a new +css_set is allocated. Note that the current implementation uses a +linear search to locate an appropriate existing css_set, so isn't +very efficient. A future version will use a hash table for better +performance. + +The use of a Linux virtual file system (vfs) to represent the +cgroup hierarchy provides for a familiar permission and name space +for cgroups, with a minimum of additional kernel code. + +1.4 What does notify_on_release do ? +------------------------------------ + +*** notify_on_release is disabled in the current patch set. It will be +*** reactivated in a future patch in a less-intrusive manner + +If the notify_on_release flag is enabled (1) in a cgroup, then +whenever the last task in the cgroup leaves (exits or attaches to +some other cgroup) and the last child cgroup of that cgroup +is removed, then the kernel runs the command specified by the contents +of the "release_agent" file in that hierarchy's root directory, +supplying the pathname (relative to the mount point of the cgroup +file system) of the abandoned cgroup. This enables automatic +removal of abandoned cgroups. The default value of +notify_on_release in the root cgroup at system boot is disabled +(0). The default value of other cgroups at creation is the current +value of their parents notify_on_release setting. The default value of +a cgroup hierarchy's release_agent path is empty. + +1.5 How do I use cgroups ? +-------------------------- + +To start a new job that is to be contained within a cgroup, using +the "cpuset" cgroup subsystem, the steps are something like: + + 1) mkdir /dev/cgroup + 2) mount -t cgroup -ocpuset cpuset /dev/cgroup + 3) Create the new cgroup by doing mkdir's and write's (or echo's) in + the /dev/cgroup virtual file system. + 4) Start a task that will be the "founding father" of the new job. + 5) Attach that task to the new cgroup by writing its pid to the + /dev/cgroup tasks file for that cgroup. + 6) fork, exec or clone the job tasks from this founding father task. + +For example, the following sequence of commands will setup a cgroup +named "Charlie", containing just CPUs 2 and 3, and Memory Node 1, +and then start a subshell 'sh' in that cgroup: + + mount -t cgroup cpuset -ocpuset /dev/cgroup + cd /dev/cgroup + mkdir Charlie + cd Charlie + /bin/echo 2-3 > cpus + /bin/echo 1 > mems + /bin/echo $$ > tasks + sh + # The subshell 'sh' is now running in cgroup Charlie + # The next line should display '/Charlie' + cat /proc/self/cgroup + +2. Usage Examples and Syntax +============================ + +2.1 Basic Usage +--------------- + +Creating, modifying, using the cgroups can be done through the cgroup +virtual filesystem. + +To mount a cgroup hierarchy will all available subsystems, type: +# mount -t cgroup xxx /dev/cgroup + +The "xxx" is not interpreted by the cgroup code, but will appear in +/proc/mounts so may be any useful identifying string that you like. + +To mount a cgroup hierarchy with just the cpuset and numtasks +subsystems, type: +# mount -t cgroup -o cpuset,numtasks hier1 /dev/cgroup + +To change the set of subsystems bound to a mounted hierarchy, just +remount with different options: + +# mount -o remount,cpuset,ns /dev/cgroup + +Note that changing the set of subsystems is currently only supported +when the hierarchy consists of a single (root) cgroup. Supporting +the ability to arbitrarily bind/unbind subsystems from an existing +cgroup hierarchy is intended to be implemented in the future. + +Then under /dev/cgroup you can find a tree that corresponds to the +tree of the cgroups in the system. For instance, /dev/cgroup +is the cgroup that holds the whole system. + +If you want to create a new cgroup under /dev/cgroup: +# cd /dev/cgroup +# mkdir my_cgroup + +Now you want to do something with this cgroup. +# cd my_cgroup + +In this directory you can find several files: +# ls +notify_on_release release_agent tasks +(plus whatever files are added by the attached subsystems) + +Now attach your shell to this cgroup: +# /bin/echo $$ > tasks + +You can also create cgroups inside your cgroup by using mkdir in this +directory. +# mkdir my_sub_cs + +To remove a cgroup, just use rmdir: +# rmdir my_sub_cs + +This will fail if the cgroup is in use (has cgroups inside, or +has processes attached, or is held alive by other subsystem-specific +reference). + +2.2 Attaching processes +----------------------- + +# /bin/echo PID > tasks + +Note that it is PID, not PIDs. You can only attach ONE task at a time. +If you have several tasks to attach, you have to do it one after another: + +# /bin/echo PID1 > tasks +# /bin/echo PID2 > tasks + ... +# /bin/echo PIDn > tasks + +3. Kernel API +============= + +3.1 Overview +------------ + +Each kernel subsystem that wants to hook into the generic cgroup +system needs to create a cgroup_subsys object. This contains +various methods, which are callbacks from the cgroup system, along +with a subsystem id which will be assigned by the cgroup system. + +Other fields in the cgroup_subsys object include: + +- subsys_id: a unique array index for the subsystem, indicating which + entry in cgroup->subsys[] this subsystem should be + managing. Initialized by cgroup_register_subsys(); prior to this + it should be initialized to -1 + +- hierarchy: an index indicating which hierarchy, if any, this + subsystem is currently attached to. If this is -1, then the + subsystem is not attached to any hierarchy, and all tasks should be + considered to be members of the subsystem's top_cgroup. It should + be initialized to -1. + +- name: should be initialized to a unique subsystem name prior to + calling cgroup_register_subsystem. Should be no longer than + MAX_CGROUP_TYPE_NAMELEN + +Each cgroup object created by the system has an array of pointers, +indexed by subsystem id; this pointer is entirely managed by the +subsystem; the generic cgroup code will never touch this pointer. + +3.2 Synchronization +------------------- + +There is a global mutex, cgroup_mutex, used by the cgroup +system. This should be taken by anything that wants to modify a +cgroup. It may also be taken to prevent cgroups from being +modified, but more specific locks may be more appropriate in that +situation. + +See kernel/cgroup.c for more details. + +Subsystems can take/release the cgroup_mutex via the functions +cgroup_lock()/cgroup_unlock(), and can +take/release the callback_mutex via the functions +cgroup_lock()/cgroup_unlock(). + +Accessing a task's cgroup pointer may be done in the following ways: +- while holding cgroup_mutex +- while holding the task's alloc_lock (via task_lock()) +- inside an rcu_read_lock() section via rcu_dereference() + +3.3 Subsystem API +-------------------------- + +Each subsystem should: + +- add an entry in linux/cgroup_subsys.h +- define a cgroup_subsys object called <name>_subsys + +Each subsystem may export the following methods. The only mandatory +methods are create/destroy. Any others that are null are presumed to +be successful no-ops. + +struct cgroup_subsys_state *create(struct cgroup *cont) +LL=cgroup_mutex + +Called to create a subsystem state object for a cgroup. The +subsystem should allocate its subsystem state object for the passed +cgroup, returning a pointer to the new object on success or a +negative error code. On success, the subsystem pointer should point to +a structure of type cgroup_subsys_state (typically embedded in a +larger subsystem-specific object), which will be initialized by the +cgroup system. Note that this will be called at initialization to +create the root subsystem state for this subsystem; this case can be +identified by the passed cgroup object having a NULL parent (since +it's the root of the hierarchy) and may be an appropriate place for +initialization code. + +void destroy(struct cgroup *cont) +LL=cgroup_mutex + +The cgroup system is about to destroy the passed cgroup; the +subsystem should do any necessary cleanup + +int can_attach(struct cgroup_subsys *ss, struct cgroup *cont, + struct task_struct *task) +LL=cgroup_mutex + +Called prior to moving a task into a cgroup; if the subsystem +returns an error, this will abort the attach operation. If a NULL +task is passed, then a successful result indicates that *any* +unspecified task can be moved into the cgroup. Note that this isn't +called on a fork. If this method returns 0 (success) then this should +remain valid while the caller holds cgroup_mutex. + +void attach(struct cgroup_subsys *ss, struct cgroup *cont, + struct cgroup *old_cont, struct task_struct *task) +LL=cgroup_mutex + + +Called after the task has been attached to the cgroup, to allow any +post-attachment activity that requires memory allocations or blocking. + +void fork(struct cgroup_subsy *ss, struct task_struct *task) +LL=callback_mutex, maybe read_lock(tasklist_lock) + +Called when a task is forked into a cgroup. Also called during +registration for all existing tasks. + +void exit(struct cgroup_subsys *ss, struct task_struct *task) +LL=callback_mutex + +Called during task exit + +int populate(struct cgroup_subsys *ss, struct cgroup *cont) +LL=none + +Called after creation of a cgroup to allow a subsystem to populate +the cgroup directory with file entries. The subsystem should make +calls to cgroup_add_file() with objects of type cftype (see +include/linux/cgroup.h for details). Note that although this +method can return an error code, the error code is currently not +always handled well. + +void bind(struct cgroup_subsys *ss, struct cgroup *root) +LL=callback_mutex + +Called when a cgroup subsystem is rebound to a different hierarchy +and root cgroup. Currently this will only involve movement between +the default hierarchy (which never has sub-cgroups) and a hierarchy +that is being created/destroyed (and hence has no sub-cgroups). + +4. Questions +============ + +Q: what's up with this '/bin/echo' ? +A: bash's builtin 'echo' command does not check calls to write() against + errors. If you use it in the cgroup file system, you won't be + able to tell whether a command succeeded or failed. + +Q: When I attach processes, only the first of the line gets really attached ! +A: We can only return one error code per call to write(). So you should also + put only ONE pid. + diff --git a/include/linux/cgroup.h b/include/linux/cgroup.h new file mode 100644 index 00000000000..60735dcf427 --- /dev/null +++ b/include/linux/cgroup.h @@ -0,0 +1,214 @@ +#ifndef _LINUX_CGROUP_H +#define _LINUX_CGROUP_H +/* + * cgroup interface + * + * Copyright (C) 2003 BULL SA + * Copyright (C) 2004-2006 Silicon Graphics, Inc. + * + */ + +#include <linux/sched.h> +#include <linux/kref.h> +#include <linux/cpumask.h> +#include <linux/nodemask.h> +#include <linux/rcupdate.h> + +#ifdef CONFIG_CGROUPS + +struct cgroupfs_root; +struct cgroup_subsys; +struct inode; + +extern int cgroup_init_early(void); +extern int cgroup_init(void); +extern void cgroup_init_smp(void); +extern void cgroup_lock(void); +extern void cgroup_unlock(void); + +/* Per-subsystem/per-cgroup state maintained by the system. */ +struct cgroup_subsys_state { + /* The cgroup that this subsystem is attached to. Useful + * for subsystems that want to know about the cgroup + * hierarchy structure */ + struct cgroup *cgroup; + + /* State maintained by the cgroup system to allow + * subsystems to be "busy". Should be accessed via css_get() + * and css_put() */ + + atomic_t refcnt; + + unsigned long flags; +}; + +/* bits in struct cgroup_subsys_state flags field */ +enum { + CSS_ROOT, /* This CSS is the root of the subsystem */ +}; + +/* + * Call css_get() to hold a reference on the cgroup; + * + */ + +static inline void css_get(struct cgroup_subsys_state *css) +{ + /* We don't need to reference count the root state */ + if (!test_bit(CSS_ROOT, &css->flags)) + atomic_inc(&css->refcnt); +} +/* + * css_put() should be called to release a reference taken by + * css_get() + */ + +static inline void css_put(struct cgroup_subsys_state *css) +{ + if (!test_bit(CSS_ROOT, &css->flags)) + atomic_dec(&css->refcnt); +} + +struct cgroup { + unsigned long flags; /* "unsigned long" so bitops work */ + + /* count users of this cgroup. >0 means busy, but doesn't + * necessarily indicate the number of tasks in the + * cgroup */ + atomic_t count; + + /* + * We link our 'sibling' struct into our parent's 'children'. + * Our children link their 'sibling' into our 'children'. + */ + struct list_head sibling; /* my parent's children */ + struct list_head children; /* my children */ + + struct cgroup *parent; /* my parent */ + struct dentry *dentry; /* cgroup fs entry */ + + /* Private pointers for each registered subsystem */ + struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT]; + + struct cgroupfs_root *root; + struct cgroup *top_cgroup; +}; + +/* struct cftype: + * + * The files in the cgroup filesystem mostly have a very simple read/write + * handling, some common function will take care of it. Nevertheless some cases + * (read tasks) are special and therefore I define this structure for every + * kind of file. + * + * + * When reading/writing to a file: + * - the cgroup to use in file->f_dentry->d_parent->d_fsdata + * - the 'cftype' of the file is file->f_dentry->d_fsdata + */ + +#define MAX_CFTYPE_NAME 64 +struct cftype { + /* By convention, the name should begin with the name of the + * subsystem, followed by a period */ + char name[MAX_CFTYPE_NAME]; + int private; + int (*open) (struct inode *inode, struct file *file); + ssize_t (*read) (struct cgroup *cont, struct cftype *cft, + struct file *file, + char __user *buf, size_t nbytes, loff_t *ppos); + /* + * read_uint() is a shortcut for the common case of returning a + * single integer. Use it in place of read() + */ + u64 (*read_uint) (struct cgroup *cont, struct cftype *cft); + ssize_t (*write) (struct cgroup *cont, struct cftype *cft, + struct file *file, + const char __user *buf, size_t nbytes, loff_t *ppos); + int (*release) (struct inode *inode, struct file *file); +}; + +/* Add a new file to the given cgroup directory. Should only be + * called by subsystems from within a populate() method */ +int cgroup_add_file(struct cgroup *cont, struct cgroup_subsys *subsys, + const struct cftype *cft); + +/* Add a set of new files to the given cgroup directory. Should + * only be called by subsystems from within a populate() method */ +int cgroup_add_files(struct cgroup *cont, + struct cgroup_subsys *subsys, + const struct cftype cft[], + int count); + +int cgroup_is_removed(const struct cgroup *cont); + +int cgroup_path(const struct cgroup *cont, char *buf, int buflen); + +/* Return true if the cgroup is a descendant of the current cgroup */ +int cgroup_is_descendant(const struct cgroup *cont); + +/* Control Group subsystem type. See Documentation/cgroups.txt for details */ + +struct cgroup_subsys { + struct cgroup_subsys_state *(*create)(struct cgroup_subsys *ss, + struct cgroup *cont); + void (*destroy)(struct cgroup_subsys *ss, struct cgroup *cont); + int (*can_attach)(struct cgroup_subsys *ss, + struct cgroup *cont, struct task_struct *tsk); + void (*attach)(struct cgroup_subsys *ss, struct cgroup *cont, + struct cgroup *old_cont, struct task_struct *tsk); + void (*fork)(struct cgroup_subsys *ss, struct task_struct *task); + void (*exit)(struct cgroup_subsys *ss, struct task_struct *task); + int (*populate)(struct cgroup_subsys *ss, + struct cgroup *cont); + void (*bind)(struct cgroup_subsys *ss, struct cgroup *root); + int subsys_id; + int active; + int early_init; +#define MAX_CGROUP_TYPE_NAMELEN 32 + const char *name; + + /* Protected by RCU */ + struct cgroupfs_root *root; + + struct list_head sibling; + + void *private; +}; + +#define SUBSYS(_x) extern struct cgroup_subsys _x ## _subsys; +#include <linux/cgroup_subsys.h> +#undef SUBSYS + +static inline struct cgroup_subsys_state *cgroup_subsys_state( + struct cgroup *cont, int subsys_id) +{ + return cont->subsys[subsys_id]; +} + +static inline struct cgroup_subsys_state *task_subsys_state( + struct task_struct *task, int subsys_id) +{ + return rcu_dereference(task->cgroups.subsys[subsys_id]); +} + +static inline struct cgroup* task_cgroup(struct task_struct *task, + int subsys_id) +{ + return task_subsys_state(task, subsys_id)->cgroup; +} + +int cgroup_path(const struct cgroup *cont, char *buf, int buflen); + +#else /* !CONFIG_CGROUPS */ + +static inline int cgroup_init_early(void) { return 0; } +static inline int cgroup_init(void) { return 0; } +static inline void cgroup_init_smp(void) {} + +static inline void cgroup_lock(void) {} +static inline void cgroup_unlock(void) {} + +#endif /* !CONFIG_CGROUPS */ + +#endif /* _LINUX_CGROUP_H */ diff --git a/include/linux/cgroup_subsys.h b/include/linux/cgroup_subsys.h new file mode 100644 index 00000000000..f8eddbbcad9 --- /dev/null +++ b/include/linux/cgroup_subsys.h @@ -0,0 +1,10 @@ +/* Add subsystem definitions of the form SUBSYS(<name>) in this + * file. Surround each one by a line of comment markers so that + * patches don't collide + */ + +/* */ + +/* */ + +/* */ diff --git a/include/linux/magic.h b/include/linux/magic.h index 722d4755060..1fa0c2ce4de 100644 --- a/include/linux/magic.h +++ b/include/linux/magic.h @@ -37,6 +37,7 @@ #define SMB_SUPER_MAGIC 0x517B #define USBDEVICE_SUPER_MAGIC 0x9fa2 +#define CGROUP_SUPER_MAGIC 0x27e0eb #define FUTEXFS_SUPER_MAGIC 0xBAD1DEA #define INOTIFYFS_SUPER_MAGIC 0x2BAD1DEA diff --git a/include/linux/sched.h b/include/linux/sched.h index 10a83d8d577..af2ed4bae67 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h @@ -894,6 +894,34 @@ struct sched_entity { #endif }; +#ifdef CONFIG_CGROUPS + +#define SUBSYS(_x) _x ## _subsys_id, +enum cgroup_subsys_id { +#include <linux/cgroup_subsys.h> + CGROUP_SUBSYS_COUNT +}; +#undef SUBSYS + +/* A css_set is a structure holding pointers to a set of + * cgroup_subsys_state objects. + */ + +struct css_set { + + /* Set of subsystem states, one for each subsystem. NULL for + * subsystems that aren't part of this hierarchy. These + * pointers reduce the number of dereferences required to get + * from a task to its state for a given cgroup, but result + * in increased space usage if tasks are in wildly different + * groupings across different hierarchies. This array is + * immutable after creation */ + struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT]; + +}; + +#endif /* CONFIG_CGROUPS */ + struct task_struct { volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ void *stack; @@ -1130,6 +1158,9 @@ struct task_struct { int cpuset_mems_generation; int cpuset_mem_spread_rotor; #endif +#ifdef CONFIG_CGROUPS + struct css_set cgroups; +#endif #ifdef CONFIG_FUTEX struct robust_list_head __user *robust_list; #ifdef CONFIG_COMPAT @@ -1625,7 +1656,8 @@ static inline int thread_group_empty(struct task_struct *p) /* * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring * subscriptions and synchronises with wait4(). Also used in procfs. Also - * pins the final release of task.io_context. Also protects ->cpuset. + * pins the final release of task.io_context. Also protects ->cpuset and + * ->cgroup.subsys[]. * * Nests both inside and outside of read_lock(&tasklist_lock). * It must not be nested with write_lock_irq(&tasklist_lock), diff --git a/init/Kconfig b/init/Kconfig index a29a688c47d..51b3d14f44f 100644 --- a/init/Kconfig +++ b/init/Kconfig @@ -270,6 +270,14 @@ config LOG_BUF_SHIFT 13 => 8 KB 12 => 4 KB +config CGROUPS + bool "Control Group support" + help + This option will let you use process cgroup subsystems + such as Cpusets + + Say N if unsure. + config CPUSETS bool "Cpuset support" depends on SMP diff --git a/init/main.c b/init/main.c index 9def935ab13..0dd0e7a1f63 100644 --- a/init/main.c +++ b/init/main.c @@ -39,6 +39,7 @@ #include <linux/writeback.h> #include <linux/cpu.h> #include <linux/cpuset.h> +#include <linux/cgroup.h> #include <linux/efi.h> #include <linux/tick.h> #include <linux/interrupt.h> @@ -523,6 +524,7 @@ asmlinkage void __init start_kernel(void) */ unwind_init(); lockdep_init(); + cgroup_init_early(); local_irq_disable(); early_boot_irqs_off(); @@ -640,6 +642,7 @@ asmlinkage void __init start_kernel(void) #ifdef CONFIG_PROC_FS proc_root_init(); #endif + cgroup_init(); cpuset_init(); taskstats_init_early(); delayacct_init(); diff --git a/kernel/Makefile b/kernel/Makefile index 001bd3b65dd..ea8c8a12e19 100644 --- a/kernel/Makefile +++ b/kernel/Makefile @@ -36,6 +36,7 @@ obj-$(CONFIG_PM) += power/ obj-$(CONFIG_BSD_PROCESS_ACCT) += acct.o obj-$(CONFIG_KEXEC) += kexec.o obj-$(CONFIG_COMPAT) += compat.o +obj-$(CONFIG_CGROUPS) += cgroup.o obj-$(CONFIG_CPUSETS) += cpuset.o obj-$(CONFIG_IKCONFIG) += configs.o obj-$(CONFIG_STOP_MACHINE) += stop_machine.o diff --git a/kernel/cgroup.c b/kernel/cgroup.c new file mode 100644 index 00000000000..6ba857bec71 --- /dev/null +++ b/kernel/cgroup.c @@ -0,0 +1,1198 @@ +/* + * kernel/cgroup.c + * + * Generic process-grouping system. + * + * Based originally on the cpuset system, extracted by Paul Menage + * Copyright (C) 2006 Google, Inc + * + * Copyright notices from the original cpuset code: + * -------------------------------------------------- + * Copyright (C) 2003 BULL SA. + * Copyright (C) 2004-2006 Silicon Graphics, Inc. + * + * Portions derived from Patrick Mochel's sysfs code. + * sysfs is Copyright (c) 2001-3 Patrick Mochel + * + * 2003-10-10 Written by Simon Derr. + * 2003-10-22 Updates by Stephen Hemminger. + * 2004 May-July Rework by Paul Jackson. + * --------------------------------------------------- + * + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file COPYING in the main directory of the Linux + * distribution for more details. + */ + +#include <linux/cgroup.h> +#include <linux/errno.h> +#include <linux/fs.h> +#include <linux/kernel.h> +#include <linux/list.h> +#include <linux/mm.h> +#include <linux/mutex.h> +#include <linux/mount.h> +#include <linux/pagemap.h> +#include <linux/rcupdate.h> +#include <linux/sched.h> +#include <linux/seq_file.h> +#include <linux/slab.h> +#include <linux/magic.h> +#include <linux/spinlock.h> +#include <linux/string.h> + +#include <asm/atomic.h> + +/* Generate an array of cgroup subsystem pointers */ +#define SUBSYS(_x) &_x ## _subsys, + +static struct cgroup_subsys *subsys[] = { +#include <linux/cgroup_subsys.h> +}; + +/* + * A cgroupfs_root represents the root of a cgroup hierarchy, + * and may be associated with a superblock to form an active + * hierarchy + */ +struct cgroupfs_root { + struct super_block *sb; + + /* + * The bitmask of subsystems intended to be attached to this + * hierarchy + */ + unsigned long subsys_bits; + + /* The bitmask of subsystems currently attached to this hierarchy */ + unsigned long actual_subsys_bits; + + /* A list running through the attached subsystems */ + struct list_head subsys_list; + + /* The root cgroup for this hierarchy */ + struct cgroup top_cgroup; + + /* Tracks how many cgroups are currently defined in hierarchy.*/ + int number_of_cgroups; + + /* A list running through the mounted hierarchies */ + struct list_head root_list; + + /* Hierarchy-specific flags */ + unsigned long flags; +}; + + +/* + * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the + * subsystems that are otherwise unattached - it never has more than a + * single cgroup, and all tasks are part of that cgroup. + */ +static struct cgroupfs_root rootnode; + +/* The list of hierarchy roots */ + +static LIST_HEAD(roots); + +/* dummytop is a shorthand for the dummy hierarchy's top cgroup */ |