diff options
author | Nishanth Aravamudan <nacc@linux.vnet.ibm.com> | 2012-03-21 16:34:07 -0700 |
---|---|---|
committer | Greg Kroah-Hartman <gregkh@linuxfoundation.org> | 2012-04-02 09:52:37 -0700 |
commit | 9565cb71a1c0fbeab977cc346063873319f1953d (patch) | |
tree | ba73cb6710ba85927c744b9cdbf6c3b3420f6c68 /fs/hugetlbfs | |
parent | 5c6156fac087f551cbd57499f4bed2fc614d70cd (diff) |
bootmem/sparsemem: remove limit constraint in alloc_bootmem_section
commit f5bf18fa22f8c41a13eb8762c7373eb3a93a7333 upstream.
While testing AMS (Active Memory Sharing) / CMO (Cooperative Memory
Overcommit) on powerpc, we tripped the following:
kernel BUG at mm/bootmem.c:483!
cpu 0x0: Vector: 700 (Program Check) at [c000000000c03940]
pc: c000000000a62bd8: .alloc_bootmem_core+0x90/0x39c
lr: c000000000a64bcc: .sparse_early_usemaps_alloc_node+0x84/0x29c
sp: c000000000c03bc0
msr: 8000000000021032
current = 0xc000000000b0cce0
paca = 0xc000000001d80000
pid = 0, comm = swapper
kernel BUG at mm/bootmem.c:483!
enter ? for help
[c000000000c03c80] c000000000a64bcc
.sparse_early_usemaps_alloc_node+0x84/0x29c
[c000000000c03d50] c000000000a64f10 .sparse_init+0x12c/0x28c
[c000000000c03e20] c000000000a474f4 .setup_arch+0x20c/0x294
[c000000000c03ee0] c000000000a4079c .start_kernel+0xb4/0x460
[c000000000c03f90] c000000000009670 .start_here_common+0x1c/0x2c
This is
BUG_ON(limit && goal + size > limit);
and after some debugging, it seems that
goal = 0x7ffff000000
limit = 0x80000000000
and sparse_early_usemaps_alloc_node ->
sparse_early_usemaps_alloc_pgdat_section calls
return alloc_bootmem_section(usemap_size() * count, section_nr);
This is on a system with 8TB available via the AMS pool, and as a quirk
of AMS in firmware, all of that memory shows up in node 0. So, we end
up with an allocation that will fail the goal/limit constraints.
In theory, we could "fall-back" to alloc_bootmem_node() in
sparse_early_usemaps_alloc_node(), but since we actually have HOTREMOVE
defined, we'll BUG_ON() instead. A simple solution appears to be to
unconditionally remove the limit condition in alloc_bootmem_section,
meaning allocations are allowed to cross section boundaries (necessary
for systems of this size).
Johannes Weiner pointed out that if alloc_bootmem_section() no longer
guarantees section-locality, we need check_usemap_section_nr() to print
possible cross-dependencies between node descriptors and the usemaps
allocated through it. That makes the two loops in
sparse_early_usemaps_alloc_node() identical, so re-factor the code a
bit.
[akpm@linux-foundation.org: code simplification]
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Anton Blanchard <anton@au1.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ben Herrenschmidt <benh@kernel.crashing.org>
Cc: Robert Jennings <rcj@linux.vnet.ibm.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Diffstat (limited to 'fs/hugetlbfs')
0 files changed, 0 insertions, 0 deletions