diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2012-07-24 17:46:16 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2012-07-24 17:46:16 -0700 |
commit | a08489c569dc174cff97d2cb165aa81e3f1501cc (patch) | |
tree | c583700a11bab82ea864425004dd5bb03bf8a987 /kernel | |
parent | 08d9329c29ec98477e8ac2f7a513f2bfa3e9f3c5 (diff) | |
parent | 6fec10a1a5866dda3cd6a825a521fc7c2f226ba5 (diff) |
Merge branch 'for-3.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
Pull workqueue changes from Tejun Heo:
"There are three major changes.
- WQ_HIGHPRI has been reimplemented so that high priority work items
are served by worker threads with -20 nice value from dedicated
highpri worker pools.
- CPU hotplug support has been reimplemented such that idle workers
are kept across CPU hotplug events. This makes CPU hotplug cheaper
(for PM) and makes the code simpler.
- flush_kthread_work() has been reimplemented so that a work item can
be freed while executing. This removes an annoying behavior
difference between kthread_worker and workqueue."
* 'for-3.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: fix spurious CPU locality WARN from process_one_work()
kthread_worker: reimplement flush_kthread_work() to allow freeing the work item being executed
kthread_worker: reorganize to prepare for flush_kthread_work() reimplementation
workqueue: simplify CPU hotplug code
workqueue: remove CPU offline trustee
workqueue: don't butcher idle workers on an offline CPU
workqueue: reimplement CPU online rebinding to handle idle workers
workqueue: drop @bind from create_worker()
workqueue: use mutex for global_cwq manager exclusion
workqueue: ROGUE workers are UNBOUND workers
workqueue: drop CPU_DYING notifier operation
workqueue: perform cpu down operations from low priority cpu_notifier()
workqueue: reimplement WQ_HIGHPRI using a separate worker_pool
workqueue: introduce NR_WORKER_POOLS and for_each_worker_pool()
workqueue: separate out worker_pool flags
workqueue: use @pool instead of @gcwq or @cpu where applicable
workqueue: factor out worker_pool from global_cwq
workqueue: don't use WQ_HIGHPRI for unbound workqueues
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/kthread.c | 88 | ||||
-rw-r--r-- | kernel/workqueue.c | 1144 |
2 files changed, 584 insertions, 648 deletions
diff --git a/kernel/kthread.c b/kernel/kthread.c index 3d3de633702..b579af57ea1 100644 --- a/kernel/kthread.c +++ b/kernel/kthread.c @@ -360,16 +360,12 @@ repeat: struct kthread_work, node); list_del_init(&work->node); } + worker->current_work = work; spin_unlock_irq(&worker->lock); if (work) { __set_current_state(TASK_RUNNING); work->func(work); - smp_wmb(); /* wmb worker-b0 paired with flush-b1 */ - work->done_seq = work->queue_seq; - smp_mb(); /* mb worker-b1 paired with flush-b0 */ - if (atomic_read(&work->flushing)) - wake_up_all(&work->done); } else if (!freezing(current)) schedule(); @@ -378,6 +374,19 @@ repeat: } EXPORT_SYMBOL_GPL(kthread_worker_fn); +/* insert @work before @pos in @worker */ +static void insert_kthread_work(struct kthread_worker *worker, + struct kthread_work *work, + struct list_head *pos) +{ + lockdep_assert_held(&worker->lock); + + list_add_tail(&work->node, pos); + work->worker = worker; + if (likely(worker->task)) + wake_up_process(worker->task); +} + /** * queue_kthread_work - queue a kthread_work * @worker: target kthread_worker @@ -395,10 +404,7 @@ bool queue_kthread_work(struct kthread_worker *worker, spin_lock_irqsave(&worker->lock, flags); if (list_empty(&work->node)) { - list_add_tail(&work->node, &worker->work_list); - work->queue_seq++; - if (likely(worker->task)) - wake_up_process(worker->task); + insert_kthread_work(worker, work, &worker->work_list); ret = true; } spin_unlock_irqrestore(&worker->lock, flags); @@ -406,6 +412,18 @@ bool queue_kthread_work(struct kthread_worker *worker, } EXPORT_SYMBOL_GPL(queue_kthread_work); +struct kthread_flush_work { + struct kthread_work work; + struct completion done; +}; + +static void kthread_flush_work_fn(struct kthread_work *work) +{ + struct kthread_flush_work *fwork = + container_of(work, struct kthread_flush_work, work); + complete(&fwork->done); +} + /** * flush_kthread_work - flush a kthread_work * @work: work to flush @@ -414,39 +432,37 @@ EXPORT_SYMBOL_GPL(queue_kthread_work); */ void flush_kthread_work(struct kthread_work *work) { - int seq = work->queue_seq; - - atomic_inc(&work->flushing); + struct kthread_flush_work fwork = { + KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), + COMPLETION_INITIALIZER_ONSTACK(fwork.done), + }; + struct kthread_worker *worker; + bool noop = false; - /* - * mb flush-b0 paired with worker-b1, to make sure either - * worker sees the above increment or we see done_seq update. - */ - smp_mb__after_atomic_inc(); +retry: + worker = work->worker; + if (!worker) + return; - /* A - B <= 0 tests whether B is in front of A regardless of overflow */ - wait_event(work->done, seq - work->done_seq <= 0); - atomic_dec(&work->flushing); + spin_lock_irq(&worker->lock); + if (work->worker != worker) { + spin_unlock_irq(&worker->lock); + goto retry; + } - /* - * rmb flush-b1 paired with worker-b0, to make sure our caller - * sees every change made by work->func(). - */ - smp_mb__after_atomic_dec(); -} -EXPORT_SYMBOL_GPL(flush_kthread_work); + if (!list_empty(&work->node)) + insert_kthread_work(worker, &fwork.work, work->node.next); + else if (worker->current_work == work) + insert_kthread_work(worker, &fwork.work, worker->work_list.next); + else + noop = true; -struct kthread_flush_work { - struct kthread_work work; - struct completion done; -}; + spin_unlock_irq(&worker->lock); -static void kthread_flush_work_fn(struct kthread_work *work) -{ - struct kthread_flush_work *fwork = - container_of(work, struct kthread_flush_work, work); - complete(&fwork->done); + if (!noop) + wait_for_completion(&fwork.done); } +EXPORT_SYMBOL_GPL(flush_kthread_work); /** * flush_kthread_worker - flush all current works on a kthread_worker diff --git a/kernel/workqueue.c b/kernel/workqueue.c index 9a3128dc67d..692d97628a1 100644 --- a/kernel/workqueue.c +++ b/kernel/workqueue.c @@ -45,32 +45,41 @@ #include "workqueue_sched.h" enum { - /* global_cwq flags */ - GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ - GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */ - GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ - GCWQ_FREEZING = 1 << 3, /* freeze in progress */ - GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */ + /* + * global_cwq flags + * + * A bound gcwq is either associated or disassociated with its CPU. + * While associated (!DISASSOCIATED), all workers are bound to the + * CPU and none has %WORKER_UNBOUND set and concurrency management + * is in effect. + * + * While DISASSOCIATED, the cpu may be offline and all workers have + * %WORKER_UNBOUND set and concurrency management disabled, and may + * be executing on any CPU. The gcwq behaves as an unbound one. + * + * Note that DISASSOCIATED can be flipped only while holding + * managership of all pools on the gcwq to avoid changing binding + * state while create_worker() is in progress. + */ + GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */ + GCWQ_FREEZING = 1 << 1, /* freeze in progress */ + + /* pool flags */ + POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ /* worker flags */ WORKER_STARTED = 1 << 0, /* started */ WORKER_DIE = 1 << 1, /* die die die */ WORKER_IDLE = 1 << 2, /* is idle */ WORKER_PREP = 1 << 3, /* preparing to run works */ - WORKER_ROGUE = 1 << 4, /* not bound to any cpu */ WORKER_REBIND = 1 << 5, /* mom is home, come back */ WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ WORKER_UNBOUND = 1 << 7, /* worker is unbound */ - WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND | - WORKER_CPU_INTENSIVE | WORKER_UNBOUND, + WORKER_NOT_RUNNING = WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND | + WORKER_CPU_INTENSIVE, - /* gcwq->trustee_state */ - TRUSTEE_START = 0, /* start */ - TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */ - TRUSTEE_BUTCHER = 2, /* butcher workers */ - TRUSTEE_RELEASE = 3, /* release workers */ - TRUSTEE_DONE = 4, /* trustee is done */ + NR_WORKER_POOLS = 2, /* # worker pools per gcwq */ BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER, @@ -84,13 +93,13 @@ enum { (min two ticks) */ MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ CREATE_COOLDOWN = HZ, /* time to breath after fail */ - TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */ /* * Rescue workers are used only on emergencies and shared by * all cpus. Give -20. */ RESCUER_NICE_LEVEL = -20, + HIGHPRI_NICE_LEVEL = -20, }; /* @@ -115,6 +124,8 @@ enum { */ struct global_cwq; +struct worker_pool; +struct idle_rebind; /* * The poor guys doing the actual heavy lifting. All on-duty workers @@ -131,12 +142,31 @@ struct worker { struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */ struct list_head scheduled; /* L: scheduled works */ struct task_struct *task; /* I: worker task */ - struct global_cwq *gcwq; /* I: the associated gcwq */ + struct worker_pool *pool; /* I: the associated pool */ /* 64 bytes boundary on 64bit, 32 on 32bit */ unsigned long last_active; /* L: last active timestamp */ unsigned int flags; /* X: flags */ int id; /* I: worker id */ - struct work_struct rebind_work; /* L: rebind worker to cpu */ + + /* for rebinding worker to CPU */ + struct idle_rebind *idle_rebind; /* L: for idle worker */ + struct work_struct rebind_work; /* L: for busy worker */ +}; + +struct worker_pool { + struct global_cwq *gcwq; /* I: the owning gcwq */ + unsigned int flags; /* X: flags */ + + struct list_head worklist; /* L: list of pending works */ + int nr_workers; /* L: total number of workers */ + int nr_idle; /* L: currently idle ones */ + + struct list_head idle_list; /* X: list of idle workers */ + struct timer_list idle_timer; /* L: worker idle timeout */ + struct timer_list mayday_timer; /* L: SOS timer for workers */ + + struct mutex manager_mutex; /* mutex manager should hold */ + struct ida worker_ida; /* L: for worker IDs */ }; /* @@ -146,27 +176,16 @@ struct worker { */ struct global_cwq { spinlock_t lock; /* the gcwq lock */ - struct list_head worklist; /* L: list of pending works */ unsigned int cpu; /* I: the associated cpu */ unsigned int flags; /* L: GCWQ_* flags */ - int nr_workers; /* L: total number of workers */ - int nr_idle; /* L: currently idle ones */ - - /* workers are chained either in the idle_list or busy_hash */ - struct list_head idle_list; /* X: list of idle workers */ + /* workers are chained either in busy_hash or pool idle_list */ struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE]; /* L: hash of busy workers */ - struct timer_list idle_timer; /* L: worker idle timeout */ - struct timer_list mayday_timer; /* L: SOS timer for dworkers */ - - struct ida worker_ida; /* L: for worker IDs */ + struct worker_pool pools[2]; /* normal and highpri pools */ - struct task_struct *trustee; /* L: for gcwq shutdown */ - unsigned int trustee_state; /* L: trustee state */ - wait_queue_head_t trustee_wait; /* trustee wait */ - struct worker *first_idle; /* L: first idle worker */ + wait_queue_head_t rebind_hold; /* rebind hold wait */ } ____cacheline_aligned_in_smp; /* @@ -175,7 +194,7 @@ struct global_cwq { * aligned at two's power of the number of flag bits. */ struct cpu_workqueue_struct { - struct global_cwq *gcwq; /* I: the associated gcwq */ + struct worker_pool *pool; /* I: the associated pool */ struct workqueue_struct *wq; /* I: the owning workqueue */ int work_color; /* L: current color */ int flush_color; /* L: flushing color */ @@ -264,6 +283,10 @@ EXPORT_SYMBOL_GPL(system_nrt_freezable_wq); #define CREATE_TRACE_POINTS #include <trace/events/workqueue.h> +#define for_each_worker_pool(pool, gcwq) \ + for ((pool) = &(gcwq)->pools[0]; \ + (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++) + #define for_each_busy_worker(worker, i, pos, gcwq) \ for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \ hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry) @@ -444,7 +467,7 @@ static bool workqueue_freezing; /* W: have wqs started freezing? */ * try_to_wake_up(). Put it in a separate cacheline. */ static DEFINE_PER_CPU(struct global_cwq, global_cwq); -static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running); +static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]); /* * Global cpu workqueue and nr_running counter for unbound gcwq. The @@ -452,10 +475,17 @@ static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running); * workers have WORKER_UNBOUND set. */ static struct global_cwq unbound_global_cwq; -static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */ +static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = { + [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */ +}; static int worker_thread(void *__worker); +static int worker_pool_pri(struct worker_pool *pool) +{ + return pool - pool->gcwq->pools; +} + static struct global_cwq *get_gcwq(unsigned int cpu) { if (cpu != WORK_CPU_UNBOUND) @@ -464,12 +494,15 @@ static struct global_cwq *get_gcwq(unsigned int cpu) return &unbound_global_cwq; } -static atomic_t *get_gcwq_nr_running(unsigned int cpu) +static atomic_t *get_pool_nr_running(struct worker_pool *pool) { + int cpu = pool->gcwq->cpu; + int idx = worker_pool_pri(pool); + if (cpu != WORK_CPU_UNBOUND) - return &per_cpu(gcwq_nr_running, cpu); + return &per_cpu(pool_nr_running, cpu)[idx]; else - return &unbound_gcwq_nr_running; + return &unbound_pool_nr_running[idx]; } static struct cpu_workqueue_struct *get_cwq(unsigned int cpu, @@ -555,7 +588,7 @@ static struct global_cwq *get_work_gcwq(struct work_struct *work) if (data & WORK_STRUCT_CWQ) return ((struct cpu_workqueue_struct *) - (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq; + (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq; cpu = data >> WORK_STRUCT_FLAG_BITS; if (cpu == WORK_CPU_NONE) @@ -566,60 +599,62 @@ static struct global_cwq *get_work_gcwq(struct work_struct *work) } /* - * Policy functions. These define the policies on how the global - * worker pool is managed. Unless noted otherwise, these functions - * assume that they're being called with gcwq->lock held. + * Policy functions. These define the policies on how the global worker + * pools are managed. Unless noted otherwise, these functions assume that + * they're being called with gcwq->lock held. */ -static bool __need_more_worker(struct global_cwq *gcwq) +static bool __need_more_worker(struct worker_pool *pool) { - return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) || - gcwq->flags & GCWQ_HIGHPRI_PENDING; + return !atomic_read(get_pool_nr_running(pool)); } /* * Need to wake up a worker? Called from anything but currently * running workers. + * + * Note that, because unbound workers never contribute to nr_running, this + * function will always return %true for unbound gcwq as long as the + * worklist isn't empty. */ -static bool need_more_worker(struct global_cwq *gcwq) +static bool need_more_worker(struct worker_pool *pool) { - return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq); + return !list_empty(&pool->worklist) && __need_more_worker(pool); } /* Can I start working? Called from busy but !running workers. */ -static bool may_start_working(struct global_cwq *gcwq) +static bool may_start_working(struct worker_pool *pool) { - return gcwq->nr_idle; + return pool->nr_idle; } /* Do I need to keep working? Called from currently running workers. */ -static bool keep_working(struct global_cwq *gcwq) +static bool keep_working(struct worker_pool *pool) { - atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); + atomic_t *nr_running = get_pool_nr_running(pool); - return !list_empty(&gcwq->worklist) && - (atomic_read(nr_running) <= 1 || - gcwq->flags & GCWQ_HIGHPRI_PENDING); + return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1; } /* Do we need a new worker? Called from manager. */ -static bool need_to_create_worker(struct global_cwq *gcwq) +static bool need_to_create_worker(struct worker_pool *pool) { - return need_more_worker(gcwq) && !may_start_working(gcwq); + return need_more_worker(pool) && !may_start_working(pool); } /* Do I need to be the manager? */ -static bool need_to_manage_workers(struct global_cwq *gcwq) +static bool need_to_manage_workers(struct worker_pool *pool) { - return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS; + return need_to_create_worker(pool) || + (pool->flags & POOL_MANAGE_WORKERS); } /* Do we have too many workers and should some go away? */ -static bool too_many_workers(struct global_cwq *gcwq) +static bool too_many_workers(struct worker_pool *pool) { - bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS; - int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */ - int nr_busy = gcwq->nr_workers - nr_idle; + bool managing = mutex_is_locked(&pool->manager_mutex); + int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ + int nr_busy = pool->nr_workers - nr_idle; return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; } @@ -629,26 +664,26 @@ static bool too_many_workers(struct global_cwq *gcwq) */ /* Return the first worker. Safe with preemption disabled */ -static struct worker *first_worker(struct global_cwq *gcwq) +static struct worker *first_worker(struct worker_pool *pool) { - if (unlikely(list_empty(&gcwq->idle_list))) + if (unlikely(list_empty(&pool->idle_list))) return NULL; - return list_first_entry(&gcwq->idle_list, struct worker, entry); + return list_first_entry(&pool->idle_list, struct worker, entry); } /** * wake_up_worker - wake up an idle worker - * @gcwq: gcwq to wake worker for + * @pool: worker pool to wake worker from * - * Wake up the first idle worker of @gcwq. + * Wake up the first idle worker of @pool. * * CONTEXT: * spin_lock_irq(gcwq->lock). */ -static void wake_up_worker(struct global_cwq *gcwq) +static void wake_up_worker(struct worker_pool *pool) { - struct worker *worker = first_worker(gcwq); + struct worker *worker = first_worker(pool); if (likely(worker)) wake_up_process(worker->task); @@ -670,7 +705,7 @@ void wq_worker_waking_up(struct task_struct *task, unsigned int cpu) struct worker *worker = kthread_data(task); if (!(worker->flags & WORKER_NOT_RUNNING)) - atomic_inc(get_gcwq_nr_running(cpu)); + atomic_inc(get_pool_nr_running(worker->pool)); } /** @@ -692,8 +727,8 @@ struct task_struct *wq_worker_sleeping(struct task_struct *task, unsigned int cpu) { struct worker *worker = kthread_data(task), *to_wakeup = NULL; - struct global_cwq *gcwq = get_gcwq(cpu); - atomic_t *nr_running = get_gcwq_nr_running(cpu); + struct worker_pool *pool = worker->pool; + atomic_t *nr_running = get_pool_nr_running(pool); if (worker->flags & WORKER_NOT_RUNNING) return NULL; @@ -706,14 +741,14 @@ struct task_struct *wq_worker_sleeping(struct task_struct *task, * worklist not empty test sequence is in insert_work(). * Please read comment there. * - * NOT_RUNNING is clear. This means that trustee is not in - * charge and we're running on the local cpu w/ rq lock held - * and preemption disabled, which in turn means that none else - * could be manipulating idle_list, so dereferencing idle_list - * without gcwq lock is safe. + * NOT_RUNNING is clear. This means that we're bound to and + * running on the local cpu w/ rq lock held and preemption + * disabled, which in turn means that none else could be + * manipulating idle_list, so dereferencing idle_list without gcwq + * lock is safe. */ - if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist)) - to_wakeup = first_worker(gcwq); + if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist)) + to_wakeup = first_worker(pool); return to_wakeup ? to_wakeup->task : NULL; } @@ -733,7 +768,7 @@ struct task_struct *wq_worker_sleeping(struct task_struct *task, static inline void worker_set_flags(struct worker *worker, unsigned int flags, bool wakeup) { - struct global_cwq *gcwq = worker->gcwq; + struct worker_pool *pool = worker->pool; WARN_ON_ONCE(worker->task != current); @@ -744,12 +779,12 @@ static inline void worker_set_flags(struct worker *worker, unsigned int flags, */ if ((flags & WORKER_NOT_RUNNING) && !(worker->flags & WORKER_NOT_RUNNING)) { - atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); + atomic_t *nr_running = get_pool_nr_running(pool); if (wakeup) { if (atomic_dec_and_test(nr_running) && - !list_empty(&gcwq->worklist)) - wake_up_worker(gcwq); + !list_empty(&pool->worklist)) + wake_up_worker(pool); } else atomic_dec(nr_running); } @@ -769,7 +804,7 @@ static inline void worker_set_flags(struct worker *worker, unsigned int flags, */ static inline void worker_clr_flags(struct worker *worker, unsigned int flags) { - struct global_cwq *gcwq = worker->gcwq; + struct worker_pool *pool = worker->pool; unsigned int oflags = worker->flags; WARN_ON_ONCE(worker->task != current); @@ -783,7 +818,7 @@ static inline void worker_clr_flags(struct worker *worker, unsigned int flags) */ if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) if (!(worker->flags & WORKER_NOT_RUNNING)) - atomic_inc(get_gcwq_nr_running(gcwq->cpu)); + atomic_inc(get_pool_nr_running(pool)); } /** @@ -867,43 +902,6 @@ static struct worker *find_worker_executing_work(struct global_cwq *gcwq, } /** - * gcwq_determine_ins_pos - find insertion position - * @gcwq: gcwq of interest - * @cwq: cwq a work is being queued for - * - * A work for @cwq is about to be queued on @gcwq, determine insertion - * position for the work. If @cwq is for HIGHPRI wq, the work is - * queued at the head of the queue but in FIFO order with respect to - * other HIGHPRI works; otherwise, at the end of the queue. This - * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that - * there are HIGHPRI works pending. - * - * CONTEXT: - * spin_lock_irq(gcwq->lock). - * - * RETURNS: - * Pointer to inserstion position. - */ -static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq, - struct cpu_workqueue_struct *cwq) -{ - struct work_struct *twork; - - if (likely(!(cwq->wq->flags & WQ_HIGHPRI))) - return &gcwq->worklist; - - list_for_each_entry(twork, &gcwq->worklist, entry) { - struct cpu_workqueue_struct *tcwq = get_work_cwq(twork); - - if (!(tcwq->wq->flags & WQ_HIGHPRI)) - break; - } - - gcwq->flags |= GCWQ_HIGHPRI_PENDING; - return &twork->entry; -} - -/** * insert_work - insert a work into gcwq * @cwq: cwq @work belongs to * @work: work to insert @@ -920,7 +918,7 @@ static void insert_work(struct cpu_workqueue_struct *cwq, struct work_struct *work, struct list_head *head, unsigned int extra_flags) { - struct global_cwq *gcwq = cwq->gcwq; + struct worker_pool *pool = cwq->pool; /* we own @work, set data and link */ set_work_cwq(work, cwq, extra_flags); @@ -940,8 +938,8 @@ static void insert_work(struct cpu_workqueue_struct *cwq, */ smp_mb(); - if (__need_more_worker(gcwq)) - wake_up_worker(gcwq); + if (__need_more_worker(pool)) + wake_up_worker(pool); } /* @@ -1043,7 +1041,7 @@ static void __queue_work(unsigned int cpu, struct workqueue_struct *wq, if (likely(cwq->nr_active < cwq->max_active)) { trace_workqueue_activate_work(work); cwq->nr_active++; - worklist = gcwq_determine_ins_pos(gcwq, cwq); + worklist = &cwq->pool->worklist; } else { work_flags |= WORK_STRUCT_DELAYED; worklist = &cwq->delayed_works; @@ -1192,7 +1190,8 @@ EXPORT_SYMBOL_GPL(queue_delayed_work_on); */ static void worker_enter_idle(struct worker *worker) { - struct global_cwq *gcwq = worker->gcwq; + struct worker_pool *pool = worker->pool; + struct global_cwq *gcwq = pool->gcwq; BUG_ON(worker->flags & WORKER_IDLE); BUG_ON(!list_empty(&worker->entry) && @@ -1200,27 +1199,24 @@ static void worker_enter_idle(struct worker *worker) /* can't use worker_set_flags(), also called from start_worker() */ worker->flags |= WORKER_IDLE; - gcwq->nr_idle++; + pool->nr_idle++; worker->last_active = jiffies; /* idle_list is LIFO */ - list_add(&worker->entry, &gcwq->idle_list); + list_add(&worker->entry, &pool->idle_list); - if (likely(!(worker->flags & WORKER_ROGUE))) { - if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer)) - mod_timer(&gcwq->idle_timer, - jiffies + IDLE_WORKER_TIMEOUT); - } else - wake_up_all(&gcwq->trustee_wait); + if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) + mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); /* - * Sanity check nr_running. Because trustee releases gcwq->lock - * between setting %WORKER_ROGUE and zapping nr_running, the - * warning may trigger spuriously. Check iff trustee is idle. + * Sanity check nr_running. Because gcwq_unbind_fn() releases + * gcwq->lock between setting %WORKER_UNBOUND and zapping + * nr_running, the warning may trigger spuriously. Check iff + * unbind is not in progress. */ - WARN_ON_ONCE(gcwq->trustee_state == TRUSTEE_DONE && - gcwq->nr_workers == gcwq->nr_idle && - atomic_read(get_gcwq_nr_running(gcwq->cpu))); + WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) && + pool->nr_workers == pool->nr_idle && + atomic_read(get_pool_nr_running(pool))); } /** @@ -1234,11 +1230,11 @@ static void worker_enter_idle(struct worker *worker) */ static void worker_leave_idle(struct worker *worker) { - struct global_cwq *gcwq = worker->gcwq; + struct worker_pool *pool = worker->pool; BUG_ON(!(worker->flags & WORKER_IDLE)); worker_clr_flags(worker, WORKER_IDLE); - gcwq->nr_idle--; + pool->nr_idle--; list_del_init(&worker->entry); } @@ -1258,11 +1254,11 @@ static void worker_leave_idle(struct worker *worker) * verbatim as it's best effort and blocking and gcwq may be * [dis]associated in the meantime. * - * This function tries set_cpus_allowed() and locks gcwq and verifies - * the binding against GCWQ_DISASSOCIATED which is set during - * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters - * idle state or fetches works without dropping lock, it can guarantee - * the scheduling requirement described in the first paragraph. + * This function tries set_cpus_allowed() and locks gcwq and verifies the + * binding against %GCWQ_DISASSOCIATED which is set during + * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker + * enters idle state or fetches works without dropping lock, it can + * guarantee the scheduling requirement described in the first paragraph. * * CONTEXT: * Might sleep. Called without any lock but returns with gcwq->lock @@ -1275,7 +1271,7 @@ static void worker_leave_idle(struct worker *worker) static bool worker_maybe_bind_and_lock(struct worker *worker) __acquires(&gcwq->lock) { - struct global_cwq *gcwq = worker->gcwq; + struct global_cwq *gcwq = worker->pool->gcwq; struct task_struct *task = worker->task; while (true) { @@ -1308,16 +1304,40 @@ __acquires(&gcwq->lock) } } +struct idle_rebind { + int cnt; /* # workers to be rebound */ + struct completion done; /* all workers rebound */ +}; + +/* + * Rebind an idle @worker to its CPU. During CPU onlining, this has to + * happen synchronously for idle workers. worker_thread() will test + * %WORKER_REBIND before leaving idle and call this function. + */ +static void idle_worker_rebind(struct worker *worker) +{ + struct global_cwq *gcwq = worker->pool->gcwq; + + /* CPU must be online at this point */ + WARN_ON(!worker_maybe_bind_and_lock(worker)); + if (!--worker->idle_rebind->cnt) + complete(&worker->idle_rebind->done); + spin_unlock_irq(&worker->pool->gcwq->lock); + + /* we did our part, wait for rebind_workers() to finish up */ + wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND)); +} + /* - * Function for worker->rebind_work used to rebind rogue busy workers - * to the associated cpu which is coming back online. This is - * scheduled by cpu up but can race with other cpu hotplug operations - * and may be executed twice without intervening cpu down. + * Function for @worker->rebind.work used to rebind unbound busy workers to + * the associated cpu which is coming back online. This is scheduled by + * cpu up but can race with other cpu hotplug operations and may be + * executed twice without intervening cpu down. */ -static void worker_rebind_fn(struct work_struct *work) +static void busy_worker_rebind_fn(struct work_struct *work) { struct worker *worker = container_of(work, struct worker, rebind_work); - struct global_cwq *gcwq = worker->gcwq; + struct global_cwq *gcwq = worker->pool->gcwq; if (worker_maybe_bind_and_lock(worker)) worker_clr_flags(worker, WORKER_REBIND); @@ -1325,6 +1345,112 @@ static void worker_rebind_fn(struct work_struct *work) spin_unlock_irq(&gcwq->lock); } +/** + * rebind_workers - rebind all workers of a gcwq to the associated CPU + * @gcwq: gcwq of interest + * + * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding + * is different for idle and busy ones. + * + * The idle ones should be rebound synchronously and idle rebinding should + * be complete before any worker starts executing work items with + * concurrency management enabled; otherwise, scheduler may oops trying to + * wake up non-local idle worker from wq_worker_sleeping(). + * + * This is achieved by repeatedly requesting rebinding until all idle + * workers are known to have been rebound under @gcwq->lock and holding all + * idle workers from becoming busy until idle rebinding is complete. + * + * Once idle workers are rebound, busy workers can be rebound as they + * finish executing their current work items. Queueing the rebind work at + * the head of their scheduled lists is enough. Note that nr_running will + * be properbly bumped as busy workers rebind. + * + * On return, all workers are guaranteed to either be bound or have rebind + * work item scheduled. + */ +static void rebind_workers(struct global_cwq *gcwq) + __releases(&gcwq->lock) __acquires(&gcwq->lock) +{ + struct idle_rebind idle_rebind; + struct worker_pool *pool; + struct worker *worker; + struct hlist_node *pos; + int i; + + lockdep_assert_held(&gcwq->lock); + + for_each_worker_pool(pool, gcwq) + lockdep_assert_held(&pool->manager_mutex); + + /* + * Rebind idle workers. Interlocked both ways. We wait for + * workers to rebind via @idle_rebind.done. Workers will wait for + * us to finish up by watching %WORKER_REBIND. + */ + init_completion(&idle_rebind.done); +retry: + idle_rebind.cnt = 1; + INIT_COMPLETION(idle_rebind.done); + + /* set REBIND and kick idle ones, we'll wait for these later */ + for_each_worker_pool(pool, gcwq) { + list_for_each_entry(worker, &pool->idle_list, entry) { + if (worker->flags & WORKER_REBIND) + continue; + + /* morph UNBOUND to REBIND */ + worker->flags &= ~WORKER_UNBOUND; + worker->flags |= WORKER_REBIND; + + idle_rebind.cnt++; + worker->idle_rebind = &idle_rebind; + + /* worker_thread() will call idle_worker_rebind() */ + wake_up_process(worker->task); + } + } + + if (--idle_rebind.cnt) { + spin_unlock_irq(&gcwq->lock); + wait_for_completion(&idle_rebind.done); + spin_lock_irq(&gcwq->lock); + /* busy ones might have become idle while waiting, retry */ + goto retry; + } + + /* + * All idle workers are rebound and waiting for %WORKER_REBIND to + * be cleared inside idle_worker_rebind(). Clear and release. + * Clearing %WORKER_REBIND from this foreign context is safe + * because these workers are still guaranteed to be idle. + */ + for_each_worker_pool(pool, gcwq) + list_for_each_entry(worker, &pool->idle_list, entry) + worker->flags &= ~WORKER_REBIND; + + wake_up_all(&gcwq->rebind_hold); + + /* rebind busy workers */ + for_each_busy_worker(worker, i, pos, gcwq) { + struct work_struct *rebind_work = &worker->rebind_work; + + /* morph UNBOUND to REBIND */ + worker->flags &= ~WORKER_UNBOUND; + worker->flags |= WORKER_REBIND; + + if (test_and_set_bit(WORK_STRUCT_PENDING_BIT, + work_data_bits(rebind_work))) + continue; + + /* wq doesn't matter, use the default one */ + debug_work_activate(rebind_work); + insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work, + worker->scheduled.next, + work_color_to_flags(WORK_NO_COLOR)); + } +} + static struct worker *alloc_worker(void) { struct worker *worker; @@ -1333,7 +1459,7 @@ static struct worker *alloc_worker(void) if (worker) { INIT_LIST_HEAD(&worker->entry); INIT_LIST_HEAD(&worker->scheduled); - INIT_WORK(&worker->rebind_work, worker_rebind_fn); + INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn); /* on creation a worker is in !idle && prep state */ worker->flags = WORKER_PREP; } @@ -1342,10 +1468,9 @@ static struct worker *alloc_worker(void) /** * create_worker - create a new workqueue worker - * @gcwq: gcwq the new worker will belong to - * @bind: whether to set affinity to @cpu or not + * @pool: pool the new worker will belong to * - * Create a new worker which is bound to @gcwq. The returned worker + * Create a new worker which is bound to @pool. The returned worker * can be started by calling start_worker() or destroyed using * destroy_worker(). * @@ -1355,16 +1480,17 @@ static struct worker *alloc_worker(void) * RETURNS: * Pointer to the newly created worker. */ -static struct worker *create_worker(struct global_cwq *gcwq, bool bind) +static struct worker *create_worker(struct worker_pool *pool) { - bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND; + struct global_cwq *gcwq = pool->gcwq; + const char *pri = worker_pool_pri(pool) ? "H" : ""; struct worker *worker = NULL; int id = -1; spin_lock_irq(&gcwq->lock); - while (ida_get_new(&gcwq->worker_ida, &id)) { + while (ida_get_new(&pool->worker_ida, &id)) { spin_unlock_irq(&gcwq->lock); - if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL)) + if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL)) goto fail; spin_lock_irq(&gcwq->lock); } @@ -1374,38 +1500,43 @@ static struct worker *create_worker(struct global_cwq *gcwq, bool bind) if (!worker) goto fail; - worker->gcwq = gcwq; + worker->pool = pool; worker->id = id; - if (!on_unbound_cpu) + if (gcwq->cpu != WORK_CPU_UNBOUND) worker->task = kthread_create_on_node(worker_thread, - worker, - cpu_to_node(gcwq->cpu), - "kworker/%u:%d", gcwq->cpu, id); + worker, cpu_to_node(gcwq->cpu), + "kworker/%u:%d%s", gcwq->cpu, id, pri); else worker->task = kthread_create(worker_thread, worker, - "kworker/u:%d", id); + "kworker/u:%d%s", id, pri); if (IS_ERR(worker->task)) goto fail; + if (worker_pool_pri(pool)) + set_user_nice(worker->task, HIGHPRI_NICE_LEVEL); + /* - * A rogue worker will become a regular one if CPU comes - * online later on. Make sure every worker has - * PF_THREAD_BOUND set. + * Determine CPU binding of the new worker depending on + * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the + * flag remains stable across this function. See the comments + * above the flag definition for details. + * + * As an unbound worker may later become a regular one |