aboutsummaryrefslogtreecommitdiff
path: root/fs
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2011-03-18 10:50:27 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2011-03-18 10:50:27 -0700
commit8f627a8a881481598c2591c3acc122fb9be7bac4 (patch)
tree06497d25e30824500aeaf8c736c45b070f121234 /fs
parentfd57ed021990157ee5b3997c3f21c734093a9e23 (diff)
parent5d630e43284fdb0613e4e7e7dd906f27bc25b6af (diff)
Merge branch 'linux-next' of git://git.infradead.org/ubifs-2.6
* 'linux-next' of git://git.infradead.org/ubifs-2.6: (25 commits) UBIFS: clean-up commentaries UBIFS: save 128KiB or more RAM UBIFS: allocate orphans scan buffer on demand UBIFS: allocate lpt dump buffer on demand UBIFS: allocate ltab checking buffer on demand UBIFS: allocate scanning buffer on demand UBIFS: allocate dump buffer on demand UBIFS: do not check data crc by default UBIFS: simplify UBIFS Kconfig menu UBIFS: print max. index node size UBIFS: handle allocation failures in UBIFS write path UBIFS: use max_write_size during recovery UBIFS: use max_write_size for write-buffers UBIFS: introduce write-buffer size field UBI: incorporate LEB offset information UBIFS: incorporate maximum write size UBI: provide LEB offset information UBI: incorporate maximum write size UBIFS: fix LEB number in printk UBIFS: restrict world-writable debugfs files ...
Diffstat (limited to 'fs')
-rw-r--r--fs/ubifs/Kconfig23
-rw-r--r--fs/ubifs/commit.c58
-rw-r--r--fs/ubifs/debug.c34
-rw-r--r--fs/ubifs/debug.h30
-rw-r--r--fs/ubifs/io.c201
-rw-r--r--fs/ubifs/journal.c28
-rw-r--r--fs/ubifs/lprops.c26
-rw-r--r--fs/ubifs/lpt_commit.c56
-rw-r--r--fs/ubifs/orphan.c10
-rw-r--r--fs/ubifs/recovery.c44
-rw-r--r--fs/ubifs/scan.c2
-rw-r--r--fs/ubifs/super.c54
-rw-r--r--fs/ubifs/tnc.c10
-rw-r--r--fs/ubifs/ubifs.h45
14 files changed, 447 insertions, 174 deletions
diff --git a/fs/ubifs/Kconfig b/fs/ubifs/Kconfig
index 830e3f76f44..1d1859dc3de 100644
--- a/fs/ubifs/Kconfig
+++ b/fs/ubifs/Kconfig
@@ -44,23 +44,20 @@ config UBIFS_FS_ZLIB
# Debugging-related stuff
config UBIFS_FS_DEBUG
- bool "Enable debugging"
+ bool "Enable debugging support"
depends on UBIFS_FS
select DEBUG_FS
select KALLSYMS_ALL
help
- This option enables UBIFS debugging.
-
-config UBIFS_FS_DEBUG_MSG_LVL
- int "Default message level (0 = no extra messages, 3 = lots)"
- depends on UBIFS_FS_DEBUG
- default "0"
- help
- This controls the amount of debugging messages produced by UBIFS.
- If reporting bugs, please try to have available a full dump of the
- messages at level 1 while the misbehaviour was occurring. Level 2
- may become necessary if level 1 messages were not enough to find the
- bug. Generally Level 3 should be avoided.
+ This option enables UBIFS debugging support. It makes sure various
+ assertions, self-checks, debugging messages and test modes are compiled
+ in (this all is compiled out otherwise). Assertions are light-weight
+ and this option also enables them. Self-checks, debugging messages and
+ test modes are switched off by default. Thus, it is safe and actually
+ recommended to have debugging support enabled, and it should not slow
+ down UBIFS. You can then further enable / disable individual debugging
+ features using UBIFS module parameters and the corresponding sysfs
+ interfaces.
config UBIFS_FS_DEBUG_CHKS
bool "Enable extra checks"
diff --git a/fs/ubifs/commit.c b/fs/ubifs/commit.c
index 02429d81ca3..b148fbc80f8 100644
--- a/fs/ubifs/commit.c
+++ b/fs/ubifs/commit.c
@@ -48,6 +48,56 @@
#include <linux/slab.h>
#include "ubifs.h"
+/*
+ * nothing_to_commit - check if there is nothing to commit.
+ * @c: UBIFS file-system description object
+ *
+ * This is a helper function which checks if there is anything to commit. It is
+ * used as an optimization to avoid starting the commit if it is not really
+ * necessary. Indeed, the commit operation always assumes flash I/O (e.g.,
+ * writing the commit start node to the log), and it is better to avoid doing
+ * this unnecessarily. E.g., 'ubifs_sync_fs()' runs the commit, but if there is
+ * nothing to commit, it is more optimal to avoid any flash I/O.
+ *
+ * This function has to be called with @c->commit_sem locked for writing -
+ * this function does not take LPT/TNC locks because the @c->commit_sem
+ * guarantees that we have exclusive access to the TNC and LPT data structures.
+ *
+ * This function returns %1 if there is nothing to commit and %0 otherwise.
+ */
+static int nothing_to_commit(struct ubifs_info *c)
+{
+ /*
+ * During mounting or remounting from R/O mode to R/W mode we may
+ * commit for various recovery-related reasons.
+ */
+ if (c->mounting || c->remounting_rw)
+ return 0;
+
+ /*
+ * If the root TNC node is dirty, we definitely have something to
+ * commit.
+ */
+ if (c->zroot.znode && test_bit(DIRTY_ZNODE, &c->zroot.znode->flags))
+ return 0;
+
+ /*
+ * Even though the TNC is clean, the LPT tree may have dirty nodes. For
+ * example, this may happen if the budgeting subsystem invoked GC to
+ * make some free space, and the GC found an LEB with only dirty and
+ * free space. In this case GC would just change the lprops of this
+ * LEB (by turning all space into free space) and unmap it.
+ */
+ if (c->nroot && test_bit(DIRTY_CNODE, &c->nroot->flags))
+ return 0;
+
+ ubifs_assert(atomic_long_read(&c->dirty_zn_cnt) == 0);
+ ubifs_assert(c->dirty_pn_cnt == 0);
+ ubifs_assert(c->dirty_nn_cnt == 0);
+
+ return 1;
+}
+
/**
* do_commit - commit the journal.
* @c: UBIFS file-system description object
@@ -70,6 +120,12 @@ static int do_commit(struct ubifs_info *c)
goto out_up;
}
+ if (nothing_to_commit(c)) {
+ up_write(&c->commit_sem);
+ err = 0;
+ goto out_cancel;
+ }
+
/* Sync all write buffers (necessary for recovery) */
for (i = 0; i < c->jhead_cnt; i++) {
err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
@@ -162,12 +218,12 @@ static int do_commit(struct ubifs_info *c)
if (err)
goto out;
+out_cancel:
spin_lock(&c->cs_lock);
c->cmt_state = COMMIT_RESTING;
wake_up(&c->cmt_wq);
dbg_cmt("commit end");
spin_unlock(&c->cs_lock);
-
return 0;
out_up:
diff --git a/fs/ubifs/debug.c b/fs/ubifs/debug.c
index 0bee4dbffc3..01c2b028e52 100644
--- a/fs/ubifs/debug.c
+++ b/fs/ubifs/debug.c
@@ -43,8 +43,8 @@ DEFINE_SPINLOCK(dbg_lock);
static char dbg_key_buf0[128];
static char dbg_key_buf1[128];
-unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
-unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
+unsigned int ubifs_msg_flags;
+unsigned int ubifs_chk_flags;
unsigned int ubifs_tst_flags;
module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
@@ -810,16 +810,24 @@ void dbg_dump_leb(const struct ubifs_info *c, int lnum)
{
struct ubifs_scan_leb *sleb;
struct ubifs_scan_node *snod;
+ void *buf;
if (dbg_failure_mode)
return;
printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
current->pid, lnum);
- sleb = ubifs_scan(c, lnum, 0, c->dbg->buf, 0);
+
+ buf = __vmalloc(c->leb_size, GFP_KERNEL | GFP_NOFS, PAGE_KERNEL);
+ if (!buf) {
+ ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
+ return;
+ }
+
+ sleb = ubifs_scan(c, lnum, 0, buf, 0);
if (IS_ERR(sleb)) {
ubifs_err("scan error %d", (int)PTR_ERR(sleb));
- return;
+ goto out;
}
printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
@@ -835,6 +843,9 @@ void dbg_dump_leb(const struct ubifs_info *c, int lnum)
printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
current->pid, lnum);
ubifs_scan_destroy(sleb);
+
+out:
+ vfree(buf);
return;
}
@@ -2690,16 +2701,8 @@ int ubifs_debugging_init(struct ubifs_info *c)
if (!c->dbg)
return -ENOMEM;
- c->dbg->buf = vmalloc(c->leb_size);
- if (!c->dbg->buf)
- goto out;
-
failure_mode_init(c);
return 0;
-
-out:
- kfree(c->dbg);
- return -ENOMEM;
}
/**
@@ -2709,7 +2712,6 @@ out:
void ubifs_debugging_exit(struct ubifs_info *c)
{
failure_mode_exit(c);
- vfree(c->dbg->buf);
kfree(c->dbg);
}
@@ -2813,19 +2815,19 @@ int dbg_debugfs_init_fs(struct ubifs_info *c)
}
fname = "dump_lprops";
- dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
+ dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
if (IS_ERR(dent))
goto out_remove;
d->dfs_dump_lprops = dent;
fname = "dump_budg";
- dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
+ dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
if (IS_ERR(dent))
goto out_remove;
d->dfs_dump_budg = dent;
fname = "dump_tnc";
- dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
+ dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
if (IS_ERR(dent))
goto out_remove;
d->dfs_dump_tnc = dent;
diff --git a/fs/ubifs/debug.h b/fs/ubifs/debug.h
index 69ebe472915..919f0de29d8 100644
--- a/fs/ubifs/debug.h
+++ b/fs/ubifs/debug.h
@@ -27,7 +27,6 @@
/**
* ubifs_debug_info - per-FS debugging information.
- * @buf: a buffer of LEB size, used for various purposes
* @old_zroot: old index root - used by 'dbg_check_old_index()'
* @old_zroot_level: old index root level - used by 'dbg_check_old_index()'
* @old_zroot_sqnum: old index root sqnum - used by 'dbg_check_old_index()'
@@ -54,7 +53,6 @@
* dfs_dump_tnc: "dump TNC" debugfs knob
*/
struct ubifs_debug_info {
- void *buf;
struct ubifs_zbranch old_zroot;
int old_zroot_level;
unsigned long long old_zroot_sqnum;
@@ -173,7 +171,7 @@ const char *dbg_key_str1(const struct ubifs_info *c,
#define dbg_rcvry(fmt, ...) dbg_do_msg(UBIFS_MSG_RCVRY, fmt, ##__VA_ARGS__)
/*
- * Debugging message type flags (must match msg_type_names in debug.c).
+ * Debugging message type flags.
*
* UBIFS_MSG_GEN: general messages
* UBIFS_MSG_JNL: journal messages
@@ -205,14 +203,8 @@ enum {
UBIFS_MSG_RCVRY = 0x1000,
};
-/* Debugging message type flags for each default debug message level */
-#define UBIFS_MSG_LVL_0 0
-#define UBIFS_MSG_LVL_1 0x1
-#define UBIFS_MSG_LVL_2 0x7f
-#define UBIFS_MSG_LVL_3 0xffff
-
/*
- * Debugging check flags (must match chk_names in debug.c).
+ * Debugging check flags.
*
* UBIFS_CHK_GEN: general checks
* UBIFS_CHK_TNC: check TNC
@@ -233,7 +225,7 @@ enum {
};
/*
- * Special testing flags (must match tst_names in debug.c).
+ * Special testing flags.
*
* UBIFS_TST_FORCE_IN_THE_GAPS: force the use of in-the-gaps method
* UBIFS_TST_RCVRY: failure mode for recovery testing
@@ -243,22 +235,6 @@ enum {
UBIFS_TST_RCVRY = 0x4,
};
-#if CONFIG_UBIFS_FS_DEBUG_MSG_LVL == 1
-#define UBIFS_MSG_FLAGS_DEFAULT UBIFS_MSG_LVL_1
-#elif CONFIG_UBIFS_FS_DEBUG_MSG_LVL == 2
-#define UBIFS_MSG_FLAGS_DEFAULT UBIFS_MSG_LVL_2
-#elif CONFIG_UBIFS_FS_DEBUG_MSG_LVL == 3
-#define UBIFS_MSG_FLAGS_DEFAULT UBIFS_MSG_LVL_3
-#else
-#define UBIFS_MSG_FLAGS_DEFAULT UBIFS_MSG_LVL_0
-#endif
-
-#ifdef CONFIG_UBIFS_FS_DEBUG_CHKS
-#define UBIFS_CHK_FLAGS_DEFAULT 0xffffffff
-#else
-#define UBIFS_CHK_FLAGS_DEFAULT 0
-#endif
-
extern spinlock_t dbg_lock;
extern unsigned int ubifs_msg_flags;
diff --git a/fs/ubifs/io.c b/fs/ubifs/io.c
index d82173182ee..dfd168b7807 100644
--- a/fs/ubifs/io.c
+++ b/fs/ubifs/io.c
@@ -31,6 +31,26 @@
* buffer is full or when it is not used for some time (by timer). This is
* similar to the mechanism is used by JFFS2.
*
+ * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
+ * write size (@c->max_write_size). The latter is the maximum amount of bytes
+ * the underlying flash is able to program at a time, and writing in
+ * @c->max_write_size units should presumably be faster. Obviously,
+ * @c->min_io_size <= @c->max_write_size. Write-buffers are of
+ * @c->max_write_size bytes in size for maximum performance. However, when a
+ * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
+ * boundary) which contains data is written, not the whole write-buffer,
+ * because this is more space-efficient.
+ *
+ * This optimization adds few complications to the code. Indeed, on the one
+ * hand, we want to write in optimal @c->max_write_size bytes chunks, which
+ * also means aligning writes at the @c->max_write_size bytes offsets. On the
+ * other hand, we do not want to waste space when synchronizing the write
+ * buffer, so during synchronization we writes in smaller chunks. And this makes
+ * the next write offset to be not aligned to @c->max_write_size bytes. So the
+ * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
+ * to @c->max_write_size bytes again. We do this by temporarily shrinking
+ * write-buffer size (@wbuf->size).
+ *
* Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
* mutexes defined inside these objects. Since sometimes upper-level code
* has to lock the write-buffer (e.g. journal space reservation code), many
@@ -46,8 +66,8 @@
* UBIFS uses padding when it pads to the next min. I/O unit. In this case it
* uses padding nodes or padding bytes, if the padding node does not fit.
*
- * All UBIFS nodes are protected by CRC checksums and UBIFS checks all nodes
- * every time they are read from the flash media.
+ * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
+ * they are read from the flash media.
*/
#include <linux/crc32.h>
@@ -88,8 +108,12 @@ void ubifs_ro_mode(struct ubifs_info *c, int err)
* This function may skip data nodes CRC checking if @c->no_chk_data_crc is
* true, which is controlled by corresponding UBIFS mount option. However, if
* @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
- * checked. Similarly, if @c->always_chk_crc is true, @c->no_chk_data_crc is
- * ignored and CRC is checked.
+ * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
+ * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
+ * is checked. This is because during mounting or re-mounting from R/O mode to
+ * R/W mode we may read journal nodes (when replying the journal or doing the
+ * recovery) and the journal nodes may potentially be corrupted, so checking is
+ * required.
*
* This function returns zero in case of success and %-EUCLEAN in case of bad
* CRC or magic.
@@ -131,8 +155,8 @@ int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
node_len > c->ranges[type].max_len)
goto out_len;
- if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->always_chk_crc &&
- c->no_chk_data_crc)
+ if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
+ !c->remounting_rw && c->no_chk_data_crc)
return 0;
crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
@@ -343,11 +367,17 @@ static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
*
* This function synchronizes write-buffer @buf and returns zero in case of
* success or a negative error code in case of failure.
+ *
+ * Note, although write-buffers are of @c->max_write_size, this function does
+ * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
+ * if the write-buffer is only partially filled with data, only the used part
+ * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
+ * This way we waste less space.
*/
int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
{
struct ubifs_info *c = wbuf->c;
- int err, dirt;
+ int err, dirt, sync_len;
cancel_wbuf_timer_nolock(wbuf);
if (!wbuf->used || wbuf->lnum == -1)
@@ -357,27 +387,53 @@ int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
dbg_io("LEB %d:%d, %d bytes, jhead %s",
wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
ubifs_assert(!(wbuf->avail & 7));
- ubifs_assert(wbuf->offs + c->min_io_size <= c->leb_size);
+ ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size);
+ ubifs_assert(wbuf->size >= c->min_io_size);
+ ubifs_assert(wbuf->size <= c->max_write_size);
+ ubifs_assert(wbuf->size % c->min_io_size == 0);
ubifs_assert(!c->ro_media && !c->ro_mount);
+ if (c->leb_size - wbuf->offs >= c->max_write_size)
+ ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size ));
if (c->ro_error)
return -EROFS;
- ubifs_pad(c, wbuf->buf + wbuf->used, wbuf->avail);
+ /*
+ * Do not write whole write buffer but write only the minimum necessary
+ * amount of min. I/O units.
+ */
+ sync_len = ALIGN(wbuf->used, c->min_io_size);
+ dirt = sync_len - wbuf->used;
+ if (dirt)
+ ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
- c->min_io_size, wbuf->dtype);
+ sync_len, wbuf->dtype);
if (err) {
ubifs_err("cannot write %d bytes to LEB %d:%d",
- c->min_io_size, wbuf->lnum, wbuf->offs);
+ sync_len, wbuf->lnum, wbuf->offs);
dbg_dump_stack();
return err;
}
- dirt = wbuf->avail;
-
spin_lock(&wbuf->lock);
- wbuf->offs += c->min_io_size;
- wbuf->avail = c->min_io_size;
+ wbuf->offs += sync_len;
+ /*
+ * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
+ * But our goal is to optimize writes and make sure we write in
+ * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
+ * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
+ * sure that @wbuf->offs + @wbuf->size is aligned to
+ * @c->max_write_size. This way we make sure that after next
+ * write-buffer flush we are again at the optimal offset (aligned to
+ * @c->max_write_size).
+ */
+ if (c->leb_size - wbuf->offs < c->max_write_size)
+ wbuf->size = c->leb_size - wbuf->offs;
+ else if (wbuf->offs & (c->max_write_size - 1))
+ wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
+ else
+ wbuf->size = c->max_write_size;
+ wbuf->avail = wbuf->size;
wbuf->used = 0;
wbuf->next_ino = 0;
spin_unlock(&wbuf->lock);
@@ -420,7 +476,13 @@ int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs,
spin_lock(&wbuf->lock);
wbuf->lnum = lnum;
wbuf->offs = offs;
- wbuf->avail = c->min_io_size;
+ if (c->leb_size - wbuf->offs < c->max_write_size)
+ wbuf->size = c->leb_size - wbuf->offs;
+ else if (wbuf->offs & (c->max_write_size - 1))
+ wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
+ else
+ wbuf->size = c->max_write_size;
+ wbuf->avail = wbuf->size;
wbuf->used = 0;
spin_unlock(&wbuf->lock);
wbuf->dtype = dtype;
@@ -500,8 +562,9 @@ out_timers:
*
* This function writes data to flash via write-buffer @wbuf. This means that
* the last piece of the node won't reach the flash media immediately if it
- * does not take whole minimal I/O unit. Instead, the node will sit in RAM
- * until the write-buffer is synchronized (e.g., by timer).
+ * does not take whole max. write unit (@c->max_write_size). Instead, the node
+ * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
+ * because more data are appended to the write-buffer).
*
* This function returns zero in case of success and a negative error code in
* case of failure. If the node cannot be written because there is no more
@@ -518,9 +581,14 @@ int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
- ubifs_assert(wbuf->avail > 0 && wbuf->avail <= c->min_io_size);
+ ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size);
+ ubifs_assert(wbuf->size >= c->min_io_size);
+ ubifs_assert(wbuf->size <= c->max_write_size);
+ ubifs_assert(wbuf->size % c->min_io_size == 0);
ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
ubifs_assert(!c->ro_media && !c->ro_mount);
+ if (c->leb_size - wbuf->offs >= c->max_write_size)
+ ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size ));
if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
err = -ENOSPC;
@@ -543,14 +611,18 @@ int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
dbg_io("flush jhead %s wbuf to LEB %d:%d",
dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf,
- wbuf->offs, c->min_io_size,
+ wbuf->offs, wbuf->size,
wbuf->dtype);
if (err)
goto out;
spin_lock(&wbuf->lock);
- wbuf->offs += c->min_io_size;
- wbuf->avail = c->min_io_size;
+ wbuf->offs += wbuf->size;
+ if (c->leb_size - wbuf->offs >= c->max_write_size)
+ wbuf->size = c->max_write_size;
+ else
+ wbuf->size = c->leb_size - wbuf->offs;
+ wbuf->avail = wbuf->size;
wbuf->used = 0;
wbuf->next_ino = 0;
spin_unlock(&wbuf->lock);
@@ -564,33 +636,57 @@ int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
goto exit;
}
- /*
- * The node is large enough and does not fit entirely within current
- * minimal I/O unit. We have to fill and flush write-buffer and switch
- * to the next min. I/O unit.
- */
- dbg_io("flush jhead %s wbuf to LEB %d:%d",
- dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
- memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
- err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
- c->min_io_size, wbuf->dtype);
- if (err)
- goto out;
+ offs = wbuf->offs;
+ written = 0;
- offs = wbuf->offs + c->min_io_size;
- len -= wbuf->avail;
- aligned_len -= wbuf->avail;
- written = wbuf->avail;
+ if (wbuf->used) {
+ /*
+ * The node is large enough and does not fit entirely within
+ * current available space. We have to fill and flush
+ * write-buffer and switch to the next max. write unit.
+ */
+ dbg_io("flush jhead %s wbuf to LEB %d:%d",
+ dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
+ memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
+ err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
+ wbuf->size, wbuf->dtype);
+ if (err)
+ goto out;
+
+ offs += wbuf->size;
+ len -= wbuf->avail;
+ aligned_len -= wbuf->avail;
+ written += wbuf->avail;
+ } else if (wbuf->offs & (c->max_write_size - 1)) {
+ /*
+ * The write-buffer offset is not aligned to
+ * @c->max_write_size and @wbuf->size is less than
+ * @c->max_write_size. Write @wbuf->size bytes to make sure the
+ * following writes are done in optimal @c->max_write_size
+ * chunks.
+ */
+ dbg_io("write %d bytes to LEB %d:%d",
+ wbuf->size, wbuf->lnum, wbuf->offs);
+ err = ubi_leb_write(c->ubi, wbuf->lnum, buf, wbuf->offs,
+ wbuf->size, wbuf->dtype);
+ if (err)
+ goto out;
+
+ offs += wbuf->size;
+ len -= wbuf->size;
+ aligned_len -= wbuf->size;
+ written += wbuf->size;
+ }
/*
- * The remaining data may take more whole min. I/O units, so write the
- * remains multiple to min. I/O unit size directly to the flash media.
+ * The remaining data may take more whole max. write units, so write the
+ * remains multiple to max. write unit size directly to the flash media.
* We align node length to 8-byte boundary because we anyway flash wbuf
* if the remaining space is less than 8 bytes.
*/
- n = aligned_len >> c->min_io_shift;
+ n = aligned_len >> c->max_write_shift;
if (n) {
- n <<= c->min_io_shift;
+ n <<= c->max_write_shift;
dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, offs);
err = ubi_leb_write(c->ubi, wbuf->lnum, buf + written, offs, n,
wbuf->dtype);
@@ -606,14 +702,18 @@ int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
if (aligned_len)
/*
* And now we have what's left and what does not take whole
- * min. I/O unit, so write it to the write-buffer and we are
+ * max. write unit, so write it to the write-buffer and we are
* done.
*/
memcpy(wbuf->buf, buf + written, len);
wbuf->offs = offs;
+ if (c->leb_size - wbuf->offs >= c->max_write_size)
+ wbuf->size = c->max_write_size;
+ else
+ wbuf->size = c->leb_size - wbuf->offs;
+ wbuf->avail = wbuf->size - aligned_len;
wbuf->used = aligned_len;
- wbuf->avail = c->min_io_size - aligned_len;
wbuf->next_ino = 0;
spin_unlock(&wbuf->lock);
@@ -837,11 +937,11 @@ int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
{
size_t size;
- wbuf->buf = kmalloc(c->min_io_size, GFP_KERNEL);
+ wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
if (!wbuf->buf)
return -ENOMEM;
- size = (c->min_io_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
+ size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
wbuf->inodes = kmalloc(size, GFP_KERNEL);
if (!wbuf->inodes) {
kfree(wbuf->buf);
@@ -851,7 +951,14 @@ int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
wbuf->used = 0;
wbuf->lnum = wbuf->offs = -1;
- wbuf->avail = c->min_io_size;
+ /*
+ * If the LEB starts at the max. write size aligned address, then
+ * write-buffer size has to be set to @c->max_write_size. Otherwise,
+ * set it to something smaller so that it ends at the closest max.
+ * write size boundary.
+ */
+ size = c->max_write_size - (c->leb_start % c->max_write_size);
+ wbuf->avail = wbuf->size = size;
wbuf->dtype = UBI_UNKNOWN;
wbuf->sync_callback = NULL;
mutex_init(&wbuf->io_mutex);
diff --git a/fs/ubifs/journal.c b/fs/ubifs/journal.c
index 914f1bd89e5..aed25e86422 100644
--- a/fs/ubifs/journal.c
+++ b/fs/ubifs/journal.c
@@ -690,7 +690,7 @@ int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
{
struct ubifs_data_node *data;
int err, lnum, offs, compr_type, out_len;
- int dlen = UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR;
+ int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
struct ubifs_inode *ui = ubifs_inode(inode);
dbg_jnl("ino %lu, blk %u, len %d, key %s",
@@ -698,9 +698,19 @@ int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
DBGKEY(key));
ubifs_assert(len <= UBIFS_BLOCK_SIZE);
- data = kmalloc(dlen, GFP_NOFS);
- if (!data)
- return -ENOMEM;
+ data = kmalloc(dlen, GFP_NOFS | __GFP_NOWARN);
+ if (!data) {
+ /*
+ * Fall-back to the write reserve buffer. Note, we might be
+ * currently on the memory reclaim path, when the kernel is
+ * trying to free some memory by writing out dirty pages. The
+ * write reserve buffer helps us to guarantee that we are
+ * always able to write the data.
+ */
+ allocated = 0;
+ mutex_lock(&c->write_reserve_mutex);
+ data = c->write_reserve_buf;
+ }
data->ch.node_type = UBIFS_DATA_NODE;
key_write(c, key, &data->key);
@@ -736,7 +746,10 @@ int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
goto out_ro;
finish_reservation(c);
- kfree(data);
+ if (!allocated)
+ mutex_unlock(&c->write_reserve_mutex);
+ else
+ kfree(data);
return 0;
out_release:
@@ -745,7 +758,10 @@ out_ro:
ubifs_ro_mode(c, err);
finish_reservation(c);
out_free:
- kfree(data);
+ if (!allocated)
+ mutex_unlock(&c->write_reserve_mutex);
+ else
+ kfree(data);
return err;
}
diff --git a/fs/ubifs/lprops.c b/fs/ubifs/lprops.c
index 4d4ca388889..c7b25e2f776 100644
--- a/fs/ubifs/lprops.c
+++ b/fs/ubifs/lprops.c
@@ -1035,7 +1035,8 @@ static int scan_check_cb(struct ubifs_info *c,
struct ubifs_scan_leb *sleb;
struct ubifs_scan_node *snod;
struct ubifs_lp_stats *lst = &data->lst;
- int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty;
+ int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty, ret;
+ void *buf = NULL;
cat = lp->flags & LPROPS_CAT_MASK;
if (cat != LPROPS_UNCAT) {
@@ -1093,7 +1094,13 @@ static int scan_check_cb(struct ubifs_info *c,
}
}
- sleb = ubifs_scan(c, lnum, 0, c->dbg->buf, 0);
+ buf = __vmalloc(c->leb_size, GFP_KERNEL | GFP_NOFS, PAGE_KERNEL);
+ if (!buf) {
+ ubifs_err("cannot allocate memory to scan LEB %d", lnum);
+ goto out;
+ }
+
+ sleb = ubifs_scan(c, lnum, 0, buf, 0);
if (IS_ERR(sleb)) {
/*
* After an unclean unmount, empty and freeable LEBs
@@ -1105,7 +1112,8 @@ static int scan_check_cb(struct ubifs_info *c,
lst->empty_lebs += 1;
lst->total_free += c->leb_size;
lst->total_dark += ubifs_calc_dark(c, c->leb_size);
- return LPT_SCAN_CONTINUE;
+ ret = LPT_SCAN_CONTINUE;
+ goto exit;
}
if (lp->free + lp->dirty == c->leb_size &&
@@ -1115,10 +1123,12 @@ static int scan_check_cb(struct ubifs_info *c,
lst->total_free += lp->free;
lst->total_dirty += lp->dirty;
lst->total_dark += ubifs_calc_dark(c, c->leb_size);
- return LPT_SCAN_CONTINUE;
+ ret = LPT_SCAN_CONTINUE;
+ goto exit;
}
data->err = PTR_ERR(sleb);
- return LPT_SCAN_STOP;
+ ret = LPT_SCAN_STOP;
+ goto exit;
}
is_idx = -1;
@@ -1236,7 +1246,10 @@ static int scan_check_cb(struct ubifs_info *c,
}
ubifs_scan_destroy(sleb);
- return LPT_SCAN_CONTINUE;
+ ret = LPT_SCAN_CONTINUE;
+exit:
+ vfree(buf);
+ return ret;
out_print:
ubifs_err("bad accounting of LEB %d: free %d, dirty %d flags %#x, "
@@ -1246,6 +1259,7 @@ out_print:
out_destroy:
ubifs_scan_destroy(sleb);
out:
+ vfree(buf);
data->err = -EINVAL;
return LPT_SCAN_STOP;
}
diff --git a/fs/ubifs/lpt_commit.c b/fs/ubifs/lpt_commit.c
index 5c90dec5db0..0a3c2c3f5c4 100644
--- a/fs/ubifs/lpt_commit.c
+++ b/fs/ubifs/lpt_commit.c
@@ -1628,29 +1628,35 @@ static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
{
int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
int ret;
- void *buf = c->dbg->buf;
+ void *buf, *p;
if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
return 0;
+ buf = p = __vmalloc(c->leb_size, GFP_KERNEL | GFP_NOFS, PAGE_KERNEL);
+ if (!buf) {
+ ubifs_err("cannot allocate memory for ltab checking");
+ return 0;
+ }
+
dbg_lp("LEB %d", lnum);
err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
if (err) {
dbg_msg("ubi_read failed, LEB %d, error %d", lnum, err);
- return err;
+ goto out;
}
while (1) {
- if (!is_a_node(c, buf, len)) {
+ if (!is_a_node(c, p, len)) {
int i, pad_len;
- pad_len = get_pad_len(c, buf, len);
+ pad_len = get_pad_len(c, p, len);
if (pad_len) {
- buf += pad_len;
+ p += pad_len;
len -= pad_len;
dirty += pad_len;
continue;
}
- if (!dbg_is_all_ff(buf, len)) {
+ if (!dbg_is_all_ff(p, len)) {
dbg_msg("invalid empty space in LEB %d at %d",
lnum, c->leb_size - len);
err = -EINVAL;
@@ -1668,16 +1674,21 @@ static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
lnum, dirty, c->ltab[i].dirty);
err = -EINVAL;
}
- return err;
+ goto out;
}
- node_type = get_lpt_node_type(c, buf, &node_num);
+ node_type = get_lpt_node_type(c, p, &node_num);
node_len = get_lpt_node_len(c, node_type);
ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
if (ret == 1)
dirty += node_len;
- buf += node_len;
+ p += node_len;
len -= node_len;
}
+
+ err = 0;
+out:
+ vfree(buf);
+ return err;
}
/**
@@ -1870,25 +1881,31 @@ int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
{
int err, len = c->leb_size, node_type, node_num, node_len, offs;
- void *buf = c->dbg->buf;
+ void *buf, *p;
printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
current->pid, lnum);
+ buf = p = __vmalloc(c->leb_size, GFP_KERNEL | GFP_NOFS, PAGE_KERNEL);
+ if (!buf) {
+ ubifs_err("cannot allocate memory to dump LPT");
+ return;
+ }
+
err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
if (err) {
ubifs_err("cannot read LEB %d, error %d", lnum, err);
- return;
+ goto out;
}
while (1) {
offs = c->leb_size - len;
- if (!is_a_node(c, buf, len)) {
+ if (!is_a_node(c, p, len)) {
int pad_len;
- pad_len = get_pad_len(c, buf, len);
+ pad_len = get_pad_len(c, p, len);
if (pad_len) {
printk(KERN_DEBUG "LEB %d:%d, pad %d bytes\n",
lnum, offs, pad_len);
- buf += pad_len;
+ p += pad_len;
len -= pad_len;
continue;
}
@@ -1898,7 +1915,7 @@ static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
break;
}
- node_type = get_lpt_node_type(c, buf, &node_num);
+ node_type = get_lpt_node_type(c, p, &node_num);
switch (node_type) {
case UBIFS_LPT_PNODE:
{