diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /fs/buffer.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'fs/buffer.c')
-rw-r--r-- | fs/buffer.c | 3152 |
1 files changed, 3152 insertions, 0 deletions
diff --git a/fs/buffer.c b/fs/buffer.c new file mode 100644 index 00000000000..f961605a904 --- /dev/null +++ b/fs/buffer.c @@ -0,0 +1,3152 @@ +/* + * linux/fs/buffer.c + * + * Copyright (C) 1991, 1992, 2002 Linus Torvalds + */ + +/* + * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 + * + * Removed a lot of unnecessary code and simplified things now that + * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 + * + * Speed up hash, lru, and free list operations. Use gfp() for allocating + * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM + * + * Added 32k buffer block sizes - these are required older ARM systems. - RMK + * + * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> + */ + +#include <linux/config.h> +#include <linux/kernel.h> +#include <linux/syscalls.h> +#include <linux/fs.h> +#include <linux/mm.h> +#include <linux/percpu.h> +#include <linux/slab.h> +#include <linux/smp_lock.h> +#include <linux/blkdev.h> +#include <linux/file.h> +#include <linux/quotaops.h> +#include <linux/highmem.h> +#include <linux/module.h> +#include <linux/writeback.h> +#include <linux/hash.h> +#include <linux/suspend.h> +#include <linux/buffer_head.h> +#include <linux/bio.h> +#include <linux/notifier.h> +#include <linux/cpu.h> +#include <linux/bitops.h> +#include <linux/mpage.h> + +static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); +static void invalidate_bh_lrus(void); + +#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) + +inline void +init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) +{ + bh->b_end_io = handler; + bh->b_private = private; +} + +static int sync_buffer(void *word) +{ + struct block_device *bd; + struct buffer_head *bh + = container_of(word, struct buffer_head, b_state); + + smp_mb(); + bd = bh->b_bdev; + if (bd) + blk_run_address_space(bd->bd_inode->i_mapping); + io_schedule(); + return 0; +} + +void fastcall __lock_buffer(struct buffer_head *bh) +{ + wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer, + TASK_UNINTERRUPTIBLE); +} +EXPORT_SYMBOL(__lock_buffer); + +void fastcall unlock_buffer(struct buffer_head *bh) +{ + clear_buffer_locked(bh); + smp_mb__after_clear_bit(); + wake_up_bit(&bh->b_state, BH_Lock); +} + +/* + * Block until a buffer comes unlocked. This doesn't stop it + * from becoming locked again - you have to lock it yourself + * if you want to preserve its state. + */ +void __wait_on_buffer(struct buffer_head * bh) +{ + wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE); +} + +static void +__clear_page_buffers(struct page *page) +{ + ClearPagePrivate(page); + page->private = 0; + page_cache_release(page); +} + +static void buffer_io_error(struct buffer_head *bh) +{ + char b[BDEVNAME_SIZE]; + + printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", + bdevname(bh->b_bdev, b), + (unsigned long long)bh->b_blocknr); +} + +/* + * Default synchronous end-of-IO handler.. Just mark it up-to-date and + * unlock the buffer. This is what ll_rw_block uses too. + */ +void end_buffer_read_sync(struct buffer_head *bh, int uptodate) +{ + if (uptodate) { + set_buffer_uptodate(bh); + } else { + /* This happens, due to failed READA attempts. */ + clear_buffer_uptodate(bh); + } + unlock_buffer(bh); + put_bh(bh); +} + +void end_buffer_write_sync(struct buffer_head *bh, int uptodate) +{ + char b[BDEVNAME_SIZE]; + + if (uptodate) { + set_buffer_uptodate(bh); + } else { + if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { + buffer_io_error(bh); + printk(KERN_WARNING "lost page write due to " + "I/O error on %s\n", + bdevname(bh->b_bdev, b)); + } + set_buffer_write_io_error(bh); + clear_buffer_uptodate(bh); + } + unlock_buffer(bh); + put_bh(bh); +} + +/* + * Write out and wait upon all the dirty data associated with a block + * device via its mapping. Does not take the superblock lock. + */ +int sync_blockdev(struct block_device *bdev) +{ + int ret = 0; + + if (bdev) { + int err; + + ret = filemap_fdatawrite(bdev->bd_inode->i_mapping); + err = filemap_fdatawait(bdev->bd_inode->i_mapping); + if (!ret) + ret = err; + } + return ret; +} +EXPORT_SYMBOL(sync_blockdev); + +/* + * Write out and wait upon all dirty data associated with this + * superblock. Filesystem data as well as the underlying block + * device. Takes the superblock lock. + */ +int fsync_super(struct super_block *sb) +{ + sync_inodes_sb(sb, 0); + DQUOT_SYNC(sb); + lock_super(sb); + if (sb->s_dirt && sb->s_op->write_super) + sb->s_op->write_super(sb); + unlock_super(sb); + if (sb->s_op->sync_fs) + sb->s_op->sync_fs(sb, 1); + sync_blockdev(sb->s_bdev); + sync_inodes_sb(sb, 1); + + return sync_blockdev(sb->s_bdev); +} + +/* + * Write out and wait upon all dirty data associated with this + * device. Filesystem data as well as the underlying block + * device. Takes the superblock lock. + */ +int fsync_bdev(struct block_device *bdev) +{ + struct super_block *sb = get_super(bdev); + if (sb) { + int res = fsync_super(sb); + drop_super(sb); + return res; + } + return sync_blockdev(bdev); +} + +/** + * freeze_bdev -- lock a filesystem and force it into a consistent state + * @bdev: blockdevice to lock + * + * This takes the block device bd_mount_sem to make sure no new mounts + * happen on bdev until thaw_bdev() is called. + * If a superblock is found on this device, we take the s_umount semaphore + * on it to make sure nobody unmounts until the snapshot creation is done. + */ +struct super_block *freeze_bdev(struct block_device *bdev) +{ + struct super_block *sb; + + down(&bdev->bd_mount_sem); + sb = get_super(bdev); + if (sb && !(sb->s_flags & MS_RDONLY)) { + sb->s_frozen = SB_FREEZE_WRITE; + wmb(); + + sync_inodes_sb(sb, 0); + DQUOT_SYNC(sb); + + lock_super(sb); + if (sb->s_dirt && sb->s_op->write_super) + sb->s_op->write_super(sb); + unlock_super(sb); + + if (sb->s_op->sync_fs) + sb->s_op->sync_fs(sb, 1); + + sync_blockdev(sb->s_bdev); + sync_inodes_sb(sb, 1); + + sb->s_frozen = SB_FREEZE_TRANS; + wmb(); + + sync_blockdev(sb->s_bdev); + + if (sb->s_op->write_super_lockfs) + sb->s_op->write_super_lockfs(sb); + } + + sync_blockdev(bdev); + return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */ +} +EXPORT_SYMBOL(freeze_bdev); + +/** + * thaw_bdev -- unlock filesystem + * @bdev: blockdevice to unlock + * @sb: associated superblock + * + * Unlocks the filesystem and marks it writeable again after freeze_bdev(). + */ +void thaw_bdev(struct block_device *bdev, struct super_block *sb) +{ + if (sb) { + BUG_ON(sb->s_bdev != bdev); + + if (sb->s_op->unlockfs) + sb->s_op->unlockfs(sb); + sb->s_frozen = SB_UNFROZEN; + wmb(); + wake_up(&sb->s_wait_unfrozen); + drop_super(sb); + } + + up(&bdev->bd_mount_sem); +} +EXPORT_SYMBOL(thaw_bdev); + +/* + * sync everything. Start out by waking pdflush, because that writes back + * all queues in parallel. + */ +static void do_sync(unsigned long wait) +{ + wakeup_bdflush(0); + sync_inodes(0); /* All mappings, inodes and their blockdevs */ + DQUOT_SYNC(NULL); + sync_supers(); /* Write the superblocks */ + sync_filesystems(0); /* Start syncing the filesystems */ + sync_filesystems(wait); /* Waitingly sync the filesystems */ + sync_inodes(wait); /* Mappings, inodes and blockdevs, again. */ + if (!wait) + printk("Emergency Sync complete\n"); + if (unlikely(laptop_mode)) + laptop_sync_completion(); +} + +asmlinkage long sys_sync(void) +{ + do_sync(1); + return 0; +} + +void emergency_sync(void) +{ + pdflush_operation(do_sync, 0); +} + +/* + * Generic function to fsync a file. + * + * filp may be NULL if called via the msync of a vma. + */ + +int file_fsync(struct file *filp, struct dentry *dentry, int datasync) +{ + struct inode * inode = dentry->d_inode; + struct super_block * sb; + int ret, err; + + /* sync the inode to buffers */ + ret = write_inode_now(inode, 0); + + /* sync the superblock to buffers */ + sb = inode->i_sb; + lock_super(sb); + if (sb->s_op->write_super) + sb->s_op->write_super(sb); + unlock_super(sb); + + /* .. finally sync the buffers to disk */ + err = sync_blockdev(sb->s_bdev); + if (!ret) + ret = err; + return ret; +} + +asmlinkage long sys_fsync(unsigned int fd) +{ + struct file * file; + struct address_space *mapping; + int ret, err; + + ret = -EBADF; + file = fget(fd); + if (!file) + goto out; + + mapping = file->f_mapping; + + ret = -EINVAL; + if (!file->f_op || !file->f_op->fsync) { + /* Why? We can still call filemap_fdatawrite */ + goto out_putf; + } + + current->flags |= PF_SYNCWRITE; + ret = filemap_fdatawrite(mapping); + + /* + * We need to protect against concurrent writers, + * which could cause livelocks in fsync_buffers_list + */ + down(&mapping->host->i_sem); + err = file->f_op->fsync(file, file->f_dentry, 0); + if (!ret) + ret = err; + up(&mapping->host->i_sem); + err = filemap_fdatawait(mapping); + if (!ret) + ret = err; + current->flags &= ~PF_SYNCWRITE; + +out_putf: + fput(file); +out: + return ret; +} + +asmlinkage long sys_fdatasync(unsigned int fd) +{ + struct file * file; + struct address_space *mapping; + int ret, err; + + ret = -EBADF; + file = fget(fd); + if (!file) + goto out; + + ret = -EINVAL; + if (!file->f_op || !file->f_op->fsync) + goto out_putf; + + mapping = file->f_mapping; + + current->flags |= PF_SYNCWRITE; + ret = filemap_fdatawrite(mapping); + down(&mapping->host->i_sem); + err = file->f_op->fsync(file, file->f_dentry, 1); + if (!ret) + ret = err; + up(&mapping->host->i_sem); + err = filemap_fdatawait(mapping); + if (!ret) + ret = err; + current->flags &= ~PF_SYNCWRITE; + +out_putf: + fput(file); +out: + return ret; +} + +/* + * Various filesystems appear to want __find_get_block to be non-blocking. + * But it's the page lock which protects the buffers. To get around this, + * we get exclusion from try_to_free_buffers with the blockdev mapping's + * private_lock. + * + * Hack idea: for the blockdev mapping, i_bufferlist_lock contention + * may be quite high. This code could TryLock the page, and if that + * succeeds, there is no need to take private_lock. (But if + * private_lock is contended then so is mapping->tree_lock). + */ +static struct buffer_head * +__find_get_block_slow(struct block_device *bdev, sector_t block, int unused) +{ + struct inode *bd_inode = bdev->bd_inode; + struct address_space *bd_mapping = bd_inode->i_mapping; + struct buffer_head *ret = NULL; + pgoff_t index; + struct buffer_head *bh; + struct buffer_head *head; + struct page *page; + int all_mapped = 1; + + index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); + page = find_get_page(bd_mapping, index); + if (!page) + goto out; + + spin_lock(&bd_mapping->private_lock); + if (!page_has_buffers(page)) + goto out_unlock; + head = page_buffers(page); + bh = head; + do { + if (bh->b_blocknr == block) { + ret = bh; + get_bh(bh); + goto out_unlock; + } + if (!buffer_mapped(bh)) + all_mapped = 0; + bh = bh->b_this_page; + } while (bh != head); + + /* we might be here because some of the buffers on this page are + * not mapped. This is due to various races between + * file io on the block device and getblk. It gets dealt with + * elsewhere, don't buffer_error if we had some unmapped buffers + */ + if (all_mapped) { + printk("__find_get_block_slow() failed. " + "block=%llu, b_blocknr=%llu\n", + (unsigned long long)block, (unsigned long long)bh->b_blocknr); + printk("b_state=0x%08lx, b_size=%u\n", bh->b_state, bh->b_size); + printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits); + } +out_unlock: + spin_unlock(&bd_mapping->private_lock); + page_cache_release(page); +out: + return ret; +} + +/* If invalidate_buffers() will trash dirty buffers, it means some kind + of fs corruption is going on. Trashing dirty data always imply losing + information that was supposed to be just stored on the physical layer + by the user. + + Thus invalidate_buffers in general usage is not allwowed to trash + dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to + be preserved. These buffers are simply skipped. + + We also skip buffers which are still in use. For example this can + happen if a userspace program is reading the block device. + + NOTE: In the case where the user removed a removable-media-disk even if + there's still dirty data not synced on disk (due a bug in the device driver + or due an error of the user), by not destroying the dirty buffers we could + generate corruption also on the next media inserted, thus a parameter is + necessary to handle this case in the most safe way possible (trying + to not corrupt also the new disk inserted with the data belonging to + the old now corrupted disk). Also for the ramdisk the natural thing + to do in order to release the ramdisk memory is to destroy dirty buffers. + + These are two special cases. Normal usage imply the device driver + to issue a sync on the device (without waiting I/O completion) and + then an invalidate_buffers call that doesn't trash dirty buffers. + + For handling cache coherency with the blkdev pagecache the 'update' case + is been introduced. It is needed to re-read from disk any pinned + buffer. NOTE: re-reading from disk is destructive so we can do it only + when we assume nobody is changing the buffercache under our I/O and when + we think the disk contains more recent information than the buffercache. + The update == 1 pass marks the buffers we need to update, the update == 2 + pass does the actual I/O. */ +void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers) +{ + invalidate_bh_lrus(); + /* + * FIXME: what about destroy_dirty_buffers? + * We really want to use invalidate_inode_pages2() for + * that, but not until that's cleaned up. + */ + invalidate_inode_pages(bdev->bd_inode->i_mapping); +} + +/* + * Kick pdflush then try to free up some ZONE_NORMAL memory. + */ +static void free_more_memory(void) +{ + struct zone **zones; + pg_data_t *pgdat; + + wakeup_bdflush(1024); + yield(); + + for_each_pgdat(pgdat) { + zones = pgdat->node_zonelists[GFP_NOFS&GFP_ZONEMASK].zones; + if (*zones) + try_to_free_pages(zones, GFP_NOFS, 0); + } +} + +/* + * I/O completion handler for block_read_full_page() - pages + * which come unlocked at the end of I/O. + */ +static void end_buffer_async_read(struct buffer_head *bh, int uptodate) +{ + static DEFINE_SPINLOCK(page_uptodate_lock); + unsigned long flags; + struct buffer_head *tmp; + struct page *page; + int page_uptodate = 1; + + BUG_ON(!buffer_async_read(bh)); + + page = bh->b_page; + if (uptodate) { + set_buffer_uptodate(bh); + } else { + clear_buffer_uptodate(bh); + if (printk_ratelimit()) + buffer_io_error(bh); + SetPageError(page); + } + + /* + * Be _very_ careful from here on. Bad things can happen if + * two buffer heads end IO at almost the same time and both + * decide that the page is now completely done. + */ + spin_lock_irqsave(&page_uptodate_lock, flags); + clear_buffer_async_read(bh); + unlock_buffer(bh); + tmp = bh; + do { + if (!buffer_uptodate(tmp)) + page_uptodate = 0; + if (buffer_async_read(tmp)) { + BUG_ON(!buffer_locked(tmp)); + goto still_busy; + } + tmp = tmp->b_this_page; + } while (tmp != bh); + spin_unlock_irqrestore(&page_uptodate_lock, flags); + + /* + * If none of the buffers had errors and they are all + * uptodate then we can set the page uptodate. + */ + if (page_uptodate && !PageError(page)) + SetPageUptodate(page); + unlock_page(page); + return; + +still_busy: + spin_unlock_irqrestore(&page_uptodate_lock, flags); + return; +} + +/* + * Completion handler for block_write_full_page() - pages which are unlocked + * during I/O, and which have PageWriteback cleared upon I/O completion. + */ +void end_buffer_async_write(struct buffer_head *bh, int uptodate) +{ + char b[BDEVNAME_SIZE]; + static DEFINE_SPINLOCK(page_uptodate_lock); + unsigned long flags; + struct buffer_head *tmp; + struct page *page; + + BUG_ON(!buffer_async_write(bh)); + + page = bh->b_page; + if (uptodate) { + set_buffer_uptodate(bh); + } else { + if (printk_ratelimit()) { + buffer_io_error(bh); + printk(KERN_WARNING "lost page write due to " + "I/O error on %s\n", + bdevname(bh->b_bdev, b)); + } + set_bit(AS_EIO, &page->mapping->flags); + clear_buffer_uptodate(bh); + SetPageError(page); + } + + spin_lock_irqsave(&page_uptodate_lock, flags); + clear_buffer_async_write(bh); + unlock_buffer(bh); + tmp = bh->b_this_page; + while (tmp != bh) { + if (buffer_async_write(tmp)) { + BUG_ON(!buffer_locked(tmp)); + goto still_busy; + } + tmp = tmp->b_this_page; + } + spin_unlock_irqrestore(&page_uptodate_lock, flags); + end_page_writeback(page); + return; + +still_busy: + spin_unlock_irqrestore(&page_uptodate_lock, flags); + return; +} + +/* + * If a page's buffers are under async readin (end_buffer_async_read + * completion) then there is a possibility that another thread of + * control could lock one of the buffers after it has completed + * but while some of the other buffers have not completed. This + * locked buffer would confuse end_buffer_async_read() into not unlocking + * the page. So the absence of BH_Async_Read tells end_buffer_async_read() + * that this buffer is not under async I/O. + * + * The page comes unlocked when it has no locked buffer_async buffers + * left. + * + * PageLocked prevents anyone starting new async I/O reads any of + * the buffers. + * + * PageWriteback is used to prevent simultaneous writeout of the same + * page. + * + * PageLocked prevents anyone from starting writeback of a page which is + * under read I/O (PageWriteback is only ever set against a locked page). + */ +static void mark_buffer_async_read(struct buffer_head *bh) +{ + bh->b_end_io = end_buffer_async_read; + set_buffer_async_read(bh); +} + +void mark_buffer_async_write(struct buffer_head *bh) +{ + bh->b_end_io = end_buffer_async_write; + set_buffer_async_write(bh); +} +EXPORT_SYMBOL(mark_buffer_async_write); + + +/* + * fs/buffer.c contains helper functions for buffer-backed address space's + * fsync functions. A common requirement for buffer-based filesystems is + * that certain data from the backing blockdev needs to be written out for + * a successful fsync(). For example, ext2 indirect blocks need to be + * written back and waited upon before fsync() returns. + * + * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), + * inode_has_buffers() and invalidate_inode_buffers() are provided for the + * management of a list of dependent buffers at ->i_mapping->private_list. + * + * Locking is a little subtle: try_to_free_buffers() will remove buffers + * from their controlling inode's queue when they are being freed. But + * try_to_free_buffers() will be operating against the *blockdev* mapping + * at the time, not against the S_ISREG file which depends on those buffers. + * So the locking for private_list is via the private_lock in the address_space + * which backs the buffers. Which is different from the address_space + * against which the buffers are listed. So for a particular address_space, + * mapping->private_lock does *not* protect mapping->private_list! In fact, + * mapping->private_list will always be protected by the backing blockdev's + * ->private_lock. + * + * Which introduces a requirement: all buffers on an address_space's + * ->private_list must be from the same address_space: the blockdev's. + * + * address_spaces which do not place buffers at ->private_list via these + * utility functions are free to use private_lock and private_list for + * whatever they want. The only requirement is that list_empty(private_list) + * be true at clear_inode() time. + * + * FIXME: clear_inode should not call invalidate_inode_buffers(). The + * filesystems should do that. invalidate_inode_buffers() should just go + * BUG_ON(!list_empty). + * + * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should + * take an address_space, not an inode. And it should be called + * mark_buffer_dirty_fsync() to clearly define why those buffers are being + * queued up. + * + * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the + * list if it is already on a list. Because if the buffer is on a list, + * it *must* already be on the right one. If not, the filesystem is being + * silly. This will save a ton of locking. But first we have to ensure + * that buffers are taken *off* the old inode's list when they are freed + * (presumably in truncate). That requires careful auditing of all + * filesystems (do it inside bforget()). It could also be done by bringing + * b_inode back. + */ + +/* + * The buffer's backing address_space's private_lock must be held + */ +static inline void __remove_assoc_queue(struct buffer_head *bh) +{ + list_del_init(&bh->b_assoc_buffers); +} + +int inode_has_buffers(struct inode *inode) +{ + return !list_empty(&inode->i_data.private_list); +} + +/* + * osync is designed to support O_SYNC io. It waits synchronously for + * all already-submitted IO to complete, but does not queue any new + * writes to the disk. + * + * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as + * you dirty the buffers, and then use osync_inode_buffers to wait for + * completion. Any other dirty buffers which are not yet queued for + * write will not be flushed to disk by the osync. + */ +static int osync_buffers_list(spinlock_t *lock, struct list_head *list) +{ + struct buffer_head *bh; + struct list_head *p; + int err = 0; + + spin_lock(lock); +repeat: + list_for_each_prev(p, list) { + bh = BH_ENTRY(p); + if (buffer_locked(bh)) { + get_bh(bh); + spin_unlock(lock); + wait_on_buffer(bh); + if (!buffer_uptodate(bh)) + err = -EIO; + brelse(bh); + spin_lock(lock); + goto repeat; + } + } + spin_unlock(lock); + return err; +} + +/** + * sync_mapping_buffers - write out and wait upon a mapping's "associated" + * buffers + * @buffer_mapping - the mapping which backs the buffers' data + * @mapping - the mapping which wants those buffers written + * + * Starts I/O against the buffers at mapping->private_list, and waits upon + * that I/O. + * + * Basically, this is a convenience function for fsync(). @buffer_mapping is + * the blockdev which "owns" the buffers and @mapping is a file or directory + * which needs those buffers to be written for a successful fsync(). + */ +int sync_mapping_buffers(struct address_space *mapping) +{ + struct address_space *buffer_mapping = mapping->assoc_mapping; + + if (buffer_mapping == NULL || list_empty(&mapping->private_list)) + return 0; + + return fsync_buffers_list(&buffer_mapping->private_lock, + &mapping->private_list); +} +EXPORT_SYMBOL(sync_mapping_buffers); + +/* + * Called when we've recently written block `bblock', and it is known that + * `bblock' was for a buffer_boundary() buffer. This means that the block at + * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's + * dirty, schedule it for IO. So that indirects merge nicely with their data. + */ +void write_boundary_block(struct block_device *bdev, + sector_t bblock, unsigned blocksize) +{ + struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); + if (bh) { + if (buffer_dirty(bh)) + ll_rw_block(WRITE, 1, &bh); + put_bh(bh); + } +} + +void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) +{ + struct address_space *mapping = inode->i_mapping; + struct address_space *buffer_mapping = bh->b_page->mapping; + + mark_buffer_dirty(bh); + if (!mapping->assoc_mapping) { + mapping->assoc_mapping = buffer_mapping; + } else { + if (mapping->assoc_mapping != buffer_mapping) + BUG(); + } + if (list_empty(&bh->b_assoc_buffers)) { + spin_lock(&buffer_mapping->private_lock); + list_move_tail(&bh->b_assoc_buffers, + &mapping->private_list); + spin_unlock(&buffer_mapping->private_lock); + } +} +EXPORT_SYMBOL(mark_buffer_dirty_inode); + +/* + * Add a page to the dirty page list. + * + * It is a sad fact of life that this function is called from several places + * deeply under spinlocking. It may not sleep. + * + * If the page has buffers, the uptodate buffers are set dirty, to preserve + * dirty-state coherency between the page and the buffers. It the page does + * not have buffers then when they are later attached they will all be set + * dirty. + * + * The buffers are dirtied before the page is dirtied. There's a small race + * window in which a writepage caller may see the page cleanness but not the + * buffer dirtiness. That's fine. If this code were to set the page dirty + * before the buffers, a concurrent writepage caller could clear the page dirty + * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean + * page on the dirty page list. + * + * We use private_lock to lock against try_to_free_buffers while using the + * page's buffer list. Also use this to protect against clean buffers being + * added to the page after it was set dirty. + * + * FIXME: may need to call ->reservepage here as well. That's rather up to the + * address_space though. + */ +int __set_page_dirty_buffers(struct page *page) +{ + struct address_space * const mapping = page->mapping; + + spin_lock(&mapping->private_lock); + if (page_has_buffers(page)) { + struct buffer_head *head = page_buffers(page); + struct buffer_head *bh = head; + + do { + set_buffer_dirty(bh); + bh = bh->b_this_page; + } while (bh != head); + } + spin_unlock(&mapping->private_lock); + + if (!TestSetPageDirty(page)) { + write_lock_irq(&mapping->tree_lock); + if (page->mapping) { /* Race with truncate? */ + if (mapping_cap_account_dirty(mapping)) + inc_page_state(nr_dirty); + radix_tree_tag_set(&mapping->page_tree, + page_index(page), + PAGECACHE_TAG_DIRTY); + } + write_unlock_irq(&mapping->tree_lock); + __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); + } + + return 0; +} +EXPORT_SYMBOL(__set_page_dirty_buffers); + +/* + * Write out and wait upon a list of buffers. + * + * We have conflicting pressures: we want to make sure that all + * initially dirty buffers get waited on, but that any subsequently + * dirtied buffers don't. After all, we don't want fsync to last + * forever if somebody is actively writing to the file. + * + * Do this in two main stages: first we copy dirty buffers to a + * temporary inode list, queueing the writes as we go. Then we clean + * up, waiting for those writes to complete. + * + * During this second stage, any subsequent updates to the file may end + * up refiling the buffer on the original inode's dirty list again, so + * there is a chance we will end up with a buffer queued for write but + * not yet completed on that list. So, as a final cleanup we go through + * the osync code to catch these locked, dirty buffers without requeuing + * any newly dirty buffers for write. + */ +static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) +{ + struct buffer_head *bh; + struct list_head tmp; + int err = 0, err2; + + INIT_LIST_HEAD(&tmp); + + spin_lock(lock); + while (!list_empty(list)) { + bh = BH_ENTRY(list->next); + list_del_init(&bh->b_assoc_buffers); + if (buffer_dirty(bh) || buffer_locked(bh)) { + list_add(&bh->b_assoc_buffers, &tmp); + if (buffer_dirty(bh)) { + get_bh(bh); + spin_unlock(lock); + /* + * Ensure any pending I/O completes so that + * ll_rw_block() actually writes the current + * contents - it is a noop if I/O is still in + * flight on potentially older contents. + */ + wait_on_buffer(bh); + ll_rw_block(WRITE, 1, &bh); + brelse(bh); + spin_lock(lock); + } + } + } + + while (!list_empty(&tmp)) { + bh = BH_ENTRY(tmp.prev); + __remove_assoc_queue(bh); + get_bh(bh); + spin_unlock(lock); + wait_on_buffer(bh); + if (!buffer_uptodate(bh)) + err = -EIO; + brelse(bh); + spin_lock(lock); + } + + spin_unlock(lock); + err2 = osync_buffers_list(lock, list); + if (err) + return err; + else + return err2; +} + +/* + * Invalidate any and all dirty buffers on a given inode. We are + * probably unmounting the fs, but that doesn't mean we have already + * done a sync(). Just drop the buffers from the inode list. + * + * NOTE: we take the inode's blockdev's mapping's private_lock. Which + * assumes that all the buffers are against the blockdev. Not true + * for reiserfs. + */ +void invalidate_inode_buffers(struct inode *inode) +{ + if (inode_has_buffers(inode)) { + struct address_space *mapping = &inode->i_data; + struct list_head *list = &mapping->private_list; + struct address_space *buffer_mapping = mapping->assoc_mapping; + + spin_lock(&buffer_mapping->private_lock); + while (!list_empty(list)) + __remove_assoc_queue(BH_ENTRY(list->next)); + spin_unlock(&buffer_mapping->private_lock); + } +} + +/* + * Remove any clean buffers from the inode's buffer list. This is called + * when we're trying to free the inode itself. Those buffers can pin it. + * + * Returns true if all buffers were removed. + */ +int remove_inode_buffers(struct inode *inode) +{ + int ret = 1; + + if (inode_has_buffers(inode)) { + struct address_space *mapping = &inode->i_data; + struct list_head *list = &mapping->private_list; + struct address_space *buffer_mapping = mapping->assoc_mapping; + + spin_lock(&buffer_mapping->private_lock); + while (!list_empty(list)) { + struct buffer_head *bh = BH_ENTRY(list->next); + if (buffer_dirty(bh)) { + ret = 0; + break; + } + __remove_assoc_queue(bh); + } + spin_unlock(&buffer_mapping->private_lock); + } + return ret; +} + +/* + * Create the appropriate buffers when given a page for data area and + * the size of each buffer.. Use the bh->b_this_page linked list to + * follow the buffers created. Return NULL if unable to create more + * buffers. + * + * The retry flag is used to differentiate async IO (paging, swapping) + * which may not fail from ordinary buffer allocations. + */ +struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, + int retry) +{ + struct buffer_head *bh, *head; + long offset; + +try_again: + head = NULL; + offset = PAGE_SIZE; + while ((offset -= size) >= 0) { + bh = alloc_buffer_head(GFP_NOFS); + if (!bh) + goto no_grow; + + bh->b_bdev = NULL; + bh->b_this_page = head; + bh->b_blocknr = -1; + head = bh; + + bh->b_state = 0; + atomic_set(&bh->b_count, 0); + bh->b_size = size; + + /* Link the buffer to its page */ + set_bh_page(bh, page, offset); + + bh->b_end_io = NULL; + } + return head; +/* + * In case anything failed, we just free everything we got. + */ +no_grow: + if (head) { + do { + bh = head; + head = head->b_this_page; + free_buffer_head(bh); + } while (head); + } + + /* + * Return failure for non-async IO requests. Async IO requests + * are not allowed to fail, so we have to wait until buffer heads + * become available. But we don't want tasks sleeping with + * partially complete buffers, so all were released above. + */ + if (!retry) + return NULL; + + /* We're _really_ low on memory. Now we just + * wait for old buffer heads to become free due to + * finishing IO. Since this is an async request and + * the reserve list is empty, we're sure there are + * async buffer heads in use. + */ + free_more_memory(); + goto try_again; +} +EXPORT_SYMBOL_GPL(alloc_page_buffers); + +static inline void +link_dev_buffers(struct page *page, struct buffer_head *head) +{ + struct buffer_head *bh, *tail; + + bh = head; + do { + tail = bh; + bh = bh->b_this_page; + } while (bh); + tail->b_this_page = head; + attach_page_buffers(page, head); +} + +/* + * Initialise the state of a blockdev page's buffers. + */ +static void +init_page_buffers(struct page *page, struct block_device *bdev, + sector_t block, int size) +{ + struct buffer_head *head = page_buffers(page); + struct buffer_head *bh = head; + int uptodate = PageUptodate(page); + + do { + if (!buffer_mapped(bh)) { + init_buffer(bh, NULL, NULL); + bh->b_bdev = bdev; + bh->b_blocknr = block; + if (uptodate) + set_buffer_uptodate(bh); + set_buffer_mapped(bh); + } + block++; + bh = bh->b_this_page; + } while (bh != head); +} + +/* + * Create the page-cache page that contains the requested block. + * + * This is user purely for blockdev mappings. + */ +static struct page * +grow_dev_page(struct block_device *bdev, sector_t block, + pgoff_t index, int size) +{ + struct inode *inode = bdev->bd_inode; + struct page *page; + struct buffer_head *bh; + + page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); + if (!page) + return NULL; + + if (!PageLocked(page)) |