aboutsummaryrefslogtreecommitdiff
path: root/fs/dcache.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /fs/dcache.c
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'fs/dcache.c')
-rw-r--r--fs/dcache.c1764
1 files changed, 1764 insertions, 0 deletions
diff --git a/fs/dcache.c b/fs/dcache.c
new file mode 100644
index 00000000000..496a4e08369
--- /dev/null
+++ b/fs/dcache.c
@@ -0,0 +1,1764 @@
+/*
+ * fs/dcache.c
+ *
+ * Complete reimplementation
+ * (C) 1997 Thomas Schoebel-Theuer,
+ * with heavy changes by Linus Torvalds
+ */
+
+/*
+ * Notes on the allocation strategy:
+ *
+ * The dcache is a master of the icache - whenever a dcache entry
+ * exists, the inode will always exist. "iput()" is done either when
+ * the dcache entry is deleted or garbage collected.
+ */
+
+#include <linux/config.h>
+#include <linux/syscalls.h>
+#include <linux/string.h>
+#include <linux/mm.h>
+#include <linux/fs.h>
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/smp_lock.h>
+#include <linux/hash.h>
+#include <linux/cache.h>
+#include <linux/module.h>
+#include <linux/mount.h>
+#include <linux/file.h>
+#include <asm/uaccess.h>
+#include <linux/security.h>
+#include <linux/seqlock.h>
+#include <linux/swap.h>
+#include <linux/bootmem.h>
+
+/* #define DCACHE_DEBUG 1 */
+
+int sysctl_vfs_cache_pressure = 100;
+EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
+
+ __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
+seqlock_t rename_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED;
+
+EXPORT_SYMBOL(dcache_lock);
+
+static kmem_cache_t *dentry_cache;
+
+#define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
+
+/*
+ * This is the single most critical data structure when it comes
+ * to the dcache: the hashtable for lookups. Somebody should try
+ * to make this good - I've just made it work.
+ *
+ * This hash-function tries to avoid losing too many bits of hash
+ * information, yet avoid using a prime hash-size or similar.
+ */
+#define D_HASHBITS d_hash_shift
+#define D_HASHMASK d_hash_mask
+
+static unsigned int d_hash_mask;
+static unsigned int d_hash_shift;
+static struct hlist_head *dentry_hashtable;
+static LIST_HEAD(dentry_unused);
+
+/* Statistics gathering. */
+struct dentry_stat_t dentry_stat = {
+ .age_limit = 45,
+};
+
+static void d_callback(struct rcu_head *head)
+{
+ struct dentry * dentry = container_of(head, struct dentry, d_rcu);
+
+ if (dname_external(dentry))
+ kfree(dentry->d_name.name);
+ kmem_cache_free(dentry_cache, dentry);
+}
+
+/*
+ * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
+ * inside dcache_lock.
+ */
+static void d_free(struct dentry *dentry)
+{
+ if (dentry->d_op && dentry->d_op->d_release)
+ dentry->d_op->d_release(dentry);
+ call_rcu(&dentry->d_rcu, d_callback);
+}
+
+/*
+ * Release the dentry's inode, using the filesystem
+ * d_iput() operation if defined.
+ * Called with dcache_lock and per dentry lock held, drops both.
+ */
+static inline void dentry_iput(struct dentry * dentry)
+{
+ struct inode *inode = dentry->d_inode;
+ if (inode) {
+ dentry->d_inode = NULL;
+ list_del_init(&dentry->d_alias);
+ spin_unlock(&dentry->d_lock);
+ spin_unlock(&dcache_lock);
+ if (dentry->d_op && dentry->d_op->d_iput)
+ dentry->d_op->d_iput(dentry, inode);
+ else
+ iput(inode);
+ } else {
+ spin_unlock(&dentry->d_lock);
+ spin_unlock(&dcache_lock);
+ }
+}
+
+/*
+ * This is dput
+ *
+ * This is complicated by the fact that we do not want to put
+ * dentries that are no longer on any hash chain on the unused
+ * list: we'd much rather just get rid of them immediately.
+ *
+ * However, that implies that we have to traverse the dentry
+ * tree upwards to the parents which might _also_ now be
+ * scheduled for deletion (it may have been only waiting for
+ * its last child to go away).
+ *
+ * This tail recursion is done by hand as we don't want to depend
+ * on the compiler to always get this right (gcc generally doesn't).
+ * Real recursion would eat up our stack space.
+ */
+
+/*
+ * dput - release a dentry
+ * @dentry: dentry to release
+ *
+ * Release a dentry. This will drop the usage count and if appropriate
+ * call the dentry unlink method as well as removing it from the queues and
+ * releasing its resources. If the parent dentries were scheduled for release
+ * they too may now get deleted.
+ *
+ * no dcache lock, please.
+ */
+
+void dput(struct dentry *dentry)
+{
+ if (!dentry)
+ return;
+
+repeat:
+ if (atomic_read(&dentry->d_count) == 1)
+ might_sleep();
+ if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
+ return;
+
+ spin_lock(&dentry->d_lock);
+ if (atomic_read(&dentry->d_count)) {
+ spin_unlock(&dentry->d_lock);
+ spin_unlock(&dcache_lock);
+ return;
+ }
+
+ /*
+ * AV: ->d_delete() is _NOT_ allowed to block now.
+ */
+ if (dentry->d_op && dentry->d_op->d_delete) {
+ if (dentry->d_op->d_delete(dentry))
+ goto unhash_it;
+ }
+ /* Unreachable? Get rid of it */
+ if (d_unhashed(dentry))
+ goto kill_it;
+ if (list_empty(&dentry->d_lru)) {
+ dentry->d_flags |= DCACHE_REFERENCED;
+ list_add(&dentry->d_lru, &dentry_unused);
+ dentry_stat.nr_unused++;
+ }
+ spin_unlock(&dentry->d_lock);
+ spin_unlock(&dcache_lock);
+ return;
+
+unhash_it:
+ __d_drop(dentry);
+
+kill_it: {
+ struct dentry *parent;
+
+ /* If dentry was on d_lru list
+ * delete it from there
+ */
+ if (!list_empty(&dentry->d_lru)) {
+ list_del(&dentry->d_lru);
+ dentry_stat.nr_unused--;
+ }
+ list_del(&dentry->d_child);
+ dentry_stat.nr_dentry--; /* For d_free, below */
+ /*drops the locks, at that point nobody can reach this dentry */
+ dentry_iput(dentry);
+ parent = dentry->d_parent;
+ d_free(dentry);
+ if (dentry == parent)
+ return;
+ dentry = parent;
+ goto repeat;
+ }
+}
+
+/**
+ * d_invalidate - invalidate a dentry
+ * @dentry: dentry to invalidate
+ *
+ * Try to invalidate the dentry if it turns out to be
+ * possible. If there are other dentries that can be
+ * reached through this one we can't delete it and we
+ * return -EBUSY. On success we return 0.
+ *
+ * no dcache lock.
+ */
+
+int d_invalidate(struct dentry * dentry)
+{
+ /*
+ * If it's already been dropped, return OK.
+ */
+ spin_lock(&dcache_lock);
+ if (d_unhashed(dentry)) {
+ spin_unlock(&dcache_lock);
+ return 0;
+ }
+ /*
+ * Check whether to do a partial shrink_dcache
+ * to get rid of unused child entries.
+ */
+ if (!list_empty(&dentry->d_subdirs)) {
+ spin_unlock(&dcache_lock);
+ shrink_dcache_parent(dentry);
+ spin_lock(&dcache_lock);
+ }
+
+ /*
+ * Somebody else still using it?
+ *
+ * If it's a directory, we can't drop it
+ * for fear of somebody re-populating it
+ * with children (even though dropping it
+ * would make it unreachable from the root,
+ * we might still populate it if it was a
+ * working directory or similar).
+ */
+ spin_lock(&dentry->d_lock);
+ if (atomic_read(&dentry->d_count) > 1) {
+ if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
+ spin_unlock(&dentry->d_lock);
+ spin_unlock(&dcache_lock);
+ return -EBUSY;
+ }
+ }
+
+ __d_drop(dentry);
+ spin_unlock(&dentry->d_lock);
+ spin_unlock(&dcache_lock);
+ return 0;
+}
+
+/* This should be called _only_ with dcache_lock held */
+
+static inline struct dentry * __dget_locked(struct dentry *dentry)
+{
+ atomic_inc(&dentry->d_count);
+ if (!list_empty(&dentry->d_lru)) {
+ dentry_stat.nr_unused--;
+ list_del_init(&dentry->d_lru);
+ }
+ return dentry;
+}
+
+struct dentry * dget_locked(struct dentry *dentry)
+{
+ return __dget_locked(dentry);
+}
+
+/**
+ * d_find_alias - grab a hashed alias of inode
+ * @inode: inode in question
+ * @want_discon: flag, used by d_splice_alias, to request
+ * that only a DISCONNECTED alias be returned.
+ *
+ * If inode has a hashed alias, or is a directory and has any alias,
+ * acquire the reference to alias and return it. Otherwise return NULL.
+ * Notice that if inode is a directory there can be only one alias and
+ * it can be unhashed only if it has no children, or if it is the root
+ * of a filesystem.
+ *
+ * If the inode has a DCACHE_DISCONNECTED alias, then prefer
+ * any other hashed alias over that one unless @want_discon is set,
+ * in which case only return a DCACHE_DISCONNECTED alias.
+ */
+
+static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
+{
+ struct list_head *head, *next, *tmp;
+ struct dentry *alias, *discon_alias=NULL;
+
+ head = &inode->i_dentry;
+ next = inode->i_dentry.next;
+ while (next != head) {
+ tmp = next;
+ next = tmp->next;
+ prefetch(next);
+ alias = list_entry(tmp, struct dentry, d_alias);
+ if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
+ if (alias->d_flags & DCACHE_DISCONNECTED)
+ discon_alias = alias;
+ else if (!want_discon) {
+ __dget_locked(alias);
+ return alias;
+ }
+ }
+ }
+ if (discon_alias)
+ __dget_locked(discon_alias);
+ return discon_alias;
+}
+
+struct dentry * d_find_alias(struct inode *inode)
+{
+ struct dentry *de;
+ spin_lock(&dcache_lock);
+ de = __d_find_alias(inode, 0);
+ spin_unlock(&dcache_lock);
+ return de;
+}
+
+/*
+ * Try to kill dentries associated with this inode.
+ * WARNING: you must own a reference to inode.
+ */
+void d_prune_aliases(struct inode *inode)
+{
+ struct list_head *tmp, *head = &inode->i_dentry;
+restart:
+ spin_lock(&dcache_lock);
+ tmp = head;
+ while ((tmp = tmp->next) != head) {
+ struct dentry *dentry = list_entry(tmp, struct dentry, d_alias);
+ spin_lock(&dentry->d_lock);
+ if (!atomic_read(&dentry->d_count)) {
+ __dget_locked(dentry);
+ __d_drop(dentry);
+ spin_unlock(&dentry->d_lock);
+ spin_unlock(&dcache_lock);
+ dput(dentry);
+ goto restart;
+ }
+ spin_unlock(&dentry->d_lock);
+ }
+ spin_unlock(&dcache_lock);
+}
+
+/*
+ * Throw away a dentry - free the inode, dput the parent.
+ * This requires that the LRU list has already been
+ * removed.
+ * Called with dcache_lock, drops it and then regains.
+ */
+static inline void prune_one_dentry(struct dentry * dentry)
+{
+ struct dentry * parent;
+
+ __d_drop(dentry);
+ list_del(&dentry->d_child);
+ dentry_stat.nr_dentry--; /* For d_free, below */
+ dentry_iput(dentry);
+ parent = dentry->d_parent;
+ d_free(dentry);
+ if (parent != dentry)
+ dput(parent);
+ spin_lock(&dcache_lock);
+}
+
+/**
+ * prune_dcache - shrink the dcache
+ * @count: number of entries to try and free
+ *
+ * Shrink the dcache. This is done when we need
+ * more memory, or simply when we need to unmount
+ * something (at which point we need to unuse
+ * all dentries).
+ *
+ * This function may fail to free any resources if
+ * all the dentries are in use.
+ */
+
+static void prune_dcache(int count)
+{
+ spin_lock(&dcache_lock);
+ for (; count ; count--) {
+ struct dentry *dentry;
+ struct list_head *tmp;
+
+ cond_resched_lock(&dcache_lock);
+
+ tmp = dentry_unused.prev;
+ if (tmp == &dentry_unused)
+ break;
+ list_del_init(tmp);
+ prefetch(dentry_unused.prev);
+ dentry_stat.nr_unused--;
+ dentry = list_entry(tmp, struct dentry, d_lru);
+
+ spin_lock(&dentry->d_lock);
+ /*
+ * We found an inuse dentry which was not removed from
+ * dentry_unused because of laziness during lookup. Do not free
+ * it - just keep it off the dentry_unused list.
+ */
+ if (atomic_read(&dentry->d_count)) {
+ spin_unlock(&dentry->d_lock);
+ continue;
+ }
+ /* If the dentry was recently referenced, don't free it. */
+ if (dentry->d_flags & DCACHE_REFERENCED) {
+ dentry->d_flags &= ~DCACHE_REFERENCED;
+ list_add(&dentry->d_lru, &dentry_unused);
+ dentry_stat.nr_unused++;
+ spin_unlock(&dentry->d_lock);
+ continue;
+ }
+ prune_one_dentry(dentry);
+ }
+ spin_unlock(&dcache_lock);
+}
+
+/*
+ * Shrink the dcache for the specified super block.
+ * This allows us to unmount a device without disturbing
+ * the dcache for the other devices.
+ *
+ * This implementation makes just two traversals of the
+ * unused list. On the first pass we move the selected
+ * dentries to the most recent end, and on the second
+ * pass we free them. The second pass must restart after
+ * each dput(), but since the target dentries are all at
+ * the end, it's really just a single traversal.
+ */
+
+/**
+ * shrink_dcache_sb - shrink dcache for a superblock
+ * @sb: superblock
+ *
+ * Shrink the dcache for the specified super block. This
+ * is used to free the dcache before unmounting a file
+ * system
+ */
+
+void shrink_dcache_sb(struct super_block * sb)
+{
+ struct list_head *tmp, *next;
+ struct dentry *dentry;
+
+ /*
+ * Pass one ... move the dentries for the specified
+ * superblock to the most recent end of the unused list.
+ */
+ spin_lock(&dcache_lock);
+ next = dentry_unused.next;
+ while (next != &dentry_unused) {
+ tmp = next;
+ next = tmp->next;
+ dentry = list_entry(tmp, struct dentry, d_lru);
+ if (dentry->d_sb != sb)
+ continue;
+ list_del(tmp);
+ list_add(tmp, &dentry_unused);
+ }
+
+ /*
+ * Pass two ... free the dentries for this superblock.
+ */
+repeat:
+ next = dentry_unused.next;
+ while (next != &dentry_unused) {
+ tmp = next;
+ next = tmp->next;
+ dentry = list_entry(tmp, struct dentry, d_lru);
+ if (dentry->d_sb != sb)
+ continue;
+ dentry_stat.nr_unused--;
+ list_del_init(tmp);
+ spin_lock(&dentry->d_lock);
+ if (atomic_read(&dentry->d_count)) {
+ spin_unlock(&dentry->d_lock);
+ continue;
+ }
+ prune_one_dentry(dentry);
+ goto repeat;
+ }
+ spin_unlock(&dcache_lock);
+}
+
+/*
+ * Search for at least 1 mount point in the dentry's subdirs.
+ * We descend to the next level whenever the d_subdirs
+ * list is non-empty and continue searching.
+ */
+
+/**
+ * have_submounts - check for mounts over a dentry
+ * @parent: dentry to check.
+ *
+ * Return true if the parent or its subdirectories contain
+ * a mount point
+ */
+
+int have_submounts(struct dentry *parent)
+{
+ struct dentry *this_parent = parent;
+ struct list_head *next;
+
+ spin_lock(&dcache_lock);
+ if (d_mountpoint(parent))
+ goto positive;
+repeat:
+ next = this_parent->d_subdirs.next;
+resume:
+ while (next != &this_parent->d_subdirs) {
+ struct list_head *tmp = next;
+ struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
+ next = tmp->next;
+ /* Have we found a mount point ? */
+ if (d_mountpoint(dentry))
+ goto positive;
+ if (!list_empty(&dentry->d_subdirs)) {
+ this_parent = dentry;
+ goto repeat;
+ }
+ }
+ /*
+ * All done at this level ... ascend and resume the search.
+ */
+ if (this_parent != parent) {
+ next = this_parent->d_child.next;
+ this_parent = this_parent->d_parent;
+ goto resume;
+ }
+ spin_unlock(&dcache_lock);
+ return 0; /* No mount points found in tree */
+positive:
+ spin_unlock(&dcache_lock);
+ return 1;
+}
+
+/*
+ * Search the dentry child list for the specified parent,
+ * and move any unused dentries to the end of the unused
+ * list for prune_dcache(). We descend to the next level
+ * whenever the d_subdirs list is non-empty and continue
+ * searching.
+ *
+ * It returns zero iff there are no unused children,
+ * otherwise it returns the number of children moved to
+ * the end of the unused list. This may not be the total
+ * number of unused children, because select_parent can
+ * drop the lock and return early due to latency
+ * constraints.
+ */
+static int select_parent(struct dentry * parent)
+{
+ struct dentry *this_parent = parent;
+ struct list_head *next;
+ int found = 0;
+
+ spin_lock(&dcache_lock);
+repeat:
+ next = this_parent->d_subdirs.next;
+resume:
+ while (next != &this_parent->d_subdirs) {
+ struct list_head *tmp = next;
+ struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
+ next = tmp->next;
+
+ if (!list_empty(&dentry->d_lru)) {
+ dentry_stat.nr_unused--;
+ list_del_init(&dentry->d_lru);
+ }
+ /*
+ * move only zero ref count dentries to the end
+ * of the unused list for prune_dcache
+ */
+ if (!atomic_read(&dentry->d_count)) {
+ list_add(&dentry->d_lru, dentry_unused.prev);
+ dentry_stat.nr_unused++;
+ found++;
+ }
+
+ /*
+ * We can return to the caller if we have found some (this
+ * ensures forward progress). We'll be coming back to find
+ * the rest.
+ */
+ if (found && need_resched())
+ goto out;
+
+ /*
+ * Descend a level if the d_subdirs list is non-empty.
+ */
+ if (!list_empty(&dentry->d_subdirs)) {
+ this_parent = dentry;
+#ifdef DCACHE_DEBUG
+printk(KERN_DEBUG "select_parent: descending to %s/%s, found=%d\n",
+dentry->d_parent->d_name.name, dentry->d_name.name, found);
+#endif
+ goto repeat;
+ }
+ }
+ /*
+ * All done at this level ... ascend and resume the search.
+ */
+ if (this_parent != parent) {
+ next = this_parent->d_child.next;
+ this_parent = this_parent->d_parent;
+#ifdef DCACHE_DEBUG
+printk(KERN_DEBUG "select_parent: ascending to %s/%s, found=%d\n",
+this_parent->d_parent->d_name.name, this_parent->d_name.name, found);
+#endif
+ goto resume;
+ }
+out:
+ spin_unlock(&dcache_lock);
+ return found;
+}
+
+/**
+ * shrink_dcache_parent - prune dcache
+ * @parent: parent of entries to prune
+ *
+ * Prune the dcache to remove unused children of the parent dentry.
+ */
+
+void shrink_dcache_parent(struct dentry * parent)
+{
+ int found;
+
+ while ((found = select_parent(parent)) != 0)
+ prune_dcache(found);
+}
+
+/**
+ * shrink_dcache_anon - further prune the cache
+ * @head: head of d_hash list of dentries to prune
+ *
+ * Prune the dentries that are anonymous
+ *
+ * parsing d_hash list does not hlist_for_each_rcu() as it
+ * done under dcache_lock.
+ *
+ */
+void shrink_dcache_anon(struct hlist_head *head)
+{
+ struct hlist_node *lp;
+ int found;
+ do {
+ found = 0;
+ spin_lock(&dcache_lock);
+ hlist_for_each(lp, head) {
+ struct dentry *this = hlist_entry(lp, struct dentry, d_hash);
+ if (!list_empty(&this->d_lru)) {
+ dentry_stat.nr_unused--;
+ list_del_init(&this->d_lru);
+ }
+
+ /*
+ * move only zero ref count dentries to the end
+ * of the unused list for prune_dcache
+ */
+ if (!atomic_read(&this->d_count)) {
+ list_add_tail(&this->d_lru, &dentry_unused);
+ dentry_stat.nr_unused++;
+ found++;
+ }
+ }
+ spin_unlock(&dcache_lock);
+ prune_dcache(found);
+ } while(found);
+}
+
+/*
+ * Scan `nr' dentries and return the number which remain.
+ *
+ * We need to avoid reentering the filesystem if the caller is performing a
+ * GFP_NOFS allocation attempt. One example deadlock is:
+ *
+ * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
+ * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
+ * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
+ *
+ * In this case we return -1 to tell the caller that we baled.
+ */
+static int shrink_dcache_memory(int nr, unsigned int gfp_mask)
+{
+ if (nr) {
+ if (!(gfp_mask & __GFP_FS))
+ return -1;
+ prune_dcache(nr);
+ }
+ return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
+}
+
+/**
+ * d_alloc - allocate a dcache entry
+ * @parent: parent of entry to allocate
+ * @name: qstr of the name
+ *
+ * Allocates a dentry. It returns %NULL if there is insufficient memory
+ * available. On a success the dentry is returned. The name passed in is
+ * copied and the copy passed in may be reused after this call.
+ */
+
+struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
+{
+ struct dentry *dentry;
+ char *dname;
+
+ dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
+ if (!dentry)
+ return NULL;
+
+ if (name->len > DNAME_INLINE_LEN-1) {
+ dname = kmalloc(name->len + 1, GFP_KERNEL);
+ if (!dname) {
+ kmem_cache_free(dentry_cache, dentry);
+ return NULL;
+ }
+ } else {
+ dname = dentry->d_iname;
+ }
+ dentry->d_name.name = dname;
+
+ dentry->d_name.len = name->len;
+ dentry->d_name.hash = name->hash;
+ memcpy(dname, name->name, name->len);
+ dname[name->len] = 0;
+
+ atomic_set(&dentry->d_count, 1);
+ dentry->d_flags = DCACHE_UNHASHED;
+ spin_lock_init(&dentry->d_lock);
+ dentry->d_inode = NULL;
+ dentry->d_parent = NULL;
+ dentry->d_sb = NULL;
+ dentry->d_op = NULL;
+ dentry->d_fsdata = NULL;
+ dentry->d_mounted = 0;
+ dentry->d_cookie = NULL;
+ INIT_HLIST_NODE(&dentry->d_hash);
+ INIT_LIST_HEAD(&dentry->d_lru);
+ INIT_LIST_HEAD(&dentry->d_subdirs);
+ INIT_LIST_HEAD(&dentry->d_alias);
+
+ if (parent) {
+ dentry->d_parent = dget(parent);
+ dentry->d_sb = parent->d_sb;
+ } else {
+ INIT_LIST_HEAD(&dentry->d_child);
+ }
+
+ spin_lock(&dcache_lock);
+ if (parent)
+ list_add(&dentry->d_child, &parent->d_subdirs);
+ dentry_stat.nr_dentry++;
+ spin_unlock(&dcache_lock);
+
+ return dentry;
+}
+
+struct dentry *d_alloc_name(struct dentry *parent, const char *name)
+{
+ struct qstr q;
+
+ q.name = name;
+ q.len = strlen(name);
+ q.hash = full_name_hash(q.name, q.len);
+ return d_alloc(parent, &q);
+}
+
+/**
+ * d_instantiate - fill in inode information for a dentry
+ * @entry: dentry to complete
+ * @inode: inode to attach to this dentry
+ *
+ * Fill in inode information in the entry.
+ *
+ * This turns negative dentries into productive full members
+ * of society.
+ *
+ * NOTE! This assumes that the inode count has been incremented
+ * (or otherwise set) by the caller to indicate that it is now
+ * in use by the dcache.
+ */
+
+void d_instantiate(struct dentry *entry, struct inode * inode)
+{
+ if (!list_empty(&entry->d_alias)) BUG();
+ spin_lock(&dcache_lock);
+ if (inode)
+ list_add(&entry->d_alias, &inode->i_dentry);
+ entry->d_inode = inode;
+ spin_unlock(&dcache_lock);
+ security_d_instantiate(entry, inode);
+}
+
+/**
+ * d_instantiate_unique - instantiate a non-aliased dentry
+ * @entry: dentry to instantiate
+ * @inode: inode to attach to this dentry
+ *
+ * Fill in inode information in the entry. On success, it returns NULL.
+ * If an unhashed alias of "entry" already exists, then we return the
+ * aliased dentry instead.
+ *
+ * Note that in order to avoid conflicts with rename() etc, the caller
+ * had better be holding the parent directory semaphore.
+ */
+struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
+{
+ struct dentry *alias;
+ int len = entry->d_name.len;
+ const char *name = entry->d_name.name;
+ unsigned int hash = entry->d_name.hash;
+
+ BUG_ON(!list_empty(&entry->d_alias));
+ spin_lock(&dcache_lock);
+ if (!inode)
+ goto do_negative;
+ list_for_each_entry(alias, &inode->i_dentry, d_alias) {
+ struct qstr *qstr = &alias->d_name;
+
+ if (qstr->hash != hash)
+ continue;
+ if (alias->d_parent != entry->d_parent)
+ continue;
+ if (qstr->len != len)
+ continue;
+ if (memcmp(qstr->name, name, len))
+ continue;
+ dget_locked(alias);
+ spin_unlock(&dcache_lock);
+ BUG_ON(!d_unhashed(alias));
+ return alias;
+ }
+ list_add(&entry->d_alias, &inode->i_dentry);
+do_negative:
+ entry->d_inode = inode;
+ spin_unlock(&dcache_lock);
+ security_d_instantiate(entry, inode);
+ return NULL;
+}
+EXPORT_SYMBOL(d_instantiate_unique);
+
+/**
+ * d_alloc_root - allocate root dentry
+ * @root_inode: inode to allocate the root for
+ *
+ * Allocate a root ("/") dentry for the inode given. The inode is
+ * instantiated and returned. %NULL is returned if there is insufficient
+ * memory or the inode passed is %NULL.
+ */
+
+struct dentry * d_alloc_root(struct inode * root_inode)
+{
+ struct dentry *res = NULL;
+
+ if (root_inode) {
+ static const struct qstr name = { .name = "/", .len = 1 };
+
+ res = d_alloc(NULL, &name);
+ if (res) {
+ res->d_sb = root_inode->i_sb;
+ res->d_parent = res;
+ d_instantiate(res, root_inode);
+ }
+ }
+ return res;
+}
+
+static inline struct hlist_head *d_hash(struct dentry *parent,
+ unsigned long hash)
+{
+ hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
+ hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
+ return dentry_hashtable + (hash & D_HASHMASK);
+}
+
+/**
+ * d_alloc_anon - allocate an anonymous dentry
+ * @inode: inode to allocate the dentry for
+ *
+ * This is similar to d_alloc_root. It is used by filesystems when
+ * creating a dentry for a given inode, often in the process of
+ * mapping a filehandle to a dentry. The returned dentry may be
+ * anonymous, or may have a full name (if the inode was already
+ * in the cache). The file system may need to make further
+ * efforts to connect this dentry into the dcache properly.
+ *
+ * When called on a directory inode, we must ensure that
+ * the inode only ever has one dentry. If a dentry is
+ * found, that is returned instead of allocating a new one.
+ *
+ * On successful return, the reference to the inode has been transferred
+ * to the dentry. If %NULL is returned (indicating kmalloc failure),
+ * the reference on the inode has not been released.
+ */
+
+struct dentry * d_alloc_anon(struct inode *inode)
+{
+ static const struct qstr anonstring = { .name = "" };
+ struct dentry *tmp;
+ struct dentry *res;
+
+ if ((res = d_find_alias(inode))) {
+ iput(inode);
+ return res;
+ }
+
+ tmp = d_alloc(NULL, &anonstring);
+ if (!tmp)
+ return NULL;
+
+ tmp->d_parent = tmp; /* make sure dput doesn't croak */
+
+ spin_lock(&dcache_lock);
+ res = __d_find_alias(inode, 0);
+ if (!res) {
+ /* attach a disconnected dentry */
+ res = tmp;
+ tmp = NULL;
+ spin_lock(&res->d_lock);
+ res->d_sb = inode->i_sb;
+ res->d_parent = res;
+ res->d_inode = inode;
+ res->d_flags |= DCACHE_DISCONNECTED;
+ res->d_flags &= ~DCACHE_UNHASHED;
+ list_add(&res->d_alias, &inode->i_dentry);
+ hlist_add_head(&res->d_hash, &inode->i_sb->s_anon);
+ spin_unlock(&res->d_lock);
+
+ inode = NULL; /* don't drop reference */
+ }
+ spin_unlock(&dcache_lock);
+
+ if (inode)
+ iput(inode);
+ if (tmp)
+ dput(tmp);
+ return res;
+}
+
+
+/**
+ * d_splice_alias - splice a disconnected dentry into the tree if one exists
+ * @inode: the inode which may have a disconnected dentry
+ * @dentry: a negative dentry which we want to point to the inode.
+ *
+ * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
+ * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
+ * and return it, else simply d_add the inode to the dentry and return NULL.
+ *
+ * This is needed in the lookup routine of any filesystem that is exportable
+ * (via knfsd) so that we can build dcache paths to directories effectively.
+ *
+ * If a dentry was found and moved, then it is returned. Otherwise NULL
+ * is returned. This matches the expected return value of ->lookup.
+ *
+ */
+struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
+{
+ struct dentry *new = NULL;
+
+ if (inode) {
+ spin_lock(&dcache_lock);
+ new = __d_find_alias(inode, 1);
+ if (new) {
+ BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
+ spin_unlock(&dcache_lock);
+ security_d_instantiate(new, inode);
+ d_rehash(dentry);
+ d_move(new, dentry);
+ iput(inode);
+ } else {
+ /* d_instantiate takes dcache_lock, so we do it by hand */
+ list_add(&dentry->d_alias, &inode->i_dentry);
+ dentry->d_inode = inode;
+ spin_unlock(&dcache_lock);
+ security_d_instantiate(dentry, inode);
+ d_rehash(dentry);
+ }
+ } else
+ d_add(dentry, inode);
+ return new;
+}
+
+
+/**
+ * d_lookup - search for a dentry
+ * @parent: parent dentry
+ * @name: qstr of name we wish to find
+ *
+ * Searches the children of the parent dentry for the name in question. If
+ * the dentry is found its reference count is incremented and the dentry
+ * is returned. The caller must use d_put to free the entry when it has
+ * finished using it. %NULL is returned on failure.
+ *
+ * __d_lookup is dcache_lock free. The hash list is protected using RCU.
+ * Memory barriers are used while updating and doing lockless traversal.
+ * To avoid races with d_move while rename is happening, d_lock is used.
+ *
+ * Overflows in memcmp(), while d_move, are avoided by keeping the length
+ * and name pointer in one structure pointed by d_qstr.
+ *
+ * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
+ * lookup is going on.
+ *
+ * dentry_unused list is not updated even if lookup finds the required dentry
+ * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
+ * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
+ * acquisition.
+ *
+ * d_lookup() is protected against the concurrent renames in some unrelated
+ * directory using the seqlockt_t rename_lock.
+ */
+
+struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
+{
+ struct dentry * dentry = NULL;
+ unsigned long seq;
+
+ do {
+ seq = read_seqbegin(&rename_lock);
+ dentry = __d_lookup(parent, name);
+ if (dentry)
+ break;
+ } while (read_seqretry(&rename_lock, seq));
+ return dentry;
+}
+
+struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
+{
+ unsigned int len = name->len;
+ unsigned int hash = name->hash;
+ const unsigned char *str = name->name;
+ struct hlist_head *head = d_hash(parent,hash);
+ struct dentry *found = NULL;
+ struct hlist_node *node;
+
+ rcu_read_lock();
+
+ hlist_for_each_rcu(node, head) {
+ struct dentry *dentry;
+ struct qstr *qstr;
+
+ dentry = hlist_entry(node, struct dentry, d_hash);
+
+ if (dentry->d_name.hash != hash)
+ continue;
+ if (dentry->d_parent != parent)
+ continue;
+
+ spin_lock(&dentry->d_lock);
+
+ /*
+ * Recheck the dentry after taking the lock - d_move may have
+ * changed things. Don't bother checking the hash because we're
+ * about to compare the whole name anyway.
+ */
+ if (dentry->d_parent != parent)
+ goto next;
+
+ /*
+ * It is safe to compare names since d_move() cannot
+ * change the qstr (protected by d_lock).
+ */
+ qstr = &dentry->d_name;
+ if (parent->d_op && parent->d_op->d_compare) {
+ if (parent->d_op->d_compare(parent, qstr, name))
+ goto next;
+ } else {
+ if (qstr->len != len)
+ goto next;
+ if (memcmp(qstr->name, str, len))
+ goto next;
+ }
+
+ if (!d_unhashed(dentry)) {
+ atomic_inc(&dentry->d_count);
+ found = dentry;
+ }
+ spin_unlock(&dentry->d_lock);
+ break;
+next:
+ spin_unlock(&dentry->d_lock);
+ }
+ rcu_read_unlock();
+
+ return found;
+}
+
+/**
+ * d_validate - verify dentry provided from insecure source
+ * @dentry: The dentry alleged to be valid child of @dparent
+ * @dparent: The parent dentry (known to be valid)
+ * @hash: Hash of the dentry
+ * @len: Length of the name
+ *
+ * An insecure source has sent us a dentry, here we verify it and dget() it.
+ * This is used by ncpfs in its readdir implementation.
+ * Zero is returned in the dentry is invalid.
+ */
+
+int d_validate(struct dentry *dentry, struct dentry *dparent)
+{
+ struct hlist_head *base;
+ struct hlist_node *lhp;
+
+ /* Check whether the ptr might be valid at all.. */
+ if (!kmem_ptr_validate(dentry_cache, dentry))
+ goto out;
+
+ if (dentry->d_parent != dparent)
+ goto out;
+
+ spin_lock(&dcache_lock);
+ base = d_hash(dparent, dentry->d_name.hash);
+ hlist_for_each(lhp,base) {
+ /* hlist_for_each_rcu() not required for d_hash list
+ * as it is parsed under dcache_lock
+ */
+ if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
+ __dget_locked(dentry);
+ spin_unlock(&dcache_lock);
+ return 1;
+ }
+ }
+ spin_unlock(&dcache_lock);
+out:
+ return 0;
+}
+
+/*
+ * When a file is deleted, we have two options:
+ * - turn this dentry into a negative dentry
+ * - unhash this dentry and free it.
+ *
+ * Usually, we want to just turn this into
+ * a negative dentry, but if anybody else is
+ * currently using the dentry or the inode
+ * we can't do that and we fall back on removing
+ * it from the hash queues and waiting for
+ * it to be deleted later when it has no users
+ */
+
+/**
+ * d_delete - delete a dentry
+ * @dentry: The dentry to delete
+ *
+ * Turn the dentry into a negative dentry if possible, otherwise
+ * remove it from the hash queues so it can be deleted later
+ */
+
+void d_delete(struct dentry * dentry)
+{
+ /*
+ * Are we the only user?
+ */
+