diff options
author | Peter Zijlstra <a.p.zijlstra@chello.nl> | 2011-11-15 17:14:39 +0100 |
---|---|---|
committer | Ingo Molnar <mingo@elte.hu> | 2011-11-17 12:20:22 +0100 |
commit | 391e43da797a96aeb65410281891f6d0b0e9611c (patch) | |
tree | 0ce6784525a5a8f75b377170cf1a7d60abccea29 /kernel/sched/rt.c | |
parent | 029632fbb7b7c9d85063cc9eb470de6c54873df3 (diff) |
sched: Move all scheduler bits into kernel/sched/
There's too many sched*.[ch] files in kernel/, give them their own
directory.
(No code changed, other than Makefile glue added.)
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'kernel/sched/rt.c')
-rw-r--r-- | kernel/sched/rt.c | 2045 |
1 files changed, 2045 insertions, 0 deletions
diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c new file mode 100644 index 00000000000..023b3550250 --- /dev/null +++ b/kernel/sched/rt.c @@ -0,0 +1,2045 @@ +/* + * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR + * policies) + */ + +#include "sched.h" + +#include <linux/slab.h> + +static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); + +struct rt_bandwidth def_rt_bandwidth; + +static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) +{ + struct rt_bandwidth *rt_b = + container_of(timer, struct rt_bandwidth, rt_period_timer); + ktime_t now; + int overrun; + int idle = 0; + + for (;;) { + now = hrtimer_cb_get_time(timer); + overrun = hrtimer_forward(timer, now, rt_b->rt_period); + + if (!overrun) + break; + + idle = do_sched_rt_period_timer(rt_b, overrun); + } + + return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; +} + +void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) +{ + rt_b->rt_period = ns_to_ktime(period); + rt_b->rt_runtime = runtime; + + raw_spin_lock_init(&rt_b->rt_runtime_lock); + + hrtimer_init(&rt_b->rt_period_timer, + CLOCK_MONOTONIC, HRTIMER_MODE_REL); + rt_b->rt_period_timer.function = sched_rt_period_timer; +} + +static void start_rt_bandwidth(struct rt_bandwidth *rt_b) +{ + if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) + return; + + if (hrtimer_active(&rt_b->rt_period_timer)) + return; + + raw_spin_lock(&rt_b->rt_runtime_lock); + start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period); + raw_spin_unlock(&rt_b->rt_runtime_lock); +} + +void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) +{ + struct rt_prio_array *array; + int i; + + array = &rt_rq->active; + for (i = 0; i < MAX_RT_PRIO; i++) { + INIT_LIST_HEAD(array->queue + i); + __clear_bit(i, array->bitmap); + } + /* delimiter for bitsearch: */ + __set_bit(MAX_RT_PRIO, array->bitmap); + +#if defined CONFIG_SMP + rt_rq->highest_prio.curr = MAX_RT_PRIO; + rt_rq->highest_prio.next = MAX_RT_PRIO; + rt_rq->rt_nr_migratory = 0; + rt_rq->overloaded = 0; + plist_head_init(&rt_rq->pushable_tasks); +#endif + + rt_rq->rt_time = 0; + rt_rq->rt_throttled = 0; + rt_rq->rt_runtime = 0; + raw_spin_lock_init(&rt_rq->rt_runtime_lock); +} + +#ifdef CONFIG_RT_GROUP_SCHED +static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) +{ + hrtimer_cancel(&rt_b->rt_period_timer); +} + +#define rt_entity_is_task(rt_se) (!(rt_se)->my_q) + +static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) +{ +#ifdef CONFIG_SCHED_DEBUG + WARN_ON_ONCE(!rt_entity_is_task(rt_se)); +#endif + return container_of(rt_se, struct task_struct, rt); +} + +static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) +{ + return rt_rq->rq; +} + +static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) +{ + return rt_se->rt_rq; +} + +void free_rt_sched_group(struct task_group *tg) +{ + int i; + + if (tg->rt_se) + destroy_rt_bandwidth(&tg->rt_bandwidth); + + for_each_possible_cpu(i) { + if (tg->rt_rq) + kfree(tg->rt_rq[i]); + if (tg->rt_se) + kfree(tg->rt_se[i]); + } + + kfree(tg->rt_rq); + kfree(tg->rt_se); +} + +void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, + struct sched_rt_entity *rt_se, int cpu, + struct sched_rt_entity *parent) +{ + struct rq *rq = cpu_rq(cpu); + + rt_rq->highest_prio.curr = MAX_RT_PRIO; + rt_rq->rt_nr_boosted = 0; + rt_rq->rq = rq; + rt_rq->tg = tg; + + tg->rt_rq[cpu] = rt_rq; + tg->rt_se[cpu] = rt_se; + + if (!rt_se) + return; + + if (!parent) + rt_se->rt_rq = &rq->rt; + else + rt_se->rt_rq = parent->my_q; + + rt_se->my_q = rt_rq; + rt_se->parent = parent; + INIT_LIST_HEAD(&rt_se->run_list); +} + +int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) +{ + struct rt_rq *rt_rq; + struct sched_rt_entity *rt_se; + int i; + + tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); + if (!tg->rt_rq) + goto err; + tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); + if (!tg->rt_se) + goto err; + + init_rt_bandwidth(&tg->rt_bandwidth, + ktime_to_ns(def_rt_bandwidth.rt_period), 0); + + for_each_possible_cpu(i) { + rt_rq = kzalloc_node(sizeof(struct rt_rq), + GFP_KERNEL, cpu_to_node(i)); + if (!rt_rq) + goto err; + + rt_se = kzalloc_node(sizeof(struct sched_rt_entity), + GFP_KERNEL, cpu_to_node(i)); + if (!rt_se) + goto err_free_rq; + + init_rt_rq(rt_rq, cpu_rq(i)); + rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; + init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); + } + + return 1; + +err_free_rq: + kfree(rt_rq); +err: + return 0; +} + +#else /* CONFIG_RT_GROUP_SCHED */ + +#define rt_entity_is_task(rt_se) (1) + +static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) +{ + return container_of(rt_se, struct task_struct, rt); +} + +static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) +{ + return container_of(rt_rq, struct rq, rt); +} + +static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) +{ + struct task_struct *p = rt_task_of(rt_se); + struct rq *rq = task_rq(p); + + return &rq->rt; +} + +void free_rt_sched_group(struct task_group *tg) { } + +int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) +{ + return 1; +} +#endif /* CONFIG_RT_GROUP_SCHED */ + +#ifdef CONFIG_SMP + +static inline int rt_overloaded(struct rq *rq) +{ + return atomic_read(&rq->rd->rto_count); +} + +static inline void rt_set_overload(struct rq *rq) +{ + if (!rq->online) + return; + + cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); + /* + * Make sure the mask is visible before we set + * the overload count. That is checked to determine + * if we should look at the mask. It would be a shame + * if we looked at the mask, but the mask was not + * updated yet. + */ + wmb(); + atomic_inc(&rq->rd->rto_count); +} + +static inline void rt_clear_overload(struct rq *rq) +{ + if (!rq->online) + return; + + /* the order here really doesn't matter */ + atomic_dec(&rq->rd->rto_count); + cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); +} + +static void update_rt_migration(struct rt_rq *rt_rq) +{ + if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { + if (!rt_rq->overloaded) { + rt_set_overload(rq_of_rt_rq(rt_rq)); + rt_rq->overloaded = 1; + } + } else if (rt_rq->overloaded) { + rt_clear_overload(rq_of_rt_rq(rt_rq)); + rt_rq->overloaded = 0; + } +} + +static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ + if (!rt_entity_is_task(rt_se)) + return; + + rt_rq = &rq_of_rt_rq(rt_rq)->rt; + + rt_rq->rt_nr_total++; + if (rt_se->nr_cpus_allowed > 1) + rt_rq->rt_nr_migratory++; + + update_rt_migration(rt_rq); +} + +static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ + if (!rt_entity_is_task(rt_se)) + return; + + rt_rq = &rq_of_rt_rq(rt_rq)->rt; + + rt_rq->rt_nr_total--; + if (rt_se->nr_cpus_allowed > 1) + rt_rq->rt_nr_migratory--; + + update_rt_migration(rt_rq); +} + +static inline int has_pushable_tasks(struct rq *rq) +{ + return !plist_head_empty(&rq->rt.pushable_tasks); +} + +static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) +{ + plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); + plist_node_init(&p->pushable_tasks, p->prio); + plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); + + /* Update the highest prio pushable task */ + if (p->prio < rq->rt.highest_prio.next) + rq->rt.highest_prio.next = p->prio; +} + +static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) +{ + plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); + + /* Update the new highest prio pushable task */ + if (has_pushable_tasks(rq)) { + p = plist_first_entry(&rq->rt.pushable_tasks, + struct task_struct, pushable_tasks); + rq->rt.highest_prio.next = p->prio; + } else + rq->rt.highest_prio.next = MAX_RT_PRIO; +} + +#else + +static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) +{ +} + +static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) +{ +} + +static inline +void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ +} + +static inline +void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ +} + +#endif /* CONFIG_SMP */ + +static inline int on_rt_rq(struct sched_rt_entity *rt_se) +{ + return !list_empty(&rt_se->run_list); +} + +#ifdef CONFIG_RT_GROUP_SCHED + +static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) +{ + if (!rt_rq->tg) + return RUNTIME_INF; + + return rt_rq->rt_runtime; +} + +static inline u64 sched_rt_period(struct rt_rq *rt_rq) +{ + return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); +} + +typedef struct task_group *rt_rq_iter_t; + +static inline struct task_group *next_task_group(struct task_group *tg) +{ + do { + tg = list_entry_rcu(tg->list.next, + typeof(struct task_group), list); + } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); + + if (&tg->list == &task_groups) + tg = NULL; + + return tg; +} + +#define for_each_rt_rq(rt_rq, iter, rq) \ + for (iter = container_of(&task_groups, typeof(*iter), list); \ + (iter = next_task_group(iter)) && \ + (rt_rq = iter->rt_rq[cpu_of(rq)]);) + +static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq) +{ + list_add_rcu(&rt_rq->leaf_rt_rq_list, + &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list); +} + +static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq) +{ + list_del_rcu(&rt_rq->leaf_rt_rq_list); +} + +#define for_each_leaf_rt_rq(rt_rq, rq) \ + list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) + +#define for_each_sched_rt_entity(rt_se) \ + for (; rt_se; rt_se = rt_se->parent) + +static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) +{ + return rt_se->my_q; +} + +static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head); +static void dequeue_rt_entity(struct sched_rt_entity *rt_se); + +static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) +{ + struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; + struct sched_rt_entity *rt_se; + + int cpu = cpu_of(rq_of_rt_rq(rt_rq)); + + rt_se = rt_rq->tg->rt_se[cpu]; + + if (rt_rq->rt_nr_running) { + if (rt_se && !on_rt_rq(rt_se)) + enqueue_rt_entity(rt_se, false); + if (rt_rq->highest_prio.curr < curr->prio) + resched_task(curr); + } +} + +static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) +{ + struct sched_rt_entity *rt_se; + int cpu = cpu_of(rq_of_rt_rq(rt_rq)); + + rt_se = rt_rq->tg->rt_se[cpu]; + + if (rt_se && on_rt_rq(rt_se)) + dequeue_rt_entity(rt_se); +} + +static inline int rt_rq_throttled(struct rt_rq *rt_rq) +{ + return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; +} + +static int rt_se_boosted(struct sched_rt_entity *rt_se) +{ + struct rt_rq *rt_rq = group_rt_rq(rt_se); + struct task_struct *p; + + if (rt_rq) + return !!rt_rq->rt_nr_boosted; + + p = rt_task_of(rt_se); + return p->prio != p->normal_prio; +} + +#ifdef CONFIG_SMP +static inline const struct cpumask *sched_rt_period_mask(void) +{ + return cpu_rq(smp_processor_id())->rd->span; +} +#else +static inline const struct cpumask *sched_rt_period_mask(void) +{ + return cpu_online_mask; +} +#endif + +static inline +struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) +{ + return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; +} + +static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) +{ + return &rt_rq->tg->rt_bandwidth; +} + +#else /* !CONFIG_RT_GROUP_SCHED */ + +static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) +{ + return rt_rq->rt_runtime; +} + +static inline u64 sched_rt_period(struct rt_rq *rt_rq) +{ + return ktime_to_ns(def_rt_bandwidth.rt_period); +} + +typedef struct rt_rq *rt_rq_iter_t; + +#define for_each_rt_rq(rt_rq, iter, rq) \ + for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) + +static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq) +{ +} + +static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq) +{ +} + +#define for_each_leaf_rt_rq(rt_rq, rq) \ + for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) + +#define for_each_sched_rt_entity(rt_se) \ + for (; rt_se; rt_se = NULL) + +static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) +{ + return NULL; +} + +static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) +{ + if (rt_rq->rt_nr_running) + resched_task(rq_of_rt_rq(rt_rq)->curr); +} + +static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) +{ +} + +static inline int rt_rq_throttled(struct rt_rq *rt_rq) +{ + return rt_rq->rt_throttled; +} + +static inline const struct cpumask *sched_rt_period_mask(void) +{ + return cpu_online_mask; +} + +static inline +struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) +{ + return &cpu_rq(cpu)->rt; +} + +static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) +{ + return &def_rt_bandwidth; +} + +#endif /* CONFIG_RT_GROUP_SCHED */ + +#ifdef CONFIG_SMP +/* + * We ran out of runtime, see if we can borrow some from our neighbours. + */ +static int do_balance_runtime(struct rt_rq *rt_rq) +{ + struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); + struct root_domain *rd = cpu_rq(smp_processor_id())->rd; + int i, weight, more = 0; + u64 rt_period; + + weight = cpumask_weight(rd->span); + + raw_spin_lock(&rt_b->rt_runtime_lock); + rt_period = ktime_to_ns(rt_b->rt_period); + for_each_cpu(i, rd->span) { + struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); + s64 diff; + + if (iter == rt_rq) + continue; + + raw_spin_lock(&iter->rt_runtime_lock); + /* + * Either all rqs have inf runtime and there's nothing to steal + * or __disable_runtime() below sets a specific rq to inf to + * indicate its been disabled and disalow stealing. + */ + if (iter->rt_runtime == RUNTIME_INF) + goto next; + + /* + * From runqueues with spare time, take 1/n part of their + * spare time, but no more than our period. + */ + diff = iter->rt_runtime - iter->rt_time; + if (diff > 0) { + diff = div_u64((u64)diff, weight); + if (rt_rq->rt_runtime + diff > rt_period) + diff = rt_period - rt_rq->rt_runtime; + iter->rt_runtime -= diff; + rt_rq->rt_runtime += diff; + more = 1; + if (rt_rq->rt_runtime == rt_period) { + raw_spin_unlock(&iter->rt_runtime_lock); + break; + } + } +next: + raw_spin_unlock(&iter->rt_runtime_lock); + } + raw_spin_unlock(&rt_b->rt_runtime_lock); + + return more; +} + +/* + * Ensure this RQ takes back all the runtime it lend to its neighbours. + */ +static void __disable_runtime(struct rq *rq) +{ + struct root_domain *rd = rq->rd; + rt_rq_iter_t iter; + struct rt_rq *rt_rq; + + if (unlikely(!scheduler_running)) + return; + + for_each_rt_rq(rt_rq, iter, rq) { + struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); + s64 want; + int i; + + raw_spin_lock(&rt_b->rt_runtime_lock); + raw_spin_lock(&rt_rq->rt_runtime_lock); + /* + * Either we're all inf and nobody needs to borrow, or we're + * already disabled and thus have nothing to do, or we have + * exactly the right amount of runtime to take out. + */ + if (rt_rq->rt_runtime == RUNTIME_INF || + rt_rq->rt_runtime == rt_b->rt_runtime) + goto balanced; + raw_spin_unlock(&rt_rq->rt_runtime_lock); + + /* + * Calculate the difference between what we started out with + * and what we current have, that's the amount of runtime + * we lend and now have to reclaim. + */ + want = rt_b->rt_runtime - rt_rq->rt_runtime; + + /* + * Greedy reclaim, take back as much as we can. + */ + for_each_cpu(i, rd->span) { + struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); + s64 diff; + + /* + * Can't reclaim from ourselves or disabled runqueues. + */ + if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) + continue; + + raw_spin_lock(&iter->rt_runtime_lock); + if (want > 0) { + diff = min_t(s64, iter->rt_runtime, want); + iter->rt_runtime -= diff; + want -= diff; + } else { + iter->rt_runtime -= want; + want -= want; + } + raw_spin_unlock(&iter->rt_runtime_lock); + + if (!want) + break; + } + + raw_spin_lock(&rt_rq->rt_runtime_lock); + /* + * We cannot be left wanting - that would mean some runtime + * leaked out of the system. + */ + BUG_ON(want); +balanced: + /* + * Disable all the borrow logic by pretending we have inf + * runtime - in which case borrowing doesn't make sense. + */ + rt_rq->rt_runtime = RUNTIME_INF; + raw_spin_unlock(&rt_rq->rt_runtime_lock); + raw_spin_unlock(&rt_b->rt_runtime_lock); + } +} + +static void disable_runtime(struct rq *rq) +{ + unsigned long flags; + + raw_spin_lock_irqsave(&rq->lock, flags); + __disable_runtime(rq); + raw_spin_unlock_irqrestore(&rq->lock, flags); +} + +static void __enable_runtime(struct rq *rq) +{ + rt_rq_iter_t iter; + struct rt_rq *rt_rq; + + if (unlikely(!scheduler_running)) + return; + + /* + * Reset each runqueue's bandwidth settings + */ + for_each_rt_rq(rt_rq, iter, rq) { + struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); + + raw_spin_lock(&rt_b->rt_runtime_lock); + raw_spin_lock(&rt_rq->rt_runtime_lock); + rt_rq->rt_runtime = rt_b->rt_runtime; + rt_rq->rt_time = 0; + rt_rq->rt_throttled = 0; + raw_spin_unlock(&rt_rq->rt_runtime_lock); + raw_spin_unlock(&rt_b->rt_runtime_lock); + } +} + +static void enable_runtime(struct rq *rq) +{ + unsigned long flags; + + raw_spin_lock_irqsave(&rq->lock, flags); + __enable_runtime(rq); + raw_spin_unlock_irqrestore(&rq->lock, flags); +} + +int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu) +{ + int cpu = (int)(long)hcpu; + + switch (action) { + case CPU_DOWN_PREPARE: + case CPU_DOWN_PREPARE_FROZEN: + disable_runtime(cpu_rq(cpu)); + return NOTIFY_OK; + + case CPU_DOWN_FAILED: + case CPU_DOWN_FAILED_FROZEN: + case CPU_ONLINE: + case CPU_ONLINE_FROZEN: + enable_runtime(cpu_rq(cpu)); + return NOTIFY_OK; + + default: + return NOTIFY_DONE; + } +} + +static int balance_runtime(struct rt_rq *rt_rq) +{ + int more = 0; + + if (!sched_feat(RT_RUNTIME_SHARE)) + return more; + + if (rt_rq->rt_time > rt_rq->rt_runtime) { + raw_spin_unlock(&rt_rq->rt_runtime_lock); + more = do_balance_runtime(rt_rq); + raw_spin_lock(&rt_rq->rt_runtime_lock); + } + + return more; +} +#else /* !CONFIG_SMP */ +static inline int balance_runtime(struct rt_rq *rt_rq) +{ + return 0; +} +#endif /* CONFIG_SMP */ + +static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) +{ + int i, idle = 1; + const struct cpumask *span; + + if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) + return 1; + + span = sched_rt_period_mask(); + for_each_cpu(i, span) { + int enqueue = 0; + struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); + struct rq *rq = rq_of_rt_rq(rt_rq); + + raw_spin_lock(&rq->lock); + if (rt_rq->rt_time) { + u64 runtime; + + raw_spin_lock(&rt_rq->rt_runtime_lock); + if (rt_rq->rt_throttled) + balance_runtime(rt_rq); + runtime = rt_rq->rt_runtime; + rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); + if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { + rt_rq->rt_throttled = 0; + enqueue = 1; + + /* + * Force a clock update if the CPU was idle, + * lest wakeup -> unthrottle time accumulate. + */ + if (rt_rq->rt_nr_running && rq->curr == rq->idle) + rq->skip_clock_update = -1; + } + if (rt_rq->rt_time || rt_rq->rt_nr_running) + idle = 0; + raw_spin_unlock(&rt_rq->rt_runtime_lock); + } else if (rt_rq->rt_nr_running) { + idle = 0; + if (!rt_rq_throttled(rt_rq)) + enqueue = 1; + } + + if (enqueue) + sched_rt_rq_enqueue(rt_rq); + raw_spin_unlock(&rq->lock); + } + + return idle; +} + +static inline int rt_se_prio(struct sched_rt_entity *rt_se) +{ +#ifdef CONFIG_RT_GROUP_SCHED + struct rt_rq *rt_rq = group_rt_rq(rt_se); + + if (rt_rq) + return rt_rq->highest_prio.curr; +#endif + + return rt_task_of(rt_se)->prio; +} + +static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) +{ + u64 runtime = sched_rt_runtime(rt_rq); + + if (rt_rq->rt_throttled) + return rt_rq_throttled(rt_rq); + + if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq)) + return 0; + + balance_runtime(rt_rq); + runtime = sched_rt_runtime(rt_rq); + if (runtime == RUNTIME_INF) + return 0; + + if (rt_rq->rt_time > runtime) { + rt_rq->rt_throttled = 1; + printk_once(KERN_WARNING "sched: RT throttling activated\n"); + if (rt_rq_throttled(rt_rq)) { + sched_rt_rq_dequeue(rt_rq); + return 1; + } + } + + return 0; +} + +/* + * Update the current task's runtime statistics. Skip current tasks that + * are not in our scheduling class. + */ +static void update_curr_rt(struct rq *rq) +{ + struct task_struct *curr = rq->curr; + struct sched_rt_entity *rt_se = &curr->rt; + struct rt_rq *rt_rq = rt_rq_of_se(rt_se); + u64 delta_exec; + + if (curr->sched_class != &rt_sched_class) + return; + + delta_exec = rq->clock_task - curr->se.exec_start; + if (unlikely((s64)delta_exec < 0)) + delta_exec = 0; + + schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec)); + + curr->se.sum_exec_runtime += delta_exec; + account_group_exec_runtime(curr, delta_exec); + + curr->se.exec_start = rq->clock_task; + cpuacct_charge(curr, delta_exec); + + sched_rt_avg_update(rq, delta_exec); + + if (!rt_bandwidth_enabled()) + return; + + for_each_sched_rt_entity(rt_se) { + rt_rq = rt_rq_of_se(rt_se); + + if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { + raw_spin_lock(&rt_rq->rt_runtime_lock); + rt_rq->rt_time += delta_exec; + if (sched_rt_runtime_exceeded(rt_rq)) + resched_task(curr); + raw_spin_unlock(&rt_rq->rt_runtime_lock); + } + } +} + +#if defined CONFIG_SMP + +static void +inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) +{ + struct rq *rq = rq_of_rt_rq(rt_rq); + + if (rq->online && prio < prev_prio) + cpupri_set(&rq->rd->cpupri, rq->cpu, prio); +} + +static void +dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) +{ + struct rq *rq = rq_of_rt_rq(rt_rq); + + if (rq->online && rt_rq->highest_prio.curr != prev_prio) + cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); +} + +#else /* CONFIG_SMP */ + +static inline +void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} +static inline +void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} + +#endif /* CONFIG_SMP */ + +#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED +static void +inc_rt_prio(struct rt_rq *rt_rq, int prio) +{ + int prev_prio = rt_rq->highest_prio.curr; + + if (prio < prev_prio) + rt_rq->highest_prio.curr = prio; + + inc_rt_prio_smp(rt_rq, prio, prev_prio); +} + +static void +dec_rt_prio(struct rt_rq *rt_rq, int prio) +{ + int prev_prio = rt_rq->highest_prio.curr; + + if (rt_rq->rt_nr_running) { + + WARN_ON(prio < prev_prio); + + /* + * This may have been our highest task, and therefore + * we may have some recomputation to do + */ + if (prio == prev_prio) { + struct rt_prio_array *array = &rt_rq->active; + + rt_rq->highest_prio.curr = + sched_find_first_bit(array->bitmap); + } + + } else + rt_rq->highest_prio.curr = MAX_RT_PRIO; + + dec_rt_prio_smp(rt_rq, prio, prev_prio); +} + +#else + +static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} +static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} + +#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ + +#ifdef CONFIG_RT_GROUP_SCHED + +static void +inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ + if (rt_se_boosted(rt_se)) + rt_rq->rt_nr_boosted++; + + if (rt_rq->tg) + start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); +} + +static void +dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ + if (rt_se_boosted(rt_se)) + rt_rq->rt_nr_boosted--; + + WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); +} + +#else /* CONFIG_RT_GROUP_SCHED */ + +static void +inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ + start_rt_bandwidth(&def_rt_bandwidth); +} + +static inline +void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} + +#endif /* CONFIG_RT_GROUP_SCHED */ + +static inline +void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ + int prio = rt_se_prio(rt_se); + + WARN_ON(!rt_prio(prio)); + rt_rq->rt_nr_running++; + + inc_rt_prio(rt_rq, prio); + inc_rt_migration(rt_se, rt_rq); + inc_rt_group(rt_se, rt_rq); +} + +static inline +void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ + WARN_ON(!rt_prio(rt_se_prio(rt_se))); + WARN_ON(!rt_rq->rt_nr_running); + rt_rq->rt_nr_running--; + + dec_rt_prio(rt_rq, rt_se_prio(rt_se)); + dec_rt_migration(rt_se, rt_rq); + dec_rt_group(rt_se, rt_rq); +} + +static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) +{ + struct rt_rq *rt_rq = rt_rq_of_se(rt_se); + struct rt_prio_array *array = &rt_rq->active; + struct rt_rq *group_rq = group_rt_rq(rt_se); + struct list_head *queue = array->queue + rt_se_prio(rt_se); + + /* + * Don't enqueue the group if its throttled, or when empty. + * The latter is a consequence of the former when a child group + * get throttled and the current group doesn't have any other + * active members. + */ + if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) + return; + + if (!rt_rq->rt_nr_running) + list_add_leaf_rt_rq(rt_rq); + + if (head) + list_add(&rt_se->run_list, queue); + else + list_add_tail(&rt_se->run_list, queue); + __set_bit(rt_se_prio(rt_se), array->bitmap); + + inc_rt_tasks(rt_se, rt_rq); +} + +static void __dequeue_rt_entity(struct sched_rt_entity *rt_se) +{ + struct rt_rq *rt_rq = rt_rq_of_se(rt_se); + struct rt_prio_array *array = &rt_rq->active; + + list_del_init(&rt_se->run_list); + if (list_empty(array->queue + rt_se_prio(rt_se))) + __clear_bit(rt_se_prio(rt_se), array->bitmap); + + dec_rt_tasks(rt_se, rt_rq); + if (!rt_rq->rt_nr_running) + list_del_leaf_rt_rq(rt_rq); +} + +/* + * Because the prio of an upper entry depends on the lower + * entries, we must remove entries top - down. + */ +static void dequeue_rt_stack(struct sched_rt_entity *rt_se) +{ + struct sched_rt_entity *back = NULL; + + for_each_sched_rt_entity(rt_se) { + rt_se->back = back; + back = rt_se; + } + + for (rt_se = back; rt_se; rt_se = rt_se->back) { + if (on_rt_rq(rt_se)) + __dequeue_rt_entity(rt_se); + } +} + +static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) +{ + dequeue_rt_stack(rt_se); + for_each_sched_rt_entity(rt_se) + __enqueue_rt_entity(rt_se, head); +} + +static void dequeue_rt_entity(struct sched_rt_entity *rt_se) +{ + dequeue_rt_stack(rt_se); + + for_each_sched_rt_entity(rt_se) { + struct rt_rq *rt_rq = group_rt_rq(rt_se); + + if (rt_rq && rt_rq->rt_nr_running) + __enqueue_rt_entity(rt_se, false); + } +} + +/* + * Adding/removing a task to/from a priority array: + */ +static void +enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) +{ + struct sched_rt_entity *rt_se = &p->rt; + + if (flags & ENQUEUE_WAKEUP) + rt_se->timeout = 0; + + enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD); + + if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) + enqueue_pushable_task(rq, p); + + inc_nr_running(rq); +} + +static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) +{ + struct sched_rt_entity *rt_se = &p->rt; + + update_curr_rt(rq); + dequeue_rt_entity(rt_se); + + dequeue_pushable_task(rq, p); + + dec_nr_running(rq); +} + +/* + * Put task to the head or the end of the run list without the overhead of + * dequeue followed by enqueue. + */ +static void +requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) +{ + if (on_rt_rq(rt_se)) { + struct rt_prio_array *array = &rt_rq->active; + struct list_head *queue = array->queue + rt_se_prio(rt_se); + + if (head) + list_move(&rt_se->run_list, queue); + else + list_move_tail(&rt_se->run_list, queue); + } +} + +static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) +{ + struct sched_rt_entity *rt_se = &p->rt; + struct rt_rq *rt_rq; + + for_each_sched_rt_entity(rt_se) { + rt_rq = rt_rq_of_se(rt_se); + requeue_rt_entity(rt_rq, rt_se, head); + } +} + +static void yield_task_rt(struct rq *rq) +{ + requeue_task_rt(rq, rq->curr, 0); +} + +#ifdef CONFIG_SMP +static int find_lowest_rq(struct task_struct *task); + +static int +select_task_rq_rt(struct task_struct *p, int sd_flag, int flags) +{ + struct task_struct *curr; + struct rq *rq; + int cpu; + + cpu = task_cpu(p); + + /* For anything but wake ups, just return the task_cpu */ + if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) + goto out; + + rq = cpu_rq(cpu); + + rcu_read_lock(); + curr = ACCESS_ONCE(rq->curr); /* unlocked access */ + + /* + * If the current task on @p's runqueue is an RT task, then + * try to see if we can wake this RT task up on another + * runqueue. Otherwise simply start this RT task + * on its current runqueue. + * + * We want to avoid overloading runqueues. If the woken + * task is a higher priority, then it will stay on this CPU + * and the lower prio task should be moved to another CPU. + * Even though this will probably make the lower prio task + * lose its cache, we do not want to bounce a higher task + * around just because it gave up its CPU, perhaps for a + * lock? + * + * For equal prio tasks, we just let the scheduler sort it out. + * + * Otherwise, just let it ride on the affined RQ and the + * post-schedule router will push the preempted task away + * + * This test is optimistic, if we get it wrong the load-balancer + * will have to sort it out. + */ + if (curr && unlikely(rt_task(curr)) && + (curr->rt.nr_cpus_allowed < 2 || + curr->prio <= p->prio) && + (p->rt.nr_cpus_allowed > 1)) { + int target = find_lowest_rq(p); + + if (target != -1) + cpu = target; + } < |