aboutsummaryrefslogtreecommitdiff
path: root/mm/memcontrol.c
diff options
context:
space:
mode:
authorKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>2009-01-07 18:07:50 -0800
committerLinus Torvalds <torvalds@linux-foundation.org>2009-01-08 08:31:04 -0800
commit01b1ae63c2270cbacfd43fea94578c17950eb548 (patch)
treeab0275f32e8548c4413014d43cab1f52f03c9c5c /mm/memcontrol.c
parentbced0520fe462bb94021dcabd32e99630c171be2 (diff)
memcg: simple migration handling
Now, management of "charge" under page migration is done under following manner. (Assume migrate page contents from oldpage to newpage) before - "newpage" is charged before migration. at success. - "oldpage" is uncharged at somewhere(unmap, radix-tree-replace) at failure - "newpage" is uncharged. - "oldpage" is charged if necessary (*1) But (*1) is not reliable....because of GFP_ATOMIC. This patch tries to change behavior as following by charge/commit/cancel ops. before - charge PAGE_SIZE (no target page) success - commit charge against "newpage". failure - commit charge against "oldpage". (PCG_USED bit works effectively to avoid double-counting) - if "oldpage" is obsolete, cancel charge of PAGE_SIZE. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <balbir@in.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/memcontrol.c')
-rw-r--r--mm/memcontrol.c108
1 files changed, 52 insertions, 56 deletions
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index c34eb52bdc3..b71195e8198 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -627,34 +627,6 @@ int mem_cgroup_newpage_charge(struct page *page,
MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
}
-/*
- * same as mem_cgroup_newpage_charge(), now.
- * But what we assume is different from newpage, and this is special case.
- * treat this in special function. easy for maintenance.
- */
-
-int mem_cgroup_charge_migrate_fixup(struct page *page,
- struct mm_struct *mm, gfp_t gfp_mask)
-{
- if (mem_cgroup_subsys.disabled)
- return 0;
-
- if (PageCompound(page))
- return 0;
-
- if (page_mapped(page) || (page->mapping && !PageAnon(page)))
- return 0;
-
- if (unlikely(!mm))
- mm = &init_mm;
-
- return mem_cgroup_charge_common(page, mm, gfp_mask,
- MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
-}
-
-
-
-
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
gfp_t gfp_mask)
{
@@ -697,7 +669,6 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
}
-
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
struct page_cgroup *pc;
@@ -782,13 +753,13 @@ void mem_cgroup_uncharge_cache_page(struct page *page)
}
/*
- * Before starting migration, account against new page.
+ * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
+ * page belongs to.
*/
-int mem_cgroup_prepare_migration(struct page *page, struct page *newpage)
+int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
{
struct page_cgroup *pc;
struct mem_cgroup *mem = NULL;
- enum charge_type ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
int ret = 0;
if (mem_cgroup_subsys.disabled)
@@ -799,42 +770,67 @@ int mem_cgroup_prepare_migration(struct page *page, struct page *newpage)
if (PageCgroupUsed(pc)) {
mem = pc->mem_cgroup;
css_get(&mem->css);
- if (PageCgroupCache(pc)) {
- if (page_is_file_cache(page))
- ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
- else
- ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
- }
}
unlock_page_cgroup(pc);
+
if (mem) {
- ret = mem_cgroup_charge_common(newpage, NULL,
- GFP_HIGHUSER_MOVABLE,
- ctype, mem);
+ ret = mem_cgroup_try_charge(NULL, GFP_HIGHUSER_MOVABLE, &mem);
css_put(&mem->css);
}
+ *ptr = mem;
return ret;
}
/* remove redundant charge if migration failed*/
-void mem_cgroup_end_migration(struct page *newpage)
+void mem_cgroup_end_migration(struct mem_cgroup *mem,
+ struct page *oldpage, struct page *newpage)
{
+ struct page *target, *unused;
+ struct page_cgroup *pc;
+ enum charge_type ctype;
+
+ if (!mem)
+ return;
+
+ /* at migration success, oldpage->mapping is NULL. */
+ if (oldpage->mapping) {
+ target = oldpage;
+ unused = NULL;
+ } else {
+ target = newpage;
+ unused = oldpage;
+ }
+
+ if (PageAnon(target))
+ ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
+ else if (page_is_file_cache(target))
+ ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
+ else
+ ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
+
+ /* unused page is not on radix-tree now. */
+ if (unused && ctype != MEM_CGROUP_CHARGE_TYPE_MAPPED)
+ __mem_cgroup_uncharge_common(unused, ctype);
+
+ pc = lookup_page_cgroup(target);
/*
- * At success, page->mapping is not NULL.
- * special rollback care is necessary when
- * 1. at migration failure. (newpage->mapping is cleared in this case)
- * 2. the newpage was moved but not remapped again because the task
- * exits and the newpage is obsolete. In this case, the new page
- * may be a swapcache. So, we just call mem_cgroup_uncharge_page()
- * always for avoiding mess. The page_cgroup will be removed if
- * unnecessary. File cache pages is still on radix-tree. Don't
- * care it.
+ * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
+ * So, double-counting is effectively avoided.
+ */
+ __mem_cgroup_commit_charge(mem, pc, ctype);
+
+ /*
+ * Both of oldpage and newpage are still under lock_page().
+ * Then, we don't have to care about race in radix-tree.
+ * But we have to be careful that this page is unmapped or not.
+ *
+ * There is a case for !page_mapped(). At the start of
+ * migration, oldpage was mapped. But now, it's zapped.
+ * But we know *target* page is not freed/reused under us.
+ * mem_cgroup_uncharge_page() does all necessary checks.
*/
- if (!newpage->mapping)
- __mem_cgroup_uncharge_common(newpage,
- MEM_CGROUP_CHARGE_TYPE_FORCE);
- else if (PageAnon(newpage))
- mem_cgroup_uncharge_page(newpage);
+ if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
+ mem_cgroup_uncharge_page(target);
}
/*