aboutsummaryrefslogtreecommitdiff
path: root/tools/perf/Documentation/perf-trace-python.txt
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2010-11-16 18:45:39 +0100
committerThomas Gleixner <tglx@linutronix.de>2010-11-16 19:37:44 +0100
commit133dc4c39c57eeef2577ca5b4ed24765b7a78ce2 (patch)
tree88309b8336fccfd8fea52a5c1e107d6ca2060a39 /tools/perf/Documentation/perf-trace-python.txt
parente53beacd23d9cb47590da6a7a7f6d417b941a994 (diff)
perf: Rename 'perf trace' to 'perf script'
Free the perf trace name space and rename the trace to 'script' which is a better match for the scripting engine. Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Diffstat (limited to 'tools/perf/Documentation/perf-trace-python.txt')
-rw-r--r--tools/perf/Documentation/perf-trace-python.txt623
1 files changed, 0 insertions, 623 deletions
diff --git a/tools/perf/Documentation/perf-trace-python.txt b/tools/perf/Documentation/perf-trace-python.txt
deleted file mode 100644
index 693be804dd3..00000000000
--- a/tools/perf/Documentation/perf-trace-python.txt
+++ /dev/null
@@ -1,623 +0,0 @@
-perf-trace-python(1)
-====================
-
-NAME
-----
-perf-trace-python - Process trace data with a Python script
-
-SYNOPSIS
---------
-[verse]
-'perf trace' [-s [Python]:script[.py] ]
-
-DESCRIPTION
------------
-
-This perf trace option is used to process perf trace data using perf's
-built-in Python interpreter. It reads and processes the input file and
-displays the results of the trace analysis implemented in the given
-Python script, if any.
-
-A QUICK EXAMPLE
----------------
-
-This section shows the process, start to finish, of creating a working
-Python script that aggregates and extracts useful information from a
-raw perf trace stream. You can avoid reading the rest of this
-document if an example is enough for you; the rest of the document
-provides more details on each step and lists the library functions
-available to script writers.
-
-This example actually details the steps that were used to create the
-'syscall-counts' script you see when you list the available perf trace
-scripts via 'perf trace -l'. As such, this script also shows how to
-integrate your script into the list of general-purpose 'perf trace'
-scripts listed by that command.
-
-The syscall-counts script is a simple script, but demonstrates all the
-basic ideas necessary to create a useful script. Here's an example
-of its output (syscall names are not yet supported, they will appear
-as numbers):
-
-----
-syscall events:
-
-event count
----------------------------------------- -----------
-sys_write 455067
-sys_getdents 4072
-sys_close 3037
-sys_swapoff 1769
-sys_read 923
-sys_sched_setparam 826
-sys_open 331
-sys_newfstat 326
-sys_mmap 217
-sys_munmap 216
-sys_futex 141
-sys_select 102
-sys_poll 84
-sys_setitimer 12
-sys_writev 8
-15 8
-sys_lseek 7
-sys_rt_sigprocmask 6
-sys_wait4 3
-sys_ioctl 3
-sys_set_robust_list 1
-sys_exit 1
-56 1
-sys_access 1
-----
-
-Basically our task is to keep a per-syscall tally that gets updated
-every time a system call occurs in the system. Our script will do
-that, but first we need to record the data that will be processed by
-that script. Theoretically, there are a couple of ways we could do
-that:
-
-- we could enable every event under the tracing/events/syscalls
- directory, but this is over 600 syscalls, well beyond the number
- allowable by perf. These individual syscall events will however be
- useful if we want to later use the guidance we get from the
- general-purpose scripts to drill down and get more detail about
- individual syscalls of interest.
-
-- we can enable the sys_enter and/or sys_exit syscalls found under
- tracing/events/raw_syscalls. These are called for all syscalls; the
- 'id' field can be used to distinguish between individual syscall
- numbers.
-
-For this script, we only need to know that a syscall was entered; we
-don't care how it exited, so we'll use 'perf record' to record only
-the sys_enter events:
-
-----
-# perf record -a -e raw_syscalls:sys_enter
-
-^C[ perf record: Woken up 1 times to write data ]
-[ perf record: Captured and wrote 56.545 MB perf.data (~2470503 samples) ]
-----
-
-The options basically say to collect data for every syscall event
-system-wide and multiplex the per-cpu output into a single stream.
-That single stream will be recorded in a file in the current directory
-called perf.data.
-
-Once we have a perf.data file containing our data, we can use the -g
-'perf trace' option to generate a Python script that will contain a
-callback handler for each event type found in the perf.data trace
-stream (for more details, see the STARTER SCRIPTS section).
-
-----
-# perf trace -g python
-generated Python script: perf-trace.py
-
-The output file created also in the current directory is named
-perf-trace.py. Here's the file in its entirety:
-
-# perf trace event handlers, generated by perf trace -g python
-# Licensed under the terms of the GNU GPL License version 2
-
-# The common_* event handler fields are the most useful fields common to
-# all events. They don't necessarily correspond to the 'common_*' fields
-# in the format files. Those fields not available as handler params can
-# be retrieved using Python functions of the form common_*(context).
-# See the perf-trace-python Documentation for the list of available functions.
-
-import os
-import sys
-
-sys.path.append(os.environ['PERF_EXEC_PATH'] + \
- '/scripts/python/Perf-Trace-Util/lib/Perf/Trace')
-
-from perf_trace_context import *
-from Core import *
-
-def trace_begin():
- print "in trace_begin"
-
-def trace_end():
- print "in trace_end"
-
-def raw_syscalls__sys_enter(event_name, context, common_cpu,
- common_secs, common_nsecs, common_pid, common_comm,
- id, args):
- print_header(event_name, common_cpu, common_secs, common_nsecs,
- common_pid, common_comm)
-
- print "id=%d, args=%s\n" % \
- (id, args),
-
-def trace_unhandled(event_name, context, common_cpu, common_secs, common_nsecs,
- common_pid, common_comm):
- print_header(event_name, common_cpu, common_secs, common_nsecs,
- common_pid, common_comm)
-
-def print_header(event_name, cpu, secs, nsecs, pid, comm):
- print "%-20s %5u %05u.%09u %8u %-20s " % \
- (event_name, cpu, secs, nsecs, pid, comm),
-----
-
-At the top is a comment block followed by some import statements and a
-path append which every perf trace script should include.
-
-Following that are a couple generated functions, trace_begin() and
-trace_end(), which are called at the beginning and the end of the
-script respectively (for more details, see the SCRIPT_LAYOUT section
-below).
-
-Following those are the 'event handler' functions generated one for
-every event in the 'perf record' output. The handler functions take
-the form subsystem__event_name, and contain named parameters, one for
-each field in the event; in this case, there's only one event,
-raw_syscalls__sys_enter(). (see the EVENT HANDLERS section below for
-more info on event handlers).
-
-The final couple of functions are, like the begin and end functions,
-generated for every script. The first, trace_unhandled(), is called
-every time the script finds an event in the perf.data file that
-doesn't correspond to any event handler in the script. This could
-mean either that the record step recorded event types that it wasn't
-really interested in, or the script was run against a trace file that
-doesn't correspond to the script.
-
-The script generated by -g option simply prints a line for each
-event found in the trace stream i.e. it basically just dumps the event
-and its parameter values to stdout. The print_header() function is
-simply a utility function used for that purpose. Let's rename the
-script and run it to see the default output:
-
-----
-# mv perf-trace.py syscall-counts.py
-# perf trace -s syscall-counts.py
-
-raw_syscalls__sys_enter 1 00840.847582083 7506 perf id=1, args=
-raw_syscalls__sys_enter 1 00840.847595764 7506 perf id=1, args=
-raw_syscalls__sys_enter 1 00840.847620860 7506 perf id=1, args=
-raw_syscalls__sys_enter 1 00840.847710478 6533 npviewer.bin id=78, args=
-raw_syscalls__sys_enter 1 00840.847719204 6533 npviewer.bin id=142, args=
-raw_syscalls__sys_enter 1 00840.847755445 6533 npviewer.bin id=3, args=
-raw_syscalls__sys_enter 1 00840.847775601 6533 npviewer.bin id=3, args=
-raw_syscalls__sys_enter 1 00840.847781820 6533 npviewer.bin id=3, args=
-.
-.
-.
-----
-
-Of course, for this script, we're not interested in printing every
-trace event, but rather aggregating it in a useful way. So we'll get
-rid of everything to do with printing as well as the trace_begin() and
-trace_unhandled() functions, which we won't be using. That leaves us
-with this minimalistic skeleton:
-
-----
-import os
-import sys
-
-sys.path.append(os.environ['PERF_EXEC_PATH'] + \
- '/scripts/python/Perf-Trace-Util/lib/Perf/Trace')
-
-from perf_trace_context import *
-from Core import *
-
-def trace_end():
- print "in trace_end"
-
-def raw_syscalls__sys_enter(event_name, context, common_cpu,
- common_secs, common_nsecs, common_pid, common_comm,
- id, args):
-----
-
-In trace_end(), we'll simply print the results, but first we need to
-generate some results to print. To do that we need to have our
-sys_enter() handler do the necessary tallying until all events have
-been counted. A hash table indexed by syscall id is a good way to
-store that information; every time the sys_enter() handler is called,
-we simply increment a count associated with that hash entry indexed by
-that syscall id:
-
-----
- syscalls = autodict()
-
- try:
- syscalls[id] += 1
- except TypeError:
- syscalls[id] = 1
-----
-
-The syscalls 'autodict' object is a special kind of Python dictionary
-(implemented in Core.py) that implements Perl's 'autovivifying' hashes
-in Python i.e. with autovivifying hashes, you can assign nested hash
-values without having to go to the trouble of creating intermediate
-levels if they don't exist e.g syscalls[comm][pid][id] = 1 will create
-the intermediate hash levels and finally assign the value 1 to the
-hash entry for 'id' (because the value being assigned isn't a hash
-object itself, the initial value is assigned in the TypeError
-exception. Well, there may be a better way to do this in Python but
-that's what works for now).
-
-Putting that code into the raw_syscalls__sys_enter() handler, we
-effectively end up with a single-level dictionary keyed on syscall id
-and having the counts we've tallied as values.
-
-The print_syscall_totals() function iterates over the entries in the
-dictionary and displays a line for each entry containing the syscall
-name (the dictonary keys contain the syscall ids, which are passed to
-the Util function syscall_name(), which translates the raw syscall
-numbers to the corresponding syscall name strings). The output is
-displayed after all the events in the trace have been processed, by
-calling the print_syscall_totals() function from the trace_end()
-handler called at the end of script processing.
-
-The final script producing the output shown above is shown in its
-entirety below (syscall_name() helper is not yet available, you can
-only deal with id's for now):
-
-----
-import os
-import sys
-
-sys.path.append(os.environ['PERF_EXEC_PATH'] + \
- '/scripts/python/Perf-Trace-Util/lib/Perf/Trace')
-
-from perf_trace_context import *
-from Core import *
-from Util import *
-
-syscalls = autodict()
-
-def trace_end():
- print_syscall_totals()
-
-def raw_syscalls__sys_enter(event_name, context, common_cpu,
- common_secs, common_nsecs, common_pid, common_comm,
- id, args):
- try:
- syscalls[id] += 1
- except TypeError:
- syscalls[id] = 1
-
-def print_syscall_totals():
- if for_comm is not None:
- print "\nsyscall events for %s:\n\n" % (for_comm),
- else:
- print "\nsyscall events:\n\n",
-
- print "%-40s %10s\n" % ("event", "count"),
- print "%-40s %10s\n" % ("----------------------------------------", \
- "-----------"),
-
- for id, val in sorted(syscalls.iteritems(), key = lambda(k, v): (v, k), \
- reverse = True):
- print "%-40s %10d\n" % (syscall_name(id), val),
-----
-
-The script can be run just as before:
-
- # perf trace -s syscall-counts.py
-
-So those are the essential steps in writing and running a script. The
-process can be generalized to any tracepoint or set of tracepoints
-you're interested in - basically find the tracepoint(s) you're
-interested in by looking at the list of available events shown by
-'perf list' and/or look in /sys/kernel/debug/tracing events for
-detailed event and field info, record the corresponding trace data
-using 'perf record', passing it the list of interesting events,
-generate a skeleton script using 'perf trace -g python' and modify the
-code to aggregate and display it for your particular needs.
-
-After you've done that you may end up with a general-purpose script
-that you want to keep around and have available for future use. By
-writing a couple of very simple shell scripts and putting them in the
-right place, you can have your script listed alongside the other
-scripts listed by the 'perf trace -l' command e.g.:
-
-----
-root@tropicana:~# perf trace -l
-List of available trace scripts:
- workqueue-stats workqueue stats (ins/exe/create/destroy)
- wakeup-latency system-wide min/max/avg wakeup latency
- rw-by-file <comm> r/w activity for a program, by file
- rw-by-pid system-wide r/w activity
-----
-
-A nice side effect of doing this is that you also then capture the
-probably lengthy 'perf record' command needed to record the events for
-the script.
-
-To have the script appear as a 'built-in' script, you write two simple
-scripts, one for recording and one for 'reporting'.
-
-The 'record' script is a shell script with the same base name as your
-script, but with -record appended. The shell script should be put
-into the perf/scripts/python/bin directory in the kernel source tree.
-In that script, you write the 'perf record' command-line needed for
-your script:
-
-----
-# cat kernel-source/tools/perf/scripts/python/bin/syscall-counts-record
-
-#!/bin/bash
-perf record -a -e raw_syscalls:sys_enter
-----
-
-The 'report' script is also a shell script with the same base name as
-your script, but with -report appended. It should also be located in
-the perf/scripts/python/bin directory. In that script, you write the
-'perf trace -s' command-line needed for running your script:
-
-----
-# cat kernel-source/tools/perf/scripts/python/bin/syscall-counts-report
-
-#!/bin/bash
-# description: system-wide syscall counts
-perf trace -s ~/libexec/perf-core/scripts/python/syscall-counts.py
-----
-
-Note that the location of the Python script given in the shell script
-is in the libexec/perf-core/scripts/python directory - this is where
-the script will be copied by 'make install' when you install perf.
-For the installation to install your script there, your script needs
-to be located in the perf/scripts/python directory in the kernel
-source tree:
-
-----
-# ls -al kernel-source/tools/perf/scripts/python
-
-root@tropicana:/home/trz/src/tip# ls -al tools/perf/scripts/python
-total 32
-drwxr-xr-x 4 trz trz 4096 2010-01-26 22:30 .
-drwxr-xr-x 4 trz trz 4096 2010-01-26 22:29 ..
-drwxr-xr-x 2 trz trz 4096 2010-01-26 22:29 bin
--rw-r--r-- 1 trz trz 2548 2010-01-26 22:29 check-perf-trace.py
-drwxr-xr-x 3 trz trz 4096 2010-01-26 22:49 Perf-Trace-Util
--rw-r--r-- 1 trz trz 1462 2010-01-26 22:30 syscall-counts.py
-----
-
-Once you've done that (don't forget to do a new 'make install',
-otherwise your script won't show up at run-time), 'perf trace -l'
-should show a new entry for your script:
-
-----
-root@tropicana:~# perf trace -l
-List of available trace scripts:
- workqueue-stats workqueue stats (ins/exe/create/destroy)
- wakeup-latency system-wide min/max/avg wakeup latency
- rw-by-file <comm> r/w activity for a program, by file
- rw-by-pid system-wide r/w activity
- syscall-counts system-wide syscall counts
-----
-
-You can now perform the record step via 'perf trace record':
-
- # perf trace record syscall-counts
-
-and display the output using 'perf trace report':
-
- # perf trace report syscall-counts
-
-STARTER SCRIPTS
----------------
-
-You can quickly get started writing a script for a particular set of
-trace data by generating a skeleton script using 'perf trace -g
-python' in the same directory as an existing perf.data trace file.
-That will generate a starter script containing a handler for each of
-the event types in the trace file; it simply prints every available
-field for each event in the trace file.
-
-You can also look at the existing scripts in
-~/libexec/perf-core/scripts/python for typical examples showing how to
-do basic things like aggregate event data, print results, etc. Also,
-the check-perf-trace.py script, while not interesting for its results,
-attempts to exercise all of the main scripting features.
-
-EVENT HANDLERS
---------------
-
-When perf trace is invoked using a trace script, a user-defined
-'handler function' is called for each event in the trace. If there's
-no handler function defined for a given event type, the event is
-ignored (or passed to a 'trace_handled' function, see below) and the
-next event is processed.
-
-Most of the event's field values are passed as arguments to the
-handler function; some of the less common ones aren't - those are
-available as calls back into the perf executable (see below).
-
-As an example, the following perf record command can be used to record
-all sched_wakeup events in the system:
-
- # perf record -a -e sched:sched_wakeup
-
-Traces meant to be processed using a script should be recorded with
-the above option: -a to enable system-wide collection.
-
-The format file for the sched_wakep event defines the following fields
-(see /sys/kernel/debug/tracing/events/sched/sched_wakeup/format):
-
-----
- format:
- field:unsigned short common_type;
- field:unsigned char common_flags;
- field:unsigned char common_preempt_count;
- field:int common_pid;
- field:int common_lock_depth;
-
- field:char comm[TASK_COMM_LEN];
- field:pid_t pid;
- field:int prio;
- field:int success;
- field:int target_cpu;
-----
-
-The handler function for this event would be defined as:
-
-----
-def sched__sched_wakeup(event_name, context, common_cpu, common_secs,
- common_nsecs, common_pid, common_comm,
- comm, pid, prio, success, target_cpu):
- pass
-----
-
-The handler function takes the form subsystem__event_name.
-
-The common_* arguments in the handler's argument list are the set of
-arguments passed to all event handlers; some of the fields correspond
-to the common_* fields in the format file, but some are synthesized,
-and some of the common_* fields aren't common enough to to be passed
-to every event as arguments but are available as library functions.
-
-Here's a brief description of each of the invariant event args:
-
- event_name the name of the event as text
- context an opaque 'cookie' used in calls back into perf
- common_cpu the cpu the event occurred on
- common_secs the secs portion of the event timestamp
- common_nsecs the nsecs portion of the event timestamp
- common_pid the pid of the current task
- common_comm the name of the current process
-
-All of the remaining fields in the event's format file have
-counterparts as handler function arguments of the same name, as can be
-seen in the example above.
-
-The above provides the basics needed to directly access every field of
-every event in a trace, which covers 90% of what you need to know to
-write a useful trace script. The sections below cover the rest.
-
-SCRIPT LAYOUT
--------------
-
-Every perf trace Python script should start by setting up a Python
-module search path and 'import'ing a few support modules (see module
-descriptions below):
-
-----
- import os
- import sys
-
- sys.path.append(os.environ['PERF_EXEC_PATH'] + \
- '/scripts/python/Perf-Trace-Util/lib/Perf/Trace')
-
- from perf_trace_context import *
- from Core import *
-----
-
-The rest of the script can contain handler functions and support
-functions in any order.
-
-Aside from the event handler functions discussed above, every script
-can implement a set of optional functions:
-
-*trace_begin*, if defined, is called before any event is processed and
-gives scripts a chance to do setup tasks:
-
-----
-def trace_begin:
- pass
-----
-
-*trace_end*, if defined, is called after all events have been
- processed and gives scripts a chance to do end-of-script tasks, such
- as display results:
-
-----
-def trace_end:
- pass
-----
-
-*trace_unhandled*, if defined, is called after for any event that
- doesn't have a handler explicitly defined for it. The standard set
- of common arguments are passed into it:
-
-----
-def trace_unhandled(event_name, context, common_cpu, common_secs,
- common_nsecs, common_pid, common_comm):
- pass
-----
-
-The remaining sections provide descriptions of each of the available
-built-in perf trace Python modules and their associated functions.
-
-AVAILABLE MODULES AND FUNCTIONS
--------------------------------
-
-The following sections describe the functions and variables available
-via the various perf trace Python modules. To use the functions and
-variables from the given module, add the corresponding 'from XXXX
-import' line to your perf trace script.
-
-Core.py Module
-~~~~~~~~~~~~~~
-
-These functions provide some essential functions to user scripts.
-
-The *flag_str* and *symbol_str* functions provide human-readable
-strings for flag and symbolic fields. These correspond to the strings
-and values parsed from the 'print fmt' fields of the event format
-files:
-
- flag_str(event_name, field_name, field_value) - returns the string represention corresponding to field_value for the flag field field_name of event event_name
- symbol_str(event_name, field_name, field_value) - returns the string represention corresponding to field_value for the symbolic field field_name of event event_name
-
-The *autodict* function returns a special kind of Python
-dictionary that implements Perl's 'autovivifying' hashes in Python
-i.e. with autovivifying hashes, you can assign nested hash values
-without having to go to the trouble of creating intermediate levels if
-they don't exist.
-
- autodict() - returns an autovivifying dictionary instance
-
-
-perf_trace_context Module
-~~~~~~~~~~~~~~~~~~~~~~~~~
-
-Some of the 'common' fields in the event format file aren't all that
-common, but need to be made accessible to user scripts nonetheless.
-
-perf_trace_context defines a set of functions that can be used to
-access this data in the context of the current event. Each of these
-functions expects a context variable, which is the same as the
-context variable passed into every event handler as the second
-argument.
-
- common_pc(context) - returns common_preempt count for the current event
- common_flags(context) - returns common_flags for the current event
- common_lock_depth(context) - returns common_lock_depth for the current event
-
-Util.py Module
-~~~~~~~~~~~~~~
-
-Various utility functions for use with perf trace:
-
- nsecs(secs, nsecs) - returns total nsecs given secs/nsecs pair
- nsecs_secs(nsecs) - returns whole secs portion given nsecs
- nsecs_nsecs(nsecs) - returns nsecs remainder given nsecs
- nsecs_str(nsecs) - returns printable string in the form secs.nsecs
- avg(total, n) - returns average given a sum and a total number of values
-
-SEE ALSO
---------
-linkperf:perf-trace[1]