diff options
author | David Barksdale <amatus@amatus.name> | 2014-08-13 16:14:13 -0500 |
---|---|---|
committer | David Barksdale <amatus@amatus.name> | 2014-08-13 16:14:13 -0500 |
commit | ace6c6d243016e272050787c14e27a83ecd94a25 (patch) | |
tree | c837edb1ca98b2552fbc7edba47aeb63f98ca1f0 /drivers | |
parent | 1b6e1688bd215cd7c9cb75650fa815a1ec6567e1 (diff) |
gpl-source-mybooklive-010002-update.zipgpl-source-mybooklive-010103-update.zipgpl-source-mybooklive-010002-update.zip
Diffstat (limited to 'drivers')
103 files changed, 59242 insertions, 224 deletions
diff --git a/drivers/Kconfig b/drivers/Kconfig index 48bbdbe43e6..2db8a713a24 100644 --- a/drivers/Kconfig +++ b/drivers/Kconfig @@ -54,6 +54,8 @@ source "drivers/spi/Kconfig" source "drivers/pps/Kconfig" +source "drivers/scp/Kconfig" + source "drivers/gpio/Kconfig" source "drivers/w1/Kconfig" @@ -113,4 +115,6 @@ source "drivers/xen/Kconfig" source "drivers/staging/Kconfig" source "drivers/platform/Kconfig" + +source "drivers/test/Kconfig" endmenu diff --git a/drivers/Makefile b/drivers/Makefile index 6ee53c7a57a..1c20084726b 100644 --- a/drivers/Makefile +++ b/drivers/Makefile @@ -53,6 +53,7 @@ obj-y += ieee1394/ obj-$(CONFIG_UIO) += uio/ obj-y += cdrom/ obj-y += auxdisplay/ +obj-$(CONFIG_SCP) += scp/ obj-$(CONFIG_PCCARD) += pcmcia/ obj-$(CONFIG_DIO) += dio/ obj-$(CONFIG_SBUS) += sbus/ @@ -111,3 +112,4 @@ obj-$(CONFIG_VLYNQ) += vlynq/ obj-$(CONFIG_STAGING) += staging/ obj-y += platform/ obj-y += ieee802154/ +obj-$(CONFIG_PPC4xx_TEST) += test/ diff --git a/drivers/ata/Kconfig b/drivers/ata/Kconfig index f2df6e2a224..1a3fcdffa00 100644 --- a/drivers/ata/Kconfig +++ b/drivers/ata/Kconfig @@ -103,6 +103,43 @@ config ATA_SFF if ATA_SFF +config SATA_DWC + tristate "DesignWare Cores SATA support" + depends on 460EX || APM82181 + help + This option enables support for the Synopsys DesignWare Cores SATA + controller. + It can be found on the AMCC 460EX. + If unsure, say N. + +config SATA_DWC_PMP + tristate "DesignWare Cores SATA with PMP support" + depends on 460EX || APM82181 + help + This option enables support for the Synopsys DesignWare Cores SATA + controller. + It can be found on the AMCC 460EX. + If unsure, say N. + +config SATA_DWC_NCQ + tristate "DesignWare Cores SATA with PMP and NCQ support" + depends on 460EX || APM82181 + help + This option enables support for the Synopsys DesignWare Cores SATA + controller. + It can be found on the AMCC 460EX. + If unsure, say N. + +config SATA_DWC_DEBUG + bool "Enable debug output" + depends on SATA_DWC || SATA_DWC_PMP || SATA_DWC_NCQ + default n + +config SATA_DWC_VDEBUG + bool "Enable verbose debug output" + depends on ( SATA_DWC || SATA_DWC_PMP || SATA_DWC_NCQ ) && SATA_DWC_DEBUG + default n + config SATA_SVW tristate "ServerWorks Frodo / Apple K2 SATA support" depends on PCI diff --git a/drivers/ata/Makefile b/drivers/ata/Makefile index 01e126f343b..576dd780794 100644 --- a/drivers/ata/Makefile +++ b/drivers/ata/Makefile @@ -18,6 +18,9 @@ obj-$(CONFIG_SATA_MV) += sata_mv.o obj-$(CONFIG_SATA_INIC162X) += sata_inic162x.o obj-$(CONFIG_PDC_ADMA) += pdc_adma.o obj-$(CONFIG_SATA_FSL) += sata_fsl.o +obj-$(CONFIG_SATA_DWC) += sata_dwc.o +obj-$(CONFIG_SATA_DWC_PMP) += sata_dwc_pmp.o +obj-$(CONFIG_SATA_DWC_NCQ) += sata_dwc_ncq.o obj-$(CONFIG_PATA_ALI) += pata_ali.o obj-$(CONFIG_PATA_AMD) += pata_amd.o diff --git a/drivers/ata/sata_dwc.c b/drivers/ata/sata_dwc.c new file mode 100644 index 00000000000..8e5405c71a4 --- /dev/null +++ b/drivers/ata/sata_dwc.c @@ -0,0 +1,2316 @@ +/* + * drivers/ata/sata_dwc.c + * + * Synopsys DesignWare Cores (DWC) SATA host driver + * + * Author: Mark Miesfeld <mmiesfeld@amcc.com> + * + * Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de> + * Copyright 2008 DENX Software Engineering + * + * Based on versions provided by AMCC and Synopsys which are: + * Copyright 2006 Applied Micro Circuits Corporation + * COPYRIGHT (C) 2005 SYNOPSYS, INC. ALL RIGHTS RESERVED + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 of the License, or (at your + * option) any later version. + * + */ +#ifdef CONFIG_SATA_DWC_DEBUG +#define DEBUG +#endif + +#ifdef CONFIG_SATA_DWC_VDEBUG +#define VERBOSE_DEBUG +#define DEBUG_NCQ +#endif + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/init.h> +#include <linux/device.h> +#include <linux/of_platform.h> +#include <linux/libata.h> + +#include <scsi/scsi_host.h> +#include <scsi/scsi_cmnd.h> + +#define DRV_NAME "sata-dwc" +#define DRV_VERSION "1.0" + +/* SATA DMA driver Globals */ +#if defined(CONFIG_APM82181) +#define DMA_NUM_CHANS 2 +#else +#define DMA_NUM_CHANS 1 +#endif + +#define DMA_NUM_CHAN_REGS 8 + +/* SATA DMA Register definitions */ +#if defined(CONFIG_APM82181) +#define AHB_DMA_BRST_DFLT 64 /* 16 data items burst length */ +#else +#define AHB_DMA_BRST_DFLT 64 /* 16 data items burst length */ +#endif + +struct dmareg { + u32 low; /* Low bits 0-31 */ + u32 high; /* High bits 32-63 */ +}; + +/* DMA Per Channel registers */ + +struct dma_chan_regs { + struct dmareg sar; /* Source Address */ + struct dmareg dar; /* Destination address */ + struct dmareg llp; /* Linked List Pointer */ + struct dmareg ctl; /* Control */ + struct dmareg sstat; /* Source Status not implemented in core */ + struct dmareg dstat; /* Destination Status not implemented in core */ + struct dmareg sstatar; /* Source Status Address not impl in core */ + struct dmareg dstatar; /* Destination Status Address not implemented */ + struct dmareg cfg; /* Config */ + struct dmareg sgr; /* Source Gather */ + struct dmareg dsr; /* Destination Scatter */ +}; + +/* Generic Interrupt Registers */ +struct dma_interrupt_regs { + struct dmareg tfr; /* Transfer Interrupt */ + struct dmareg block; /* Block Interrupt */ + struct dmareg srctran; /* Source Transfer Interrupt */ + struct dmareg dsttran; /* Dest Transfer Interrupt */ + struct dmareg error; /* Error */ +}; + +struct ahb_dma_regs { + struct dma_chan_regs chan_regs[DMA_NUM_CHAN_REGS]; + struct dma_interrupt_regs interrupt_raw; /* Raw Interrupt */ + struct dma_interrupt_regs interrupt_status; /* Interrupt Status */ + struct dma_interrupt_regs interrupt_mask; /* Interrupt Mask */ + struct dma_interrupt_regs interrupt_clear; /* Interrupt Clear */ + struct dmareg statusInt; /* Interrupt combined */ + struct dmareg rq_srcreg; /* Src Trans Req */ + struct dmareg rq_dstreg; /* Dst Trans Req */ + struct dmareg rq_sgl_srcreg; /* Sngl Src Trans Req */ + struct dmareg rq_sgl_dstreg; /* Sngl Dst Trans Req */ + struct dmareg rq_lst_srcreg; /* Last Src Trans Req */ + struct dmareg rq_lst_dstreg; /* Last Dst Trans Req */ + struct dmareg dma_cfg; /* DMA Config */ + struct dmareg dma_chan_en; /* DMA Channel Enable */ + struct dmareg dma_id; /* DMA ID */ + struct dmareg dma_test; /* DMA Test */ + struct dmareg res1; /* reserved */ + struct dmareg res2; /* reserved */ + + /* DMA Comp Params + * Param 6 = dma_param[0], Param 5 = dma_param[1], + * Param 4 = dma_param[2] ... + */ + struct dmareg dma_params[6]; +}; + +/* Data structure for linked list item */ +struct lli { + u32 sar; /* Source Address */ + u32 dar; /* Destination address */ + u32 llp; /* Linked List Pointer */ + struct dmareg ctl; /* Control */ +#if defined(CONFIG_APM82181) + u32 dstat; /* Source status is not supported */ +#else + struct dmareg dstat; /* Destination Status */ +#endif +}; + +#define SATA_DWC_DMAC_LLI_SZ (sizeof(struct lli)) +#define SATA_DWC_DMAC_LLI_NUM 256 +#define SATA_DWC_DMAC_TWIDTH_BYTES 4 +#define SATA_DWC_DMAC_LLI_TBL_SZ \ + (SATA_DWC_DMAC_LLI_SZ * SATA_DWC_DMAC_LLI_NUM) +#if defined(CONFIG_APM82181) +#define SATA_DWC_DMAC_CTRL_TSIZE_MAX \ + (0x00000800 * SATA_DWC_DMAC_TWIDTH_BYTES) +#else +#define SATA_DWC_DMAC_CTRL_TSIZE_MAX \ + (0x00000800 * SATA_DWC_DMAC_TWIDTH_BYTES) +#endif +/* DMA Register Operation Bits */ +#define DMA_EN 0x00000001 /* Enable AHB DMA */ +#define DMA_CHANNEL(ch) (0x00000001 << (ch)) /* Select channel */ +#define DMA_ENABLE_CHAN(ch) ((0x00000001 << (ch)) | \ + ((0x000000001 << (ch)) << 8)) +#define DMA_DISABLE_CHAN(ch) (0x00000000 | ((0x000000001 << (ch)) << 8)) + +/* Channel Control Register */ +#define DMA_CTL_BLK_TS(size) ((size) & 0x000000FFF) /* Blk Transfer size */ +#define DMA_CTL_LLP_SRCEN 0x10000000 /* Blk chain enable Src */ +#define DMA_CTL_LLP_DSTEN 0x08000000 /* Blk chain enable Dst */ +/* + * This define is used to set block chaining disabled in the control low + * register. It is already in little endian format so it can be &'d dirctly. + * It is essentially: cpu_to_le32(~(DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN)) + */ +#define DMA_CTL_LLP_DISABLE_LE32 0xffffffe7 +#define DMA_CTL_SMS(num) ((num & 0x3) << 25) /*Src Master Select*/ +#define DMA_CTL_DMS(num) ((num & 0x3) << 23) /*Dst Master Select*/ +#define DMA_CTL_TTFC(type) ((type & 0x7) << 20) /*Type&Flow cntr*/ +#define DMA_CTL_TTFC_P2M_DMAC 0x00000002 /*Per mem,DMAC cntr*/ +#define DMA_CTL_TTFC_M2P_PER 0x00000003 /*Mem per,peri cntr*/ +#define DMA_CTL_SRC_MSIZE(size) ((size & 0x7) << 14) /*Src Burst Len*/ +#define DMA_CTL_DST_MSIZE(size) ((size & 0x7) << 11) /*Dst Burst Len*/ +#define DMA_CTL_SINC_INC 0x00000000 /*Src addr incr*/ +#define DMA_CTL_SINC_DEC 0x00000200 +#define DMA_CTL_SINC_NOCHANGE 0x00000400 +#define DMA_CTL_DINC_INC 0x00000000 /*Dst addr incr*/ +#define DMA_CTL_DINC_DEC 0x00000080 +#define DMA_CTL_DINC_NOCHANGE 0x00000100 +#define DMA_CTL_SRC_TRWID(size) ((size & 0x7) << 4) /*Src Trnsfr Width*/ +#define DMA_CTL_DST_TRWID(size) ((size & 0x7) << 1) /*Dst Trnsfr Width*/ +#define DMA_CTL_INT_EN 0x00000001 /*Interrupt Enable*/ + +/* Channel Configuration Register high bits */ +#define DMA_CFG_FCMOD_REQ 0x00000001 /*Flow cntrl req*/ +#define DMA_CFG_PROTCTL (0x00000003 << 2) /*Protection cntrl*/ + +/* Channel Configuration Register low bits */ +#define DMA_CFG_RELD_DST 0x80000000 /*Reload Dst/Src Addr*/ +#define DMA_CFG_RELD_SRC 0x40000000 +#define DMA_CFG_HS_SELSRC 0x00000800 /*SW hndshk Src/Dst*/ +#define DMA_CFG_HS_SELDST 0x00000400 +#define DMA_CFG_FIFOEMPTY (0x00000001 << 9) /*FIFO Empty bit*/ + +/* Assign hardware handshaking interface (x) to dst / sre peripheral */ +#define DMA_CFG_HW_HS_DEST(int_num) ((int_num & 0xF) << 11) +#define DMA_CFG_HW_HS_SRC(int_num) ((int_num & 0xF) << 7) + +/* Channel Linked List Pointer Register */ +#define DMA_LLP_LMS(addr, master) (((addr) & 0xfffffffc) | (master)) +#define DMA_LLP_AHBMASTER1 0 /* List Master Select */ +#define DMA_LLP_AHBMASTER2 1 + +#define SATA_DWC_MAX_PORTS 1 + +#define SATA_DWC_SCR_OFFSET 0x24 +#define SATA_DWC_REG_OFFSET 0x64 + +/* DWC SATA Registers */ +struct sata_dwc_regs { + u32 fptagr; /* 1st party DMA tag */ + u32 fpbor; /* 1st party DMA buffer offset */ + u32 fptcr; /* 1st party DMA Xfr count */ + u32 dmacr; /* DMA Control */ + u32 dbtsr; /* DMA Burst Transac size */ + u32 intpr; /* Interrupt Pending */ + u32 intmr; /* Interrupt Mask */ + u32 errmr; /* Error Mask */ + u32 llcr; /* Link Layer Control */ + u32 phycr; /* PHY Control */ + u32 physr; /* PHY Status */ + u32 rxbistpd; /* Recvd BIST pattern def register */ + u32 rxbistpd1; /* Recvd BIST data dword1 */ + u32 rxbistpd2; /* Recvd BIST pattern data dword2 */ + u32 txbistpd; /* Trans BIST pattern def register */ + u32 txbistpd1; /* Trans BIST data dword1 */ + u32 txbistpd2; /* Trans BIST data dword2 */ + u32 bistcr; /* BIST Control Register */ + u32 bistfctr; /* BIST FIS Count Register */ + u32 bistsr; /* BIST Status Register */ + u32 bistdecr; /* BIST Dword Error count register */ + u32 res[15]; /* Reserved locations */ + u32 testr; /* Test Register */ + u32 versionr; /* Version Register */ + u32 idr; /* ID Register */ + u32 unimpl[192]; /* Unimplemented */ + u32 dmadr[256]; /* FIFO Locations in DMA Mode */ +}; + +#define SCR_SCONTROL_DET_ENABLE 0x00000001 +#define SCR_SSTATUS_DET_PRESENT 0x00000001 +#define SCR_SERROR_DIAG_X 0x04000000 + +/* DWC SATA Register Operations */ +#define SATA_DWC_TXFIFO_DEPTH 0x01FF +#define SATA_DWC_RXFIFO_DEPTH 0x01FF + +#define SATA_DWC_DMACR_TMOD_TXCHEN 0x00000004 +#define SATA_DWC_DMACR_TXCHEN (0x00000001 | \ + SATA_DWC_DMACR_TMOD_TXCHEN) +#define SATA_DWC_DMACR_RXCHEN (0x00000002 | \ + SATA_DWC_DMACR_TMOD_TXCHEN) +#define SATA_DWC_DMACR_TX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_TXCHEN) | \ + SATA_DWC_DMACR_TMOD_TXCHEN) +#define SATA_DWC_DMACR_RX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_RXCHEN) | \ + SATA_DWC_DMACR_TMOD_TXCHEN) +#define SATA_DWC_DMACR_TXRXCH_CLEAR SATA_DWC_DMACR_TMOD_TXCHEN + +#define SATA_DWC_DBTSR_MWR(size) ((size/4) & \ + SATA_DWC_TXFIFO_DEPTH) +#define SATA_DWC_DBTSR_MRD(size) (((size/4) & \ + SATA_DWC_RXFIFO_DEPTH) << 16) +#define SATA_DWC_INTPR_DMAT 0x00000001 +#define SATA_DWC_INTPR_NEWFP 0x00000002 +#define SATA_DWC_INTPR_PMABRT 0x00000004 +#define SATA_DWC_INTPR_ERR 0x00000008 +#define SATA_DWC_INTPR_NEWBIST 0x00000010 +#define SATA_DWC_INTPR_IPF 0x10000000 +#define SATA_DWC_INTMR_DMATM 0x00000001 +#define SATA_DWC_INTMR_NEWFPM 0x00000002 +#define SATA_DWC_INTMR_PMABRTM 0x00000004 +#define SATA_DWC_INTMR_ERRM 0x00000008 +#define SATA_DWC_INTMR_NEWBISTM 0x00000010 +#define SATA_DWC_LLCR_SCRAMEN 0x00000001 +#define SATA_DWC_LLCR_DESCRAMEN 0x00000002 +#define SATA_DWC_LLCR_RPDEN 0x00000004 + +/* This is all error bits, zero's are reserved fields. */ +#define SATA_DWC_SERROR_ERR_BITS 0x0FFF0F03 + +#define SATA_DWC_SCR0_SPD_GET(v) ((v >> 4) & 0x0000000F) + +struct sata_dwc_device { + struct resource reg; /* Resource for register */ + struct device *dev; /* generic device struct */ + struct ata_probe_ent *pe; /* ptr to probe-ent */ + struct ata_host *host; + u8 *reg_base; + struct sata_dwc_regs *sata_dwc_regs; /* DW Synopsys SATA specific */ + u8 *scr_base; + int dma_channel; /* DWC SATA DMA channel */ + int irq_dma; +}; + +#define SATA_DWC_QCMD_MAX 32 + +struct sata_dwc_device_port { + struct sata_dwc_device *hsdev; + int cmd_issued[SATA_DWC_QCMD_MAX]; + struct lli *llit[SATA_DWC_QCMD_MAX]; + dma_addr_t llit_dma[SATA_DWC_QCMD_MAX]; + u32 dma_chan[SATA_DWC_QCMD_MAX]; + int dma_pending[SATA_DWC_QCMD_MAX]; + u32 sata_dwc_sactive_issued; /* issued queued ops */ + u32 sata_dwc_sactive_queued; /* queued ops */ + u32 dma_interrupt_count; + +}; + +static struct sata_dwc_device* dwc_dev_list[2]; +static int dma_intr_registered = 0; + +/* + * Commonly used DWC SATA driver Macros + */ +#define HSDEV_FROM_HOST(host) ((struct sata_dwc_device *) \ + (host)->private_data) +#define HSDEV_FROM_AP(ap) ((struct sata_dwc_device *) \ + (ap)->host->private_data) +#define HSDEVP_FROM_AP(ap) ((struct sata_dwc_device_port *) \ + (ap)->private_data) +#define HSDEV_FROM_QC(qc) ((struct sata_dwc_device *) \ + (qc)->ap->host->private_data) +#define HSDEV_FROM_HSDEVP(p) ((struct sata_dwc_device *) \ + (hsdevp)->hsdev) + +enum { + SATA_DWC_CMD_ISSUED_NOT = 0, + SATA_DWC_CMD_ISSUED_PENDING = 1, + SATA_DWC_CMD_ISSUED_EXEC = 2, + SATA_DWC_CMD_ISSUED_NODATA = 3, + + SATA_DWC_DMA_PENDING_NONE = 0, + SATA_DWC_DMA_PENDING_TX = 1, + SATA_DWC_DMA_PENDING_RX = 2, +}; + +/* + * Globals + */ +static struct ahb_dma_regs *sata_dma_regs = 0; +/* +* Duc: Moving to device port field to make it private per each port +*/ +//static u32 sata_dwc_sactive_issued = 0; /* issued queued ops */ +//static u32 sata_dwc_sactive_queued = 0; /* queued ops */ +//static u32 dma_interrupt_count; + +/* + * Prototypes + */ +static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag); +static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc, + u32 check_status); +static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status); +static void sata_dwc_port_stop(struct ata_port *ap); +static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag); + +static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq); +static void dma_dwc_exit(struct sata_dwc_device *hsdev); +static int dma_dwc_xfer_setup(struct ata_queued_cmd *qc, + struct lli *lli, dma_addr_t dma_lli, + void __iomem *addr); +static void dma_dwc_xfer_start(int dma_ch); +static void dma_dwc_terminate_dma(struct ata_port *ap, int dma_ch); + +static const char *dir_2_txt(enum dma_data_direction dir) +{ + switch (dir) { + case DMA_BIDIRECTIONAL: + return "bi"; + case DMA_FROM_DEVICE: + return "from"; + case DMA_TO_DEVICE: + return "to"; + case DMA_NONE: + return "none"; + default: + return "err"; + } +} + +static const char *prot_2_txt(enum ata_tf_protocols protocol) +{ + switch (protocol) { + case ATA_PROT_UNKNOWN: + return "unknown"; + case ATA_PROT_NODATA: + return "nodata"; + case ATA_PROT_PIO: + return "pio"; + case ATA_PROT_DMA: + return "dma"; + case ATA_PROT_NCQ: + return "ncq"; + case ATAPI_PROT_PIO: + return "atapi pio"; + case ATAPI_PROT_NODATA: + return "atapi nodata"; + case ATAPI_PROT_DMA: + return "atapi dma"; + default: + return "err"; + } +} + +inline const char *ata_cmd_2_txt(const struct ata_taskfile *tf) +{ + switch (tf->command) { + case ATA_CMD_CHK_POWER: + return "ATA_CMD_CHK_POWER"; + case ATA_CMD_EDD: + return "ATA_CMD_EDD"; + case ATA_CMD_FLUSH: + return "ATA_CMD_FLUSH"; + case ATA_CMD_FLUSH_EXT: + return "ATA_CMD_FLUSH_EXT"; + case ATA_CMD_ID_ATA: + return "ATA_CMD_ID_ATA"; + case ATA_CMD_ID_ATAPI: + return "ATA_CMD_ID_ATAPI"; + case ATA_CMD_FPDMA_READ: + return "ATA_CMD_FPDMA_READ"; + case ATA_CMD_FPDMA_WRITE: + return "ATA_CMD_FPDMA_WRITE"; + case ATA_CMD_READ: + return "ATA_CMD_READ"; + case ATA_CMD_READ_EXT: + return "ATA_CMD_READ_EXT"; + case ATA_CMD_WRITE: + return "ATA_CMD_WRITE"; + case ATA_CMD_WRITE_EXT: + return "ATA_CMD_WRITE_EXT"; + case ATA_CMD_PIO_READ: + return "ATA_CMD_PIO_READ"; + case ATA_CMD_PIO_READ_EXT: + return "ATA_CMD_PIO_READ_EXT"; + case ATA_CMD_PIO_WRITE: + return "ATA_CMD_PIO_WRITE"; + case ATA_CMD_PIO_WRITE_EXT: + return "ATA_CMD_PIO_WRITE_EXT"; + case ATA_CMD_SET_FEATURES: + return "ATA_CMD_SET_FEATURES"; + case ATA_CMD_PACKET: + return "ATA_CMD_PACKET"; + default: + return "ATA_CMD_???"; + } +} + +static void sata_dwc_tf_dump(struct device *dwc_dev, struct ata_taskfile *tf) +{ + dev_vdbg(dwc_dev, "taskfile cmd: 0x%02x protocol: %s flags: 0x%lx" + "device: %x\n", tf->command, prot_2_txt(tf->protocol), + tf->flags, tf->device); + dev_vdbg(dwc_dev, "feature: 0x%02x nsect: 0x%x lbal: 0x%x lbam:" + "0x%x lbah: 0x%x\n", tf->feature, tf->nsect, tf->lbal, + tf->lbam, tf->lbah); + dev_vdbg(dwc_dev, "hob_feature: 0x%02x hob_nsect: 0x%x hob_lbal: 0x%x " + "hob_lbam: 0x%x hob_lbah: 0x%x\n", tf->hob_feature, + tf->hob_nsect, tf->hob_lbal, tf->hob_lbam, + tf->hob_lbah); +} + +/* + * Function: get_burst_length_encode + * arguments: datalength: length in bytes of data + * returns value to be programmed in register corrresponding to data length + * This value is effectively the log(base 2) of the length + */ +static inline int get_burst_length_encode(int datalength) +{ + int items = datalength >> 2; /* div by 4 to get lword count */ + + if (items >= 64) + return 5; + + if (items >= 32) + return 4; + + if (items >= 16) + return 3; + + if (items >= 8) + return 2; + + if (items >= 4) + return 1; + + return 0; +} + +static inline void clear_chan_interrupts(int c) +{ + out_le32(&(sata_dma_regs->interrupt_clear.tfr.low), DMA_CHANNEL(c)); + out_le32(&(sata_dma_regs->interrupt_clear.block.low), DMA_CHANNEL(c)); + out_le32(&(sata_dma_regs->interrupt_clear.srctran.low), DMA_CHANNEL(c)); + out_le32(&(sata_dma_regs->interrupt_clear.dsttran.low), DMA_CHANNEL(c)); + out_le32(&(sata_dma_regs->interrupt_clear.error.low), DMA_CHANNEL(c)); +} + +/* + * Function: dma_request_channel + * arguments: None + * returns channel number if available else -1 + * This function assigns the next available DMA channel from the list to the + * requester + */ +static int dma_request_channel(struct ata_port *ap) +{ + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + + if (!(in_le32(&(sata_dma_regs->dma_chan_en.low)) & DMA_CHANNEL(hsdev->dma_channel))) { + #if defined(VERBOSE_DEBUG) + dev_notice(ap->dev, "%s Successfully requested DMA channel %d\n", + __func__, hsdev->dma_channel); + #endif + return (hsdev->dma_channel); + } + + return -1; +} + + + +/* + * Function: dma_dwc_interrupt + * arguments: irq, dev_id, pt_regs + * returns channel number if available else -1 + * Interrupt Handler for DW AHB SATA DMA + */ +static int dma_dwc_interrupt(int irq, void *hsdev_instance) +{ + int chan; + volatile u32 tfr_reg, err_reg; + unsigned long flags; + struct sata_dwc_device *hsdev = + (struct sata_dwc_device *)hsdev_instance; + struct ata_host *host = (struct ata_host *)hsdev->host; + struct ata_port *ap; + struct sata_dwc_device_port *hsdevp; + u8 tag = 0; + unsigned int port = 0; + spin_lock_irqsave(&host->lock, flags); + + + ap = host->ports[port]; + hsdevp = HSDEVP_FROM_AP(ap); + tag = ap->link.active_tag; +#if defined(VERBOSE_DEBUG) + dev_notice(ap->dev, "%s: DMA interrupt in channel %d\n", __func__, hsdevp->hsdev->dma_channel); +#endif + tfr_reg = in_le32(&(sata_dma_regs->interrupt_status.tfr.low)); + err_reg = in_le32(&(sata_dma_regs->interrupt_status.error.low)); + + dev_dbg(ap->dev, "eot=0x%08x err=0x%08x pending=%d active port=%d\n", + tfr_reg, err_reg, hsdevp->dma_pending[tag], port); +#if 0 + for (chan = 0; chan < DMA_NUM_CHANS; chan++) { + /* Check for end-of-transfer interrupt. */ + + /* Do nothing if this interrupt does not happen in hsdev DMA channel */ + if (hsdev->dma_channel != chan) { + continue; + } +#endif + chan = hsdev->dma_channel; + + if (tfr_reg & DMA_CHANNEL(chan)) { + /* + *Each DMA command produces 2 interrupts. Only + * complete the command after both interrupts have been + * seen. (See sata_dwc_isr()) + */ + hsdevp->dma_interrupt_count++; + + sata_dwc_clear_dmacr(hsdevp, tag); + + if (unlikely(hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE)) { + dev_err(ap->dev, "DMA not pending eot=0x%08x " + "err=0x%08x tag=0x%02x pending=%d\n", + tfr_reg, err_reg, tag, + hsdevp->dma_pending[tag]); + } + + if ((hsdevp->dma_interrupt_count % 2) == 0) + sata_dwc_dma_xfer_complete(ap, 1); + + /* Clear the interrupt */ + out_le32(&(sata_dma_regs->interrupt_clear.tfr.low), + DMA_CHANNEL(chan)); + } + + /* Check for error interrupt. */ + /* We do not expect error happens */ + if (unlikely(err_reg & DMA_CHANNEL(chan))) { + /* TODO Need error handler ! */ + dev_err(ap->dev, "error interrupt err_reg=0x%08x\n", + err_reg); + + /* Clear the interrupt. */ + out_le32(&(sata_dma_regs->interrupt_clear.error.low), + DMA_CHANNEL(chan)); + } +#if 0 + } +#endif + spin_unlock_irqrestore(&host->lock, flags); + return IRQ_HANDLED; +} + +static irqreturn_t dma_dwc_handler(int irq, void *hsdev_instance) +{ + volatile u32 tfr_reg, err_reg; + int chan; + + tfr_reg = in_le32(&(sata_dma_regs->interrupt_status.tfr.low)); + err_reg = in_le32(&(sata_dma_regs->interrupt_status.error.low)); + + for (chan = 0; chan < DMA_NUM_CHANS; chan++) { + /* Check for end-of-transfer interrupt. */ + + if (tfr_reg & DMA_CHANNEL(chan)) { + dma_dwc_interrupt(0, dwc_dev_list[chan]); + } + + /* Check for error interrupt. */ + if (err_reg & DMA_CHANNEL(chan)) { + dma_dwc_interrupt(0, dwc_dev_list[chan]); + } + } + + return IRQ_HANDLED; +} + + +/* + * Function: dma_request_interrupts + * arguments: hsdev + * returns status + * This function registers ISR for a particular DMA channel interrupt + */ +static int dma_request_interrupts(struct sata_dwc_device *hsdev, int irq) +{ + int retval = 0; + int chan; + + for (chan = 0; chan < DMA_NUM_CHANS; chan++) { + /* Unmask error interrupt */ + out_le32(&sata_dma_regs->interrupt_mask.error.low, + in_le32(&sata_dma_regs->interrupt_mask.error.low) | DMA_ENABLE_CHAN(chan)); + + /* Unmask end-of-transfer interrupt */ + out_le32(&sata_dma_regs->interrupt_mask.tfr.low, + in_le32(&sata_dma_regs->interrupt_mask.tfr.low) | DMA_ENABLE_CHAN(chan)); +#if 0 + out_le32(&sata_dma_regs->interrupt_mask.block.low, + DMA_ENABLE_CHAN(chan)); + + out_le32(&sata_dma_regs->interrupt_mask.srctran.low, + DMA_ENABLE_CHAN(chan)); + + out_le32(&sata_dma_regs->interrupt_mask.dsttran.low, + DMA_ENABLE_CHAN(chan)); +#endif + } + + /* + * FIXME: 2 SATA controllers share the same DMA engine so + * currently, they also share same DMA interrupt + */ + if (!dma_intr_registered) { + //retval = request_irq(irq, dma_dwc_interrupt, IRQF_SHARED, "SATA DMA", hsdev); + retval = request_irq(irq, dma_dwc_handler, IRQF_DISABLED, "SATA DMA", NULL); + if (retval) { + dev_err(hsdev->dev, "%s: could not get IRQ %d\n", __func__, irq); + return -ENODEV; + } + dma_intr_registered = 1; + } + + + /* Mark this interrupt as requested */ + hsdev->irq_dma = irq; + + return 0; +} + +/* + * Function: map_sg_to_lli + * arguments: sg: scatter/gather list(sg) + * num_elems: no of elements in sg list + * dma_lli: LLI table + * dest: destination address + * read: whether the transfer is read or write + * returns array of AHB DMA Linked List Items + * This function creates a list of LLIs for DMA Xfr and returns the number + * of elements in the DMA linked list. + * + * Note that the Synopsis driver has a comment proposing that better performance + * is possible by only enabling interrupts on the last item in the linked list. + * However, it seems that could be a problem if an error happened on one of the + * first items. The transfer would halt, but no error interrupt would occur. + * + * Currently this function sets interrupts enabled for each linked list item: + * DMA_CTL_INT_EN. + */ +static int map_sg_to_lli(struct ata_queued_cmd *qc, struct lli *lli, + dma_addr_t dma_lli, void __iomem *dmadr_addr) +{ + struct scatterlist *sg = qc->sg; + struct device *dwc_dev = qc->ap->dev; + int num_elems = qc->n_elem; + int dir = qc->dma_dir; + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(qc->ap); + + int i, idx = 0; + int fis_len = 0; + dma_addr_t next_llp; + int bl; + unsigned int dma_ts = 0; + + dev_dbg(dwc_dev, "%s: sg=%p nelem=%d lli=%p dma_lli=0x%08x " + "dmadr=0x%08x\n", __func__, sg, num_elems, lli, (u32)dma_lli, + (u32)dmadr_addr); + + bl = get_burst_length_encode(AHB_DMA_BRST_DFLT); + + for (i = 0; i < num_elems; i++, sg++) { + u32 addr, offset; + u32 sg_len, len; + + addr = (u32) sg_dma_address(sg); + sg_len = sg_dma_len(sg); + + dev_dbg(dwc_dev, "%s: elem=%d sg_addr=0x%x sg_len=%d\n", + __func__, i, addr, sg_len); + + while (sg_len) { + + if (unlikely(idx >= SATA_DWC_DMAC_LLI_NUM)) { + /* The LLI table is not large enough. */ + dev_err(dwc_dev, "LLI table overrun (idx=%d)\n", + idx); + break; + } + len = (sg_len > SATA_DWC_DMAC_CTRL_TSIZE_MAX) ? + SATA_DWC_DMAC_CTRL_TSIZE_MAX : sg_len; + + offset = addr & 0xffff; + if ((offset + sg_len) > 0x10000) + len = 0x10000 - offset; + + /* + * Make sure a LLI block is not created that will span a + * 8K max FIS boundary. If the block spans such a FIS + * boundary, there is a chance that a DMA burst will + * cross that boundary -- this results in an error in + * the host controller. + */ + if (unlikely(fis_len + len > 8192)) { + dev_dbg(dwc_dev, "SPLITTING: fis_len=%d(0x%x) " + "len=%d(0x%x)\n", fis_len, fis_len, + len, len); + len = 8192 - fis_len; + fis_len = 0; + } else { + fis_len += len; + } + if (fis_len == 8192) + fis_len = 0; + + /* + * Set DMA addresses and lower half of control register + * based on direction. + */ +#if defined(VERBOSE_DEBUG) + dev_notice(qc->ap->dev, "%s: sg_len = %d, len = %d\n", __func__, sg_len, len); +#endif + +#if defined(CONFIG_APM82181) + if (dir == DMA_FROM_DEVICE) { + lli[idx].dar = cpu_to_le32(addr); + lli[idx].sar = cpu_to_le32((u32)dmadr_addr); + if (hsdevp->hsdev->dma_channel == 0) {/* DMA channel 0 */ + lli[idx].ctl.low = cpu_to_le32( + DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC) | + DMA_CTL_SMS(1) | /* Source: Master 2 */ + DMA_CTL_DMS(0) | /* Dest: Master 1 */ + DMA_CTL_SRC_MSIZE(bl) | + DMA_CTL_DST_MSIZE(bl) | + DMA_CTL_SINC_NOCHANGE | + DMA_CTL_SRC_TRWID(2) | + DMA_CTL_DST_TRWID(2) | + DMA_CTL_INT_EN | + DMA_CTL_LLP_SRCEN | + DMA_CTL_LLP_DSTEN); + } else if (hsdevp->hsdev->dma_channel == 1) {/* DMA channel 1 */ + lli[idx].ctl.low = cpu_to_le32( + DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC) | + DMA_CTL_SMS(2) | /* Source: Master 3 */ + DMA_CTL_DMS(0) | /* Dest: Master 1 */ + DMA_CTL_SRC_MSIZE(bl) | + DMA_CTL_DST_MSIZE(bl) | + DMA_CTL_SINC_NOCHANGE | + DMA_CTL_SRC_TRWID(2) | + DMA_CTL_DST_TRWID(2) | + DMA_CTL_INT_EN | + DMA_CTL_LLP_SRCEN | + DMA_CTL_LLP_DSTEN); + } + } else { /* DMA_TO_DEVICE */ + lli[idx].sar = cpu_to_le32(addr); + lli[idx].dar = cpu_to_le32((u32)dmadr_addr); + if (hsdevp->hsdev->dma_channel == 0) {/* DMA channel 0 */ + lli[idx].ctl.low = cpu_to_le32( + DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER) | + DMA_CTL_SMS(0) | + DMA_CTL_DMS(1) | + DMA_CTL_SRC_MSIZE(bl) | + DMA_CTL_DST_MSIZE(bl) | + DMA_CTL_DINC_NOCHANGE | + DMA_CTL_SRC_TRWID(2) | + DMA_CTL_DST_TRWID(2) | + DMA_CTL_INT_EN | + DMA_CTL_LLP_SRCEN | + DMA_CTL_LLP_DSTEN); + } else if (hsdevp->hsdev->dma_channel == 1) {/* DMA channel 1 */ + lli[idx].ctl.low = cpu_to_le32( + DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER) | + DMA_CTL_SMS(0) | + DMA_CTL_DMS(2) | + DMA_CTL_SRC_MSIZE(bl) | + DMA_CTL_DST_MSIZE(bl) | + DMA_CTL_DINC_NOCHANGE | + DMA_CTL_SRC_TRWID(2) | + DMA_CTL_DST_TRWID(2) | + DMA_CTL_INT_EN | + DMA_CTL_LLP_SRCEN | + DMA_CTL_LLP_DSTEN); + } + } +#else + if (dir == DMA_FROM_DEVICE) { + lli[idx].dar = cpu_to_le32(addr); + lli[idx].sar = cpu_to_le32((u32)dmadr_addr); + + lli[idx].ctl.low = cpu_to_le32( + DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC) | + DMA_CTL_SMS(0) | + DMA_CTL_DMS(1) | + DMA_CTL_SRC_MSIZE(bl) | + DMA_CTL_DST_MSIZE(bl) | + DMA_CTL_SINC_NOCHANGE | + DMA_CTL_SRC_TRWID(2) | + DMA_CTL_DST_TRWID(2) | + DMA_CTL_INT_EN | + DMA_CTL_LLP_SRCEN | + DMA_CTL_LLP_DSTEN); + } else { /* DMA_TO_DEVICE */ + lli[idx].sar = cpu_to_le32(addr); + lli[idx].dar = cpu_to_le32((u32)dmadr_addr); + + lli[idx].ctl.low = cpu_to_le32( + DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER) | + DMA_CTL_SMS(1) | + DMA_CTL_DMS(0) | + DMA_CTL_SRC_MSIZE(bl) | + DMA_CTL_DST_MSIZE(bl) | + DMA_CTL_DINC_NOCHANGE | + DMA_CTL_SRC_TRWID(2) | + DMA_CTL_DST_TRWID(2) | + DMA_CTL_INT_EN | + DMA_CTL_LLP_SRCEN | + DMA_CTL_LLP_DSTEN); + } +#endif + dev_dbg(dwc_dev, "%s setting ctl.high len: 0x%08x val: " + "0x%08x\n", __func__, len, + DMA_CTL_BLK_TS(len / 4)); + + /* Program the LLI CTL high register */ + dma_ts = DMA_CTL_BLK_TS(len / 4); + lli[idx].ctl.high = cpu_to_le32(dma_ts); + + /* + *Program the next pointer. The next pointer must be + * the physical address, not the virtual address. + */ + next_llp = (dma_lli + ((idx + 1) * sizeof(struct lli))); + + /* The last 2 bits encode the list master select. */ +#if defined(CONFIG_APM82181) + next_llp = DMA_LLP_LMS(next_llp, DMA_LLP_AHBMASTER1); +#else + next_llp = DMA_LLP_LMS(next_llp, DMA_LLP_AHBMASTER2); +#endif + + lli[idx].llp = cpu_to_le32(next_llp); +#if defined(VERBOSE_DEBUG) + dev_notice(qc->ap->dev, "%s: index %d\n", __func__, idx); + dev_notice(qc->ap->dev, "%s setting ctl.high with val: 0x%08x\n", __func__, lli[idx].ctl.high); + dev_notice(qc->ap->dev, "%s setting ctl.low with val: 0x%08x\n", __func__, lli[idx].ctl.low); + dev_notice(qc->ap->dev, "%s setting lli.dar with val: 0x%08x\n", __func__, lli[idx].dar); + dev_notice(qc->ap->dev, "%s setting lli.sar with val: 0x%08x\n", __func__, lli[idx].sar); + dev_notice(qc->ap->dev, "%s setting next_llp with val: 0x%08x\n", __func__, lli[idx].llp); +#endif + + idx++; + sg_len -= len; + addr += len; + } + } + + /* + * The last next ptr has to be zero and the last control low register + * has to have LLP_SRC_EN and LLP_DST_EN (linked list pointer source + * and destination enable) set back to 0 (disabled.) This is what tells + * the core that this is the last item in the linked list. + */ + if (likely(idx)) { + lli[idx-1].llp = 0x00000000; + lli[idx-1].ctl.low &= DMA_CTL_LLP_DISABLE_LE32; + + /* Flush cache to memory */ + dma_cache_sync(NULL, lli, (sizeof(struct lli) * idx), + DMA_BIDIRECTIONAL); + } + +#if defined(VERBOSE_DEBUG) + dev_notice(qc->ap->dev, "%s: Final index %d\n", __func__, idx-1); + dev_notice(qc->ap->dev, "%s setting ctl.high with val: 0x%08x\n", __func__, lli[idx-1].ctl.high); + dev_notice(qc->ap->dev, "%s setting ctl.low with val: 0x%08x\n", __func__, lli[idx-1].ctl.low); + dev_notice(qc->ap->dev, "%s setting lli.dar with val: 0x%08x\n", __func__, lli[idx-1].dar); + dev_notice(qc->ap->dev, "%s setting lli.sar with val: 0x%08x\n", __func__, lli[idx-1].sar); + dev_notice(qc->ap->dev, "%s setting next_llp with val: 0x%08x\n", __func__, lli[idx-1].llp); +#endif + + return idx; +} + +/* + * Function: dma_dwc_xfer_start + * arguments: Channel number + * Return : None + * Enables the DMA channel + */ +static void dma_dwc_xfer_start(int dma_ch) +{ + /* Enable the DMA channel */ + out_le32(&(sata_dma_regs->dma_chan_en.low), + in_le32(&(sata_dma_regs->dma_chan_en.low)) | + DMA_ENABLE_CHAN(dma_ch)); +#if defined(VERBOSE_DEBUG) + printk("%s: setting sata_dma_regs->dma_chan_en.low with val: 0x%08x\n", + __func__, in_le32(&(sata_dma_regs->dma_chan_en.low))); +#endif +} + +static int dma_dwc_channel_enabled(int ch) +{ + if (in_le32(&(sata_dma_regs->dma_chan_en.low)) & DMA_CHANNEL(ch)) + return 1; + + return 0; +} + +static void dma_dwc_terminate_dma(struct ata_port *ap, int dma_ch) +{ + int enabled = dma_dwc_channel_enabled(dma_ch); + + dev_info(ap->dev, "%s terminate DMA on channel=%d enabled=%d\n", + __func__, dma_ch, enabled); + + if (enabled) { + out_le32(&(sata_dma_regs->dma_chan_en.low), + in_le32(&(sata_dma_regs->dma_chan_en.low)) | DMA_DISABLE_CHAN(dma_ch)); + + do { + enabled = dma_dwc_channel_enabled(dma_ch); + } while (enabled); + } +} + +static int dma_dwc_xfer_setup(struct ata_queued_cmd *qc, + struct lli *lli, dma_addr_t dma_lli, + void __iomem *addr) +{ + int dma_ch; + int num_lli; + + /* Acquire DMA channel */ + dma_ch = dma_request_channel(qc->ap); + if (unlikely(dma_ch == -1)) { + dev_err(qc->ap->dev, "%s: dma channel unavailable\n", __func__); + return -EAGAIN; + } +#if defined(VERBOSE_DEBUG) + dev_notice(qc->ap->dev, "%s: Got channel %d\n", __func__, dma_ch); +#endif + /* Convert SG list to linked list of items (LLIs) for AHB DMA */ + num_lli = map_sg_to_lli(qc, lli, dma_lli, addr); + + dev_dbg(qc->ap->dev, "%s sg: 0x%p, count: %d lli: %p dma_lli: 0x%0xlx addr:" + " %p lli count: %d\n", __func__, qc->sg, qc->n_elem, lli, + (u32)dma_lli, addr, num_lli); + + /* Clear channel interrupts */ + clear_chan_interrupts(dma_ch); + + /* Program the CFG register. */ +#if defined(CONFIG_APM82181) + if (dma_ch == 0) { + /* Buffer mode enabled, FIFO_MODE = 0 */ + out_le32(&(sata_dma_regs->chan_regs[dma_ch].cfg.high), 0x000000d); + /* Channel 0 bit [7:5]*/ + out_le32(&(sata_dma_regs->chan_regs[dma_ch].cfg.low), 0x00000000); + } else if (dma_ch == 1) { + /* Buffer mode enabled, FIFO_MODE = 0 */ + out_le32(&(sata_dma_regs->chan_regs[dma_ch].cfg.high), 0x0000088d); + /* Channel 1 - bit [7:5] */ + out_le32(&(sata_dma_regs->chan_regs[dma_ch].cfg.low), 0x00000020); + } +#else + out_le32(&(sata_dma_regs->chan_regs[dma_ch].cfg.high), + DMA_CFG_PROTCTL | DMA_CFG_FCMOD_REQ); + out_le32(&(sata_dma_regs->chan_regs[dma_ch].cfg.low), 0); +#endif + /* Program the address of the linked list */ +#if defined(CONFIG_APM82181) + out_le32(&(sata_dma_regs->chan_regs[dma_ch].llp.low), + DMA_LLP_LMS(dma_lli, DMA_LLP_AHBMASTER1)); +#else + out_le32(&(sata_dma_regs->chan_regs[dma_ch].llp.low), + DMA_LLP_LMS(dma_lli, DMA_LLP_AHBMASTER2)); +#endif + + /* Program the CTL register with src enable / dst enable */ + //out_le32(&(sata_dma_regs->chan_regs[dma_ch].ctl.low), + // DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN); + out_le32(&(sata_dma_regs->chan_regs[dma_ch].ctl.low), 0x18000000); + +#if defined(VERBOSE_DEBUG) + dev_notice(qc->ap->dev, "%s DMA channel %d is ready\n", __func__, dma_ch); + dev_notice(qc->ap->dev, "%s setting cfg.high of channel %d with val: 0x%08x\n", __func__, dma_ch, in_le32(&(sata_dma_regs->chan_regs[dma_ch].cfg.high))); + dev_notice(qc->ap->dev, "%s setting cfg.low of channel %d with val: 0x%08x\n", __func__, dma_ch, in_le32(&(sata_dma_regs->chan_regs[dma_ch].cfg.low))); + dev_notice(qc->ap->dev, "%s setting llp.low of channel %d with val: 0x%08x\n", __func__, dma_ch, in_le32(&(sata_dma_regs->chan_regs[dma_ch].llp.low))); + dev_notice(qc->ap->dev, "%s setting ctl.low of channel %d with val: 0x%08x\n", __func__, dma_ch, in_le32(&(sata_dma_regs->chan_regs[dma_ch].ctl.low))); +#endif + + return dma_ch; +} + +/* + * Function: dma_dwc_exit + * arguments: None + * returns status + * This function exits the SATA DMA driver + */ +static void dma_dwc_exit(struct sata_dwc_device *hsdev) +{ + dev_dbg(hsdev->dev, "%s:\n", __func__); + + if (sata_dma_regs) + iounmap(sata_dma_regs); + + if (hsdev->irq_dma) + free_irq(hsdev->irq_dma, hsdev); +} + +/* + * Function: dma_dwc_init + * arguments: hsdev + * returns status + * This function initializes the SATA DMA driver + */ +static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq) +{ + int err; + + err = dma_request_interrupts(hsdev, irq); + if (err) { + dev_err(hsdev->dev, "%s: dma_request_interrupts returns %d\n", + __func__, err); + goto error_out; + } + + /* Enabe DMA */ + out_le32(&(sata_dma_regs->dma_cfg.low), DMA_EN); + + dev_notice(hsdev->dev, "DMA initialized\n"); + dev_notice(hsdev->dev, "DMA CFG = 0x%08x\n", in_le32(&(sata_dma_regs->dma_cfg.low))); + dev_dbg(hsdev->dev, "SATA DMA registers=0x%p\n", sata_dma_regs); + + return 0; + +error_out: + dma_dwc_exit(hsdev); + + return err; +} + +static int sata_dwc_scr_read(struct ata_link *link, unsigned int scr, u32 *val) +{ + if (unlikely(scr > SCR_NOTIFICATION)) { + dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n", + __func__, scr); + return -EINVAL; + } + + *val = in_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4)); + dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n", + __func__, link->ap->print_id, scr, *val); + + return 0; +} + +static int sata_dwc_scr_write(struct ata_link *link, unsigned int scr, u32 val) +{ + dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n", + __func__, link->ap->print_id, scr, val); + if (unlikely(scr > SCR_NOTIFICATION)) { + dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n", + __func__, scr); + return -EINVAL; + } + out_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4), val); + + return 0; +} + +static inline u32 core_scr_read ( struct ata_port *ap, unsigned int scr) +{ + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + return in_le32((void __iomem *)hsdev->scr_base + (scr * 4)); +} + + +static inline void core_scr_write ( struct ata_port *ap, unsigned int scr, u32 val) +{ + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + out_le32((void __iomem *)hsdev->scr_base + (scr * 4), val); +} + +static inline void clear_serror(struct ata_port *ap) +{ + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + out_le32( (void __iomem *)hsdev->scr_base + 4, + in_le32((void __iomem *)hsdev->scr_base + 4)); +} + +static inline void clear_intpr(struct sata_dwc_device *hsdev) +{ + out_le32(&hsdev->sata_dwc_regs->intpr, + in_le32(&hsdev->sata_dwc_regs->intpr)); +} + +static inline void clear_interrupt_bit(struct sata_dwc_device *hsdev, u32 bit) +{ + out_le32(&hsdev->sata_dwc_regs->intpr, + in_le32(&hsdev->sata_dwc_regs->intpr)); +} + +static inline void disable_err_irq(struct sata_dwc_device *hsdev) +{ + out_le32(&hsdev->sata_dwc_regs->intmr, + in_le32(&hsdev->sata_dwc_regs->intmr) & ~SATA_DWC_INTMR_ERRM); + out_le32(&hsdev->sata_dwc_regs->errmr, ~SATA_DWC_SERROR_ERR_BITS); +} + +static inline void enable_err_irq(struct sata_dwc_device *hsdev) +{ + out_le32(&hsdev->sata_dwc_regs->intmr, + in_le32(&hsdev->sata_dwc_regs->intmr) | SATA_DWC_INTMR_ERRM); + out_le32(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERROR_ERR_BITS); +} + +static inline u32 qcmd_tag_to_mask(u8 tag) +{ + return 0x00000001 << (tag & 0x1f); +} + +/* See ahci.c */ +static void sata_dwc_error_intr(struct ata_port *ap, + struct sata_dwc_device *hsdev, uint intpr) +{ + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); + struct ata_eh_info *ehi = &ap->link.eh_info; + unsigned int err_mask = 0, action = 0; + struct ata_queued_cmd *qc; + u32 serror; + u8 status, tag; + volatile u32 err_reg; +#if defined(VERBOSE_DEBUG) + int chan = hsdev->dma_channel; +#endif + ata_ehi_clear_desc(ehi); + + serror = core_scr_read(ap, SCR_ERROR); + status = ap->ops->sff_check_status(ap); + + err_reg = in_le32(&(sata_dma_regs->interrupt_status.error.low)); + tag = ap->link.active_tag; + + dev_err(ap->dev, "%s SCR_ERROR=0x%08x intpr=0x%08x status=0x%08x " + "dma_intp=%d pending=%d issued=%d dma_err_status=0x%08x\n", + __func__, serror, intpr, status, hsdevp->dma_interrupt_count, + hsdevp->dma_pending[tag], hsdevp->cmd_issued[tag], err_reg); +#if defined(VERBOSE_DEBUG) + printk("%s reading cfg.high of channel %d with val: 0x%08x\n", __func__, chan, in_le32(&(sata_dma_regs->chan_regs[chan].cfg.high))); + printk("%s reading cfg.low of channel %d with val: 0x%08x\n", __func__, chan, in_le32(&(sata_dma_regs->chan_regs[chan].cfg.low))); + printk("%s reading llp.low of channel %d with val: 0x%08x\n", __func__, chan, in_le32(&(sata_dma_regs->chan_regs[chan].llp.low))); + printk("%s reading ctl.low of channel %d with val: 0x%08x\n", __func__, chan, in_le32(&(sata_dma_regs->chan_regs[chan].ctl.low))); + printk("%s reading sar.low of channel %d with val: 0x%08x\n", __func__, chan, in_le32(&(sata_dma_regs->chan_regs[chan].sar.low))); + printk("%s reading sar.high of channel %d with val: 0x%08x\n", __func__, chan, in_le32(&(sata_dma_regs->chan_regs[chan].sar.high))); + printk("%s reading dar.low of channel %d with val: 0x%08x\n", __func__, chan, in_le32(&(sata_dma_regs->chan_regs[chan].dar.low))); + printk("%s reading dar.high of channel %d with val: 0x%08x\n", __func__, chan, in_le32(&(sata_dma_regs->chan_regs[chan].dar.high))); +#endif + /* Clear error register and interrupt bit */ + clear_serror(ap); + clear_interrupt_bit(hsdev, SATA_DWC_INTPR_ERR); + + /* This is the only error happening now. */ + /* TODO check for exact error */ + err_mask |= AC_ERR_HOST_BUS; + action |= ATA_EH_RESET; + + /* Pass this on to EH */ + ehi->serror |= serror; + ehi->action |= action; + + qc = ata_qc_from_tag(ap, tag); + if (qc) + qc->err_mask |= err_mask; + else + ehi->err_mask |= err_mask; + + ata_port_abort(ap); + + /* + if (irq_stat & PORT_IRQ_FREEZE) + ata_port_freeze(ap); + else + ata_port_abort(ap); + */ +} + +/* + * Function : sata_dwc_isr + * arguments : irq, void *dev_instance, struct pt_regs *regs + * Return value : irqreturn_t - status of IRQ + * This Interrupt handler called via port ops registered function. + * .irq_handler = sata_dwc_isr + */ +static irqreturn_t sata_dwc_isr(int irq, void *dev_instance) +{ + struct ata_host *host = (struct ata_host *)dev_instance; + struct sata_dwc_device *hsdev = HSDEV_FROM_HOST(host); + struct ata_port *ap; + struct ata_queued_cmd *qc; + unsigned long flags; + u8 status, tag; + int handled, num_processed, port = 0; + uint intpr, sactive, sactive2, tag_mask; + struct sata_dwc_device_port *hsdevp; + + + spin_lock_irqsave(&host->lock, flags); + + /* Read the interrupt register */ + intpr = in_le32(&hsdev->sata_dwc_regs->intpr); + + ap = host->ports[port]; + hsdevp = HSDEVP_FROM_AP(ap); +#if defined(VERBOSE_DEBUG) + dev_notice(ap->dev, "%s: INTERRUPT in HSDEV with DMA channel %d\n", __func__, hsdevp->hsdev->dma_channel); +#endif + dev_dbg(ap->dev, "%s intpr=0x%08x active_tag=%d\n", __func__, intpr, + ap->link.active_tag); + + /* Check for error interrupt */ + if (intpr & SATA_DWC_INTPR_ERR) { + sata_dwc_error_intr(ap, hsdev, intpr); + handled = 1; + goto done_irqrestore; + } + + /* Check for DMA SETUP FIS (FP DMA) interrupt */ + if (intpr & SATA_DWC_INTPR_NEWFP) { + clear_interrupt_bit(hsdev, SATA_DWC_INTPR_NEWFP); + + tag = (u8)(in_le32(&hsdev->sata_dwc_regs->fptagr)); + dev_dbg(ap->dev, "%s: NEWFP tag=%d\n", __func__, tag); + if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_PENDING) + dev_warn(ap->dev, "CMD tag=%d not pending?\n", tag); + + hsdevp->sata_dwc_sactive_issued |= qcmd_tag_to_mask(tag); + + qc = ata_qc_from_tag(ap, tag); + /* + * Start FP DMA for NCQ command. At this point the tag is the + * active tag. It is the tag that matches the command about to + * be completed. + */ + qc->ap->link.active_tag = tag; + sata_dwc_bmdma_start_by_tag(qc, tag); + + handled = 1; + goto done_irqrestore; + } + + sactive = core_scr_read(ap, SCR_ACTIVE); + tag_mask = (hsdevp->sata_dwc_sactive_issued | sactive) ^ sactive; + + /* If no sactive issued and tag_mask is zero then this is not NCQ */ + if (hsdevp->sata_dwc_sactive_issued == 0 && tag_mask == 0) { +#if 0 + if (ap->link.active_tag == ATA_TAG_POISON) + tag = 0; + else +#endif + tag = ap->link.active_tag; + qc = ata_qc_from_tag(ap, tag); + + /* DEV interrupt w/ no active qc? */ + if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) { + dev_err(ap->dev, "%s intr with no active qc qc=%p\n", + __func__, qc); + ata_sff_check_status(ap); + handled = 1; + goto done_irqrestore; + } + + status = ap->ops->sff_check_status(ap); + + qc->ap->link.active_tag = tag; + hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT; + + if (status & ATA_ERR) { + dev_dbg(ap->dev, "interrupt ATA_ERR (0x%x)\n", status); + sata_dwc_qc_complete(ap, qc, 1); + handled = 1; + goto done_irqrestore; + } + + dev_dbg(ap->dev, "%s non-NCQ cmd interrupt, protocol: %s\n", + __func__, prot_2_txt(qc->tf.protocol)); +drv_still_busy: + if (ata_is_dma(qc->tf.protocol)) { + int dma_flag = hsdevp->dma_pending[tag]; + /* + * Each DMA transaction produces 2 interrupts. The DMAC + * transfer complete interrupt and the SATA controller + * operation done interrupt. The command should be + * completed only after both interrupts are seen. + */ + hsdevp->dma_interrupt_count++; + if (unlikely(dma_flag == SATA_DWC_DMA_PENDING_NONE)) { + dev_err(ap->dev, "%s: DMA not pending " + "intpr=0x%08x status=0x%08x pend=%d\n", + __func__, intpr, status, dma_flag); + } + + if ((hsdevp->dma_interrupt_count % 2) == 0) + sata_dwc_dma_xfer_complete(ap, 1); + } else if (ata_is_pio(qc->tf.protocol)) { + ata_sff_hsm_move(ap, qc, status, 0); + handled = 1; + goto done_irqrestore; + } else { + if (unlikely(sata_dwc_qc_complete(ap, qc, 1))) + goto drv_still_busy; + } + + handled = 1; + goto done_irqrestore; + } + + /* + * This is a NCQ command. At this point we need to figure out for which + * tags we have gotten a completion interrupt. One interrupt may serve + * as completion for more than one operation when commands are queued + * (NCQ). We need to process each completed command. + */ + +process_cmd: /* process completed commands */ + sactive = core_scr_read(ap, SCR_ACTIVE); + tag_mask = (hsdevp->sata_dwc_sactive_issued | sactive) ^ sactive; + + if (sactive != 0 || hsdevp->sata_dwc_sactive_issued > 1 || tag_mask > 1) { + dev_dbg(ap->dev, "%s NCQ: sactive=0x%08x sactive_issued=0x%08x" + " tag_mask=0x%08x\n", __func__, sactive, + hsdevp->sata_dwc_sactive_issued, tag_mask); + } + + if (unlikely((tag_mask | hsdevp->sata_dwc_sactive_issued) != hsdevp->sata_dwc_sactive_issued)) { + dev_warn(ap->dev, "Bad tag mask? sactive=0x%08x " + "sata_dwc_sactive_issued=0x%08x tag_mask=0x%08x\n", + sactive, hsdevp->sata_dwc_sactive_issued, tag_mask); + } + + /* read just to clear ... not bad if currently still busy */ + status = ap->ops->sff_check_status(ap); + dev_dbg(ap->dev, "%s ATA status register=0x%x\n", __func__, status); + + tag = 0; + num_processed = 0; + while (tag_mask) { + num_processed++; + while (!(tag_mask & 0x00000001)) { + tag++; + tag_mask <<= 1; + } + tag_mask &= (~0x00000001); + qc = ata_qc_from_tag(ap, tag); + + /* To be picked up by completion functions */ + qc->ap->link.active_tag = tag; + hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT; + + /* Let libata/scsi layers handle error */ + if (unlikely(status & ATA_ERR)) { + dev_dbg(ap->dev, "%s ATA_ERR (0x%x)\n", + __func__, status); + + sata_dwc_qc_complete(ap, qc, 1); + handled = 1; + goto done_irqrestore; + } + + /* Process completed command */ + dev_dbg(ap->dev, "%s NCQ command, protocol: %s\n", __func__, + prot_2_txt(qc->tf.protocol)); + if (ata_is_dma(qc->tf.protocol)) { + hsdevp->dma_interrupt_count++; + if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) + dev_warn(ap->dev, + "%s: DMA not pending?\n", __func__); + if ((hsdevp->dma_interrupt_count % 2) == 0) + sata_dwc_dma_xfer_complete(ap, 1); + } else { + if (unlikely(sata_dwc_qc_complete(ap, qc, 1))) + goto still_busy; + } + continue; + +still_busy: + ap->stats.idle_irq++; + dev_warn(ap->dev, "STILL BUSY IRQ ata%d: irq trap\n", + ap->print_id); + } /* while tag_mask */ + + /* + * Check to see if any commands completed while we were processing our + * initial set of completed commands (reading of status clears + * interrupts, so we might miss a completed command interrupt if one + * came in while we were processing: + * we read status as part of processing a completed command). + */ + sactive2 = core_scr_read(ap, SCR_ACTIVE); + if (sactive2 != sactive) { + dev_dbg(ap->dev, "More finished - sactive=0x%x sactive2=0x%x\n", + sactive, sactive2); + goto process_cmd; + } + handled = 1; + +done_irqrestore: + spin_unlock_irqrestore(&host->lock, flags); + return IRQ_RETVAL(handled); +} + +static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag) +{ + struct sata_dwc_device *hsdev = HSDEV_FROM_HSDEVP(hsdevp); + + if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) { + out_le32(&(hsdev->sata_dwc_regs->dmacr), + SATA_DWC_DMACR_RX_CLEAR( + in_le32(&(hsdev->sata_dwc_regs->dmacr)))); + } else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) { + out_le32(&(hsdev->sata_dwc_regs->dmacr), + SATA_DWC_DMACR_TX_CLEAR( + in_le32(&(hsdev->sata_dwc_regs->dmacr)))); + } else { + /* + * This should not happen, it indicates the driver is out of + * sync. If it does happen, clear dmacr anyway. + */ + dev_err(hsdev->dev, "%s DMA protocol RX and TX DMA not pending " + "tag=0x%02x pending=%d dmacr: 0x%08x\n", + __func__, tag, hsdevp->dma_pending[tag], + in_le32(&(hsdev->sata_dwc_regs->dmacr))); + out_le32(&(hsdev->sata_dwc_regs->dmacr), + SATA_DWC_DMACR_TXRXCH_CLEAR); + } +} + +static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status) +{ + struct ata_queued_cmd *qc; + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + u8 tag = 0; + + tag = ap->link.active_tag; + qc = ata_qc_from_tag(ap, tag); + +#ifdef DEBUG_NCQ + if (tag > 0) { + dev_info(ap->dev, "%s tag=%u cmd=0x%02x dma dir=%s proto=%s " + "dmacr=0x%08x\n", __func__, qc->tag, qc->tf.command, + dir_2_txt(qc->dma_dir), prot_2_txt(qc->tf.protocol), + in_le32(&(hsdev->sata_dwc_regs->dmacr))); + } +#endif + + if (ata_is_dma(qc->tf.protocol)) { + if (unlikely(hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE)) { + dev_err(ap->dev, "%s DMA protocol RX and TX DMA not " + "pending dmacr: 0x%08x\n", __func__, + in_le32(&(hsdev->sata_dwc_regs->dmacr))); + } + + hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE; + sata_dwc_qc_complete(ap, qc, check_status); + ap->link.active_tag = ATA_TAG_POISON; + } else { + sata_dwc_qc_complete(ap, qc, check_status); + } +} + +static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc, + u32 check_status) +{ + u8 status = 0; + int i = 0; + u32 mask = 0x0; + u8 tag = qc->tag; + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); + u32 serror; + + dev_dbg(ap->dev, "%s checkstatus? %x\n", __func__, check_status); + + if (unlikely(hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX)) + dev_err(ap->dev, "TX DMA PENDINGING\n"); + else if (unlikely(hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX)) + dev_err(ap->dev, "RX DMA PENDINGING\n"); + + if (check_status) { + i = 0; + do { + /* check main status, clearing INTRQ */ + status = ap->ops->sff_check_status(ap); + if (status & ATA_BUSY) { + dev_dbg(ap->dev, "STATUS BUSY (0x%02x) [%d]\n", + status, i); + } + if (++i > 10) + break; + } while (status & ATA_BUSY); + + status = ap->ops->sff_check_status(ap); + if (unlikely(status & ATA_BUSY)) + dev_err(ap->dev, "QC complete cmd=0x%02x STATUS BUSY " + "(0x%02x) [%d]\n", qc->tf.command, status, i); + serror = core_scr_read(ap, SCR_ERROR); + if (unlikely(serror & SATA_DWC_SERROR_ERR_BITS)) + dev_err(ap->dev, "****** SERROR=0x%08x ******\n", + serror); + } + dev_dbg(ap->dev, "QC complete cmd=0x%02x status=0x%02x ata%u: " + "protocol=%d\n", qc->tf.command, status, ap->print_id, + qc->tf.protocol); + + /* clear active bit */ + mask = (~(qcmd_tag_to_mask(tag))); + hsdevp->sata_dwc_sactive_queued = hsdevp->sata_dwc_sactive_queued & mask; + hsdevp->sata_dwc_sactive_issued = hsdevp->sata_dwc_sactive_issued & mask; + + /* Complete taskfile transaction (does not read SCR registers) */ + ata_qc_complete(qc); + + return 0; +} + +static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev) +{ + /* Enable selective interrupts by setting the interrupt mask register */ + out_le32(&hsdev->sata_dwc_regs->intmr, + SATA_DWC_INTMR_ERRM | + SATA_DWC_INTMR_NEWFPM | + SATA_DWC_INTMR_PMABRTM | + SATA_DWC_INTMR_DMATM); + + /* + * Unmask the error bits that should trigger an error interrupt by + * setting the error mask register. + */ + out_le32(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERROR_ERR_BITS); + + dev_dbg(hsdev->dev, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n", __func__, + in_le32(&hsdev->sata_dwc_regs->intmr), + in_le32(&hsdev->sata_dwc_regs->errmr)); +} + +static void sata_dwc_setup_port(struct ata_ioports *port, unsigned long base) +{ + port->cmd_addr = (void *)base + 0x00; + port->data_addr = (void *)base + 0x00; + + port->error_addr = (void *)base + 0x04; + port->feature_addr = (void *)base + 0x04; + + port->nsect_addr = (void *)base + 0x08; + + port->lbal_addr = (void *)base + 0x0c; + port->lbam_addr = (void *)base + 0x10; + port->lbah_addr = (void *)base + 0x14; + + port->device_addr = (void *)base + 0x18; + port->command_addr = (void *)base + 0x1c; + port->status_addr = (void *)base + 0x1c; + + port->altstatus_addr = (void *)base + 0x20; + port->ctl_addr = (void *)base + 0x20; +} + +/* + * Function : sata_dwc_port_start + * arguments : struct ata_ioports *port + * Return value : returns 0 if success, error code otherwise + * This function allocates the scatter gather LLI table for AHB DMA + */ +static int sata_dwc_port_start(struct ata_port *ap) +{ + int err = 0; + struct sata_dwc_device *hsdev; + struct sata_dwc_device_port *hsdevp = NULL; + struct device *pdev; + u32 sstatus; + int i; + + hsdev = HSDEV_FROM_AP(ap); + + dev_dbg(ap->dev, "%s: port_no=%d\n", __func__, ap->port_no); + + hsdev->host = ap->host; + pdev = ap->host->dev; + if (!pdev) { + dev_err(ap->dev, "%s: no ap->host->dev\n", __func__); + err = -ENODEV; + goto cleanup_exit; + } + + /* Allocate Port Struct */ + hsdevp = kmalloc(sizeof(*hsdevp), GFP_KERNEL); + if (!hsdevp) { + dev_err(ap->dev, "%s: kmalloc failed for hsdevp\n", __func__); + err = -ENOMEM; + goto cleanup_exit; + } + memset(hsdevp, 0, sizeof(*hsdevp)); + hsdevp->hsdev = hsdev; + + for (i = 0; i < SATA_DWC_QCMD_MAX; i++) + hsdevp->cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT; + + ap->prd = 0; /* set these so libata doesn't use them */ + ap->prd_dma = 0; + + /* + * DMA - Assign scatter gather LLI table. We can't use the libata + * version since it's PRD is IDE PCI specific. + */ + for (i = 0; i < SATA_DWC_QCMD_MAX; i++) { + hsdevp->llit[i] = dma_alloc_coherent(pdev, + SATA_DWC_DMAC_LLI_TBL_SZ, + &(hsdevp->llit_dma[i]), + GFP_ATOMIC); + if (!hsdevp->llit[i]) { + dev_err(ap->dev, "%s: dma_alloc_coherent failed size " + "0x%x\n", __func__, SATA_DWC_DMAC_LLI_TBL_SZ); + err = -ENOMEM; + goto cleanup_exit; + } + } + + if (ap->port_no == 0) { + dev_dbg(ap->dev, "%s: clearing TXCHEN, RXCHEN in DMAC\n", + __func__); + + out_le32(&hsdev->sata_dwc_regs->dmacr, + SATA_DWC_DMACR_TXRXCH_CLEAR); + + dev_dbg(ap->dev, "%s: setting burst size in DBTSR\n", __func__); + out_le32(&hsdev->sata_dwc_regs->dbtsr, + (SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) | + SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT))); + dev_notice(ap->dev, "%s: setting burst size in DBTSR: 0x%08x\n", + __func__, in_le32(&hsdev->sata_dwc_regs->dbtsr)); + } + + /* Clear any error bits before libata starts issuing commands */ + clear_serror(ap); + + ap->private_data = hsdevp; + + /* Are we in Gen I or II */ + sstatus = core_scr_read(ap, SCR_STATUS); + switch (SATA_DWC_SCR0_SPD_GET(sstatus)) { + case 0x0: + dev_info(ap->dev, "**** No neg speed (nothing attached?) \n"); + break; + case 0x1: + dev_info(ap->dev, "**** GEN I speed rate negotiated \n"); + break; + case 0x2: + dev_info(ap->dev, "**** GEN II speed rate negotiated \n"); + break; + } + +cleanup_exit: + if (err) { + kfree(hsdevp); + sata_dwc_port_stop(ap); + dev_dbg(ap->dev, "%s: fail\n", __func__); + } else { + dev_dbg(ap->dev, "%s: done\n", __func__); + } + + return err; +} + +static void sata_dwc_port_stop(struct ata_port *ap) +{ + int i; + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); + + dev_dbg(ap->dev, "%s: ap->id = %d\n", __func__, ap->print_id); + + if (hsdevp && hsdev) { + /* deallocate LLI table */ + for (i = 0; i < SATA_DWC_QCMD_MAX; i++) { + dma_free_coherent(ap->host->dev, + SATA_DWC_DMAC_LLI_TBL_SZ, + hsdevp->llit[i], hsdevp->llit_dma[i]); + } + + kfree(hsdevp); + } + ap->private_data = NULL; +} + +/* + * Function : sata_dwc_exec_command_by_tag + * arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued + * Return value : None + * This function keeps track of individual command tag ids and calls + * ata_exec_command in libata + */ +static void sata_dwc_exec_command_by_tag(struct ata_port *ap, + struct ata_taskfile *tf, + u8 tag, u32 cmd_issued) +{ + unsigned long flags; + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); + + dev_dbg(ap->dev, "%s cmd(0x%02x): %s tag=%d\n", __func__, tf->command, + ata_cmd_2_txt(tf), tag); + + spin_lock_irqsave(&ap->host->lock, flags); + hsdevp->cmd_issued[tag] = cmd_issued; + spin_unlock_irqrestore(&ap->host->lock, flags); + + /* + * Clear SError before executing a new command. + * + * TODO if we read a PM's registers now, we will throw away the task + * file values loaded into the shadow registers for this command. + * + * sata_dwc_scr_write and read can not be used here. Clearing the PM + * managed SError register for the disk needs to be done before the + * task file is loaded. + */ + clear_serror(ap); + ata_sff_exec_command(ap, tf); +} + +static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd *qc, u8 tag) +{ + sata_dwc_exec_command_by_tag(qc->ap, &qc->tf, tag, + SATA_DWC_CMD_ISSUED_PENDING); +} + +static void sata_dwc_bmdma_setup(struct ata_queued_cmd *qc) +{ + u8 tag = qc->tag; + + if (ata_is_ncq(qc->tf.protocol)) { + dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n", + __func__, qc->ap->link.sactive, tag); + } else { + tag = 0; + } + + sata_dwc_bmdma_setup_by_tag(qc, tag); +} + +static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag) +{ + volatile int start_dma; + u32 reg, dma_chan; + struct sata_dwc_device *hsdev = HSDEV_FROM_QC(qc); + struct ata_port *ap = qc->ap; + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); + int dir = qc->dma_dir; + dma_chan = hsdevp->dma_chan[tag]; + + /* Used for ata_bmdma_start(qc) -- we are not BMDMA compatible */ + + if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_NOT) { + start_dma = 1; + if (dir == DMA_TO_DEVICE) + hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_TX; + else + hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_RX; + } else { + dev_err(ap->dev, "%s: Command not pending cmd_issued=%d " + "(tag=%d) - DMA NOT started\n", __func__, + hsdevp->cmd_issued[tag], tag); + start_dma = 0; + } + + dev_dbg(ap->dev, "%s qc=%p tag: %x cmd: 0x%02x dma_dir: %s " + "start_dma? %x\n", __func__, qc, tag, qc->tf.command, + dir_2_txt(qc->dma_dir), start_dma); + sata_dwc_tf_dump(hsdev->dev, &(qc->tf)); + + if (start_dma) { + reg = core_scr_read(ap, SCR_ERROR); + if (unlikely(reg & SATA_DWC_SERROR_ERR_BITS)) { + dev_err(ap->dev, "%s: ****** SError=0x%08x ******\n", + __func__, reg); + } + + if (dir == DMA_TO_DEVICE) + out_le32(&hsdev->sata_dwc_regs->dmacr, + SATA_DWC_DMACR_TXCHEN); + else + out_le32(&hsdev->sata_dwc_regs->dmacr, + SATA_DWC_DMACR_RXCHEN); +#if defined(VERBOSE_DEBUG) + dev_notice(ap->dev, "%s: setting DMACR: 0x%08x\n", __func__, in_le32(&hsdev->sata_dwc_regs->dmacr)); +#endif + /* Enable AHB DMA transfer on the specified channel */ + dma_dwc_xfer_start(dma_chan); + } +} + +static void sata_dwc_bmdma_start(struct ata_queued_cmd *qc) +{ + u8 tag = qc->tag; + if (ata_is_ncq(qc->tf.protocol)) { + dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n", + __func__, qc->ap->link.sactive, tag); + } else { + tag = 0; + } + + dev_dbg(qc->ap->dev, "%s\n", __func__); + sata_dwc_bmdma_start_by_tag(qc, tag); +} + +/* + * Function : sata_dwc_qc_prep_by_tag + * arguments : ata_queued_cmd *qc, u8 tag + * Return value : None + * qc_prep for a particular queued command based on tag + */ +static void sata_dwc_qc_prep_by_tag(struct ata_queued_cmd *qc, u8 tag) +{ + struct ata_port *ap = qc->ap; + u32 dma_chan; + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); + int dir; + int err; + + dir = qc->dma_dir; + + if ((dir == DMA_NONE) || (qc->tf.protocol == ATA_PROT_PIO)) + return; + + dev_dbg(ap->dev, "%s: port=%d dma dir=%s n_elem=%d\n", + __func__, ap->port_no, dir_2_txt(dir), qc->n_elem); + + dma_chan = dma_dwc_xfer_setup(qc, hsdevp->llit[tag], + hsdevp->llit_dma[tag], + (void *__iomem)(&hsdev->sata_dwc_regs->dmadr)); + if (unlikely(dma_chan < 0)) { + dev_err(ap->dev, "%s: dma_dwc_xfer_setup returns err %d\n", + __func__, err); + return; + } + + hsdevp->dma_chan[tag] = dma_chan; +} + +static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd *qc) +{ + struct ata_port *ap = qc->ap; + +#ifdef DEBUG_NCQ + if (qc->tag > 0 || ap->link.sactive > 1) { + dev_info(ap->dev, "%s ap id=%d cmd(0x%02x)=%s qc tag=%d prot=%s" + " ap active_tag=0x%08x ap sactive=0x%08x\n", + __func__, ap->print_id, qc->tf.command, + ata_cmd_2_txt(&qc->tf), qc->tag, + prot_2_txt(qc->tf.protocol), ap->link.active_tag, + ap->link.sactive); + } +#endif + + if (ata_is_ncq(qc->tf.protocol)) { + ap->ops->sff_tf_load(ap, &qc->tf); + sata_dwc_exec_command_by_tag(ap, &qc->tf, qc->tag, + SATA_DWC_CMD_ISSUED_PENDING); + } else { + ata_sff_qc_issue(qc); + } + + return 0; +} + +/* + * Function : sata_dwc_eng_timeout + * arguments : ata_port *ap + * Return value : None + * error handler for DMA time out + * ata_eng_timeout(ap) -- this does bmdma stuff which can not be done by this + * driver. SEE ALSO ata_qc_timeout(ap) + */ +static void sata_dwc_eng_timeout(struct ata_port *ap) +{ + struct ata_queued_cmd *qc; + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); + u8 tag; + uint mask = 0x0; + unsigned long flags; + u32 serror, intpr, dma_ch; + + tag = ap->link.active_tag; + dma_ch = hsdevp->dma_chan[tag]; + qc = ata_qc_from_tag(ap, tag); + + dev_err(ap->dev, "%s: id=%d active_tag=%d qc=%p dma_chan=%d\n", + __func__, ap->print_id, tag, qc, dma_ch); + + if (unlikely(!qc)) { + dev_err(ap->dev, + "%s: timeout without queued command\n", __func__); + return; + } + + intpr = in_le32(&hsdev->sata_dwc_regs->intpr); + serror = core_scr_read(ap, SCR_ERROR); + + dev_err(ap->dev, "intpr=0x%08x serror=0x%08x\n", intpr, serror); + + /* If there are no error bits set, can we just pass this on to eh? */ + if (!(serror & SATA_DWC_SERROR_ERR_BITS) && + !(intpr & SATA_DWC_INTPR_ERR)) { + + spin_lock_irqsave(&ap->host->lock, flags); + if (dma_dwc_channel_enabled(dma_ch)) + dma_dwc_terminate_dma(ap, dma_ch); + + hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE; + + /* clear active bit */ + mask = (~(qcmd_tag_to_mask(tag))); + hsdevp->sata_dwc_sactive_queued = hsdevp->sata_dwc_sactive_queued & mask; + hsdevp->sata_dwc_sactive_issued = hsdevp->sata_dwc_sactive_issued & mask; + + spin_unlock_irqrestore(&ap->host->lock, flags); + } else { + /* This is wrong, what really needs to be done is a reset. */ + + spin_lock_irqsave(ap->lock, flags); + + if (ata_is_dma(qc->tf.protocol)) { + /* disable DMAC */ + dma_dwc_terminate_dma(ap, dma_ch); + } + + spin_unlock_irqrestore(ap->lock, flags); + } + + WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE)); + if (qc->flags & ATA_QCFLAG_ACTIVE) { + qc->err_mask |= AC_ERR_TIMEOUT; + /* + * test-only: The original code (AMCC: 2.6.19) called + * ata_eng_timeout(ap) here. This function is not available + * anymore. So what to do now? + */ + } +} + +/* + * Function : sata_dwc_qc_prep + * arguments : ata_queued_cmd *qc + * Return value : None + * qc_prep for a particular queued command + */ +static void sata_dwc_qc_prep(struct ata_queued_cmd *qc) +{ + u32 sactive; + u8 tag = qc->tag; + + if ((qc->dma_dir == DMA_NONE) || (qc->tf.protocol == ATA_PROT_PIO)) + return; + +#ifdef DEBUG_NCQ + if (qc->tag > 0) { + dev_info(qc->ap->dev, "%s: qc->tag=%d ap->active_tag=0x%08x\n", + __func__, tag, qc->ap->link.active_tag); + } +#endif + + if (qc->tf.protocol == ATA_PROT_NCQ) { + sactive = core_scr_read(qc->ap, SCR_ACTIVE); + sactive |= (0x00000001 << tag); + core_scr_write(qc->ap, SCR_ACTIVE, sactive); + dev_dbg(qc->ap->dev, "%s: tag=%d ap->link.sactive = 0x%08x " + "sactive=0x%08x\n", __func__, tag, qc->ap->link.sactive, + sactive); + } else { + tag = 0; + } + + sata_dwc_qc_prep_by_tag(qc, tag); + +} + +/* + * test-only: Needed when no drive is connected upon driver startup. + * Otherwise, by using the default prereset routine, the driver crashes + * upon loading. + * Not sure if this could be handled differently. + */ +static int sata_dwc_prereset(struct ata_link *link, unsigned long deadline) +{ + struct ata_port *ap = link->ap; + struct ata_eh_context *ehc = &ap->link.eh_context; + int rc = 0; + + if (ata_link_online(link)) { + rc = ata_sff_wait_ready(link, deadline); + } else { + /* tell EH to bail */ + ehc->i.action &= ~ATA_EH_RESET; + } + + return rc; +} + +/* + * scsi mid-layer and libata interface structures + */ +static struct scsi_host_template sata_dwc_sht = { + ATA_NCQ_SHT(DRV_NAME), + /* + * test-only: Currently this driver doesn't handle NCQ + * correctly. We enable NCQ but set the queue depth to a + * max of 1. This will get fixed in in a future release. + */ +// .sg_tablesize = LIBATA_MAX_PRD, + .can_queue = ATA_DEF_QUEUE, /* ATA_MAX_QUEUE */ + .dma_boundary = ATA_DMA_BOUNDARY, +}; + +static void sata_dwc_error_handler(struct ata_port *ap) +{ + ap->link.flags |= ATA_LFLAG_NO_HRST; + ata_sff_error_handler(ap); + ap->link.flags &= ~ATA_LFLAG_NO_HRST; +} + + +static struct ata_port_operations sata_dwc_ops = { + .inherits = &ata_sff_port_ops, + + .error_handler = sata_dwc_error_handler, + + .qc_prep = sata_dwc_qc_prep, + .qc_issue = sata_dwc_qc_issue, + + .scr_read = sata_dwc_scr_read, + .scr_write = sata_dwc_scr_write, + + .port_start = sata_dwc_port_start, + .port_stop = sata_dwc_port_stop, + + .bmdma_setup = sata_dwc_bmdma_setup, + .bmdma_start = sata_dwc_bmdma_start, + + .prereset = sata_dwc_prereset, + + /* test-only: really needed? */ + .eng_timeout = sata_dwc_eng_timeout, +}; + +static const struct ata_port_info sata_dwc_port_info[] = { + { + /* + * test-only: Currently this driver doesn't handle NCQ + * correctly. So we disable NCQ here for now. To enable + * it ATA_FLAG_NCQ needs to be added to the flags below. + */ + .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | + ATA_FLAG_MMIO | ATA_FLAG_NCQ, + .pio_mask = 0x1f, /* pio 0-4 */ + .udma_mask = ATA_UDMA6, + .port_ops = &sata_dwc_ops, + }, +}; + +static int sata_dwc_probe(struct of_device *ofdev, + const struct of_device_id *match) +{ + struct sata_dwc_device *hsdev; + u32 idr, versionr; + char *ver = (char *)&versionr; + u8 *base = NULL; + int err = 0; + int irq; + struct ata_host *host; + struct ata_port_info pi = sata_dwc_port_info[0]; + const struct ata_port_info *ppi[] = { &pi, NULL }; + + const unsigned int *dma_channel; + + /* + * Check if device is enabled + */ + if (!of_device_is_available(ofdev->node)) { + printk(KERN_INFO "%s: Port disabled via device-tree\n", + ofdev->node->full_name); + return 0; + } + + + /* Allocate DWC SATA device */ + hsdev = kmalloc(sizeof(*hsdev), GFP_KERNEL); + if (hsdev == NULL) { + dev_err(&ofdev->dev, "kmalloc failed for hsdev\n"); + err = -ENOMEM; + goto error_out; + } + memset(hsdev, 0, sizeof(*hsdev)); + + + // Identify SATA controller index from the cell-index property + dma_channel = of_get_property(ofdev->node, "dma-channel", NULL); + if ( dma_channel ) { + dev_notice(&ofdev->dev, "Gettting DMA channel %d\n", *dma_channel); + hsdev->dma_channel = *dma_channel; + } else + hsdev->dma_channel = 0; + + /* Ioremap SATA registers */ + base = of_iomap(ofdev->node, 0); + if (!base) { + dev_err(&ofdev->dev, "ioremap failed for SATA register address\n"); + err = -ENODEV; + goto error_out; + } + hsdev->reg_base = base; + dev_dbg(&ofdev->dev, "ioremap done for SATA register address\n"); + + /* Synopsys DWC SATA specific Registers */ + hsdev->sata_dwc_regs = (void *__iomem)(base + SATA_DWC_REG_OFFSET); + + /* Allocate and fill host */ + host = ata_host_alloc_pinfo(&ofdev->dev, ppi, SATA_DWC_MAX_PORTS); + if (!host) { + dev_err(&ofdev->dev, "ata_host_alloc_pinfo failed\n"); + err = -ENOMEM; + goto error_out; + } + + host->private_data = hsdev; + + /* Setup port */ + host->ports[0]->ioaddr.cmd_addr = base; + host->ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET; + hsdev->scr_base = (u8 *)(base + SATA_DWC_SCR_OFFSET); + //scr_addr_sstatus = base + SATA_DWC_SCR_OFFSET; + sata_dwc_setup_port(&host->ports[0]->ioaddr, (unsigned long)base); + + /* Read the ID and Version Registers */ + idr = in_le32(&hsdev->sata_dwc_regs->idr); + versionr = in_le32(&hsdev->sata_dwc_regs->versionr); + dev_notice(&ofdev->dev, "id %d, controller version %c.%c%c\n", + idr, ver[0], ver[1], ver[2]); + + /* Get SATA DMA interrupt number */ + irq = irq_of_parse_and_map(ofdev->node, 1); + if (irq == NO_IRQ) { + dev_err(&ofdev->dev, "no SATA DMA irq\n"); + err = -ENODEV; + goto error_out; + } + + /* Get physical SATA DMA register base address */ + if (!sata_dma_regs) { + sata_dma_regs = of_iomap(ofdev->node, 1); + if (!sata_dma_regs) { + dev_err(&ofdev->dev, "ioremap failed for AHBDMA register address\n"); + err = -ENODEV; + goto error_out; + } + } + /* Save dev for later use in dev_xxx() routines */ + hsdev->dev = &ofdev->dev; + + /* Init glovbal dev list */ + dwc_dev_list[hsdev->dma_channel] = hsdev; + + /* Initialize AHB DMAC */ + dma_dwc_init(hsdev, irq); + + /* Enable SATA Interrupts */ + sata_dwc_enable_interrupts(hsdev); + + /* Get SATA interrupt number */ + irq = irq_of_parse_and_map(ofdev->node, 0); + if (irq == NO_IRQ) { + dev_err(&ofdev->dev, "no SATA irq\n"); + err = -ENODEV; + goto error_out; + } + + /* + * Now, register with libATA core, this will also initiate the + * device discovery process, invoking our port_start() handler & + * error_handler() to execute a dummy Softreset EH session + */ + ata_host_activate(host, irq, sata_dwc_isr, 0, &sata_dwc_sht); + + dev_set_drvdata(&ofdev->dev, host); + + /* Everything is fine */ + return 0; + +error_out: + /* Free SATA DMA resources */ + dma_dwc_exit(hsdev); + + if (base) + iounmap(base); + + if (hsdev) + kfree(hsdev); + + return err; +} + +static int sata_dwc_remove(struct of_device *ofdev) +{ + struct device *dev = &ofdev->dev; + struct ata_host *host = dev_get_drvdata(dev); + struct sata_dwc_device *hsdev = host->private_data; + + ata_host_detach(host); + + dev_set_drvdata(dev, NULL); + + /* Free SATA DMA resources */ + dma_dwc_exit(hsdev); + + iounmap(hsdev->reg_base); + kfree(hsdev); + kfree(host); + + dev_dbg(&ofdev->dev, "done\n"); + + return 0; +} + +static const struct of_device_id sata_dwc_match[] = { + { .compatible = "amcc,sata-460ex", }, + { .compatible = "amcc,sata-apm82181", }, + {} +}; +MODULE_DEVICE_TABLE(of, sata_dwc_match); + +static struct of_platform_driver sata_dwc_driver = { + .name = "sata-dwc", + .match_table = sata_dwc_match, + .probe = sata_dwc_probe, + .remove = sata_dwc_remove, +}; + +static int __init sata_dwc_init(void) +{ + return of_register_platform_driver(&sata_dwc_driver); +} + +static void __exit sata_dwc_exit(void) +{ + of_unregister_platform_driver(&sata_dwc_driver); +} + +module_init(sata_dwc_init); +module_exit(sata_dwc_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Mark Miesfeld <mmiesfeld@amcc.com>"); +MODULE_DESCRIPTION("DesignWare Cores SATA controller driver"); +MODULE_VERSION(DRV_VERSION); diff --git a/drivers/ata/sata_dwc_ncq.c b/drivers/ata/sata_dwc_ncq.c new file mode 100644 index 00000000000..86bc1a158a6 --- /dev/null +++ b/drivers/ata/sata_dwc_ncq.c @@ -0,0 +1,2933 @@ +/* + * drivers/ata/sata_dwc.c + * + * Synopsys DesignWare Cores (DWC) SATA host driver + * + * Author: Mark Miesfeld <mmiesfeld@amcc.com> + * + * Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de> + * Copyright 2008 DENX Software Engineering + * + * V2.0: Support Port Multiplier + * V2.1: Support NCQ + * + * Based on versions provided by AMCC and Synopsys which are: + * Copyright 2006 Applied Micro Circuits Corporation + * COPYRIGHT (C) 2005 SYNOPSYS, INC. ALL RIGHTS RESERVED + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 of the License, or (at your + * option) any later version. + * + */ + + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/init.h> +#include <linux/device.h> +#include <linux/of_platform.h> +#include <linux/libata.h> +#include <linux/rtc.h> + +#include <scsi/scsi_host.h> +#include <scsi/scsi_cmnd.h> + + +#ifdef CONFIG_SATA_DWC_DEBUG +#define DWC_DEBUG +#define dwc_dev_dbg(dev, format, arg...) \ + ({ if (0) dev_printk(KERN_INFO, dev, format, ##arg); 0; }) +#define dwc_port_dbg(ap, format, arg...) \ + ata_port_printk(ap, KERN_INFO, format, ##arg) +#define dwc_link_dbg(link, format, arg...) \ + ata_link_printk(link, KERN_INFO, format, ##arg) +#else +#define dwc_dev_dbg(dev, format, arg...) \ + ({ 0; }) +#define dwc_port_dbg(ap, format, arg...) \ + ({ 0; }) +#define dwc_link_dbg(link, format, arg...) \ + ({ 0; }) +#endif + +#ifdef CONFIG_SATA_DWC_VDEBUG +#define DWC_VDEBUG +#define DEBUG_NCQ +#define dwc_dev_vdbg(dev, format, arg...) \ + ({ if (0) dev_printk(KERN_INFO, dev, format, ##arg); 0; }) +#define dwc_port_vdbg(ap, format, arg...) \ + ata_port_printk(ap, KERN_INFO, format, ##arg) +#define dwc_link_vdbg(link, format, arg...) \ + ata_link_printk(link, KERN_INFO, format, ##arg) +#else +#define dwc_dev_vdbg(dev, format, arg...) \ + ({ 0; }) +#define dwc_port_vdbg(ap, format, arg...) \ + ({ 0; }) +#define dwc_link_vdbg(link, format, arg...) \ + ({ 0; }) +#endif + +#define dwc_dev_info(dev, format, arg...) \ + ({ if (0) dev_printk(KERN_INFO, dev, format, ##arg); 0; }) +#define dwc_port_info(ap, format, arg...) \ + ata_port_printk(ap, KERN_INFO, format, ##arg) +#define dwc_link_info(link, format, arg...) \ + ata_link_printk(link, KERN_INFO, format, ##arg) + + + +#define DRV_NAME "sata-dwc" +#define DRV_VERSION "2.1" + +/* Port Multiplier discovery Signature */ +#define PSCR_SCONTROL_DET_ENABLE 0x00000001 +#define PSCR_SSTATUS_DET_PRESENT 0x00000001 +#define PSCR_SERROR_DIAG_X 0x04000000 + +/* Port multiplier port entry in SCONTROL register */ +#define SCONTROL_PMP_MASK 0x000f0000 +#define PMP_TO_SCONTROL(p) ((p << 16) & 0x000f0000) +#define SCONTROL_TO_PMP(p) (((p) & 0x000f0000) >> 16) + + +/* SATA DMA driver Globals */ +#if defined(CONFIG_APM82181) +#define DMA_NUM_CHANS 2 +#else +#define DMA_NUM_CHANS 1 +#endif + +#define DMA_NUM_CHAN_REGS 8 + +/* SATA DMA Register definitions */ +#if defined(CONFIG_APM82181) +#define AHB_DMA_BRST_DFLT 64 /* 16 data items burst length */ +#else +#define AHB_DMA_BRST_DFLT 64 /* 16 data items burst length */ +#endif + +struct dmareg { + u32 low; /* Low bits 0-31 */ + u32 high; /* High bits 32-63 */ +}; + +/* DMA Per Channel registers */ +struct dma_chan_regs { + struct dmareg sar; /* Source Address */ + struct dmareg dar; /* Destination address */ + struct dmareg llp; /* Linked List Pointer */ + struct dmareg ctl; /* Control */ + struct dmareg sstat; /* Source Status not implemented in core */ + struct dmareg dstat; /* Destination Status not implemented in core */ + struct dmareg sstatar; /* Source Status Address not impl in core */ + struct dmareg dstatar; /* Destination Status Address not implemented */ + struct dmareg cfg; /* Config */ + struct dmareg sgr; /* Source Gather */ + struct dmareg dsr; /* Destination Scatter */ +}; + +/* Generic Interrupt Registers */ +struct dma_interrupt_regs { + struct dmareg tfr; /* Transfer Interrupt */ + struct dmareg block; /* Block Interrupt */ + struct dmareg srctran; /* Source Transfer Interrupt */ + struct dmareg dsttran; /* Dest Transfer Interrupt */ + struct dmareg error; /* Error */ +}; + +struct ahb_dma_regs { + struct dma_chan_regs chan_regs[DMA_NUM_CHAN_REGS]; + struct dma_interrupt_regs interrupt_raw; /* Raw Interrupt */ + struct dma_interrupt_regs interrupt_status; /* Interrupt Status */ + struct dma_interrupt_regs interrupt_mask; /* Interrupt Mask */ + struct dma_interrupt_regs interrupt_clear; /* Interrupt Clear */ + struct dmareg statusInt; /* Interrupt combined */ + struct dmareg rq_srcreg; /* Src Trans Req */ + struct dmareg rq_dstreg; /* Dst Trans Req */ + struct dmareg rq_sgl_srcreg; /* Sngl Src Trans Req */ + struct dmareg rq_sgl_dstreg; /* Sngl Dst Trans Req */ + struct dmareg rq_lst_srcreg; /* Last Src Trans Req */ + struct dmareg rq_lst_dstreg; /* Last Dst Trans Req */ + struct dmareg dma_cfg; /* DMA Config */ + struct dmareg dma_chan_en; /* DMA Channel Enable */ + struct dmareg dma_id; /* DMA ID */ + struct dmareg dma_test; /* DMA Test */ + struct dmareg res1; /* reserved */ + struct dmareg res2; /* reserved */ + + /* DMA Comp Params + * Param 6 = dma_param[0], Param 5 = dma_param[1], + * Param 4 = dma_param[2] ... + */ + struct dmareg dma_params[6]; +}; + +/* Data structure for linked list item */ +struct lli { + u32 sar; /* Source Address */ + u32 dar; /* Destination address */ + u32 llp; /* Linked List Pointer */ + struct dmareg ctl; /* Control */ +#if defined(CONFIG_APM82181) + u32 dstat; /* Source status is not supported */ +#else + struct dmareg dstat; /* Destination Status */ +#endif +}; + +#define SATA_DWC_DMAC_LLI_SZ (sizeof(struct lli)) +#define SATA_DWC_DMAC_LLI_NUM 256 +#define SATA_DWC_DMAC_TWIDTH_BYTES 4 +#define SATA_DWC_DMAC_LLI_TBL_SZ \ + (SATA_DWC_DMAC_LLI_SZ * SATA_DWC_DMAC_LLI_NUM) +#if defined(CONFIG_APM82181) +#define SATA_DWC_DMAC_CTRL_TSIZE_MAX \ + (0x00000800 * SATA_DWC_DMAC_TWIDTH_BYTES) +#else +#define SATA_DWC_DMAC_CTRL_TSIZE_MAX \ + (0x00000800 * SATA_DWC_DMAC_TWIDTH_BYTES) +#endif +/* DMA Register Operation Bits */ +#define DMA_EN 0x00000001 /* Enable AHB DMA */ +#define DMA_CHANNEL(ch) (0x00000001 << (ch)) /* Select channel */ +#define DMA_ENABLE_CHAN(ch) ((0x00000001 << (ch)) | \ + ((0x000000001 << (ch)) << 8)) +#define DMA_DISABLE_CHAN(ch) (0x00000000 | ((0x000000001 << (ch)) << 8)) + +/* Channel Control Register */ +#define DMA_CTL_BLK_TS(size) ((size) & 0x000000FFF) /* Blk Transfer size */ +#define DMA_CTL_LLP_SRCEN 0x10000000 /* Blk chain enable Src */ +#define DMA_CTL_LLP_DSTEN 0x08000000 /* Blk chain enable Dst */ +/* + * This define is used to set block chaining disabled in the control low + * register. It is already in little endian format so it can be &'d dirctly. + * It is essentially: cpu_to_le32(~(DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN)) + */ +#define DMA_CTL_LLP_DISABLE_LE32 0xffffffe7 +#define DMA_CTL_SMS(num) ((num & 0x3) << 25) /*Src Master Select*/ +#define DMA_CTL_DMS(num) ((num & 0x3) << 23) /*Dst Master Select*/ +#define DMA_CTL_TTFC(type) ((type & 0x7) << 20) /*Type&Flow cntr*/ +#define DMA_CTL_TTFC_P2M_DMAC 0x00000002 /*Per mem,DMAC cntr*/ +#define DMA_CTL_TTFC_M2P_PER 0x00000003 /*Mem per,peri cntr*/ +#define DMA_CTL_SRC_MSIZE(size) ((size & 0x7) << 14) /*Src Burst Len*/ +#define DMA_CTL_DST_MSIZE(size) ((size & 0x7) << 11) /*Dst Burst Len*/ +#define DMA_CTL_SINC_INC 0x00000000 /*Src addr incr*/ +#define DMA_CTL_SINC_DEC 0x00000200 +#define DMA_CTL_SINC_NOCHANGE 0x00000400 +#define DMA_CTL_DINC_INC 0x00000000 /*Dst addr incr*/ +#define DMA_CTL_DINC_DEC 0x00000080 +#define DMA_CTL_DINC_NOCHANGE 0x00000100 +#define DMA_CTL_SRC_TRWID(size) ((size & 0x7) << 4) /*Src Trnsfr Width*/ +#define DMA_CTL_DST_TRWID(size) ((size & 0x7) << 1) /*Dst Trnsfr Width*/ +#define DMA_CTL_INT_EN 0x00000001 /*Interrupt Enable*/ + +/* Channel Configuration Register high bits */ +#define DMA_CFG_FCMOD_REQ 0x00000001 /*Flow cntrl req*/ +#define DMA_CFG_PROTCTL (0x00000003 << 2) /*Protection cntrl*/ + +/* Channel Configuration Register low bits */ +#define DMA_CFG_RELD_DST 0x80000000 /*Reload Dst/Src Addr*/ +#define DMA_CFG_RELD_SRC 0x40000000 +#define DMA_CFG_HS_SELSRC 0x00000800 /*SW hndshk Src/Dst*/ +#define DMA_CFG_HS_SELDST 0x00000400 +#define DMA_CFG_FIFOEMPTY (0x00000001 << 9) /*FIFO Empty bit*/ + +/* Assign hardware handshaking interface (x) to dst / sre peripheral */ +#define DMA_CFG_HW_HS_DEST(int_num) ((int_num & 0xF) << 11) +#define DMA_CFG_HW_HS_SRC(int_num) ((int_num & 0xF) << 7) + +/* Channel Linked List Pointer Register */ +#define DMA_LLP_LMS(addr, master) (((addr) & 0xfffffffc) | (master)) +#define DMA_LLP_AHBMASTER1 0 /* List Master Select */ +#define DMA_LLP_AHBMASTER2 1 + +#define SATA_DWC_MAX_PORTS 1 + +#define SATA_DWC_SCR_OFFSET 0x24 +#define SATA_DWC_REG_OFFSET 0x64 + +/* DWC SATA Registers */ +struct sata_dwc_regs { + u32 fptagr; /* 1st party DMA tag */ + u32 fpbor; /* 1st party DMA buffer offset */ + u32 fptcr; /* 1st party DMA Xfr count */ + u32 dmacr; /* DMA Control */ + u32 dbtsr; /* DMA Burst Transac size */ + u32 intpr; /* Interrupt Pending */ + u32 intmr; /* Interrupt Mask */ + u32 errmr; /* Error Mask */ + u32 llcr; /* Link Layer Control */ + u32 phycr; /* PHY Control */ + u32 physr; /* PHY Status */ + u32 rxbistpd; /* Recvd BIST pattern def register */ + u32 rxbistpd1; /* Recvd BIST data dword1 */ + u32 rxbistpd2; /* Recvd BIST pattern data dword2 */ + u32 txbistpd; /* Trans BIST pattern def register */ + u32 txbistpd1; /* Trans BIST data dword1 */ + u32 txbistpd2; /* Trans BIST data dword2 */ + u32 bistcr; /* BIST Control Register */ + u32 bistfctr; /* BIST FIS Count Register */ + u32 bistsr; /* BIST Status Register */ + u32 bistdecr; /* BIST Dword Error count register */ + u32 res[15]; /* Reserved locations */ + u32 testr; /* Test Register */ + u32 versionr; /* Version Register */ + u32 idr; /* ID Register */ + u32 unimpl[192]; /* Unimplemented */ + u32 dmadr[256]; /* FIFO Locations in DMA Mode */ +}; + +#define SCR_SCONTROL_DET_ENABLE 0x00000001 +#define SCR_SSTATUS_DET_PRESENT 0x00000001 +#define SCR_SERROR_DIAG_X 0x04000000 + +/* DWC SATA Register Operations */ +#define SATA_DWC_TXFIFO_DEPTH 0x01FF +#define SATA_DWC_RXFIFO_DEPTH 0x01FF + +#define SATA_DWC_DMACR_TMOD_TXCHEN 0x00000004 +#define SATA_DWC_DMACR_TXCHEN (0x00000001 | \ + SATA_DWC_DMACR_TMOD_TXCHEN) +#define SATA_DWC_DMACR_RXCHEN (0x00000002 | \ + SATA_DWC_DMACR_TMOD_TXCHEN) +#define SATA_DWC_DMACR_TX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_TXCHEN) | \ + SATA_DWC_DMACR_TMOD_TXCHEN) +#define SATA_DWC_DMACR_RX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_RXCHEN) | \ + SATA_DWC_DMACR_TMOD_TXCHEN) +#define SATA_DWC_DMACR_TXRXCH_CLEAR SATA_DWC_DMACR_TMOD_TXCHEN + +#define SATA_DWC_DBTSR_MWR(size) ((size/4) & \ + SATA_DWC_TXFIFO_DEPTH) +#define SATA_DWC_DBTSR_MRD(size) (((size/4) & \ + SATA_DWC_RXFIFO_DEPTH) << 16) + +// SATA DWC Interrupts +#define SATA_DWC_INTPR_DMAT 0x00000001 +#define SATA_DWC_INTPR_NEWFP 0x00000002 +#define SATA_DWC_INTPR_PMABRT 0x00000004 +#define SATA_DWC_INTPR_ERR 0x00000008 +#define SATA_DWC_INTPR_NEWBIST 0x00000010 +#define SATA_DWC_INTPR_IPF 0x80000000 +// Interrupt masks +#define SATA_DWC_INTMR_DMATM 0x00000001 +#define SATA_DWC_INTMR_NEWFPM 0x00000002 +#define SATA_DWC_INTMR_PMABRTM 0x00000004 +#define SATA_DWC_INTMR_ERRM 0x00000008 +#define SATA_DWC_INTMR_NEWBISTM 0x00000010 +#define SATA_DWC_INTMR_PRIMERRM 0x00000020 +#define SATA_DWC_INTPR_CMDGOOD 0x00000080 +#define SATA_DWC_INTPR_CMDABORT 0x00000040 + +#define SATA_DWC_LLCR_SCRAMEN 0x00000001 +#define SATA_DWC_LLCR_DESCRAMEN 0x00000002 +#define SATA_DWC_LLCR_RPDEN 0x00000004 + +// Defines for SError register +#define SATA_DWC_SERR_ERRI 0x00000001 // Recovered data integrity error +#define SATA_DWC_SERR_ERRM 0x00000002 // Recovered communication error +#define SATA_DWC_SERR_ERRT 0x00000100 // Non-recovered transient data integrity error +#define SATA_DWC_SERR_ERRC 0x00000200 // Non-recovered persistent communication or data integrity error +#define SATA_DWC_SERR_ERRP 0x00000400 // Protocol error +#define SATA_DWC_SERR_ERRE 0x00000800 // Internal host adapter error +#define SATA_DWC_SERR_DIAGN 0x00010000 // PHYRdy change +#define SATA_DWC_SERR_DIAGI 0x00020000 // PHY internal error +#define SATA_DWC_SERR_DIAGW 0x00040000 // Phy COMWAKE signal is detected +#define SATA_DWC_SERR_DIAGB 0x00080000 // 10b to 8b decoder err +#define SATA_DWC_SERR_DIAGT 0x00100000 // Disparity error +#define SATA_DWC_SERR_DIAGC 0x00200000 // CRC error +#define SATA_DWC_SERR_DIAGH 0x00400000 // Handshake error +#define SATA_DWC_SERR_DIAGL 0x00800000 // Link sequence (illegal transition) error +#define SATA_DWC_SERR_DIAGS 0x01000000 // Transport state transition error +#define SATA_DWC_SERR_DIAGF 0x02000000 // Unrecognized FIS type +#define SATA_DWC_SERR_DIAGX 0x04000000 // Exchanged error - Set when PHY COMINIT signal is detected. +#define SATA_DWC_SERR_DIAGA 0x08000000 // Port Selector Presence detected + +/* This is all error bits, zero's are reserved fields. */ +#define SATA_DWC_SERR_ERR_BITS 0x0FFF0F03 + +#define SATA_DWC_SCR0_SPD_GET(v) ((v >> 4) & 0x0000000F) + +struct sata_dwc_device { + struct resource reg; /* Resource for register */ + struct device *dev; /* generic device struct */ + struct ata_probe_ent *pe; /* ptr to probe-ent */ + struct ata_host *host; + u8 *reg_base; + struct sata_dwc_regs *sata_dwc_regs; /* DW Synopsys SATA specific */ + u8 *scr_base; + int dma_channel; /* DWC SATA DMA channel */ + int irq_dma; + struct timer_list an_timer; +}; + +#define SATA_DWC_QCMD_MAX 32 + +struct sata_dwc_device_port { + struct sata_dwc_device *hsdev; + int cmd_issued[SATA_DWC_QCMD_MAX]; // QC issued + struct lli *llit[SATA_DWC_QCMD_MAX]; + dma_addr_t llit_dma[SATA_DWC_QCMD_MAX]; + u32 dma_chan[SATA_DWC_QCMD_MAX]; // Consider to be removed + int dma_pending[SATA_DWC_QCMD_MAX]; // DMA command needs to be processed + int num_lli[SATA_DWC_QCMD_MAX]; + u32 dma_complete; // tasks completes DMA transfer + u32 sactive_issued; /* issued queued ops */ + u32 sactive_queued; /* queued ops */ + int no_dma_pending; // Number of pending DMA + int dma_pending_isr_count; // Number of interrupt count + int max_tag; // maximum tag, used for debug NCQ only +}; + +static struct sata_dwc_device* dwc_dev_list[2]; // Device list. +static int dma_intr_registered = 0; + + +/* + * Commonly used DWC SATA driver Macros + */ +#define HSDEV_FROM_HOST(host) ((struct sata_dwc_device *) \ + (host)->private_data) +#define HSDEV_FROM_AP(ap) ((struct sata_dwc_device *) \ + (ap)->host->private_data) +#define HSDEVP_FROM_AP(ap) ((struct sata_dwc_device_port *) \ + (ap)->private_data) +#define HSDEV_FROM_QC(qc) ((struct sata_dwc_device *) \ + (qc)->ap->host->private_data) +#define HSDEV_FROM_HSDEVP(p) ((struct sata_dwc_device *) \ + (hsdevp)->hsdev) + +enum { + SATA_DWC_CMD_ISSUED_NOT = 0, + SATA_DWC_CMD_ISSUED_PENDING = 1, + SATA_DWC_CMD_ISSUED_EXEC = 2, + SATA_DWC_CMD_ISSUED_NODATA = 3, + + SATA_DWC_DMA_PENDING_NONE = 0, + SATA_DWC_DMA_PENDING_TX = 1, + SATA_DWC_DMA_PENDING_RX = 2, + SATA_DWC_DMA_DONE = 3, +}; + +/* + * Globals + */ +static struct ahb_dma_regs *sata_dma_regs = 0; + +/* + * Prototypes + */ +static void sata_dwc_start_dma_transfer(struct ata_queued_cmd *qc); +static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc, + u32 check_status); +static void sata_dwc_port_stop(struct ata_port *ap); +static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag); + +static int dma_dwc_init(struct sata_dwc_device *hsdev); +static void dma_dwc_exit(struct sata_dwc_device *hsdev); +static void dma_dwc_terminate_dma(struct ata_port *ap, int dma_ch); +static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev); +static void sata_dwc_init_port ( struct ata_port *ap ); +u8 sata_dwc_check_status(struct ata_port *ap); +static inline u32 sata_dwc_core_scr_read ( struct ata_port *ap, unsigned int scr); + + + + + + +/* + * Convert DMA direction to text + */ +static const char *dir_2_txt(enum dma_data_direction dir) +{ + switch (dir) { + case DMA_BIDIRECTIONAL: + return "bi"; + case DMA_FROM_DEVICE: + return "from"; + case DMA_TO_DEVICE: + return "to"; + case DMA_NONE: + return "none"; + default: + return "err"; + } +} + + +/* + * Convert QC protocol to text + */ +static const char *prot_2_txt(enum ata_tf_protocols protocol) +{ + switch (protocol) { + case ATA_PROT_UNKNOWN: + return "unknown"; + case ATA_PROT_NODATA: + return "nodata"; + case ATA_PROT_PIO: + return "pio"; + case ATA_PROT_DMA: + return "dma"; + case ATA_PROT_NCQ: + return "ncq"; + case ATAPI_PROT_PIO: + return "atapi pio"; + case ATAPI_PROT_NODATA: + return "atapi nodata"; + case ATAPI_PROT_DMA: + return "atapi dma"; + default: + return "err"; + } +} + + +/* + * Convert SERROR register bits to text + */ +static void print_serror_2_txt ( u32 serror) { + if ( serror ) { + printk("Detect errors (0x%08x):", serror); + if ( serror & SATA_DWC_SERR_ERRI ) + printk(" ERRI"); + if ( serror & SATA_DWC_SERR_ERRM ) + printk(" ERRM"); + if ( serror & SATA_DWC_SERR_ERRT ) + printk(" ERRT"); + if ( serror & SATA_DWC_SERR_ERRC ) + printk(" ERRC"); + if ( serror & SATA_DWC_SERR_ERRP ) + printk(" ERRP"); + if ( serror & SATA_DWC_SERR_ERRE ) + printk(" ERRE"); + if ( serror & SATA_DWC_SERR_DIAGN ) + printk(" DIAGN"); + if ( serror & SATA_DWC_SERR_DIAGI ) + printk(" DIAGI"); + if ( serror & SATA_DWC_SERR_DIAGW ) + printk(" DIAGW"); + if ( serror & SATA_DWC_SERR_DIAGB ) + printk(" DIAGB"); + if ( serror & SATA_DWC_SERR_DIAGT ) + printk(" DIAGT"); + if ( serror & SATA_DWC_SERR_DIAGC ) + printk(" DIAGC"); + if ( serror & SATA_DWC_SERR_DIAGH ) + printk(" DIAGH"); + if ( serror & SATA_DWC_SERR_DIAGL ) + printk(" DIAGL"); + if ( serror & SATA_DWC_SERR_DIAGS ) + printk(" DIAGS"); + if ( serror & SATA_DWC_SERR_DIAGF ) + printk(" DIAGF"); + if ( serror & SATA_DWC_SERR_DIAGX ) + printk(" DIAGX"); + if ( serror & SATA_DWC_SERR_DIAGA ) + printk(" DIAGA"); + printk("\n"); + } +} + + + +/* + * Convert SATA command to text + */ +inline const char *ata_cmd_2_txt(const struct ata_taskfile *tf) +{ + switch (tf->command) { + case ATA_CMD_CHK_POWER: + return "ATA_CMD_CHK_POWER"; + case ATA_CMD_EDD: + return "ATA_CMD_EDD"; + case ATA_CMD_FLUSH: + return "ATA_CMD_FLUSH"; + case ATA_CMD_FLUSH_EXT: + return "ATA_CMD_FLUSH_EXT"; + case ATA_CMD_ID_ATA: + return "ATA_CMD_ID_ATA"; + case ATA_CMD_ID_ATAPI: + return "ATA_CMD_ID_ATAPI"; + case ATA_CMD_FPDMA_READ: + return "ATA_CMD_FPDMA_READ"; + case ATA_CMD_FPDMA_WRITE: + return "ATA_CMD_FPDMA_WRITE"; + case ATA_CMD_READ: + return "ATA_CMD_READ"; + case ATA_CMD_READ_EXT: + return "ATA_CMD_READ_EXT"; + case ATA_CMD_READ_NATIVE_MAX_EXT : + return "ATA_CMD_READ_NATIVE_MAX_EXT"; + case ATA_CMD_VERIFY_EXT : + return "ATA_CMD_VERIFY_EXT"; + case ATA_CMD_WRITE: + return "ATA_CMD_WRITE"; + case ATA_CMD_WRITE_EXT: + return "ATA_CMD_WRITE_EXT"; + case ATA_CMD_PIO_READ: + return "ATA_CMD_PIO_READ"; + case ATA_CMD_PIO_READ_EXT: + return "ATA_CMD_PIO_READ_EXT"; + case ATA_CMD_PIO_WRITE: + return "ATA_CMD_PIO_WRITE"; + case ATA_CMD_PIO_WRITE_EXT: + return "ATA_CMD_PIO_WRITE_EXT"; + case ATA_CMD_SET_FEATURES: + return "ATA_CMD_SET_FEATURES"; + case ATA_CMD_PACKET: + return "ATA_CMD_PACKET"; + case ATA_CMD_PMP_READ: + return "ATA_CMD_PMP_READ"; + case ATA_CMD_PMP_WRITE: + return "ATA_CMD_PMP_WRITE"; + default: + return "ATA_CMD_???"; + } +} + + + + +/* + * Dump content of the taskfile + */ +static void sata_dwc_tf_dump(struct ata_port *ap, struct ata_taskfile *tf) +{ + ata_port_printk(ap, KERN_INFO, "taskfile cmd: 0x%02x protocol: %s flags: 0x%lx" + "device: %x\n", tf->command, prot_2_txt(tf->protocol), + tf->flags, tf->device); + printk("\tfeature: 0x%02x nsect: 0x%x lbal: 0x%x lbam:" + "0x%x lbah: 0x%x\n", tf->feature, tf->nsect, tf->lbal, + tf->lbam, tf->lbah); + printk("\thob_feature: 0x%02x hob_nsect: 0x%x hob_lbal: 0x%x " + "hob_lbam: 0x%x hob_lbah: 0x%x\n", tf->hob_feature, + tf->hob_nsect, tf->hob_lbal, tf->hob_lbam, + tf->hob_lbah); +} + + +/* + * Print out current setting of the DMA configuration by reading + * DMA registers. + */ +static void print_dma_registers( int dma_chan ) { + printk("Content of DMA registers in channel %d:\n", dma_chan); + printk("\t- cfg.low : 0x%08x\n", in_le32(&(sata_dma_regs->chan_regs[dma_chan].cfg.low))); + printk("\t- cfg.high: 0x%08x\n", in_le32(&(sata_dma_regs->chan_regs[dma_chan].cfg.high))); + printk("\t- ctl.low : 0x%08x\n", in_le32(&(sata_dma_regs->chan_regs[dma_chan].ctl.low))); + printk("\t- ctl.high: 0x%08x\n", in_le32(&(sata_dma_regs->chan_regs[dma_chan].ctl.high))); + printk("\t- llp.low : 0x%08x\n", in_le32(&(sata_dma_regs->chan_regs[dma_chan].llp.low))); + printk("\t- sar.low : 0x%08x\n", in_le32(&(sata_dma_regs->chan_regs[dma_chan].sar.low))); + printk("\t- sar.high: 0x%08x\n", in_le32(&(sata_dma_regs->chan_regs[dma_chan].sar.high))); + printk("\t- dar.low : 0x%08x\n", in_le32(&(sata_dma_regs->chan_regs[dma_chan].dar.low))); + printk("\t- dar.high: 0x%08x\n", in_le32(&(sata_dma_regs->chan_regs[dma_chan].dar.high))); + printk("\t- sgr.low : 0x%08x\n", in_le32(&(sata_dma_regs->chan_regs[dma_chan].sgr.low))); +} + + +/* + * Print out DMA information set up in LLI + */ +static void print_dma_configuration ( struct lli *lli, int idx ) { + printk("SATA DWC Port DMA configuration\n"); + printk("index %d\n", idx); + printk(" - lli[%d].ctl.high: 0x%08x\n", idx, lli[idx].ctl.high); + printk(" - lli[%d].ctl.low : 0x%08x\n", idx, lli[idx].ctl.low); + printk(" - lli[%d].lli.dar : 0x%08x\n", idx, lli[idx].dar); + printk(" - lli[%d].lli.sar : 0x%08x\n", idx, lli[idx].sar); + printk(" - lli[%d].next_llp: 0x%08x\n", idx, lli[idx].llp); +} + + +/* + * Function: get_burst_length_encode + * arguments: datalength: length in bytes of data + * returns value to be programmed in register corrresponding to data length + * This value is effectively the log(base 2) of the length + */ +static inline int get_burst_length_encode(int datalength) +{ + int items = datalength >> 2; /* div by 4 to get lword count */ + + if (items >= 64) + return 5; + + if (items >= 32) + return 4; + + if (items >= 16) + return 3; + + if (items >= 8) + return 2; + + if (items >= 4) + return 1; + + return 0; +} + + +/* + * Clear Interrupts on a DMA channel + */ +static inline void clear_chan_interrupts(int c) +{ + out_le32(&(sata_dma_regs->interrupt_clear.tfr.low), DMA_CHANNEL(c)); + out_le32(&(sata_dma_regs->interrupt_clear.block.low), DMA_CHANNEL(c)); + out_le32(&(sata_dma_regs->interrupt_clear.srctran.low), DMA_CHANNEL(c)); + out_le32(&(sata_dma_regs->interrupt_clear.dsttran.low), DMA_CHANNEL(c)); + out_le32(&(sata_dma_regs->interrupt_clear.error.low), DMA_CHANNEL(c)); +} + + +/* + * Function: dma_request_channel + * arguments: None + * returns channel number if available else -1 + * This function assigns the next available DMA channel from the list to the + * requester + */ +static int dma_request_channel(struct ata_port *ap) +{ + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + + if (!(in_le32(&(sata_dma_regs->dma_chan_en.low)) & DMA_CHANNEL(hsdev->dma_channel))) { + dwc_port_vdbg(ap, "%s Successfully requested DMA channel %d\n", + __func__, hsdev->dma_channel); + return (hsdev->dma_channel); + } + + return -1; +} + + +static inline u32 qcmd_tag_to_mask(u8 tag) +{ + return 0x00000001 << (tag & 0x1f); +} + + + + +/* + * Function: dma_dwc_interrupt + * arguments: irq, dev_id, pt_regs + * returns channel number if available else -1 + * Interrupt Handler for DW AHB SATA DMA + */ +static int dma_dwc_interrupt(int irq, void *hsdev_instance) +{ + volatile u32 tfr_reg, err_reg; + unsigned long flags; + struct sata_dwc_device *hsdev = + (struct sata_dwc_device *)hsdev_instance; + struct ata_host *host = (struct ata_host *)hsdev->host; + struct ata_port *ap; + struct sata_dwc_device_port *hsdevp; + u8 tag = 0; + int chan; + unsigned int port = 0; + struct ata_queued_cmd *qc; + + spin_lock_irqsave(&host->lock, flags); + + ap = host->ports[port]; + hsdevp = HSDEVP_FROM_AP(ap); + if ( ap->link.active_tag == ATA_TAG_POISON ) + tag = 0; + else + tag = ap->link.active_tag; + + dwc_port_dbg(ap, "%s: DMA interrupt in channel %d, tag=%d\n", __func__, hsdev->dma_channel, tag); + + tfr_reg = in_le32(&(sata_dma_regs->interrupt_status.tfr.low)); + err_reg = in_le32(&(sata_dma_regs->interrupt_status.error.low)); + + dwc_port_vdbg(ap, "tfr_reg=0x%08x err_reg=0x%08x pending=%s\n", + tfr_reg, err_reg, (hsdevp->dma_pending[tag]==0)? "DMA_PENDING_NONE" : (hsdevp->dma_pending[tag]==1? "DMA_PENDING_TX" : "DMA_PENDING_RX")); + chan = hsdev->dma_channel; + + /* + * Interrupt to indicate DMA transfer completion + * to the destination peripheral + */ + if (tfr_reg & DMA_CHANNEL(chan)) { + sata_dwc_clear_dmacr(hsdevp, tag); + hsdevp->no_dma_pending--; + + // It should be SATA_DWC_DMA_PENDING_TX or SATA_DWC_DMA_PENDING_RX + // Otherwise, this is out of sync. + if (unlikely(hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE)) { + dev_err(ap->dev, "DMA not pending tfr=0x%08x " + "err=0x%08x tag=0x%02x pending=%d\n", + tfr_reg, err_reg, tag, + hsdevp->dma_pending[tag]); + } + + // Update DMA pending for the completion tag. + hsdevp->dma_pending[tag] = SATA_DWC_DMA_DONE; + + /* Clear the interrupt */ + out_le32(&(sata_dma_regs->interrupt_clear.tfr.low), + DMA_CHANNEL(chan)); + } + + /* + * Process Error Interrupt. + * When this occurs, the DMA transfer is cancelled and the + * channel is disabled. + */ + if (unlikely(err_reg & DMA_CHANNEL(chan))) { + dev_err(ap->dev, "error interrupt err_reg=0x%08x\n", err_reg); + spin_lock_irqsave(ap->lock, flags); + + /* disable DMAC */ + dma_dwc_terminate_dma(ap, chan); + + // Set QC flag to Fail state + qc = ata_qc_from_tag(ap, tag); + if ( qc ) + qc->err_mask |= AC_ERR_ATA_BUS; + spin_unlock_irqrestore(ap->lock, flags); + + /* Clear the interrupt. */ + out_le32(&(sata_dma_regs->interrupt_clear.error.low), + DMA_CHANNEL(chan)); + + // Update DMA pending for the completion tag (ignore current QC) + hsdevp->dma_pending[tag] = SATA_DWC_DMA_DONE; + } + hsdevp->dma_complete |= qcmd_tag_to_mask(tag); + + spin_unlock_irqrestore(&host->lock, flags); + return IRQ_HANDLED; +} + + + +static irqreturn_t dma_dwc_handler(int irq, void *hsdev_instance) +{ + volatile u32 tfr_reg, err_reg; + int chan; + + tfr_reg = in_le32(&(sata_dma_regs->interrupt_status.tfr.low)); + err_reg = in_le32(&(sata_dma_regs->interrupt_status.error.low)); + + for (chan = 0; chan < DMA_NUM_CHANS; chan++) { + /* Check for end-of-transfer interrupt. */ + if (tfr_reg & DMA_CHANNEL(chan)) { + dma_dwc_interrupt(0, dwc_dev_list[chan]); + } + + /* Check for error interrupt. */ + if (err_reg & DMA_CHANNEL(chan)) { + dma_dwc_interrupt(0, dwc_dev_list[chan]); + } + } + + return IRQ_HANDLED; +} + +static int dma_register_interrupt (struct sata_dwc_device *hsdev) +{ + int retval = 0; + int irq = hsdev->irq_dma; + /* + * FIXME: 2 SATA controllers share the same DMA engine so + * currently, they also share same DMA interrupt + */ + if (!dma_intr_registered) { + printk("%s register irq (%d)\n", __func__, irq); + //retval = request_irq(irq, dma_dwc_handler, IRQF_SHARED, "SATA DMA", hsdev); + retval = request_irq(irq, dma_dwc_handler, IRQF_DISABLED, "SATA DMA", NULL); + if (retval) { + dev_err(hsdev->dev, "%s: could not get IRQ %d\n", __func__, irq); + return -ENODEV; + } + dma_intr_registered = 1; + } + return retval; +} + +/* + * Function: dma_request_interrupts + * arguments: hsdev + * returns status + * This function registers ISR for a particular DMA channel interrupt + */ +static int dma_request_interrupts(struct sata_dwc_device *hsdev, int irq) +{ + int retval = 0; + int dma_chan = hsdev->dma_channel; + + /* Unmask error interrupt */ + out_le32(&sata_dma_regs->interrupt_mask.error.low, + in_le32(&sata_dma_regs->interrupt_mask.error.low) | DMA_ENABLE_CHAN(dma_chan)); + + /* Unmask end-of-transfer interrupt */ + out_le32(&sata_dma_regs->interrupt_mask.tfr.low, + in_le32(&sata_dma_regs->interrupt_mask.tfr.low) | DMA_ENABLE_CHAN(dma_chan)); + +#ifdef DWC_VDEBUG + dwc_dev_info(hsdev->dev, "%s Current value of:\n", __func__); + printk(" - interrupt_mask.error=0x%0x\n", in_le32(&sata_dma_regs->interrupt_mask.error.low)); + printk(" - interrupt_mask.tfr=0x%0x\n", in_le32(&sata_dma_regs->interrupt_mask.tfr.low)); +#endif + return retval; +} + + + +/* + * Function: map_sg_to_lli + * arguments: sg: scatter/gather list(sg) + * num_elems: no of elements in sg list + * dma_lli: LLI table + * dest: destination address + * read: whether the transfer is read or write + * returns array of AHB DMA Linked List Items + * This function creates a list of LLIs for DMA Xfr and returns the number + * of elements in the DMA linked list. + * + * Note that the Synopsis driver has a comment proposing that better performance + * is possible by only enabling interrupts on the last item in the linked list. + * However, it seems that could be a problem if an error happened on one of the + * first items. The transfer would halt, but no error interrupt would occur. + * + * Currently this function sets interrupts enabled for each linked list item: + * DMA_CTL_INT_EN. + */ +static int map_sg_to_lli(struct ata_queued_cmd *qc, struct lli *lli, + dma_addr_t dma_lli, void __iomem *dmadr_addr) +{ + struct scatterlist *sg = qc->sg; + struct device *dwc_dev = qc->ap->dev; + int num_elems = qc->n_elem; + int dir = qc->dma_dir; + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(qc->ap); + + int i, idx = 0; + int fis_len = 0; + dma_addr_t next_llp; + int bl; + unsigned int dma_ts = 0; + + dwc_port_dbg(qc->ap, "%s\n", __func__); +#ifdef DWC_VDEBUG + printk("sg=%p nelem=%d lli=%p dma_lli=0x%08x " + "dmadr=0x%08x\n", sg, num_elems, lli, (u32)dma_lli, + (u32)dmadr_addr); +#endif + + bl = get_burst_length_encode(AHB_DMA_BRST_DFLT); + + for (i = 0; i < num_elems; i++, sg++) { + u32 addr, offset; + u32 sg_len, len; + + addr = (u32) sg_dma_address(sg); + sg_len = sg_dma_len(sg); +#ifdef DWC_VDEBUG + printk("elem=%d sg_addr=0x%x sg_len=%d\n", + i, addr, sg_len); +#endif + while (sg_len) { + + if (unlikely(idx >= SATA_DWC_DMAC_LLI_NUM)) { + /* The LLI table is not large enough. */ + dev_err(dwc_dev, "LLI table overrun (idx=%d)\n", + idx); + break; + } + len = (sg_len > SATA_DWC_DMAC_CTRL_TSIZE_MAX) ? + SATA_DWC_DMAC_CTRL_TSIZE_MAX : sg_len; + + offset = addr & 0xffff; + if ((offset + sg_len) > 0x10000) + len = 0x10000 - offset; + + /* + * Make sure a LLI block is not created that will span a + * 8K max FIS boundary. If the block spans such a FIS + * boundary, there is a chance that a DMA burst will + * cross that boundary -- this results in an error in + * the host controller. + */ + if (unlikely(fis_len + len > 8192)) { +#ifdef DWC_VDEBUG + printk("SPLITTING: fis_len=%d(0x%x) " + "len=%d(0x%x)\n", fis_len, fis_len, len, len); +#endif + len = 8192 - fis_len; + fis_len = 0; + } else { + fis_len += len; + } + if (fis_len == 8192) + fis_len = 0; + + /* + * Set DMA addresses and lower half of control register + * based on direction. + */ +#ifdef DWC_VDEBUG + printk("sg_len = %d, len = %d\n", sg_len, len); +#endif + +#if defined(CONFIG_APM82181) + if (dir == DMA_FROM_DEVICE) { + lli[idx].dar = cpu_to_le32(addr); + lli[idx].sar = cpu_to_le32((u32)dmadr_addr); + if (hsdevp->hsdev->dma_channel == 0) {/* DMA channel 0 */ + lli[idx].ctl.low = cpu_to_le32( + DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC) | + DMA_CTL_SMS(1) | /* Source: Master 2 */ + DMA_CTL_DMS(0) | /* Dest: Master 1 */ + DMA_CTL_SRC_MSIZE(bl) | + DMA_CTL_DST_MSIZE(bl) | + DMA_CTL_SINC_NOCHANGE | + DMA_CTL_SRC_TRWID(2) | + DMA_CTL_DST_TRWID(2) | + DMA_CTL_INT_EN | + DMA_CTL_LLP_SRCEN | + DMA_CTL_LLP_DSTEN); + } else if (hsdevp->hsdev->dma_channel == 1) {/* DMA channel 1 */ + lli[idx].ctl.low = cpu_to_le32( + DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC) | + DMA_CTL_SMS(2) | /* Source: Master 3 */ + DMA_CTL_DMS(0) | /* Dest: Master 1 */ + DMA_CTL_SRC_MSIZE(bl) | + DMA_CTL_DST_MSIZE(bl) | + DMA_CTL_SINC_NOCHANGE | + DMA_CTL_SRC_TRWID(2) | + DMA_CTL_DST_TRWID(2) | + DMA_CTL_INT_EN | + DMA_CTL_LLP_SRCEN | + DMA_CTL_LLP_DSTEN); + } + } else { /* DMA_TO_DEVICE */ + lli[idx].sar = cpu_to_le32(addr); + lli[idx].dar = cpu_to_le32((u32)dmadr_addr); + if (hsdevp->hsdev->dma_channel == 0) {/* DMA channel 0 */ + lli[idx].ctl.low = cpu_to_le32( + DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER) | + DMA_CTL_SMS(0) | + DMA_CTL_DMS(1) | + DMA_CTL_SRC_MSIZE(bl) | + DMA_CTL_DST_MSIZE(bl) | + DMA_CTL_DINC_NOCHANGE | + DMA_CTL_SRC_TRWID(2) | + DMA_CTL_DST_TRWID(2) | + DMA_CTL_INT_EN | + DMA_CTL_LLP_SRCEN | + DMA_CTL_LLP_DSTEN); + } else if (hsdevp->hsdev->dma_channel == 1) {/* DMA channel 1 */ + lli[idx].ctl.low = cpu_to_le32( + DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER) | + DMA_CTL_SMS(0) | + DMA_CTL_DMS(2) | + DMA_CTL_SRC_MSIZE(bl) | + DMA_CTL_DST_MSIZE(bl) | + DMA_CTL_DINC_NOCHANGE | + DMA_CTL_SRC_TRWID(2) | + DMA_CTL_DST_TRWID(2) | + DMA_CTL_INT_EN | + DMA_CTL_LLP_SRCEN | + DMA_CTL_LLP_DSTEN); + } + } +#else + if (dir == DMA_FROM_DEVICE) { + lli[idx].dar = cpu_to_le32(addr); + lli[idx].sar = cpu_to_le32((u32)dmadr_addr); + + lli[idx].ctl.low = cpu_to_le32( + DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC) | + DMA_CTL_SMS(0) | + DMA_CTL_DMS(1) | + DMA_CTL_SRC_MSIZE(bl) | + DMA_CTL_DST_MSIZE(bl) | + DMA_CTL_SINC_NOCHANGE | + DMA_CTL_SRC_TRWID(2) | + DMA_CTL_DST_TRWID(2) | + DMA_CTL_INT_EN | + DMA_CTL_LLP_SRCEN | + DMA_CTL_LLP_DSTEN); + } else { /* DMA_TO_DEVICE */ + lli[idx].sar = cpu_to_le32(addr); + lli[idx].dar = cpu_to_le32((u32)dmadr_addr); + + lli[idx].ctl.low = cpu_to_le32( + DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER) | + DMA_CTL_SMS(1) | + DMA_CTL_DMS(0) | + DMA_CTL_SRC_MSIZE(bl) | + DMA_CTL_DST_MSIZE(bl) | + DMA_CTL_DINC_NOCHANGE | + DMA_CTL_SRC_TRWID(2) | + DMA_CTL_DST_TRWID(2) | + DMA_CTL_INT_EN | + DMA_CTL_LLP_SRCEN | + DMA_CTL_LLP_DSTEN); + } +#endif + dwc_port_vdbg(qc->ap, "%s setting ctl.high len: 0x%08x val: " + "0x%08x\n", __func__, len, + DMA_CTL_BLK_TS(len / 4)); + + /* Program the LLI CTL high register */ + dma_ts = DMA_CTL_BLK_TS(len / 4); + lli[idx].ctl.high = cpu_to_le32(dma_ts); + + /* + * Program the next pointer. The next pointer must be + * the physical address, not the virtual address. + */ + next_llp = (dma_lli + ((idx + 1) * sizeof(struct lli))); + + /* The last 2 bits encode the list master select. */ +#if defined(CONFIG_APM82181) + next_llp = DMA_LLP_LMS(next_llp, DMA_LLP_AHBMASTER1); +#else + next_llp = DMA_LLP_LMS(next_llp, DMA_LLP_AHBMASTER2); +#endif + + lli[idx].llp = cpu_to_le32(next_llp); + +#ifdef CONFIG_SATA_DWC_VDEBUG + print_dma_configuration(lli, idx); +#endif + idx++; + sg_len -= len; + addr += len; + } + } + + /* + * The last next ptr has to be zero and the last control low register + * has to have LLP_SRC_EN and LLP_DST_EN (linked list pointer source + * and destination enable) set back to 0 (disabled.) This is what tells + * the core that this is the last item in the linked list. + */ + if (likely(idx)) { + lli[idx-1].llp = 0x00000000; + lli[idx-1].ctl.low &= DMA_CTL_LLP_DISABLE_LE32; + + /* Flush cache to memory */ + dma_cache_sync(NULL, lli, (sizeof(struct lli) * idx), + DMA_BIDIRECTIONAL); + } + +#ifdef DWC_VDEBUG + printk("%s: Final index %d. Setting:\n", __func__, idx-1); + printk("- ctl.high = 0x%08x\n", lli[idx-1].ctl.high); + printk("- ctl.low = 0x%08x\n", lli[idx-1].ctl.low); + printk("- lli.dar = 0x%08x\n", lli[idx-1].dar); + printk("- lli.sar = 0x%08x\n", lli[idx-1].sar); + printk("- next_llp = 0x%08x\n", lli[idx-1].llp); +#endif + return idx; +} + + +/* + * Check if the selected DMA channel is currently enabled. + */ +static int dma_dwc_channel_enabled(int ch) +{ + u32 dma_chan; + + // Read the DMA channel register + dma_chan = in_le32(&(sata_dma_regs->dma_chan_en.low)); + if (dma_chan & DMA_CHANNEL(ch)) + return 1; + + return 0; +} + + +/* + * Terminate the current DMA transaction abnormally if it is currently enabled + * If it is currently disable, do nothing. + */ +static void dma_dwc_terminate_dma(struct ata_port *ap, int dma_ch) +{ + int enabled = dma_dwc_channel_enabled(dma_ch); + u32 cfg0_l, chan_en; + + if (enabled) { + dev_info(ap->dev, "%s: Terminate DMA on channel=%d, chan_en=0x%08x \n", + __func__, dma_ch, in_le32(&(sata_dma_regs->dma_chan_en.low))); + + // Disable a channel Prior to Transfer Completion + // 1. Set the AHBDMA0_CFG0_L[CH_SUSP] bit to tell the SATA DMA to halt all transfers + out_le32(&(sata_dma_regs->chan_regs[dma_ch].cfg.low), in_le32(&(sata_dma_regs->chan_regs[dma_ch].cfg.low)) | 0x100); + + // 2. Poll the AHBDMA0_CFG0_L[FIFO_EMPTY] bit until it indicates that the channel FIFO is empty + do { + cfg0_l = in_le32(&(sata_dma_regs->chan_regs[dma_ch].cfg.low)); + dwc_port_dbg(ap, "Polling the AHBDMA0_CFG0_L register (cfg.low=0x%08x)\n", cfg0_l); + ndelay(100); + } while ((cfg0_l & 0x200) == 0); + + // 3. Clear the channel enable register + chan_en = in_le32(&(sata_dma_regs->dma_chan_en.low)); + chan_en |= DMA_ENABLE_CHAN(dma_ch); // Set the write enable bit + chan_en &= ~DMA_CHANNEL(dma_ch); // Clear the channel enable + out_le32(&(sata_dma_regs->dma_chan_en.low), chan_en); + + // Wait for the channel is disabled + do { + enabled = dma_dwc_channel_enabled(dma_ch); + dwc_port_info(ap, "In the while loop of %s, enabled=%d\n",__func__, enabled); + ndelay(100); + } while (enabled); + } +} + + +/* + * Configure DMA channel registers ready for data transfer + */ +static void configure_dma_channel(int dma_ch, dma_addr_t dma_lli) { + /* Clear channel interrupts */ + clear_chan_interrupts(dma_ch); + + /* Program the CFG register. */ +#if defined(CONFIG_APM82181) + if (dma_ch == 0) { + /* Buffer mode enabled, FIFO_MODE=0 */ + out_le32(&(sata_dma_regs->chan_regs[dma_ch].cfg.high), 0x000000d); + /* Channel 0 bit[7:5] */ + out_le32(&(sata_dma_regs->chan_regs[dma_ch].cfg.low), 0x00000020); + } else if (dma_ch == 1) { + /* Buffer mode enabled, FIFO_MODE=0 */ + out_le32(&(sata_dma_regs->chan_regs[dma_ch].cfg.high), 0x0000088d); + /* Channel 1 bit[7:5] */ + out_le32(&(sata_dma_regs->chan_regs[dma_ch].cfg.low), 0x00000020); + } +#else + out_le32(&(sata_dma_regs->chan_regs[dma_ch].cfg.high), + DMA_CFG_PROTCTL | DMA_CFG_FCMOD_REQ); + out_le32(&(sata_dma_regs->chan_regs[dma_ch].cfg.low), 0); +#endif + + /* Program the address of the linked list */ +#if defined(CONFIG_APM82181) + out_le32(&(sata_dma_regs->chan_regs[dma_ch].llp.low), + DMA_LLP_LMS(dma_lli, DMA_LLP_AHBMASTER1)); +#else + out_le32(&(sata_dma_regs->chan_regs[dma_ch].llp.low), + DMA_LLP_LMS(dma_lli, DMA_LLP_AHBMASTER2)); +#endif + + /* Program the CTL register with src enable / dst enable */ + out_le32(&(sata_dma_regs->chan_regs[dma_ch].ctl.low), + DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN); +} + + +/* + * Function: dma_dwc_exit + * arguments: None + * returns status + * This function exits the SATA DMA driver + */ +static void dma_dwc_exit(struct sata_dwc_device *hsdev) +{ + dwc_dev_vdbg(hsdev->dev, "%s:\n", __func__); + if (sata_dma_regs) + iounmap(sata_dma_regs); + + if (hsdev->irq_dma) + free_irq(hsdev->irq_dma, hsdev); +} + + +/* + * Function: dma_dwc_init + * arguments: hsdev + * returns status + * This function initializes the SATA DMA driver + */ +static int dma_dwc_init(struct sata_dwc_device *hsdev) +{ + int err; + int irq = hsdev->irq_dma; + + err = dma_request_interrupts(hsdev, irq); + if (err) { + dev_err(hsdev->dev, "%s: dma_request_interrupts returns %d\n", + __func__, err); + goto error_out; + } + + /* Enabe DMA */ + out_le32(&(sata_dma_regs->dma_cfg.low), DMA_EN); + + dev_notice(hsdev->dev, "DMA initialized\n"); + dev_notice(hsdev->dev, "DMA CFG = 0x%08x\n", in_le32(&(sata_dma_regs->dma_cfg.low))); + dwc_dev_vdbg(hsdev->dev, "SATA DMA registers=0x%p\n", sata_dma_regs); + + return 0; + +error_out: + dma_dwc_exit(hsdev); + + return err; +} + + +static void sata_dwc_dev_config(struct ata_device *adev) +{ + /* + * Does not support NCQ over a port multiplier + * (no FIS-based switching). + */ + if (adev->flags & ATA_DFLAG_NCQ) { + if (sata_pmp_attached(adev->link->ap)) { + adev->flags &= ~ATA_DFLAG_NCQ; + ata_dev_printk(adev, KERN_INFO, + "NCQ disabled for command-based switching\n"); + } + } + + /* + * Since the sata_pmp_error_handler function in libata-pmp + * make FLAG_AN disabled in the first time SATA port is configured. + * Asynchronous notification is not configured. + * This will enable the AN feature manually. + */ + adev->flags |= ATA_DFLAG_AN; +} + + + +static int sata_dwc_scr_read(struct ata_link *link, unsigned int scr, u32 *val) +{ + if (unlikely(scr > SCR_NOTIFICATION)) { + dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n", + __func__, scr); + return -EINVAL; + } + + *val = in_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4)); + dwc_dev_vdbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n", + __func__, link->ap->print_id, scr, *val); + + return 0; +} + + +static int sata_dwc_scr_write(struct ata_link *link, unsigned int scr, u32 val) +{ + dwc_dev_vdbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n", + __func__, link->ap->print_id, scr, val); + if (unlikely(scr > SCR_NOTIFICATION)) { + dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n", + __func__, scr); + return -EINVAL; + } + out_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4), val); + + return 0; +} + + +static inline u32 sata_dwc_core_scr_read ( struct ata_port *ap, unsigned int scr) +{ + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + return in_le32((void __iomem *)hsdev->scr_base + (scr * 4)); +} + + +static inline void sata_dwc_core_scr_write ( struct ata_port *ap, unsigned int scr, u32 val) +{ + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + out_le32((void __iomem *)hsdev->scr_base + (scr * 4), val); +} + + +/* + * Clear content of the SERROR register + */ +static inline void clear_serror(struct ata_port *ap) +{ + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + out_le32( (void __iomem *)hsdev->scr_base + 4, + in_le32((void __iomem *)hsdev->scr_base + 4)); +} + + +static inline void clear_intpr(struct sata_dwc_device *hsdev) +{ + out_le32(&hsdev->sata_dwc_regs->intpr, + in_le32(&hsdev->sata_dwc_regs->intpr)); +} + + +static inline void clear_interrupt_bit(struct sata_dwc_device *hsdev, u32 bit) +{ + out_le32(&hsdev->sata_dwc_regs->intpr, bit); + // in_le32(&hsdev->sata_dwc_regs->intpr)); +} + + +static inline void enable_err_irq(struct sata_dwc_device *hsdev) +{ + out_le32(&hsdev->sata_dwc_regs->intmr, + in_le32(&hsdev->sata_dwc_regs->intmr) | SATA_DWC_INTMR_ERRM); + out_le32(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERR_ERR_BITS); +} + + +/* + * Timer to monitor SCR_NOTIFICATION registers on the + * SATA port. This is enabled only when the SATA PMP + * card is plugged into the SATA port. + */ +static void sata_dwc_an_chk(unsigned long arg) +{ + struct ata_port *ap = (void *)arg; + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); + unsigned long flags; + int rc = 0x0; + u32 sntf = 0x0; + + if ( !sata_pmp_attached(ap) ) { + ata_port_printk(ap, KERN_INFO, "Maximum qc->tag in 10 seconds: %d\n", hsdevp->max_tag); + hsdevp->max_tag = 0; + hsdev->an_timer.expires = jiffies + msecs_to_jiffies(10000); + add_timer(&hsdev->an_timer); + return; + } + spin_lock_irqsave(ap->lock, flags); + rc = sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf); + + // If some changes on the SCR4, call asynchronous notification + if ( (rc == 0) & (sntf != 0)) { + dwc_port_dbg(ap, "Call assynchronous notification sntf=0x%08x\n", sntf); + sata_async_notification(ap); + hsdev->an_timer.expires = jiffies + msecs_to_jiffies(8000); + } else { + hsdev->an_timer.expires = jiffies + msecs_to_jiffies(3000); + } + add_timer(&hsdev->an_timer); + spin_unlock_irqrestore(ap->lock, flags); +} + + +/* + * sata_dwc_pmp_select - Set the PMP field in SControl to the specified port number. + * + * @port: The value (port number) to set the PMP field to. + * + * @return: The old value of the PMP field. + */ +static u32 sata_dwc_pmp_select(struct ata_port *ap, u32 port) +{ + u32 scontrol, old_port; + if (sata_pmp_supported(ap)) { + scontrol = sata_dwc_core_scr_read(ap, SCR_CONTROL); + old_port = SCONTROL_TO_PMP(scontrol); + + // Select new PMP port + if ( port != old_port ) { + scontrol &= ~SCONTROL_PMP_MASK; + sata_dwc_core_scr_write(ap, SCR_CONTROL, scontrol | PMP_TO_SCONTROL(port)); + dwc_port_dbg(ap, "%s: old port=%d new port=%d\n", __func__, old_port, port); + } + return old_port; + } + else + return port; +} + + +/* + * Get the current PMP port + */ +static inline u32 current_pmp(struct ata_port *ap) +{ + return SCONTROL_TO_PMP(sata_dwc_core_scr_read(ap, SCR_CONTROL)); +} + + +/* + * Process when a PMP card is attached in the SATA port. + * Since our SATA port support command base switching only, + * NCQ will not be available. + * We disable the NCQ feature in SATA port. + */ +static void sata_dwc_pmp_attach ( struct ata_port *ap) +{ + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + + dev_info(ap->dev, "Attach SATA port multiplier with %d ports\n", ap->nr_pmp_links); + // Disable NCQ + ap->flags &= ~ATA_FLAG_NCQ; + + // Initialize timer for checking AN + init_timer(&hsdev->an_timer); + hsdev->an_timer.expires = jiffies + msecs_to_jiffies(20000); + hsdev->an_timer.function = sata_dwc_an_chk; + hsdev->an_timer.data = (unsigned long)(ap); + add_timer(&hsdev->an_timer); +} + + +/* + * Process when PMP card is removed from the SATA port. + * Re-enable NCQ for using by the SATA drive in the future + */ +static void sata_dwc_pmp_detach ( struct ata_port *ap) +{ + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + + dev_info(ap->dev, "Detach SATA port\n"); + // Re-enable the NCQ + ap->flags |= ATA_FLAG_NCQ; + + sata_dwc_pmp_select(ap, 0); + + // Delete timer since PMP card is detached + del_timer(&hsdev->an_timer); +} + + + +// Check the link to be ready +int sata_dwc_check_ready ( struct ata_link *link ) { + u8 status; + struct ata_port *ap = link->ap; + status = ioread8(ap->ioaddr.status_addr); + return ata_check_ready(status); +} + + +/* + * Do soft reset on the current SATA link. + */ +static int sata_dwc_softreset(struct ata_link *link, unsigned int *classes, + unsigned long deadline) +{ + int rc; + struct ata_port *ap = link->ap; + struct ata_ioports *ioaddr = &ap->ioaddr; + struct ata_taskfile tf; + + sata_dwc_pmp_select(link->ap, sata_srst_pmp(link)); + + /* Issue bus reset */ + iowrite8(ap->ctl, ioaddr->ctl_addr); + udelay(20); /* FIXME: flush */ + iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); + udelay(20); /* FIXME: flush */ + iowrite8(ap->ctl, ioaddr->ctl_addr); + ap->last_ctl = ap->ctl; + + /* Always check readiness of the master device */ + rc = ata_wait_after_reset(link, deadline, sata_dwc_check_ready); + + // Classify the ata_port + *classes = ATA_DEV_NONE; + /* Verify if SStatus indicates device presence */ + if (ata_link_online(link)) { + memset(&tf, 0, sizeof(tf)); + ata_sff_tf_read(ap, &tf); + *classes = ata_dev_classify(&tf); + } + + if ( *classes == ATA_DEV_PMP) + dwc_link_dbg(link, "-->found PMP device by sig\n"); + + clear_serror(link->ap); + + return rc; +} + +/* + * Set default parameters for SATA Drivers. + * This should be called each time hard reset is executed. + */ +static void sata_dwc_default_params ( struct sata_dwc_device_port *hsdevp ) { + int i; + + hsdevp->sactive_issued = 0; + hsdevp->sactive_queued = 0; + hsdevp->dma_complete = 0; + hsdevp->no_dma_pending = 0; + for (i = 0; i < SATA_DWC_QCMD_MAX; i++) { + hsdevp->cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT; + hsdevp->dma_pending[i] = SATA_DWC_DMA_PENDING_NONE; + } + +} + + +/* + * sata_dwc_hardreset - Do hardreset the SATA controller + */ +static int sata_dwc_hardreset(struct ata_link *link, unsigned int *classes, + unsigned long deadline) +{ + int rc; + const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(link->ap); + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(link->ap); + bool online; + + dwc_link_dbg(link, "%s\n", __func__); + sata_dwc_pmp_select(link->ap, sata_srst_pmp(link)); + + // Terminate DMA channel if it is currently enabled + dma_dwc_terminate_dma(link->ap, hsdev->dma_channel); + + // Call standard hard reset + rc = sata_link_hardreset(link, timing, deadline, &online, NULL); + + // Reconfigure the port after hard reset + if ( ata_link_online(link) ) + sata_dwc_init_port(link->ap); + link->active_tag = ATA_TAG_POISON; + + // Reset parameters + sata_dwc_default_params(hsdevp); + printk("DMA Interrupt Mask = 0x%08x", in_le32(&sata_dma_regs->interrupt_mask.tfr.low)); + + return online ? -EAGAIN : rc; +} + + +/* + * Do hard reset on each PMP link + */ +static int sata_dwc_pmp_hardreset(struct ata_link *link, unsigned int *classes, + unsigned long deadline) +{ + int rc = 0; + sata_dwc_pmp_select(link->ap, sata_srst_pmp(link)); + rc = sata_std_hardreset(link, classes, deadline); + return rc; +} + + +/* See ahci.c */ +/* + * Process error when the SATAn_INTPR's ERR bit is set + * The processing is based on SCR_ERROR register content + */ +static void sata_dwc_error_intr(struct ata_port *ap, + struct sata_dwc_device *hsdev, uint intpr) +{ + struct ata_eh_info *ehi; + struct ata_link *link; + struct ata_queued_cmd *active_qc = NULL; + u32 serror; + bool freeze = false, abort = false; + int pmp, ret; + unsigned int err_mask = 0, action = 0; +#if defined(DWC_VDEBUG) + int dma_chan = hsdev->dma_channel; +#endif + + link = &ap->link; + ehi = &link->eh_info; + + /* Record irq stat */ + ata_ehi_clear_desc(ehi); + ata_ehi_push_desc(ehi, "irq_stat 0x%08x", intpr); + + // Record SERROR + serror = sata_dwc_core_scr_read(ap, SCR_ERROR); + dwc_port_dbg(ap, "%s serror = 0x%08x\n", __func__, serror); + + // Clear SERROR and interrupt bit + clear_serror(ap); + clear_intpr(hsdev); + + // Print content of SERROR in case of error detected + print_serror_2_txt(serror); + +#if defined(DWC_VDEBUG) + print_dma_registers(dma_chan); +#endif + + // Process hotplug for SATA port + if ( serror & (SATA_DWC_SERR_DIAGX | SATA_DWC_SERR_DIAGW)) { + dwc_port_info(ap, "Detect hot plug signal\n"); + ata_ehi_hotplugged(ehi); + ata_ehi_push_desc(ehi, serror & SATA_DWC_SERR_DIAGN ? "PHY RDY changed" : "device exchanged"); + freeze = true; + } + + // Process PHY internal error / Link sequence (illegal transition) error + if ( serror & (SATA_DWC_SERR_DIAGI | SATA_DWC_SERR_DIAGL)) { + ehi->err_mask |= AC_ERR_HSM; + ehi->action |= ATA_EH_RESET; + freeze = true; + } + + // Process Internal host adapter error + if ( serror & SATA_DWC_SERR_ERRE ) { + dev_err(ap->dev, "Detect Internal host adapter error\n"); + // --> need to review + ehi->err_mask |= AC_ERR_HOST_BUS; + ehi->action |= ATA_EH_RESET; + freeze = true; + } + + // Process Protocol Error + if ( serror & SATA_DWC_SERR_ERRP ) { + dev_err(ap->dev, "Detect Protocol error\n"); + ehi->err_mask |= AC_ERR_HSM; + ehi->action |= ATA_EH_RESET; + freeze = true; + } + + // Process non-recovered persistent communication error + if ( serror & SATA_DWC_SERR_ERRC ) { + dev_err(ap->dev, "Detect non-recovered persistent communication error\n"); + // --> TODO: review processing error + ehi->err_mask |= AC_ERR_ATA_BUS; + ehi->action |= ATA_EH_SOFTRESET; + //ehi->flags |= ATA_EHI_NO_AUTOPSY; + //freeze = true; + } + + // Non-recovered transient data integrity error + if ( serror & SATA_DWC_SERR_ERRT ) { + dev_err(ap->dev, "Detect non-recovered transient data integrity error\n"); + ehi->err_mask |= AC_ERR_ATA_BUS; + //ehi->err_mask |= AC_ERR_DEV; + ehi->action |= ATA_EH_SOFTRESET; + //ehi->flags |= ATA_EHI_NO_AUTOPSY; + } + + // Since below errors have been recovered by hardware + // they don't need any error processing. + if ( serror & SATA_DWC_SERR_ERRM ) { + dev_warn(ap->dev, "Detect recovered communication error"); + } + if ( serror & SATA_DWC_SERR_ERRI ) { + dev_warn(ap->dev, "Detect recovered data integrity error"); + } + + // If any error occur, process the qc + if (serror & (SATA_DWC_SERR_ERRT | SATA_DWC_SERR_ERRC)) { + abort = true; + /* find out the offending link and qc */ + if (sata_pmp_attached(ap)) { + pmp = current_pmp(ap); + // If we are working on the PMP port + if ( pmp < ap->nr_pmp_links ) { + link = &ap->pmp_link[pmp]; + ehi = &link->eh_info; + active_qc = ata_qc_from_tag(ap, link->active_tag); + err_mask |= AC_ERR_DEV; + ata_ehi_clear_desc(ehi); + ata_ehi_push_desc(ehi, "irq_stat 0x%08x", irq_stat); + } else { + err_mask |= AC_ERR_HSM; + action |= ATA_EH_RESET; + freeze = true; + } + } + // Work on SATA port + else { + freeze = true; + active_qc = ata_qc_from_tag(ap, link->active_tag); + } + + if ( active_qc) { + active_qc->err_mask |= err_mask; + } else { + ehi->err_mask = err_mask; + } + } + + if ( freeze | abort ) { + // Terminate DMA channel if it is currenly in use + if ( dma_request_channel(ap) != -1 ) { + dwc_port_dbg(ap, "Terminate DMA channel %d for handling error\n", hsdev->dma_channel); + dma_dwc_terminate_dma(ap, hsdev->dma_channel); + } + } + + if (freeze) { + ret = ata_port_freeze(ap); + ata_port_printk(ap, KERN_INFO, "Freeze port with %d QCs aborted\n", ret); + } + else if (abort) { + if (active_qc) { + ret = ata_link_abort(active_qc->dev->link); + ata_link_printk(link, KERN_INFO, "Abort %d QCs\n", ret); + } else { + ret = ata_port_abort(ap); + ata_port_printk(ap, KERN_INFO, "Abort %d QCs on the SATA port\n", ret); + } + } +} + + +/* + * The main interrupt handler. + * arguments : irq, void *dev_instance, struct pt_regs *regs + * Return value : irqreturn_t - status of IRQ + * This Interrupt handler called via port ops registered function. + * .irq_handler = sata_dwc_isr + */ +static irqreturn_t sata_dwc_isr(int irq, void *dev_instance) +{ + struct ata_host *host = (struct ata_host *)dev_instance; + struct sata_dwc_device *hsdev = HSDEV_FROM_HOST(host); + struct ata_port *ap; + struct ata_queued_cmd *qc; + unsigned long flags; + u8 status = 0, tag; + int handled; + int port = 0; + u32 intpr, sactive, tag_mask, mask; + struct sata_dwc_device_port *hsdevp; + + spin_lock_irqsave(&host->lock, flags); + + /* Read the interrupt register */ + intpr = in_le32(&hsdev->sata_dwc_regs->intpr); + + ap = host->ports[port]; + hsdevp = HSDEVP_FROM_AP(ap); + + dwc_port_dbg(ap,"%s - interrupt intpr=0x%08x, qc_allocated=0x%08x, sactive_issued=0x%08x, dma_complete=0x%08x\n",__func__,intpr, ap->qc_allocated, hsdevp->sactive_issued, hsdevp->dma_complete); + + /* Check for error interrupt */ + if (intpr & SATA_DWC_INTPR_ERR) { + sata_dwc_error_intr(ap, hsdev, intpr); + handled = 1; + goto done_irqrestore; + } + + /* + * For NCQ commands, an interrupt with NEWFP bit set will be issued. + * With non-NCQ command, this interrupt will never occur. + * This is step 5 of the First Party DMA transfer + */ + if (intpr & SATA_DWC_INTPR_NEWFP) { + // Clear Interrupt + clear_interrupt_bit(hsdev, SATA_DWC_INTPR_NEWFP); + if ( ap->qc_allocated == 0x0 ) { + handled = 1; + goto done_irqrestore; + } + + // Read the FPTAGR register for the NCQ tag + tag = (u8)(in_le32(&hsdev->sata_dwc_regs->fptagr)); + // Setting this prevents more QCs to be queued + ap->link.active_tag = tag; + dwc_port_dbg(ap, "%s: NEWFP interrupt (intpr=0x%08x), fptagr=%d, fpbor=0x%08x, ap->link.active_tag=0x%08x\n", __func__, intpr, tag, in_le32(&hsdev->sata_dwc_regs->fpbor), ap->link.active_tag); + + if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_PENDING) + dev_warn(ap->dev, "CMD tag=%d not pending?\n", tag); + + // Get the QC from the tag + qc = ata_qc_from_tag(ap, tag); + if ( !qc) { + dev_warn(ap->dev, "No QC available for tag %d (intpr=0x%08x, qc_allocated=0x%08x, qc_active=0x%08x)\n", tag, intpr, ap->qc_allocated, ap->qc_active); + hsdevp->sactive_issued &= ~qcmd_tag_to_mask(tag); + handled = 1; + goto done_irqrestore; + } + + // Update sactive_issued to indicate a new command issued + hsdevp->sactive_issued |= qcmd_tag_to_mask(tag); + + /* + * Start FP DMA for NCQ command. At this point the tag is the + * active tag. It is the tag that matches the command about to + * be completed. + */ + sata_dwc_start_dma_transfer(qc); + + handled = 1; + goto done_irqrestore; + } + + handled = 1; + /* + * The second interrupt is signalled to indicate the command complete. + */ + // Complete PIO and internal command queues. + sactive = sata_dwc_core_scr_read(ap, SCR_ACTIVE); + tag_mask = (hsdevp->sactive_issued | sactive) ^ sactive; + // PIO and DMA interrupt + if ((hsdevp->sactive_issued == 0) && (tag_mask == 0)) { + dwc_port_dbg(ap, "Process non-NCQ commands, ap->qc_active=0x%08x, sactive=0x%08x\n",ap->qc_active, sactive); + if (ap->link.active_tag == ATA_TAG_POISON) + tag = 0; + else + tag = ap->link.active_tag; + // Get qc from tag + qc = ata_qc_from_tag(ap, tag); + // Call check status to clear BUSY bit + status = ap->ops->sff_check_status(ap); + hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT; + if ( hsdevp->dma_pending[tag] == SATA_DWC_DMA_DONE) + hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE; + if ( qc ) { + if (ata_is_pio(qc->tf.protocol)) + ata_sff_hsm_move(ap, qc, status, 0); + else { + sata_dwc_qc_complete(ap, qc, 0); + mask = ~qcmd_tag_to_mask(tag); + hsdevp->dma_complete = hsdevp->dma_complete & mask; + } + handled = 1; + goto done_irqrestore; + }/* else if ( ap->qc_allocated != 0x0 ) + dev_warn(ap->dev, "%s: No QC available (tag=%d, qc_allocated=0x%08x)\n",__func__,tag, ap->qc_allocated); */ + } + + // Process NCQ QC completes + else + { + /* + * Each NEWFP command must follow by a DMA interrupt. We clear interrupt only + * when no DMA transfer pending. + * Since we don't clear interrupt bit, this interrupt will signal again. + */ + if ( hsdevp->no_dma_pending == 0 ) { + status = ap->ops->sff_check_status(ap); + hsdevp->dma_pending_isr_count = 0; + } else { + hsdevp->dma_pending_isr_count++; + if( hsdevp->dma_pending_isr_count > 10 ) { + status = ap->ops->sff_check_status(ap); // For test only + if ( ap->link.active_tag == ATA_TAG_POISON ) + tag = 0; + else + tag = ap->link.active_tag; + hsdevp->dma_pending_isr_count=0; +#ifdef DWC_VDEBUG + printk("%s count exceed 10 times (hsdevp->no_dma_pending=%d, num_lli=%d, qc_allocated=0x%08x)\n", __func__, hsdevp->no_dma_pending, hsdevp->num_lli[tag], ap->qc_allocated); + print_dma_registers(hsdev->dma_channel); + print_dma_configuration(hsdevp->llit[tag], 0); +#endif + } + ndelay(100); + //goto done_irqrestore; + } + + dwc_port_dbg(ap, "Process NCQ commands, ap->qc_active=0x%08x, dma_complete=0x%08x, status=0x%02x\n",ap->qc_active, hsdevp->dma_complete, status); + for(tag=0; tag<32; tag++) { + if ( hsdevp->dma_complete & qcmd_tag_to_mask(tag) ) { + qc = ata_qc_from_tag(ap, tag); + mask = ~qcmd_tag_to_mask(tag); + hsdevp->dma_complete = hsdevp->dma_complete & mask; + hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT; + hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE; + if ( ! qc ) { + ata_port_printk(ap, KERN_INFO, "Tag %d is set but not available\n", tag); + continue; + } + sata_dwc_qc_complete(ap, qc, 0); + } + } + handled = 1; + // Assign active_tag to ATA_TAG_POISON so that the qc_defer not defer new QC. + if ( hsdevp->no_dma_pending == 0 ) { + ap->link.active_tag = ATA_TAG_POISON; + } + } + +done_irqrestore: + spin_unlock_irqrestore(&host->lock, flags); + return IRQ_RETVAL(handled); +} + + +/* + * Clear DMA Control Register after completing transferring data + * using AHB DMA. + */ +static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag) +{ + struct sata_dwc_device *hsdev = HSDEV_FROM_HSDEVP(hsdevp); + + if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) { + // Clear receive channel enable bit + out_le32(&(hsdev->sata_dwc_regs->dmacr), + SATA_DWC_DMACR_RX_CLEAR( + in_le32(&(hsdev->sata_dwc_regs->dmacr)))); + + } else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) { + // Clear transmit channel enable bit + out_le32(&(hsdev->sata_dwc_regs->dmacr), + SATA_DWC_DMACR_TX_CLEAR( + in_le32(&(hsdev->sata_dwc_regs->dmacr)))); + + } else { + /* + * This should not happen, it indicates the driver is out of + * sync. If it does happen, clear dmacr anyway. + */ + dev_err(hsdev->dev, "%s DMA protocol RX and TX DMA not pending " + "tag=0x%02x pending=%d dmacr: 0x%08x\n", + __func__, tag, hsdevp->dma_pending[tag], + in_le32(&(hsdev->sata_dwc_regs->dmacr))); + printk("dma_complete=0x%08x, No.DMA Pending=0x%08x\n", hsdevp->dma_complete, hsdevp->no_dma_pending); + + // Clear all transmit and receive bit, but TXMOD bit is set to 1 + out_le32(&(hsdev->sata_dwc_regs->dmacr), + SATA_DWC_DMACR_TXRXCH_CLEAR); + } +} + + + +/* + * Complete a QC + */ +static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc, + u32 check_status) +{ + u8 status = 0; + int i = 0; + u8 tag = qc->tag; + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + struct lli *llit; + + dwc_port_dbg(ap, "%s checkstatus? %s - qc->tag=%d\n", __func__, check_status?"yes":"no", tag); + + if (unlikely(hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX)) + dev_err(ap->dev, "%s: TX DMA PENDING - tag=%d\n\n", __func__, tag); + else if (unlikely(hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX)) + dev_err(ap->dev, "%s: RX DMA PENDING - tag=%d\n\n", __func__, tag); + + if (check_status) { + i = 0; + /* check main status, clearing INTRQ */ + status = ap->ops->sff_check_status(ap); + while ( status & ATA_BUSY ) { + if (++i > 200) + break; + mdelay(1); + status = ap->ops->sff_check_status(ap); + } + + if (unlikely(status & ATA_BUSY)) + dev_err(ap->dev, "QC complete cmd=0x%02x STATUS BUSY " + "(0x%02x) [%d]\n", qc->tf.command, status, i); + } + dwc_port_vdbg(ap, "QC complete cmd=0x%02x status=0x%02x ata%u: " + "protocol=%d\n", qc->tf.command, status, ap->print_id, + qc->tf.protocol); + + /* clear active bit */ + hsdevp->sactive_queued = hsdevp->sactive_queued & (~(qcmd_tag_to_mask(tag))); + hsdevp->sactive_issued = hsdevp->sactive_issued & (~(qcmd_tag_to_mask(tag))); + // Clear lli structure + llit = hsdevp->llit[tag]; + for(i=0; i < hsdevp->num_lli[tag];i++) + llit[i].llp = 0; + hsdevp->num_lli[tag] = 0; + + dwc_port_vdbg(ap, "%s - sactive_queued=0x%08x, sactive_issued=0x%08x\n",__func__, hsdevp->sactive_queued, hsdevp->sactive_issued); + dwc_port_vdbg(ap, "dmacr=0x%08x\n",in_le32(&(hsdev->sata_dwc_regs->dmacr))); + + /* Complete taskfile transaction (does not read SCR registers) */ + ata_qc_complete(qc); + return 0; +} + + +/* + * Clear interrupt and error flags in DMA status register. + */ +void sata_dwc_irq_clear (struct ata_port *ap) +{ + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + + dwc_port_dbg(ap,"%s\n",__func__); + // Clear DMA interrupts + clear_chan_interrupts(hsdev->dma_channel); + //sata_dma_regs + //out_le32(&hsdev->sata_dwc_regs->intmr, + // in_le32(&hsdev->sata_dwc_regs->intmr) & ~SATA_DWC_INTMR_ERRM); + //out_le32(&hsdev->sata_dwc_regs->errmr, 0x0); + //sata_dwc_check_status(ap); +} + +/* + * Turn on IRQ + */ +u8 sata_dwc_irq_on(struct ata_port *ap) +{ + struct ata_ioports *ioaddr = &ap->ioaddr; + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + u8 tmp; + + dwc_port_dbg(ap,"%s\n",__func__); + ap->ctl &= ~ATA_NIEN; + ap->last_ctl = ap->ctl; + + if (ioaddr->ctl_addr) + iowrite8(ap->ctl, ioaddr->ctl_addr); + tmp = ata_wait_idle(ap); + + ap->ops->sff_irq_clear(ap); + enable_err_irq(hsdev); + + return tmp; +} + + +/* + * This function enables the interrupts in IMR and unmasks them in ERRMR + * + */ +static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev) +{ + // Enable interrupts + out_le32(&hsdev->sata_dwc_regs->intmr, + SATA_DWC_INTMR_ERRM | + SATA_DWC_INTMR_NEWFPM | + SATA_DWC_INTMR_PMABRTM | + SATA_DWC_INTMR_DMATM); + + /* + * Unmask the error bits that should trigger an error interrupt by + * setting the error mask register. + */ + out_le32(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERR_ERR_BITS); + + dwc_dev_dbg(hsdev->dev, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n", __func__, + in_le32(&hsdev->sata_dwc_regs->intmr), + in_le32(&hsdev->sata_dwc_regs->errmr)); +} + + +/* + * Configure DMA and interrupts on SATA port. This should be called after + * hardreset is executed on the SATA port. + */ +static void sata_dwc_init_port ( struct ata_port *ap ) { + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + + // Configure DMA + if (ap->port_no == 0) { + dwc_port_dbg(ap, "%s: clearing TXCHEN, RXCHEN in DMAC\n", + __func__); + + // Clear all transmit/receive bits + out_le32(&hsdev->sata_dwc_regs->dmacr, + SATA_DWC_DMACR_TXRXCH_CLEAR); + + dwc_dev_dbg(ap->dev, "%s: setting burst size in DBTSR\n", __func__); + out_le32(&hsdev->sata_dwc_regs->dbtsr, + (SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) | + SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT))); + } + + // Enable interrupts + sata_dwc_enable_interrupts(hsdev); +} + + +/* + * Setup SATA ioport with corresponding register addresses + */ +static void sata_dwc_setup_port(struct ata_ioports *port, unsigned long base) +{ + port->cmd_addr = (void *)base + 0x00; + port->data_addr = (void *)base + 0x00; + + port->error_addr = (void *)base + 0x04; + port->feature_addr = (void *)base + 0x04; + + port->nsect_addr = (void *)base + 0x08; + + port->lbal_addr = (void *)base + 0x0c; + port->lbam_addr = (void *)base + 0x10; + port->lbah_addr = (void *)base + 0x14; + + port->device_addr = (void *)base + 0x18; + port->command_addr = (void *)base + 0x1c; + port->status_addr = (void *)base + 0x1c; + + port->altstatus_addr = (void *)base + 0x20; + port->ctl_addr = (void *)base + 0x20; +} + + +/* + * Function : sata_dwc_port_start + * arguments : struct ata_ioports *port + * Return value : returns 0 if success, error code otherwise + * This function allocates the scatter gather LLI table for AHB DMA + */ +static int sata_dwc_port_start(struct ata_port *ap) +{ + int err = 0; + struct sata_dwc_device *hsdev; + struct sata_dwc_device_port *hsdevp = NULL; + struct device *pdev; + u32 sstatus; + int i; + + hsdev = HSDEV_FROM_AP(ap); + + dwc_dev_dbg(ap->dev, "%s: port_no=%d\n", __func__, ap->port_no); + + hsdev->host = ap->host; + pdev = ap->host->dev; + if (!pdev) { + dev_err(ap->dev, "%s: no ap->host->dev\n", __func__); + err = -ENODEV; + goto cleanup_exit; + } + + /* Allocate Port Struct */ + hsdevp = kmalloc(sizeof(*hsdevp), GFP_KERNEL); + if (!hsdevp) { + dev_err(ap->dev, "%s: kmalloc failed for hsdevp\n", __func__); + err = -ENOMEM; + goto cleanup_exit; + } + memset(hsdevp, 0, sizeof(*hsdevp)); + hsdevp->hsdev = hsdev; + + for (i = 0; i < SATA_DWC_QCMD_MAX; i++) + hsdevp->cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT; + + ap->prd = 0; /* set these so libata doesn't use them */ + ap->prd_dma = 0; + + /* + * DMA - Assign scatter gather LLI table. We can't use the libata + * version since it's PRD is IDE PCI specific. + */ + for (i = 0; i < SATA_DWC_QCMD_MAX; i++) { + hsdevp->llit[i] = dma_alloc_coherent(pdev, + SATA_DWC_DMAC_LLI_TBL_SZ, + &(hsdevp->llit_dma[i]), + GFP_ATOMIC); + if (!hsdevp->llit[i]) { + dev_err(ap->dev, "%s: dma_alloc_coherent failed size " + "0x%x\n", __func__, SATA_DWC_DMAC_LLI_TBL_SZ); + err = -ENOMEM; + goto cleanup_exit; + } + } + + if (ap->port_no == 0) { + dwc_dev_vdbg(ap->dev, "%s: clearing TXCHEN, RXCHEN in DMAC\n", + __func__); + + out_le32(&hsdev->sata_dwc_regs->dmacr, + SATA_DWC_DMACR_TXRXCH_CLEAR); + + dwc_dev_vdbg(ap->dev, "%s: setting burst size in DBTSR\n", __func__); + out_le32(&hsdev->sata_dwc_regs->dbtsr, + (SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) | + SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT))); + ata_port_printk(ap, KERN_INFO, "%s: setting burst size in DBTSR: 0x%08x\n", + __func__, in_le32(&hsdev->sata_dwc_regs->dbtsr)); + } + + /* Clear any error bits before libata starts issuing commands */ + clear_serror(ap); + + ap->private_data = hsdevp; + + /* Are we in Gen I or II */ + sstatus = sata_dwc_core_scr_read(ap, SCR_STATUS); + switch (SATA_DWC_SCR0_SPD_GET(sstatus)) { + case 0x0: + dev_info(ap->dev, "**** No neg speed (nothing attached?) \n"); + break; + case 0x1: + dev_info(ap->dev, "**** GEN I speed rate negotiated \n"); + break; + case 0x2: + dev_info(ap->dev, "**** GEN II speed rate negotiated \n"); + break; + } + // Initialize timer for checking AN +/* init_timer(&hsdev->an_timer); + hsdev->an_timer.expires = jiffies + msecs_to_jiffies(20000); + hsdev->an_timer.function = sata_dwc_an_chk; + hsdev->an_timer.data = (unsigned long)(ap); + add_timer(&hsdev->an_timer); +*/ +cleanup_exit: + if (err) { + kfree(hsdevp); + sata_dwc_port_stop(ap); + dwc_dev_vdbg(ap->dev, "%s: fail\n", __func__); + } else { + dwc_dev_vdbg(ap->dev, "%s: done\n", __func__); + } + + return err; +} + +/* + * Free DMA data structure before stopping a SATA port. + */ +static void sata_dwc_port_stop(struct ata_port *ap) +{ + int i; + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); + + dwc_port_dbg(ap, "%s\n", __func__); + if (hsdevp && hsdev) { + /* deallocate LLI table */ + for (i = 0; i < SATA_DWC_QCMD_MAX; i++) { + dma_free_coherent(ap->host->dev, + SATA_DWC_DMAC_LLI_TBL_SZ, + hsdevp->llit[i], hsdevp->llit_dma[i]); + } + kfree(hsdevp); + } + ap->private_data = NULL; +} + + +/* + * Since the SATA DWC is master only. The dev select operation will + * be removed. So, this function will do nothing + */ +void sata_dwc_dev_select(struct ata_port *ap, unsigned int device) +{ + // Do nothing + ndelay(100); +} + + +/* + * Function : sata_dwc_exec_command_by_tag + * arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued + * Return value : None + * This function keeps track of individual command tag ids and calls + * ata_exec_command in libata + */ +static void sata_dwc_exec_command_by_tag(struct ata_port *ap, + struct ata_taskfile *tf, + u8 tag, u32 cmd_issued) +{ + unsigned long flags; + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); + + dwc_port_dbg(ap, "%s cmd(0x%02x): %s tag=%d, ap->link->tag=0x%08x\n", __func__, tf->command, + ata_cmd_2_txt(tf), tag, ap->link.active_tag); + + spin_lock_irqsave(&ap->host->lock, flags); + hsdevp->cmd_issued[tag] = cmd_issued; + hsdevp->sactive_queued |= qcmd_tag_to_mask(tag); + //spin_unlock_irqrestore(&ap->host->lock, flags); + + /* + * Clear SError before executing a new command. + * + * TODO if we read a PM's registers now, we will throw away the task + * file values loaded into the shadow registers for this command. + * + * sata_dwc_scr_write and read can not be used here. Clearing the PM + * managed SError register for the disk needs to be done before the + * task file is loaded. + */ + clear_serror(ap); + ap->ops->sff_exec_command(ap, tf); + spin_unlock_irqrestore(&ap->host->lock, flags); +} + + +/* + * This works only for non-NCQ and PIO commands + */ +static void sata_dwc_bmdma_setup(struct ata_queued_cmd *qc) +{ + u8 tag; + dwc_port_dbg(qc->ap,"%s\n", __func__); + if (ata_is_dma(qc->tf.protocol)) { + tag = qc->tag; + } else { + tag = 0; + } + sata_dwc_exec_command_by_tag(qc->ap, &qc->tf, tag, SATA_DWC_CMD_ISSUED_PENDING); +} + + + +/* + * Configure DMA registers and then start DMA transfer + */ +static void sata_dwc_start_dma_transfer(struct ata_queued_cmd *qc) +{ + volatile int start_dma; + u32 reg, dma_chan; + struct sata_dwc_device *hsdev = HSDEV_FROM_QC(qc); + struct ata_port *ap = qc->ap; + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); + int dir = qc->dma_dir; + int idx = 0; + int tag = qc->tag; + + // Identify the QC tag + dwc_port_dbg(qc->ap, "%s: ap->link.sactive=0x%08x tag=%d\n", + __func__, qc->ap->link.sactive, tag); + + // Check DMA channel for available + if ( dma_dwc_channel_enabled(hsdev->dma_channel) == 1 ) + printk("%s: DMA channel is currently in use\n",__func__); + + // Request DMA channel. Try to request 10 times maximum + while ( idx < 10 ) { + dma_chan = dma_request_channel(qc->ap); + if ( dma_chan >= 0 ) + break; + udelay(10); + idx++; + } + + // In case DMA channel is not available, mask the NCQ to be error + if ( dma_chan < 0 ) { + dev_err(qc->ap->dev, "%s: dma channel unavailable\n", __func__); + // Offending this QC + qc->err_mask |= AC_ERR_TIMEOUT; + return; + } + + // Configure DMA channel ready for DMA transfer + configure_dma_channel(dma_chan,hsdevp->llit_dma[tag]); + + /* Used for ata_bmdma_start(qc) -- we are not BMDMA compatible */ + if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_NOT) { + start_dma = 1; + if (dir == DMA_TO_DEVICE) + hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_TX; + else + hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_RX; + hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_EXEC; + } else { + dwc_port_info(ap, "ERROR(%s): Command not pending cmd_issued=%d " + "(tag=%d) - DMA NOT started\n", __func__, + hsdevp->cmd_issued[tag], tag); + start_dma = 0; + } + + dwc_port_dbg(ap, "%s tag: %x cmd: 0x%02x dma_dir: %s, " + "start_dma? %d\n", __func__, tag, qc->tf.command, + dir_2_txt(qc->dma_dir), start_dma); +#ifdef DWC_VDEBUG + sata_dwc_tf_dump(ap, &(qc->tf)); +#endif + + // Start DMA transfer + if (start_dma) { + reg = sata_dwc_core_scr_read(ap, SCR_ERROR); + if (unlikely(reg & SATA_DWC_SERR_ERR_BITS)) { + dev_err(ap->dev, "%s: ****** SError=0x%08x ******\n", + __func__, reg); + } + + // Set DMA control registers + if (dir == DMA_TO_DEVICE) + out_le32(&hsdev->sata_dwc_regs->dmacr, + SATA_DWC_DMACR_TXCHEN); + else + out_le32(&hsdev->sata_dwc_regs->dmacr, + SATA_DWC_DMACR_RXCHEN); + + dwc_dev_dbg(ap->dev, "%s: setting DMACR: 0x%08x\n", __func__, in_le32(&hsdev->sata_dwc_regs->dmacr)); + + /* Step 6: Enable the DMA channel to start transfer */ + out_le32(&(sata_dma_regs->dma_chan_en.low), + in_le32(&(sata_dma_regs->dma_chan_en.low)) | DMA_ENABLE_CHAN(dma_chan)); + + // Delay to wait for data transfer complete + dwc_port_vdbg(ap, "DMA CFG = 0x%08x (dma_ch=%d)\n", in_le32(&(sata_dma_regs->dma_cfg.low)), dma_chan); + dwc_port_dbg(ap, "%s: setting sata_dma_regs->dma_chan_en.low with val: 0x%08x\n", + __func__, in_le32(&(sata_dma_regs->dma_chan_en.low))); + hsdevp->no_dma_pending++; + } +} + + +/* + * Function : sata_dwc_qc_prep + * arguments : ata_queued_cmd *qc + * Return value : None + * qc_prep for a particular queued command + */ +static void sata_dwc_qc_prep(struct ata_queued_cmd *qc) +{ + u32 sstatus; + u8 tag; + int num_lli; + struct ata_port *ap = qc->ap; + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); + struct ata_eh_info *ehi; + + dwc_port_dbg(qc->ap, "%s: qc->tag=%d\n", __func__, qc->tag); + if ( (qc->tag < 32) && (qc->tag > hsdevp->max_tag)) + hsdevp->max_tag = qc->tag; + + /* + * Fix the problem when PMP card is unplugged from the SATA port. + * QC is still issued but no device present. Ignore the current QC. + * and pass error to error handler + */ + sstatus = sata_dwc_core_scr_read(ap, SCR_STATUS); + if ( sstatus == 0x0) { + ata_port_printk(ap, KERN_INFO, "Detect connection lost while commands are executing --> ignore current command\n"); + ehi = &ap->link.eh_info; + ata_ehi_hotplugged(ehi); + ap->link.eh_context.i.action |= ATA_EH_RESET; + return; + } + + + // Do nothing if not DMA or NCQ + if ((qc->dma_dir == DMA_NONE) || (qc->tf.protocol == ATA_PROT_PIO)) + return; + + // Set the tag + if (ata_is_ncq(qc->tf.protocol) ) { + if ( qc->ap->link.active_tag != ATA_TAG_POISON) + printk("Some process change ap->link.active_tag to %d\n", qc->ap->link.active_tag); + tag = qc->tag; + } + else + tag = 0; + +#ifdef DEBUG_NCQ + if (qc->tag > 0) { + dev_info(qc->ap->dev, "%s: qc->tag=%d ap->active_tag=0x%08x\n", + __func__, tag, qc->ap->link.active_tag); + } +#endif + + /* Convert SG list to linked list of items (LLIs) for AHB DMA */ + num_lli = map_sg_to_lli(qc, hsdevp->llit[tag], hsdevp->llit_dma[tag], (void *__iomem)(&hsdev->sata_dwc_regs->dmadr)); + hsdevp->num_lli[tag] = num_lli; + dwc_port_vdbg(qc->ap, "%s sg: 0x%p, count: %d lli: %p dma_lli: 0x%0xlx addr:" + " %p lli count: %d\n", __func__, qc->sg, qc->n_elem, hsdevp->llit[tag], + (u32)hsdevp->llit_dma[tag], (void *__iomem)(&hsdev->sata_dwc_regs->dmadr), num_lli); +} + +/* + * Process command queue issue + */ +static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd *qc) +{ + struct ata_port *ap = qc->ap; + int ret = 0; + u32 sactive; + u8 status; + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); + + dwc_port_dbg(ap, "%s, qc->tag=%d, prot=%s, cmd=%s, hsdevp->sactive_issued=0x%08x\n",__func__, qc->tag, prot_2_txt(qc->tf.protocol), ata_cmd_2_txt(&qc->tf), hsdevp->sactive_issued); + +#ifdef DEBUG_NCQ + if ((qc->tag > 0) && (qc->tag < 31) ) { + dev_info(ap->dev, "%s ap id=%d cmd(0x%02x)=%s qc tag=%d prot=%s" + " ap active_tag=0x%08x ap sactive=0x%08x\n", + __func__, ap->print_id, qc->tf.command, + ata_cmd_2_txt(&qc->tf), qc->tag, + prot_2_txt(qc->tf.protocol), ap->link.active_tag, + ap->link.sactive); + } +#endif + // Set PMP field in the SCONTROL register + if ( sata_pmp_attached(ap) ) + sata_dwc_pmp_select(ap, qc->dev->link->pmp); + + // Process NCQ + if (ata_is_ncq(qc->tf.protocol)) { + /* + * If the device is in BUSY state, ignore the current QC. + */ + status = ap->ops->sff_check_status(ap); + if ( status & ATA_BUSY ) { + // Ignore the QC when device is BUSY more than 1000 ms + sactive = sata_dwc_core_scr_read(qc->ap, SCR_ACTIVE); + ata_port_printk(ap, KERN_INFO, "Ignore current QC because of device BUSY (tag=%d, sactive=0x%08x)\n", qc->tag, sactive); + return AC_ERR_SYSTEM; + } + // FPDMA Step 1. + // Load command from taskfile to device + ap->ops->sff_tf_load(ap, &qc->tf); + // Write command to the COMMAND register + sata_dwc_exec_command_by_tag(ap, &qc->tf, qc->tag, + SATA_DWC_CMD_ISSUED_PENDING); + + // Write the QC tag to the SACTIVE register + sactive = sata_dwc_core_scr_read(qc->ap, SCR_ACTIVE); + sactive |= (0x00000001 << qc->tag); + sata_dwc_core_scr_write(qc->ap, SCR_ACTIVE, sactive); + + /* + * FPDMA Step 2. + * Check to see if device clears BUSY bit. + * If not, set the link.active_tag to the value different than + * ATA_TAG_POISON so that the qc_defer will defer additional QCs + * (no more QC is queued) + */ + if ( ap->link.active_tag != ATA_TAG_POISON) + dev_warn(ap->dev, "Some process change ap->link.active_tag to %d\n", ap->link.active_tag); + status = ap->ops->sff_check_status(ap); + if ( status & ATA_BUSY ) + ap->link.active_tag = qc->tag; + } else { + // Without this line, PMP may fail to execute the ATA_CMD_READ_NATIVE_MAX_EXT command + ap->link.active_tag = qc->tag; + // Call SFF qc_issue to process non-NCQ commands + ret = ata_sff_qc_issue(qc); + } + + return 0; +} + + +static void sata_dwc_post_internal_cmd(struct ata_queued_cmd *qc) +{ + if (qc->flags & ATA_QCFLAG_FAILED) + ata_eh_freeze_port(qc->ap); +} + + +static void sata_dwc_error_handler(struct ata_port *ap) +{ +#ifdef DWC_VDEBUG + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); +#endif + dwc_port_dbg(ap, "%s\n", __func__); +#ifdef DWC_VDEBUG + dwc_port_vdbg(ap, "%s - sactive_queued=0x%08x, sactive_issued=0x%08x, no_dma_pending=%d\n",__func__, hsdevp->sactive_queued, hsdevp->sactive_issued, hsdevp->no_dma_pending); + dwc_port_vdbg(ap, "qc_active=0x%08x, qc_allocated=0x%08x\n", ap->qc_active, ap->qc_allocated); +#endif + // Call PMP Error Handler to handle SATA port errors + sata_pmp_error_handler(ap); +} + +/* + * sata_dwc_check_status - Get value of the Status Register + * @ap: Port to check + * + * Output content of the status register (CDR7) + */ +u8 sata_dwc_check_status(struct ata_port *ap) +{ + return ioread8(ap->ioaddr.status_addr); +} + + +/* + * Freeze the port by clear interrupt + * @ap: Port to freeze + */ +void sata_dwc_freeze(struct ata_port *ap) +{ + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + dwc_port_dbg(ap, "call %s ...\n",__func__); + // turn IRQ off + clear_intpr(hsdev); + clear_serror(ap); + out_le32(&hsdev->sata_dwc_regs->intmr, 0x0); +} + +/* + * Thaw the port by turning IRQ on + */ +void sata_dwc_thaw(struct ata_port *ap) +{ + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + + dwc_port_dbg(ap, "call %s ...\n",__func__); + // Clear IRQ + clear_intpr(hsdev); + // Turn IRQ back on + sata_dwc_enable_interrupts(hsdev); +} + + + +/* + * scsi mid-layer and libata interface structures + */ +static struct scsi_host_template sata_dwc_sht = { + ATA_NCQ_SHT(DRV_NAME), + //.sg_tablesize = LIBATA_MAX_PRD, + .can_queue = ATA_MAX_QUEUE, //ATA_DEF_QUEUE, + .dma_boundary = ATA_DMA_BOUNDARY, +}; + + +static struct ata_port_operations sata_dwc_ops = { + .inherits = &sata_pmp_port_ops, + .dev_config = sata_dwc_dev_config, + + .error_handler = sata_dwc_error_handler, + .softreset = sata_dwc_softreset, + .hardreset = sata_dwc_hardreset, + .pmp_softreset = sata_dwc_softreset, + .pmp_hardreset = sata_dwc_pmp_hardreset, + + .qc_defer = sata_pmp_qc_defer_cmd_switch, + .qc_prep = sata_dwc_qc_prep, + .qc_issue = sata_dwc_qc_issue, + .qc_fill_rtf = ata_sff_qc_fill_rtf, + + .scr_read = sata_dwc_scr_read, + .scr_write = sata_dwc_scr_write, + + .port_start = sata_dwc_port_start, + .port_stop = sata_dwc_port_stop, + + .bmdma_setup = sata_dwc_bmdma_setup, + .bmdma_start = sata_dwc_start_dma_transfer, + // Reuse some SFF functions + .sff_check_status = sata_dwc_check_status, + .sff_tf_read = ata_sff_tf_read, + .sff_data_xfer = ata_sff_data_xfer, + .sff_tf_load = ata_sff_tf_load, + .sff_dev_select = sata_dwc_dev_select, + .sff_exec_command = ata_sff_exec_command, + + .sff_irq_on = sata_dwc_irq_on, +/* .sff_irq_clear = sata_dwc_irq_clear, + .freeze = sata_dwc_freeze, + .thaw = sata_dwc_thaw, + .sff_irq_on = ata_sff_irq_on, + */ + .sff_irq_clear = ata_sff_irq_clear, + .freeze = ata_sff_freeze, + .thaw = ata_sff_thaw, + .pmp_attach = sata_dwc_pmp_attach, + .pmp_detach = sata_dwc_pmp_detach, + .post_internal_cmd = sata_dwc_post_internal_cmd, +}; + +static const struct ata_port_info sata_dwc_port_info[] = { + { + .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | + ATA_FLAG_MMIO | ATA_FLAG_NCQ | + ATA_FLAG_PMP | ATA_FLAG_AN, + .pio_mask = 0x1f, /* pio 0-4 */ + .udma_mask = ATA_UDMA6, + .port_ops = &sata_dwc_ops, + }, +}; + + + +/* + * Each SATA DWC node in the device tree will call this function once. + */ +static int sata_dwc_probe(struct of_device *ofdev, + const struct of_device_id *match) +{ + struct sata_dwc_device *hsdev; + u32 idr, versionr; + char *ver = (char *)&versionr; + u8 *base = NULL; + int err = 0; + int irq; + struct ata_host *host; + struct ata_port_info pi = sata_dwc_port_info[0]; + const struct ata_port_info *ppi[] = { &pi, NULL }; + + const unsigned int *dma_channel; + /* + * Check if device is enabled + */ + if (!of_device_is_available(ofdev->node)) { + printk(KERN_INFO "%s: Port disabled via device-tree\n", + ofdev->node->full_name); + return 0; + } + + /* Allocate DWC SATA device */ + hsdev = kmalloc(sizeof(*hsdev), GFP_KERNEL); + if (hsdev == NULL) { + dev_err(&ofdev->dev, "kmalloc failed for hsdev\n"); + err = -ENOMEM; + goto error_out; + } + memset(hsdev, 0, sizeof(*hsdev)); + + + // Identify SATA DMA channel used for the current SATA device + dma_channel = of_get_property(ofdev->node, "dma-channel", NULL); + if ( dma_channel ) { + dev_notice(&ofdev->dev, "Gettting DMA channel %d\n", *dma_channel); + hsdev->dma_channel = *dma_channel; + } else + hsdev->dma_channel = 0; + + /* Ioremap SATA registers */ + base = of_iomap(ofdev->node, 0); + if (!base) { + dev_err(&ofdev->dev, "ioremap failed for SATA register address\n"); + err = -ENODEV; + goto error_out; + } + hsdev->reg_base = base; + dwc_dev_vdbg(&ofdev->dev, "ioremap done for SATA register address\n"); + + /* Synopsys DWC SATA specific Registers */ + hsdev->sata_dwc_regs = (void *__iomem)(base + SATA_DWC_REG_OFFSET); + + /* Allocate and fill host */ + host = ata_host_alloc_pinfo(&ofdev->dev, ppi, SATA_DWC_MAX_PORTS); + if (!host) { + dev_err(&ofdev->dev, "ata_host_alloc_pinfo failed\n"); + err = -ENOMEM; + goto error_out; + } + + host->private_data = hsdev; + + /* Setup port */ + host->ports[0]->ioaddr.cmd_addr = base; + host->ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET; + hsdev->scr_base = (u8 *)(base + SATA_DWC_SCR_OFFSET); + sata_dwc_setup_port(&host->ports[0]->ioaddr, (unsigned long)base); + + /* Read the ID and Version Registers */ + idr = in_le32(&hsdev->sata_dwc_regs->idr); + versionr = in_le32(&hsdev->sata_dwc_regs->versionr); + dev_notice(&ofdev->dev, "id %d, controller version %c.%c%c\n", + idr, ver[0], ver[1], ver[2]); + + /* Get SATA DMA interrupt number */ + irq = irq_of_parse_and_map(ofdev->node, 1); + if (irq == NO_IRQ) { + dev_err(&ofdev->dev, "no SATA DMA irq\n"); + err = -ENODEV; + goto error_out; + } + + /* Get physical SATA DMA register base address */ + if (!sata_dma_regs) { + sata_dma_regs = of_iomap(ofdev->node, 1); + if (!sata_dma_regs) { + dev_err(&ofdev->dev, "ioremap failed for AHBDMA register address\n"); + err = -ENODEV; + goto error_out; + } + } + /* Save dev for later use in dev_xxx() routines */ + hsdev->dev = &ofdev->dev; + + /* Init glovbal dev list */ + dwc_dev_list[hsdev->dma_channel] = hsdev; + + /* Initialize AHB DMAC */ + hsdev->irq_dma = irq; + dma_dwc_init(hsdev); + dma_register_interrupt(hsdev); + + + /* Enable SATA Interrupts */ + sata_dwc_enable_interrupts(hsdev); + + /* Get SATA interrupt number */ + irq = irq_of_parse_and_map(ofdev->node, 0); + if (irq == NO_IRQ) { + dev_err(&ofdev->dev, "no SATA irq\n"); + err = -ENODEV; + goto error_out; + } + + /* + * Now, register with libATA core, this will also initiate the + * device discovery process, invoking our port_start() handler & + * error_handler() to execute a dummy Softreset EH session + */ + ata_host_activate(host, irq, sata_dwc_isr, 0, &sata_dwc_sht); + + dev_set_drvdata(&ofdev->dev, host); + + /* Everything is fine */ + return 0; + +error_out: + /* Free SATA DMA resources */ + dma_dwc_exit(hsdev); + + if (base) + iounmap(base); + + if (hsdev) + kfree(hsdev); + + return err; +} + + +static int sata_dwc_remove(struct of_device *ofdev) +{ + struct device *dev = &ofdev->dev; + struct ata_host *host = dev_get_drvdata(dev); + struct sata_dwc_device *hsdev = host->private_data; + + ata_host_detach(host); + + dev_set_drvdata(dev, NULL); + + /* Free SATA DMA resources */ + dma_dwc_exit(hsdev); + + iounmap(hsdev->reg_base); + kfree(hsdev); + kfree(host); + + dwc_dev_vdbg(&ofdev->dev, "done\n"); + + return 0; +} + +static const struct of_device_id sata_dwc_match[] = { + { .compatible = "amcc,sata-460ex", }, + { .compatible = "amcc,sata-apm82181", }, + {} +}; +MODULE_DEVICE_TABLE(of, sata_dwc_match); + +static struct of_platform_driver sata_dwc_driver = { + .name = "sata-dwc", + .match_table = sata_dwc_match, + .probe = sata_dwc_probe, + .remove = sata_dwc_remove, +}; + + +static int __init sata_dwc_init(void) +{ + return of_register_platform_driver(&sata_dwc_driver); +} + + +static void __exit sata_dwc_exit(void) +{ + of_unregister_platform_driver(&sata_dwc_driver); +} + +module_init(sata_dwc_init); +module_exit(sata_dwc_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Mark Miesfeld <mmiesfeld@amcc.com>"); +MODULE_DESCRIPTION("DesignWare Cores SATA controller driver"); +MODULE_VERSION(DRV_VERSION); diff --git a/drivers/ata/sata_dwc_pmp.c b/drivers/ata/sata_dwc_pmp.c new file mode 100755 index 00000000000..c1b0cff6ae6 --- /dev/null +++ b/drivers/ata/sata_dwc_pmp.c @@ -0,0 +1,3053 @@ +/* + * drivers/ata/sata_dwc.c + * + * Synopsys DesignWare Cores (DWC) SATA host driver + * + * Author: Mark Miesfeld <mmiesfeld@amcc.com> + * + * Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de> + * Copyright 2008 DENX Software Engineering + * + * Based on versions provided by AMCC and Synopsys which are: + * Copyright 2006 Applied Micro Circuits Corporation + * COPYRIGHT (C) 2005 SYNOPSYS, INC. ALL RIGHTS RESERVED + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 of the License, or (at your + * option) any later version. + * + */ + + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/init.h> +#include <linux/device.h> +#include <linux/of_platform.h> +#include <linux/libata.h> +#include <linux/rtc.h> + +#include <scsi/scsi_host.h> +#include <scsi/scsi_cmnd.h> + + +#ifdef CONFIG_SATA_DWC_DEBUG +#define dwc_dev_dbg(dev, format, arg...) \ + ({ if (0) dev_printk(KERN_INFO, dev, format, ##arg); 0; }) +#define dwc_port_dbg(ap, format, arg...) \ + ata_port_printk(ap, KERN_INFO, format, ##arg) +#define dwc_link_dbg(link, format, arg...) \ + ata_link_printk(link, KERN_INFO, format, ##arg) +#else +#define dwc_dev_dbg(dev, format, arg...) \ + ({ 0; }) +#define dwc_port_dbg(ap, format, arg...) \ + ({ 0; }) +#define dwc_link_dbg(link, format, arg...) \ + ({ 0; }) +#endif + +#ifdef CONFIG_SATA_DWC_VDEBUG +#define DEBUG_NCQ +#define dwc_dev_vdbg(dev, format, arg...) \ + ({ if (0) dev_printk(KERN_INFO, dev, format, ##arg); 0; }) +#define dwc_port_vdbg(ap, format, arg...) \ + ata_port_printk(ap, KERN_INFO, format, ##arg) +#define dwc_link_vdbg(link, format, arg...) \ + ata_link_printk(link, KERN_INFO, format, ##arg) +#else +#define dwc_dev_vdbg(dev, format, arg...) \ + ({ 0; }) +#define dwc_port_vdbg(ap, format, arg...) \ + ({ 0; }) +#define dwc_link_vdbg(link, format, arg...) \ + ({ 0; }) +#endif + +#define dwc_dev_info(dev, format, arg...) \ + ({ if (0) dev_printk(KERN_INFO, dev, format, ##arg); 0; }) +#define dwc_port_info(ap, format, arg...) \ + ata_port_printk(ap, KERN_INFO, format, ##arg) +#define dwc_link_info(link, format, arg...) \ + ata_link_printk(link, KERN_INFO, format, ##arg) + + + +#define DRV_NAME "sata-dwc" +#define DRV_VERSION "2.0" + +/* Port Multiplier discovery Signature */ +#define PSCR_SCONTROL_DET_ENABLE 0x00000001 +#define PSCR_SSTATUS_DET_PRESENT 0x00000001 +#define PSCR_SERROR_DIAG_X 0x04000000 + +/* Port multiplier port entry in SCONTROL register */ +#define SCONTROL_PMP_MASK 0x000f0000 +#define PMP_TO_SCONTROL(p) ((p << 16) & 0x000f0000) +#define SCONTROL_TO_PMP(p) (((p) & 0x000f0000) >> 16) + + +/* SATA DMA driver Globals */ +#if defined(CONFIG_APM82181) +#define DMA_NUM_CHANS 2 +#else +#define DMA_NUM_CHANS 1 +#endif + +#define DMA_NUM_CHAN_REGS 8 + +/* SATA DMA Register definitions */ +#if defined(CONFIG_APM82181) +#define AHB_DMA_BRST_DFLT 64 /* 16 data items burst length */ +#else +#define AHB_DMA_BRST_DFLT 64 /* 16 data items burst length */ +#endif + +#if defined(CONFIG_APM82181) + extern void signal_hdd_led(int, int); +#endif +struct dmareg { + u32 low; /* Low bits 0-31 */ + u32 high; /* High bits 32-63 */ +}; + +/* DMA Per Channel registers */ + +struct dma_chan_regs { + struct dmareg sar; /* Source Address */ + struct dmareg dar; /* Destination address */ + struct dmareg llp; /* Linked List Pointer */ + struct dmareg ctl; /* Control */ + struct dmareg sstat; /* Source Status not implemented in core */ + struct dmareg dstat; /* Destination Status not implemented in core */ + struct dmareg sstatar; /* Source Status Address not impl in core */ + struct dmareg dstatar; /* Destination Status Address not implemented */ + struct dmareg cfg; /* Config */ + struct dmareg sgr; /* Source Gather */ + struct dmareg dsr; /* Destination Scatter */ +}; + +/* Generic Interrupt Registers */ +struct dma_interrupt_regs { + struct dmareg tfr; /* Transfer Interrupt */ + struct dmareg block; /* Block Interrupt */ + struct dmareg srctran; /* Source Transfer Interrupt */ + struct dmareg dsttran; /* Dest Transfer Interrupt */ + struct dmareg error; /* Error */ +}; + +struct ahb_dma_regs { + struct dma_chan_regs chan_regs[DMA_NUM_CHAN_REGS]; + struct dma_interrupt_regs interrupt_raw; /* Raw Interrupt */ + struct dma_interrupt_regs interrupt_status; /* Interrupt Status */ + struct dma_interrupt_regs interrupt_mask; /* Interrupt Mask */ + struct dma_interrupt_regs interrupt_clear; /* Interrupt Clear */ + struct dmareg statusInt; /* Interrupt combined */ + struct dmareg rq_srcreg; /* Src Trans Req */ + struct dmareg rq_dstreg; /* Dst Trans Req */ + struct dmareg rq_sgl_srcreg; /* Sngl Src Trans Req */ + struct dmareg rq_sgl_dstreg; /* Sngl Dst Trans Req */ + struct dmareg rq_lst_srcreg; /* Last Src Trans Req */ + struct dmareg rq_lst_dstreg; /* Last Dst Trans Req */ + struct dmareg dma_cfg; /* DMA Config */ + struct dmareg dma_chan_en; /* DMA Channel Enable */ + struct dmareg dma_id; /* DMA ID */ + struct dmareg dma_test; /* DMA Test */ + struct dmareg res1; /* reserved */ + struct dmareg res2; /* reserved */ + + /* DMA Comp Params + * Param 6 = dma_param[0], Param 5 = dma_param[1], + * Param 4 = dma_param[2] ... + */ + struct dmareg dma_params[6]; +}; + +/* Data structure for linked list item */ +struct lli { + u32 sar; /* Source Address */ + u32 dar; /* Destination address */ + u32 llp; /* Linked List Pointer */ + struct dmareg ctl; /* Control */ +#if defined(CONFIG_APM82181) + u32 dstat; /* Source status is not supported */ +#else + struct dmareg dstat; /* Destination Status */ +#endif +}; + +#define SATA_DWC_DMAC_LLI_SZ (sizeof(struct lli)) +#define SATA_DWC_DMAC_LLI_NUM 256 +#define SATA_DWC_DMAC_TWIDTH_BYTES 4 +#define SATA_DWC_DMAC_LLI_TBL_SZ \ + (SATA_DWC_DMAC_LLI_SZ * SATA_DWC_DMAC_LLI_NUM) +#if defined(CONFIG_APM82181) +#define SATA_DWC_DMAC_CTRL_TSIZE_MAX \ + (0x00000800 * SATA_DWC_DMAC_TWIDTH_BYTES) +#else +#define SATA_DWC_DMAC_CTRL_TSIZE_MAX \ + (0x00000800 * SATA_DWC_DMAC_TWIDTH_BYTES) +#endif +/* DMA Register Operation Bits */ +#define DMA_EN 0x00000001 /* Enable AHB DMA */ +#define DMA_CHANNEL(ch) (0x00000001 << (ch)) /* Select channel */ +#define DMA_ENABLE_CHAN(ch) ((0x00000001 << (ch)) | \ + ((0x000000001 << (ch)) << 8)) +#define DMA_DISABLE_CHAN(ch) (0x00000000 | ((0x000000001 << (ch)) << 8)) + +/* Channel Control Register */ +#define DMA_CTL_BLK_TS(size) ((size) & 0x000000FFF) /* Blk Transfer size */ +#define DMA_CTL_LLP_SRCEN 0x10000000 /* Blk chain enable Src */ +#define DMA_CTL_LLP_DSTEN 0x08000000 /* Blk chain enable Dst */ +/* + * This define is used to set block chaining disabled in the control low + * register. It is already in little endian format so it can be &'d dirctly. + * It is essentially: cpu_to_le32(~(DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN)) + */ +#define DMA_CTL_LLP_DISABLE_LE32 0xffffffe7 +#define DMA_CTL_SMS(num) ((num & 0x3) << 25) /*Src Master Select*/ +#define DMA_CTL_DMS(num) ((num & 0x3) << 23) /*Dst Master Select*/ +#define DMA_CTL_TTFC(type) ((type & 0x7) << 20) /*Type&Flow cntr*/ +#define DMA_CTL_TTFC_P2M_DMAC 0x00000002 /*Per mem,DMAC cntr*/ +#define DMA_CTL_TTFC_M2P_PER 0x00000003 /*Mem per,peri cntr*/ +#define DMA_CTL_SRC_MSIZE(size) ((size & 0x7) << 14) /*Src Burst Len*/ +#define DMA_CTL_DST_MSIZE(size) ((size & 0x7) << 11) /*Dst Burst Len*/ +#define DMA_CTL_SINC_INC 0x00000000 /*Src addr incr*/ +#define DMA_CTL_SINC_DEC 0x00000200 +#define DMA_CTL_SINC_NOCHANGE 0x00000400 +#define DMA_CTL_DINC_INC 0x00000000 /*Dst addr incr*/ +#define DMA_CTL_DINC_DEC 0x00000080 +#define DMA_CTL_DINC_NOCHANGE 0x00000100 +#define DMA_CTL_SRC_TRWID(size) ((size & 0x7) << 4) /*Src Trnsfr Width*/ +#define DMA_CTL_DST_TRWID(size) ((size & 0x7) << 1) /*Dst Trnsfr Width*/ +#define DMA_CTL_INT_EN 0x00000001 /*Interrupt Enable*/ + +/* Channel Configuration Register high bits */ +#define DMA_CFG_FCMOD_REQ 0x00000001 /*Flow cntrl req*/ +#define DMA_CFG_PROTCTL (0x00000003 << 2) /*Protection cntrl*/ + +/* Channel Configuration Register low bits */ +#define DMA_CFG_RELD_DST 0x80000000 /*Reload Dst/Src Addr*/ +#define DMA_CFG_RELD_SRC 0x40000000 +#define DMA_CFG_HS_SELSRC 0x00000800 /*SW hndshk Src/Dst*/ +#define DMA_CFG_HS_SELDST 0x00000400 +#define DMA_CFG_FIFOEMPTY (0x00000001 << 9) /*FIFO Empty bit*/ + +/* Assign hardware handshaking interface (x) to dst / sre peripheral */ +#define DMA_CFG_HW_HS_DEST(int_num) ((int_num & 0xF) << 11) +#define DMA_CFG_HW_HS_SRC(int_num) ((int_num & 0xF) << 7) + +/* Channel Linked List Pointer Register */ +#define DMA_LLP_LMS(addr, master) (((addr) & 0xfffffffc) | (master)) +#define DMA_LLP_AHBMASTER1 0 /* List Master Select */ +#define DMA_LLP_AHBMASTER2 1 + +#define SATA_DWC_MAX_PORTS 1 + +#define SATA_DWC_SCR_OFFSET 0x24 +#define SATA_DWC_REG_OFFSET 0x64 + +/* DWC SATA Registers */ +struct sata_dwc_regs { + u32 fptagr; /* 1st party DMA tag */ + u32 fpbor; /* 1st party DMA buffer offset */ + u32 fptcr; /* 1st party DMA Xfr count */ + u32 dmacr; /* DMA Control */ + u32 dbtsr; /* DMA Burst Transac size */ + u32 intpr; /* Interrupt Pending */ + u32 intmr; /* Interrupt Mask */ + u32 errmr; /* Error Mask */ + u32 llcr; /* Link Layer Control */ + u32 phycr; /* PHY Control */ + u32 physr; /* PHY Status */ + u32 rxbistpd; /* Recvd BIST pattern def register */ + u32 rxbistpd1; /* Recvd BIST data dword1 */ + u32 rxbistpd2; /* Recvd BIST pattern data dword2 */ + u32 txbistpd; /* Trans BIST pattern def register */ + u32 txbistpd1; /* Trans BIST data dword1 */ + u32 txbistpd2; /* Trans BIST data dword2 */ + u32 bistcr; /* BIST Control Register */ + u32 bistfctr; /* BIST FIS Count Register */ + u32 bistsr; /* BIST Status Register */ + u32 bistdecr; /* BIST Dword Error count register */ + u32 res[15]; /* Reserved locations */ + u32 testr; /* Test Register */ + u32 versionr; /* Version Register */ + u32 idr; /* ID Register */ + u32 unimpl[192]; /* Unimplemented */ + u32 dmadr[256]; /* FIFO Locations in DMA Mode */ +}; + +#define SCR_SCONTROL_DET_ENABLE 0x00000001 +#define SCR_SSTATUS_DET_PRESENT 0x00000001 +#define SCR_SERROR_DIAG_X 0x04000000 + +/* DWC SATA Register Operations */ +#define SATA_DWC_TXFIFO_DEPTH 0x01FF +#define SATA_DWC_RXFIFO_DEPTH 0x01FF + +#define SATA_DWC_DMACR_TMOD_TXCHEN 0x00000004 +#define SATA_DWC_DMACR_TXCHEN (0x00000001 | \ + SATA_DWC_DMACR_TMOD_TXCHEN) +#define SATA_DWC_DMACR_RXCHEN (0x00000002 | \ + SATA_DWC_DMACR_TMOD_TXCHEN) +#define SATA_DWC_DMACR_TX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_TXCHEN) | \ + SATA_DWC_DMACR_TMOD_TXCHEN) +#define SATA_DWC_DMACR_RX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_RXCHEN) | \ + SATA_DWC_DMACR_TMOD_TXCHEN) +#define SATA_DWC_DMACR_TXRXCH_CLEAR SATA_DWC_DMACR_TMOD_TXCHEN + +#define SATA_DWC_DBTSR_MWR(size) ((size/4) & \ + SATA_DWC_TXFIFO_DEPTH) +#define SATA_DWC_DBTSR_MRD(size) (((size/4) & \ + SATA_DWC_RXFIFO_DEPTH) << 16) + +// SATA DWC Interrupts +#define SATA_DWC_INTPR_DMAT 0x00000001 +#define SATA_DWC_INTPR_NEWFP 0x00000002 +#define SATA_DWC_INTPR_PMABRT 0x00000004 +#define SATA_DWC_INTPR_ERR 0x00000008 +#define SATA_DWC_INTPR_NEWBIST 0x00000010 +#define SATA_DWC_INTPR_IPF 0x80000000 +// Interrupt masks +#define SATA_DWC_INTMR_DMATM 0x00000001 +#define SATA_DWC_INTMR_NEWFPM 0x00000002 +#define SATA_DWC_INTMR_PMABRTM 0x00000004 +#define SATA_DWC_INTMR_ERRM 0x00000008 +#define SATA_DWC_INTMR_NEWBISTM 0x00000010 +#define SATA_DWC_INTMR_PRIMERRM 0x00000020 +#define SATA_DWC_INTPR_CMDGOOD 0x00000080 +#define SATA_DWC_INTPR_CMDABORT 0x00000040 + +#define SATA_DWC_LLCR_SCRAMEN 0x00000001 +#define SATA_DWC_LLCR_DESCRAMEN 0x00000002 +#define SATA_DWC_LLCR_RPDEN 0x00000004 + +// Defines for SError register +#define SATA_DWC_SERR_ERRI 0x00000001 // Recovered data integrity error +#define SATA_DWC_SERR_ERRM 0x00000002 // Recovered communication error +#define SATA_DWC_SERR_ERRT 0x00000100 // Non-recovered transient data integrity error +#define SATA_DWC_SERR_ERRC 0x00000200 // Non-recovered persistent communication or data integrity error +#define SATA_DWC_SERR_ERRP 0x00000400 // Protocol error +#define SATA_DWC_SERR_ERRE 0x00000800 // Internal host adapter error +#define SATA_DWC_SERR_DIAGN 0x00010000 // PHYRdy change +#define SATA_DWC_SERR_DIAGI 0x00020000 // PHY internal error +#define SATA_DWC_SERR_DIAGW 0x00040000 // Phy COMWAKE signal is detected +#define SATA_DWC_SERR_DIAGB 0x00080000 // 10b to 8b decoder err +#define SATA_DWC_SERR_DIAGT 0x00100000 // Disparity error +#define SATA_DWC_SERR_DIAGC 0x00200000 // CRC error +#define SATA_DWC_SERR_DIAGH 0x00400000 // Handshake error +#define SATA_DWC_SERR_DIAGL 0x00800000 // Link sequence (illegal transition) error +#define SATA_DWC_SERR_DIAGS 0x01000000 // Transport state transition error +#define SATA_DWC_SERR_DIAGF 0x02000000 // Unrecognized FIS type +#define SATA_DWC_SERR_DIAGX 0x04000000 // Exchanged error - Set when PHY COMINIT signal is detected. +#define SATA_DWC_SERR_DIAGA 0x08000000 // Port Selector Presence detected + +/* This is all error bits, zero's are reserved fields. */ +#define SATA_DWC_SERR_ERR_BITS 0x0FFF0F03 + +#define SATA_DWC_SCR0_SPD_GET(v) ((v >> 4) & 0x0000000F) + +struct sata_dwc_device { + struct resource reg; /* Resource for register */ + struct device *dev; /* generic device struct */ + struct ata_probe_ent *pe; /* ptr to probe-ent */ + struct ata_host *host; + u8 *reg_base; + struct sata_dwc_regs *sata_dwc_regs; /* DW Synopsys SATA specific */ + u8 *scr_base; + int dma_channel; /* DWC SATA DMA channel */ + int irq_dma; + struct timer_list an_timer; +}; + +#define SATA_DWC_QCMD_MAX 32 + +struct sata_dwc_device_port { + struct sata_dwc_device *hsdev; + int cmd_issued[SATA_DWC_QCMD_MAX]; + struct lli *llit[SATA_DWC_QCMD_MAX]; + dma_addr_t llit_dma[SATA_DWC_QCMD_MAX]; + u32 dma_chan[SATA_DWC_QCMD_MAX]; + int dma_pending[SATA_DWC_QCMD_MAX]; + u32 sata_dwc_sactive_issued; /* issued queued ops */ + u32 sata_dwc_sactive_queued; /* queued ops */ + u32 dma_interrupt_count; + +}; + +static struct sata_dwc_device* dwc_dev_list[2]; +static int dma_intr_registered = 0; +/* + * Commonly used DWC SATA driver Macros + */ +#define HSDEV_FROM_HOST(host) ((struct sata_dwc_device *) \ + (host)->private_data) +#define HSDEV_FROM_AP(ap) ((struct sata_dwc_device *) \ + (ap)->host->private_data) +#define HSDEVP_FROM_AP(ap) ((struct sata_dwc_device_port *) \ + (ap)->private_data) +#define HSDEV_FROM_QC(qc) ((struct sata_dwc_device *) \ + (qc)->ap->host->private_data) +#define HSDEV_FROM_HSDEVP(p) ((struct sata_dwc_device *) \ + (hsdevp)->hsdev) + +enum { + SATA_DWC_CMD_ISSUED_NOT = 0, + SATA_DWC_CMD_ISSUED_PENDING = 1, + SATA_DWC_CMD_ISSUED_EXEC = 2, + SATA_DWC_CMD_ISSUED_NODATA = 3, + + SATA_DWC_DMA_PENDING_NONE = 0, + SATA_DWC_DMA_PENDING_TX = 1, + SATA_DWC_DMA_PENDING_RX = 2, +}; + +/* + * Globals + */ +static struct ahb_dma_regs *sata_dma_regs = 0; + +/* + * Prototypes + */ +static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag); +static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc, + u32 check_status); +static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status); +static void sata_dwc_port_stop(struct ata_port *ap); +static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag); + +static int dma_dwc_init(struct sata_dwc_device *hsdev); +static void dma_dwc_exit(struct sata_dwc_device *hsdev); +static int dma_dwc_xfer_setup(struct ata_queued_cmd *qc, + struct lli *lli, dma_addr_t dma_lli, + void __iomem *addr); +static void dma_dwc_xfer_start(int dma_ch); +static void dma_dwc_terminate_dma(struct ata_port *ap, int dma_ch); +static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev); +static void sata_dwc_init_port ( struct ata_port *ap ); +u8 sata_dwc_check_status(struct ata_port *ap); + + + + +static const char *dir_2_txt(enum dma_data_direction dir) +{ + switch (dir) { + case DMA_BIDIRECTIONAL: + return "bi"; + case DMA_FROM_DEVICE: + return "from"; + case DMA_TO_DEVICE: + return "to"; + case DMA_NONE: + return "none"; + default: + return "err"; + } +} + +static const char *prot_2_txt(enum ata_tf_protocols protocol) +{ + switch (protocol) { + case ATA_PROT_UNKNOWN: + return "unknown"; + case ATA_PROT_NODATA: + return "nodata"; + case ATA_PROT_PIO: + return "pio"; + case ATA_PROT_DMA: + return "dma"; + case ATA_PROT_NCQ: + return "ncq"; + case ATAPI_PROT_PIO: + return "atapi pio"; + case ATAPI_PROT_NODATA: + return "atapi nodata"; + case ATAPI_PROT_DMA: + return "atapi dma"; + default: + return "err"; + } +} + +inline const char *ata_cmd_2_txt(const struct ata_taskfile *tf) +{ + switch (tf->command) { + case ATA_CMD_CHK_POWER: + return "ATA_CMD_CHK_POWER"; + case ATA_CMD_EDD: + return "ATA_CMD_EDD"; + case ATA_CMD_FLUSH: + return "ATA_CMD_FLUSH"; + case ATA_CMD_FLUSH_EXT: + return "ATA_CMD_FLUSH_EXT"; + case ATA_CMD_ID_ATA: + return "ATA_CMD_ID_ATA"; + case ATA_CMD_ID_ATAPI: + return "ATA_CMD_ID_ATAPI"; + case ATA_CMD_FPDMA_READ: + return "ATA_CMD_FPDMA_READ"; + case ATA_CMD_FPDMA_WRITE: + return "ATA_CMD_FPDMA_WRITE"; + case ATA_CMD_READ: + return "ATA_CMD_READ"; + case ATA_CMD_READ_EXT: + return "ATA_CMD_READ_EXT"; + case ATA_CMD_READ_NATIVE_MAX_EXT : + return "ATA_CMD_READ_NATIVE_MAX_EXT"; + case ATA_CMD_VERIFY_EXT : + return "ATA_CMD_VERIFY_EXT"; + case ATA_CMD_WRITE: + return "ATA_CMD_WRITE"; + case ATA_CMD_WRITE_EXT: + return "ATA_CMD_WRITE_EXT"; + case ATA_CMD_PIO_READ: + return "ATA_CMD_PIO_READ"; + case ATA_CMD_PIO_READ_EXT: + return "ATA_CMD_PIO_READ_EXT"; + case ATA_CMD_PIO_WRITE: + return "ATA_CMD_PIO_WRITE"; + case ATA_CMD_PIO_WRITE_EXT: + return "ATA_CMD_PIO_WRITE_EXT"; + case ATA_CMD_SET_FEATURES: + return "ATA_CMD_SET_FEATURES"; + case ATA_CMD_PACKET: + return "ATA_CMD_PACKET"; + case ATA_CMD_PMP_READ: + return "ATA_CMD_PMP_READ"; + case ATA_CMD_PMP_WRITE: + return "ATA_CMD_PMP_WRITE"; + default: + return "ATA_CMD_???"; + } +} + +/* + * Dump content of the taskfile + */ +static void sata_dwc_tf_dump(struct device *dwc_dev, struct ata_taskfile *tf) +{ + dwc_dev_vdbg(dwc_dev, "taskfile cmd: 0x%02x protocol: %s flags: 0x%lx" + "device: %x\n", tf->command, prot_2_txt(tf->protocol), + tf->flags, tf->device); + dwc_dev_vdbg(dwc_dev, "feature: 0x%02x nsect: 0x%x lbal: 0x%x lbam:" + "0x%x lbah: 0x%x\n", tf->feature, tf->nsect, tf->lbal, + tf->lbam, tf->lbah); + dwc_dev_vdbg(dwc_dev, "hob_feature: 0x%02x hob_nsect: 0x%x hob_lbal: 0x%x " + "hob_lbam: 0x%x hob_lbah: 0x%x\n", tf->hob_feature, + tf->hob_nsect, tf->hob_lbal, tf->hob_lbam, + tf->hob_lbah); +} + +/* + * Function: get_burst_length_encode + * arguments: datalength: length in bytes of data + * returns value to be programmed in register corrresponding to data length + * This value is effectively the log(base 2) of the length + */ +static inline int get_burst_length_encode(int datalength) +{ + int items = datalength >> 2; /* div by 4 to get lword count */ + + if (items >= 64) + return 5; + + if (items >= 32) + return 4; + + if (items >= 16) + return 3; + + if (items >= 8) + return 2; + + if (items >= 4) + return 1; + + return 0; +} + +/* + * Clear Interrupts on a DMA channel + */ +static inline void clear_chan_interrupts(int c) +{ + out_le32(&(sata_dma_regs->interrupt_clear.tfr.low), DMA_CHANNEL(c)); + out_le32(&(sata_dma_regs->interrupt_clear.block.low), DMA_CHANNEL(c)); + out_le32(&(sata_dma_regs->interrupt_clear.srctran.low), DMA_CHANNEL(c)); + out_le32(&(sata_dma_regs->interrupt_clear.dsttran.low), DMA_CHANNEL(c)); + out_le32(&(sata_dma_regs->interrupt_clear.error.low), DMA_CHANNEL(c)); +} + +/* + * Function: dma_request_channel + * arguments: None + * returns channel number if available else -1 + * This function assigns the next available DMA channel from the list to the + * requester + */ +static int dma_request_channel(struct ata_port *ap) +{ + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + + if (!(in_le32(&(sata_dma_regs->dma_chan_en.low)) & DMA_CHANNEL(hsdev->dma_channel))) { + dwc_port_vdbg(ap, "%s Successfully requested DMA channel %d\n", + __func__, hsdev->dma_channel); + return (hsdev->dma_channel); + } + + return -1; +} + + + +/* + * Function: dma_dwc_interrupt + * arguments: irq, dev_id, pt_regs + * returns channel number if available else -1 + * Interrupt Handler for DW AHB SATA DMA + */ +static int dma_dwc_interrupt(int irq, void *hsdev_instance) +{ + volatile u32 tfr_reg, err_reg; + unsigned long flags; + struct sata_dwc_device *hsdev = + (struct sata_dwc_device *)hsdev_instance; + struct ata_host *host = (struct ata_host *)hsdev->host; + struct ata_port *ap; + struct sata_dwc_device_port *hsdevp; + u8 tag = 0; + int chan; + unsigned int port = 0; + spin_lock_irqsave(&host->lock, flags); + + ap = host->ports[port]; + hsdevp = HSDEVP_FROM_AP(ap); + tag = ap->link.active_tag; + + dwc_port_vdbg(ap, "%s: DMA interrupt in channel %d\n", __func__, hsdev->dma_channel); + + tfr_reg = in_le32(&(sata_dma_regs->interrupt_status.tfr.low)); + err_reg = in_le32(&(sata_dma_regs->interrupt_status.error.low)); + + dwc_port_vdbg(ap, "eot=0x%08x err=0x%08x pending=%d active port=%d\n", + tfr_reg, err_reg, hsdevp->dma_pending[tag], port); + chan = hsdev->dma_channel; + + if (tfr_reg & DMA_CHANNEL(chan)) { + /* + *Each DMA command produces 2 interrupts. Only + * complete the command after both interrupts have been + * seen. (See sata_dwc_isr()) + */ + hsdevp->dma_interrupt_count++; + sata_dwc_clear_dmacr(hsdevp, tag); + + if (unlikely(hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE)) { + dev_err(ap->dev, "DMA not pending eot=0x%08x " + "err=0x%08x tag=0x%02x pending=%d\n", + tfr_reg, err_reg, tag, + hsdevp->dma_pending[tag]); + } + + // Do remain jobs after DMA transfer complete + if ((hsdevp->dma_interrupt_count % 2) == 0) + sata_dwc_dma_xfer_complete(ap, 1); + + /* Clear the interrupt */ + out_le32(&(sata_dma_regs->interrupt_clear.tfr.low), + DMA_CHANNEL(chan)); + } + + /* Process error interrupt. */ + // We do not expect error happen + if (unlikely(err_reg & DMA_CHANNEL(chan))) { + /* TODO Need error handler ! */ + dev_err(ap->dev, "error interrupt err_reg=0x%08x\n", + err_reg); + + spin_lock_irqsave(ap->lock, flags); + //if (ata_is_dma(qc->tf.protocol)) { + /* disable DMAC */ + dma_dwc_terminate_dma(ap, chan); + //} + spin_unlock_irqrestore(ap->lock, flags); + + /* Clear the interrupt. */ + out_le32(&(sata_dma_regs->interrupt_clear.error.low), + DMA_CHANNEL(chan)); + } + + spin_unlock_irqrestore(&host->lock, flags); + return IRQ_HANDLED; +} + +static irqreturn_t dma_dwc_handler(int irq, void *hsdev_instance) +{ + volatile u32 tfr_reg, err_reg; + int chan; + + tfr_reg = in_le32(&(sata_dma_regs->interrupt_status.tfr.low)); + err_reg = in_le32(&(sata_dma_regs->interrupt_status.error.low)); + + for (chan = 0; chan < DMA_NUM_CHANS; chan++) { + /* Check for end-of-transfer interrupt. */ + + if (tfr_reg & DMA_CHANNEL(chan)) { + dma_dwc_interrupt(0, dwc_dev_list[chan]); + } + else + + /* Check for error interrupt. */ + if (err_reg & DMA_CHANNEL(chan)) { + dma_dwc_interrupt(0, dwc_dev_list[chan]); + } + } + + return IRQ_HANDLED; +} + +static int dma_register_interrupt (struct sata_dwc_device *hsdev) +{ + int retval = 0; + int irq = hsdev->irq_dma; + /* + * FIXME: 2 SATA controllers share the same DMA engine so + * currently, they also share same DMA interrupt + */ + if (!dma_intr_registered) { + printk("%s register irq (%d)\n", __func__, irq); + retval = request_irq(irq, dma_dwc_handler, IRQF_SHARED, "SATA DMA", hsdev); + //retval = request_irq(irq, dma_dwc_handler, IRQF_DISABLED, "SATA DMA", NULL); + if (retval) { + dev_err(hsdev->dev, "%s: could not get IRQ %d\n", __func__, irq); + return -ENODEV; + } + //dma_intr_registered = 1; + } + return retval; +} + +/* + * Function: dma_request_interrupts + * arguments: hsdev + * returns status + * This function registers ISR for a particular DMA channel interrupt + */ +static int dma_request_interrupts(struct sata_dwc_device *hsdev, int irq) +{ + int retval = 0; + int dma_chan = hsdev->dma_channel; + + /* Unmask error interrupt */ + out_le32(&sata_dma_regs->interrupt_mask.error.low, + in_le32(&sata_dma_regs->interrupt_mask.error.low) | DMA_ENABLE_CHAN(dma_chan)); + + /* Unmask end-of-transfer interrupt */ + out_le32(&sata_dma_regs->interrupt_mask.tfr.low, + in_le32(&sata_dma_regs->interrupt_mask.tfr.low) | DMA_ENABLE_CHAN(dma_chan)); + + dwc_dev_vdbg(hsdev->dev, "Current value of interrupt_mask.error=0x%0x\n", in_le32(&sata_dma_regs->interrupt_mask.error.low)); + dwc_dev_vdbg(hsdev->dev, "Current value of interrupt_mask.tfr=0x%0x\n", in_le32(&sata_dma_regs->interrupt_mask.tfr.low)); +#if 0 + out_le32(&sata_dma_regs->interrupt_mask.block.low, + DMA_ENABLE_CHAN(dma_chan)); + + out_le32(&sata_dma_regs->interrupt_mask.srctran.low, + DMA_ENABLE_CHAN(dma_chan)); + + out_le32(&sata_dma_regs->interrupt_mask.dsttran.low, + DMA_ENABLE_CHAN(dma_chan)); +#endif + return retval; +} + +/* + * Function: map_sg_to_lli + * arguments: sg: scatter/gather list(sg) + * num_elems: no of elements in sg list + * dma_lli: LLI table + * dest: destination address + * read: whether the transfer is read or write + * returns array of AHB DMA Linked List Items + * This function creates a list of LLIs for DMA Xfr and returns the number + * of elements in the DMA linked list. + * + * Note that the Synopsis driver has a comment proposing that better performance + * is possible by only enabling interrupts on the last item in the linked list. + * However, it seems that could be a problem if an error happened on one of the + * first items. The transfer would halt, but no error interrupt would occur. + * + * Currently this function sets interrupts enabled for each linked list item: + * DMA_CTL_INT_EN. + */ +static int map_sg_to_lli(struct ata_queued_cmd *qc, struct lli *lli, + dma_addr_t dma_lli, void __iomem *dmadr_addr) +{ + struct scatterlist *sg = qc->sg; + struct device *dwc_dev = qc->ap->dev; + int num_elems = qc->n_elem; + int dir = qc->dma_dir; + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(qc->ap); + + int i, idx = 0; + int fis_len = 0; + dma_addr_t next_llp; + int bl; + unsigned int dma_ts = 0; + + dwc_port_vdbg(qc->ap, "%s: sg=%p nelem=%d lli=%p dma_lli=0x%08x " + "dmadr=0x%08x\n", __func__, sg, num_elems, lli, (u32)dma_lli, + (u32)dmadr_addr); + + bl = get_burst_length_encode(AHB_DMA_BRST_DFLT); + + for (i = 0; i < num_elems; i++, sg++) { + u32 addr, offset; + u32 sg_len, len; + + addr = (u32) sg_dma_address(sg); + sg_len = sg_dma_len(sg); + + dwc_port_vdbg(qc->ap, "%s: elem=%d sg_addr=0x%x sg_len=%d\n", + __func__, i, addr, sg_len); + + while (sg_len) { + + if (unlikely(idx >= SATA_DWC_DMAC_LLI_NUM)) { + /* The LLI table is not large enough. */ + dev_err(dwc_dev, "LLI table overrun (idx=%d)\n", + idx); + break; + } + len = (sg_len > SATA_DWC_DMAC_CTRL_TSIZE_MAX) ? + SATA_DWC_DMAC_CTRL_TSIZE_MAX : sg_len; + + offset = addr & 0xffff; + if ((offset + sg_len) > 0x10000) + len = 0x10000 - offset; + + /* + * Make sure a LLI block is not created that will span a + * 8K max FIS boundary. If the block spans such a FIS + * boundary, there is a chance that a DMA burst will + * cross that boundary -- this results in an error in + * the host controller. + */ + if (unlikely(fis_len + len > 8192)) { + dwc_port_vdbg(qc->ap, "SPLITTING: fis_len=%d(0x%x) " + "len=%d(0x%x)\n", fis_len, fis_len, + len, len); + len = 8192 - fis_len; + fis_len = 0; + } else { + fis_len += len; + } + if (fis_len == 8192) + fis_len = 0; + + /* + * Set DMA addresses and lower half of control register + * based on direction. + */ + dwc_port_vdbg(qc->ap, "%s: sg_len = %d, len = %d\n", __func__, sg_len, len); + +#if defined(CONFIG_APM82181) + if (dir == DMA_FROM_DEVICE) { + lli[idx].dar = cpu_to_le32(addr); + lli[idx].sar = cpu_to_le32((u32)dmadr_addr); + if (hsdevp->hsdev->dma_channel == 0) {/* DMA channel 0 */ + lli[idx].ctl.low = cpu_to_le32( + DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC) | + DMA_CTL_SMS(1) | /* Source: Master 2 */ + DMA_CTL_DMS(0) | /* Dest: Master 1 */ + DMA_CTL_SRC_MSIZE(bl) | + DMA_CTL_DST_MSIZE(bl) | + DMA_CTL_SINC_NOCHANGE | + DMA_CTL_SRC_TRWID(2) | + DMA_CTL_DST_TRWID(2) | + DMA_CTL_INT_EN | + DMA_CTL_LLP_SRCEN | + DMA_CTL_LLP_DSTEN); + } else if (hsdevp->hsdev->dma_channel == 1) {/* DMA channel 1 */ + lli[idx].ctl.low = cpu_to_le32( + DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC) | + DMA_CTL_SMS(2) | /* Source: Master 3 */ + DMA_CTL_DMS(0) | /* Dest: Master 1 */ + DMA_CTL_SRC_MSIZE(bl) | + DMA_CTL_DST_MSIZE(bl) | + DMA_CTL_SINC_NOCHANGE | + DMA_CTL_SRC_TRWID(2) | + DMA_CTL_DST_TRWID(2) | + DMA_CTL_INT_EN | + DMA_CTL_LLP_SRCEN | + DMA_CTL_LLP_DSTEN); + } + } else { /* DMA_TO_DEVICE */ + lli[idx].sar = cpu_to_le32(addr); + lli[idx].dar = cpu_to_le32((u32)dmadr_addr); + if (hsdevp->hsdev->dma_channel == 0) {/* DMA channel 0 */ + lli[idx].ctl.low = cpu_to_le32( + DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER) | + DMA_CTL_SMS(0) | + DMA_CTL_DMS(1) | + DMA_CTL_SRC_MSIZE(bl) | + DMA_CTL_DST_MSIZE(bl) | + DMA_CTL_DINC_NOCHANGE | + DMA_CTL_SRC_TRWID(2) | + DMA_CTL_DST_TRWID(2) | + DMA_CTL_INT_EN | + DMA_CTL_LLP_SRCEN | + DMA_CTL_LLP_DSTEN); + } else if (hsdevp->hsdev->dma_channel == 1) {/* DMA channel 1 */ + lli[idx].ctl.low = cpu_to_le32( + DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER) | + DMA_CTL_SMS(0) | + DMA_CTL_DMS(2) | + DMA_CTL_SRC_MSIZE(bl) | + DMA_CTL_DST_MSIZE(bl) | + DMA_CTL_DINC_NOCHANGE | + DMA_CTL_SRC_TRWID(2) | + DMA_CTL_DST_TRWID(2) | + DMA_CTL_INT_EN | + DMA_CTL_LLP_SRCEN | + DMA_CTL_LLP_DSTEN); + } + } +#else + if (dir == DMA_FROM_DEVICE) { + lli[idx].dar = cpu_to_le32(addr); + lli[idx].sar = cpu_to_le32((u32)dmadr_addr); + + lli[idx].ctl.low = cpu_to_le32( + DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC) | + DMA_CTL_SMS(0) | + DMA_CTL_DMS(1) | + DMA_CTL_SRC_MSIZE(bl) | + DMA_CTL_DST_MSIZE(bl) | + DMA_CTL_SINC_NOCHANGE | + DMA_CTL_SRC_TRWID(2) | + DMA_CTL_DST_TRWID(2) | + DMA_CTL_INT_EN | + DMA_CTL_LLP_SRCEN | + DMA_CTL_LLP_DSTEN); + } else { /* DMA_TO_DEVICE */ + lli[idx].sar = cpu_to_le32(addr); + lli[idx].dar = cpu_to_le32((u32)dmadr_addr); + + lli[idx].ctl.low = cpu_to_le32( + DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER) | + DMA_CTL_SMS(1) | + DMA_CTL_DMS(0) | + DMA_CTL_SRC_MSIZE(bl) | + DMA_CTL_DST_MSIZE(bl) | + DMA_CTL_DINC_NOCHANGE | + DMA_CTL_SRC_TRWID(2) | + DMA_CTL_DST_TRWID(2) | + DMA_CTL_INT_EN | + DMA_CTL_LLP_SRCEN | + DMA_CTL_LLP_DSTEN); + } +#endif + dwc_port_vdbg(qc->ap, "%s setting ctl.high len: 0x%08x val: " + "0x%08x\n", __func__, len, + DMA_CTL_BLK_TS(len / 4)); + + /* Program the LLI CTL high register */ + dma_ts = DMA_CTL_BLK_TS(len / 4); + lli[idx].ctl.high = cpu_to_le32(dma_ts); + + /* + *Program the next pointer. The next pointer must be + * the physical address, not the virtual address. + */ + next_llp = (dma_lli + ((idx + 1) * sizeof(struct lli))); + + /* The last 2 bits encode the list master select. */ +#if defined(CONFIG_APM82181) + next_llp = DMA_LLP_LMS(next_llp, DMA_LLP_AHBMASTER1); +#else + next_llp = DMA_LLP_LMS(next_llp, DMA_LLP_AHBMASTER2); +#endif + + lli[idx].llp = cpu_to_le32(next_llp); + + dwc_port_vdbg(qc->ap, "%s: index %d\n", __func__, idx); + dwc_port_vdbg(qc->ap, "%s setting ctl.high with val: 0x%08x\n", __func__, lli[idx].ctl.high); + dwc_port_vdbg(qc->ap, "%s setting ctl.low with val: 0x%08x\n", __func__, lli[idx].ctl.low); + dwc_port_vdbg(qc->ap, "%s setting lli.dar with val: 0x%08x\n", __func__, lli[idx].dar); + dwc_port_vdbg(qc->ap, "%s setting lli.sar with val: 0x%08x\n", __func__, lli[idx].sar); + dwc_port_vdbg(qc->ap, "%s setting next_llp with val: 0x%08x\n", __func__, lli[idx].llp); + + idx++; + sg_len -= len; + addr += len; + } + } + + /* + * The last next ptr has to be zero and the last control low register + * has to have LLP_SRC_EN and LLP_DST_EN (linked list pointer source + * and destination enable) set back to 0 (disabled.) This is what tells + * the core that this is the last item in the linked list. + */ + if (likely(idx)) { + lli[idx-1].llp = 0x00000000; + lli[idx-1].ctl.low &= DMA_CTL_LLP_DISABLE_LE32; + + /* Flush cache to memory */ + dma_cache_sync(NULL, lli, (sizeof(struct lli) * idx), + DMA_BIDIRECTIONAL); + } + + dwc_port_vdbg(qc->ap, "%s: Final index %d\n", __func__, idx-1); + dwc_port_vdbg(qc->ap, "%s setting ctl.high with val: 0x%08x\n", __func__, lli[idx-1].ctl.high); + dwc_port_vdbg(qc->ap, "%s setting ctl.low with val: 0x%08x\n", __func__, lli[idx-1].ctl.low); + dwc_port_vdbg(qc->ap, "%s setting lli.dar with val: 0x%08x\n", __func__, lli[idx-1].dar); + dwc_port_vdbg(qc->ap, "%s setting lli.sar with val: 0x%08x\n", __func__, lli[idx-1].sar); + dwc_port_vdbg(qc->ap, "%s setting next_llp with val: 0x%08x\n", __func__, lli[idx-1].llp); + + return idx; +} + +/* + * Function: dma_dwc_xfer_start + * arguments: Channel number + * Return : None + * Enables the DMA channel + */ +static void dma_dwc_xfer_start(int dma_ch) +{ + /* Enable the DMA channel */ + out_le32(&(sata_dma_regs->dma_chan_en.low), + in_le32(&(sata_dma_regs->dma_chan_en.low)) | + DMA_ENABLE_CHAN(dma_ch)); + +#if defined(CONFIG_SATA_DWC_VDEBUG) + printk("DMA CFG = 0x%08x\n", in_le32(&(sata_dma_regs->dma_cfg.low))); + printk("%s: setting sata_dma_regs->dma_chan_en.low with val: 0x%08x\n", + __func__, in_le32(&(sata_dma_regs->dma_chan_en.low))); +#endif + + +#if defined(CONFIG_APM82181) + signal_hdd_led(1 /*blink=yes*/, 2 /* _3G_LED_GREEN */); +#endif + +} + +/* + * Check if the selected DMA channel is currently enabled. + */ +static int dma_dwc_channel_enabled(int ch) +{ + u32 dma_chan; + + // Read the DMA channel register + dma_chan = in_le32(&(sata_dma_regs->dma_chan_en.low)); + if (dma_chan & DMA_CHANNEL(ch)) + return 1; + + return 0; +} + +/* + * Terminate the current DMA transaction + */ +static void dma_dwc_terminate_dma(struct ata_port *ap, int dma_ch) +{ + int enabled = dma_dwc_channel_enabled(dma_ch); + + dev_info(ap->dev, "%s terminate DMA on channel=%d enabled=%d\n", + __func__, dma_ch, enabled); + + if (enabled) { + // Disable the selected channel + out_le32(&(sata_dma_regs->dma_chan_en.low), + in_le32(&(sata_dma_regs->dma_chan_en.low)) | DMA_DISABLE_CHAN(dma_ch)); + + // Wait for the channel is disabled + do { + enabled = dma_dwc_channel_enabled(dma_ch); + msleep(10); + } while (enabled); + } +} + + +/* + * Setup data and DMA configuration ready for DMA transfer + */ +static int dma_dwc_xfer_setup(struct ata_queued_cmd *qc, + struct lli *lli, dma_addr_t dma_lli, + void __iomem *addr) +{ + int dma_ch; + int num_lli; + + /* Acquire DMA channel */ + dma_ch = dma_request_channel(qc->ap); + if (unlikely(dma_ch == -1)) { + dev_err(qc->ap->dev, "%s: dma channel unavailable\n", __func__); + return -EAGAIN; + } + dwc_port_vdbg(qc->ap, "%s: Got channel %d\n", __func__, dma_ch); + + /* Convert SG list to linked list of items (LLIs) for AHB DMA */ + num_lli = map_sg_to_lli(qc, lli, dma_lli, addr); + + dwc_port_vdbg(qc->ap, "%s sg: 0x%p, count: %d lli: %p dma_lli: 0x%0xlx addr:" + " %p lli count: %d\n", __func__, qc->sg, qc->n_elem, lli, + (u32)dma_lli, addr, num_lli); + + /* Clear channel interrupts */ + clear_chan_interrupts(dma_ch); + + /* Program the CFG register. */ +#if defined(CONFIG_APM82181) + if (dma_ch == 0) { + /* Buffer mode enabled, FIFO_MODE=0 */ + out_le32(&(sata_dma_regs->chan_regs[dma_ch].cfg.high), 0x000000d); + /* Channel 0 bit[7:5] */ + out_le32(&(sata_dma_regs->chan_regs[dma_ch].cfg.low), 0x00000020); + } else if (dma_ch == 1) { + /* Buffer mode enabled, FIFO_MODE=0 */ + out_le32(&(sata_dma_regs->chan_regs[dma_ch].cfg.high), 0x0000088d); + /* Channel 1 bit[7:5] */ + out_le32(&(sata_dma_regs->chan_regs[dma_ch].cfg.low), 0x00000020); + } +#else + out_le32(&(sata_dma_regs->chan_regs[dma_ch].cfg.high), + DMA_CFG_PROTCTL | DMA_CFG_FCMOD_REQ); + out_le32(&(sata_dma_regs->chan_regs[dma_ch].cfg.low), 0); +#endif + + /* Program the address of the linked list */ +#if defined(CONFIG_APM82181) + out_le32(&(sata_dma_regs->chan_regs[dma_ch].llp.low), + DMA_LLP_LMS(dma_lli, DMA_LLP_AHBMASTER1)); +#else + out_le32(&(sata_dma_regs->chan_regs[dma_ch].llp.low), + DMA_LLP_LMS(dma_lli, DMA_LLP_AHBMASTER2)); +#endif + + /* Program the CTL register with src enable / dst enable */ + //out_le32(&(sata_dma_regs->chan_regs[dma_ch].ctl.low), + // DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN); + out_le32(&(sata_dma_regs->chan_regs[dma_ch].ctl.low), 0x18000000); + + dwc_port_vdbg(qc->ap, "%s DMA channel %d is ready\n", __func__, dma_ch); + dwc_port_vdbg(qc->ap, "%s setting cfg.high of channel %d with val: 0x%08x\n", __func__, dma_ch, in_le32(&(sata_dma_regs->chan_regs[dma_ch].cfg.high))); + dwc_port_vdbg(qc->ap, "%s setting cfg.low of channel %d with val: 0x%08x\n", __func__, dma_ch, in_le32(&(sata_dma_regs->chan_regs[dma_ch].cfg.low))); + dwc_port_vdbg(qc->ap, "%s setting llp.low of channel %d with val: 0x%08x\n", __func__, dma_ch, in_le32(&(sata_dma_regs->chan_regs[dma_ch].llp.low))); + dwc_port_vdbg(qc->ap, "%s setting ctl.low of channel %d with val: 0x%08x\n", __func__, dma_ch, in_le32(&(sata_dma_regs->chan_regs[dma_ch].ctl.low))); + + return dma_ch; +} + +/* + * Function: dma_dwc_exit + * arguments: None + * returns status + * This function exits the SATA DMA driver + */ +static void dma_dwc_exit(struct sata_dwc_device *hsdev) +{ + dwc_dev_vdbg(hsdev->dev, "%s:\n", __func__); + if (sata_dma_regs) + iounmap(sata_dma_regs); + + if (hsdev->irq_dma) + free_irq(hsdev->irq_dma, hsdev); +} + +/* + * Function: dma_dwc_init + * arguments: hsdev + * returns status + * This function initializes the SATA DMA driver + */ +static int dma_dwc_init(struct sata_dwc_device *hsdev) +{ + int err; + int irq = hsdev->irq_dma; + + err = dma_request_interrupts(hsdev, irq); + if (err) { + dev_err(hsdev->dev, "%s: dma_request_interrupts returns %d\n", + __func__, err); + goto error_out; + } + + /* Enabe DMA */ + out_le32(&(sata_dma_regs->dma_cfg.low), DMA_EN); + + dev_notice(hsdev->dev, "DMA initialized\n"); + dev_notice(hsdev->dev, "DMA CFG = 0x%08x\n", in_le32(&(sata_dma_regs->dma_cfg.low))); + dwc_dev_vdbg(hsdev->dev, "SATA DMA registers=0x%p\n", sata_dma_regs); + + return 0; + +error_out: + dma_dwc_exit(hsdev); + + return err; +} + + +static void sata_dwc_dev_config(struct ata_device *adev) +{ + /* + * Does not support NCQ over a port multiplier + * (no FIS-based switching). + */ + if (adev->flags & ATA_DFLAG_NCQ) { + /* + * TODO: debug why enabling NCQ makes the linux crashed + * in hot plug after the first hot unplug action. + * --> need to investigate more + */ + adev->flags &= ~ATA_DFLAG_NCQ; + if (sata_pmp_attached(adev->link->ap)) { + adev->flags &= ~ATA_DFLAG_NCQ; + ata_dev_printk(adev, KERN_INFO, + "NCQ disabled for command-based switching\n"); + } + } + + /* + * Since the sata_pmp_error_handler function in libata-pmp + * make FLAG_AN disabled in the first time SATA port is configured. + * Asynchronous notification is not configured. + * This will enable the AN feature manually. + */ + adev->flags |= ATA_DFLAG_AN; +} + + +static int sata_dwc_scr_read(struct ata_link *link, unsigned int scr, u32 *val) +{ + if (unlikely(scr > SCR_NOTIFICATION)) { + dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n", + __func__, scr); + return -EINVAL; + } + + *val = in_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4)); + dwc_dev_vdbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n", + __func__, link->ap->print_id, scr, *val); + + return 0; +} + +static int sata_dwc_scr_write(struct ata_link *link, unsigned int scr, u32 val) +{ + dwc_dev_vdbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n", + __func__, link->ap->print_id, scr, val); + if (unlikely(scr > SCR_NOTIFICATION)) { + dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n", + __func__, scr); + return -EINVAL; + } + out_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4), val); + + return 0; +} + +static inline u32 sata_dwc_core_scr_read ( struct ata_port *ap, unsigned int scr) +{ + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + return in_le32((void __iomem *)hsdev->scr_base + (scr * 4)); +} + + +static inline void sata_dwc_core_scr_write ( struct ata_port *ap, unsigned int scr, u32 val) +{ + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + out_le32((void __iomem *)hsdev->scr_base + (scr * 4), val); +} + +static inline void clear_serror(struct ata_port *ap) +{ + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + out_le32( (void __iomem *)hsdev->scr_base + 4, + in_le32((void __iomem *)hsdev->scr_base + 4)); +} + +static inline void clear_intpr(struct sata_dwc_device *hsdev) +{ + out_le32(&hsdev->sata_dwc_regs->intpr, + in_le32(&hsdev->sata_dwc_regs->intpr)); +} + +static inline void clear_interrupt_bit(struct sata_dwc_device *hsdev, u32 bit) +{ + out_le32(&hsdev->sata_dwc_regs->intpr, bit); + // in_le32(&hsdev->sata_dwc_regs->intpr)); +} + + +static inline void enable_err_irq(struct sata_dwc_device *hsdev) +{ + out_le32(&hsdev->sata_dwc_regs->intmr, + in_le32(&hsdev->sata_dwc_regs->intmr) | SATA_DWC_INTMR_ERRM); + out_le32(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERR_ERR_BITS); +} + +static inline u32 qcmd_tag_to_mask(u8 tag) +{ + return 0x00000001 << (tag & 0x1f); +} + + +/* + * Timer to monitor SCR_NOTIFICATION registers on the + * SATA port + */ +static void sata_dwc_an_chk(unsigned long arg) +{ + struct ata_port *ap = (void *)arg; + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + unsigned long flags; + int rc = 0x0; + u32 sntf = 0x0; + + spin_lock_irqsave(ap->lock, flags); + rc = sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf); + + // If some changes on the SCR4, call asynchronous notification + if ( (rc == 0) & (sntf != 0)) { + dwc_port_dbg(ap, "Call assynchronous notification sntf=0x%08x\n", sntf); + sata_async_notification(ap); + hsdev->an_timer.expires = jiffies + msecs_to_jiffies(8000); + } else { + hsdev->an_timer.expires = jiffies + msecs_to_jiffies(3000); + } + add_timer(&hsdev->an_timer); + spin_unlock_irqrestore(ap->lock, flags); +} + + +/* + * sata_dwc_pmp_select - Set the PMP field in SControl to the specified port number. + * + * @port: The value (port number) to set the PMP field to. + * + * @return: The old value of the PMP field. + */ +static u32 sata_dwc_pmp_select(struct ata_port *ap, u32 port) +{ + u32 scontrol, old_port; + if (sata_pmp_supported(ap)) { + scontrol = sata_dwc_core_scr_read(ap, SCR_CONTROL); + old_port = SCONTROL_TO_PMP(scontrol); + + // Select new PMP port + if ( port != old_port ) { + scontrol &= ~SCONTROL_PMP_MASK; + sata_dwc_core_scr_write(ap, SCR_CONTROL, scontrol | PMP_TO_SCONTROL(port)); + dwc_port_dbg(ap, "%s: old port=%d new port=%d\n", __func__, old_port, port); + } + return old_port; + } + else + return port; +} + +/* + * Get the current PMP port + */ +static inline u32 current_pmp(struct ata_port *ap) +{ + return SCONTROL_TO_PMP(sata_dwc_core_scr_read(ap, SCR_CONTROL)); +} + + +/* + * Process when a PMP card is attached in the SATA port. + * Since our SATA port support command base switching only, + * NCQ will not be available. + * We disable the NCQ feature in SATA port. + */ +static void sata_dwc_pmp_attach ( struct ata_port *ap) +{ + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + + dev_info(ap->dev, "Attach SATA port multiplier with %d ports\n", ap->nr_pmp_links); + // Disable NCQ + ap->flags &= ~ATA_FLAG_NCQ; + + // Initialize timer for checking AN + init_timer(&hsdev->an_timer); + hsdev->an_timer.expires = jiffies + msecs_to_jiffies(20000); + hsdev->an_timer.function = sata_dwc_an_chk; + hsdev->an_timer.data = (unsigned long)(ap); + add_timer(&hsdev->an_timer); +} + +/* + * Process when PMP card is removed from the SATA port. + * Re-enable NCQ for using by the SATA drive in the future + */ +static void sata_dwc_pmp_detach ( struct ata_port *ap) +{ + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + + dev_info(ap->dev, "Detach SATA port\n"); + // Re-enable NCQ + // TODO: remove the below comment out when NCQ problem fixed + //ap->flags |= ATA_FLAG_NCQ; + + sata_dwc_pmp_select(ap, 0); + + // Delete timer since PMP card is detached + del_timer(&hsdev->an_timer); +} + + + +// Check the link to be ready +int sata_dwc_check_ready ( struct ata_link *link ) { + u8 status; + struct ata_port *ap = link->ap; + status = ioread8(ap->ioaddr.status_addr); + return ata_check_ready(status); +} + + +/* + * Do soft reset on the current SATA link. + */ +static int sata_dwc_softreset(struct ata_link *link, unsigned int *classes, + unsigned long deadline) +{ + int rc; + struct ata_port *ap = link->ap; + struct ata_ioports *ioaddr = &ap->ioaddr; + struct ata_taskfile tf; + + sata_dwc_pmp_select(link->ap, sata_srst_pmp(link)); + + /* Issue bus reset */ + iowrite8(ap->ctl, ioaddr->ctl_addr); + udelay(20); /* FIXME: flush */ + iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); + udelay(20); /* FIXME: flush */ + iowrite8(ap->ctl, ioaddr->ctl_addr); + ap->last_ctl = ap->ctl; + + /* Always check readiness of the master device */ + rc = ata_wait_after_reset(link, deadline, sata_dwc_check_ready); + + // Classify the ata_port + *classes = ATA_DEV_NONE; + /* Verify if SStatus indicates device presence */ + if (ata_link_online(link)) { + memset(&tf, 0, sizeof(tf)); + ata_sff_tf_read(ap, &tf); + *classes = ata_dev_classify(&tf); + } + + if ( *classes == ATA_DEV_PMP) + dwc_link_dbg(link, "-->found PMP device by sig\n"); + + clear_serror(link->ap); + + return rc; +} + + + + +/* + * sata_dwc_hardreset - Do hardreset the SATA controller + */ +static int sata_dwc_hardreset(struct ata_link *link, unsigned int *classes, + unsigned long deadline) +{ + int rc; + const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); + bool online; + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(link->ap); + + dwc_link_dbg(link, "%s\n", __func__); + sata_dwc_pmp_select(link->ap, sata_srst_pmp(link)); + dwc_port_vdbg(link->ap, "dmacr=0x%08x\n",in_le32(&(hsdev->sata_dwc_regs->dmacr))); + + // Call standard hard reset + rc = sata_link_hardreset(link, timing, deadline, &online, NULL); + + // Reconfigure the port after hard reset + if ( ata_link_online(link) ) + sata_dwc_init_port(link->ap); + + return online ? -EAGAIN : rc; +} + +/* + * Do hard reset on each PMP link + */ +static int sata_dwc_pmp_hardreset(struct ata_link *link, unsigned int *classes, + unsigned long deadline) +{ + int rc = 0; + sata_dwc_pmp_select(link->ap, sata_srst_pmp(link)); + rc = sata_std_hardreset(link, classes, deadline); + return rc; +} + +/* See ahci.c */ +/* + * Process error when the SATAn_INTPR's ERR bit is set + * The processing is based on SCR_ERROR register content + */ +static void sata_dwc_error_intr(struct ata_port *ap, + struct sata_dwc_device *hsdev, uint intpr) +{ + struct ata_eh_info *ehi; + struct ata_link *link; + struct ata_queued_cmd *active_qc = NULL; + u32 serror; + bool freeze = false, abort = false; + int pmp, ret; + unsigned int err_mask = 0, action = 0; +#if defined(CONFIG_SATA_DWC_VDEBUG) + int dma_chan = hsdev->dma_channel; +#endif + + link = &ap->link; + ehi = &link->eh_info; + + /* Record irq stat */ + ata_ehi_clear_desc(ehi); + ata_ehi_push_desc(ehi, "irq_stat 0x%08x", intpr); + + // Record SERROR + serror = sata_dwc_core_scr_read(ap, SCR_ERROR); + dwc_port_dbg(ap, "%s serror = 0x%08x\n", __func__, serror); + + // Clear SERROR and interrupt bit + clear_serror(ap); + clear_intpr(hsdev); + + // Print out for test only + if ( serror ) { + dwc_port_info(ap, "Detect errors:"); + if ( serror & SATA_DWC_SERR_ERRI ) + printk(" ERRI"); + if ( serror & SATA_DWC_SERR_ERRM ) + printk(" ERRM"); + if ( serror & SATA_DWC_SERR_ERRT ) + printk(" ERRT"); + if ( serror & SATA_DWC_SERR_ERRC ) + printk(" ERRC"); + if ( serror & SATA_DWC_SERR_ERRP ) + printk(" ERRP"); + if ( serror & SATA_DWC_SERR_ERRE ) + printk(" ERRE"); + if ( serror & SATA_DWC_SERR_DIAGN ) + printk(" DIAGN"); + if ( serror & SATA_DWC_SERR_DIAGI ) + printk(" DIAGI"); + if ( serror & SATA_DWC_SERR_DIAGW ) + printk(" DIAGW"); + if ( serror & SATA_DWC_SERR_DIAGB ) + printk(" DIAGB"); + if ( serror & SATA_DWC_SERR_DIAGT ) + printk(" DIAGT"); + if ( serror & SATA_DWC_SERR_DIAGC ) + printk(" DIAGC"); + if ( serror & SATA_DWC_SERR_DIAGH ) + printk(" DIAGH"); + if ( serror & SATA_DWC_SERR_DIAGL ) + printk(" DIAGL"); + if ( serror & SATA_DWC_SERR_DIAGS ) + printk(" DIAGS"); + if ( serror & SATA_DWC_SERR_DIAGF ) + printk(" DIAGF"); + if ( serror & SATA_DWC_SERR_DIAGX ) + printk(" DIAGX"); + if ( serror & SATA_DWC_SERR_DIAGA ) + printk(" DIAGA"); + printk("\n"); + } + +#if defined(CONFIG_SATA_DWC_VDEBUG) + printk("%s reading cfg.high of channel %d with val: 0x%08x\n", __func__, dma_chan, in_le32(&(sata_dma_regs->chan_regs[dma_chan].cfg.high))); + printk("%s reading cfg.low of channel %d with val: 0x%08x\n", __func__, dma_chan, in_le32(&(sata_dma_regs->chan_regs[dma_chan].cfg.low))); + printk("%s reading llp.low of channel %d with val: 0x%08x\n", __func__, dma_chan, in_le32(&(sata_dma_regs->chan_regs[dma_chan].llp.low))); + printk("%s reading ctl.low of channel %d with val: 0x%08x\n", __func__, dma_chan, in_le32(&(sata_dma_regs->chan_regs[dma_chan].ctl.low))); + printk("%s reading sar.low of channel %d with val: 0x%08x\n", __func__, dma_chan, in_le32(&(sata_dma_regs->chan_regs[dma_chan].sar.low))); + printk("%s reading sar.high of channel %d with val: 0x%08x\n", __func__, dma_chan, in_le32(&(sata_dma_regs->chan_regs[dma_chan].sar.high))); + printk("%s reading dar.low of channel %d with val: 0x%08x\n", __func__, dma_chan, in_le32(&(sata_dma_regs->chan_regs[dma_chan].dar.low))); + printk("%s reading dar.high of channel %d with val: 0x%08x\n", __func__, dma_chan, in_le32(&(sata_dma_regs->chan_regs[dma_chan].dar.high))); +#endif + + // Process hotplug for SATA port + if ( serror & (SATA_DWC_SERR_DIAGX | SATA_DWC_SERR_DIAGW)) { + dwc_port_info(ap, "Detect hot plug signal\n"); + ata_ehi_hotplugged(ehi); + ata_ehi_push_desc(ehi, serror & SATA_DWC_SERR_DIAGN ? "PHY RDY changed" : "device exchanged"); + freeze = true; + } + + // Process PHY internal error / Link sequence (illegal transition) error + if ( serror & (SATA_DWC_SERR_DIAGI | SATA_DWC_SERR_DIAGL)) { + ehi->err_mask |= AC_ERR_HSM; + ehi->action |= ATA_EH_RESET; + freeze = true; + } + + // Process Internal host adapter error + if ( serror & SATA_DWC_SERR_ERRE ) { + dev_err(ap->dev, "Detect Internal host adapter error\n"); + // --> need to review + ehi->err_mask |= AC_ERR_HOST_BUS; + ehi->action |= ATA_EH_RESET; + freeze = true; + } + + // Process Protocol Error + if ( serror & SATA_DWC_SERR_ERRP ) { + dev_err(ap->dev, "Detect Protocol error\n"); + ehi->err_mask |= AC_ERR_HSM; + ehi->action |= ATA_EH_RESET; + freeze = true; + } + + // Process non-recovered persistent communication error + if ( serror & SATA_DWC_SERR_ERRC ) { + dev_err(ap->dev, "Detect non-recovered persistent communication error\n"); + // --> TODO: review processing error + ehi->err_mask |= AC_ERR_ATA_BUS; + ehi->action |= ATA_EH_SOFTRESET; + //ehi->flags |= ATA_EHI_NO_AUTOPSY; + //freeze = true; + } + + // Non-recovered transient data integrity error + if ( serror & SATA_DWC_SERR_ERRT ) { + dev_err(ap->dev, "Detect non-recovered transient data integrity error\n"); + ehi->err_mask |= AC_ERR_ATA_BUS; + //ehi->err_mask |= AC_ERR_DEV; + ehi->action |= ATA_EH_SOFTRESET; + //ehi->flags |= ATA_EHI_NO_AUTOPSY; + } + + // Since below errors have been recovered by hardware + // they don't need any error processing. + if ( serror & SATA_DWC_SERR_ERRM ) { + dev_warn(ap->dev, "Detect recovered communication error"); + } + if ( serror & SATA_DWC_SERR_ERRI ) { + dev_warn(ap->dev, "Detect recovered data integrity error"); + } + + // If any error occur, process the qc + if (serror & (SATA_DWC_SERR_ERRT | SATA_DWC_SERR_ERRC)) { + //if (serror & 0x03f60f0) { + abort = true; + /* find out the offending link and qc */ + if (sata_pmp_attached(ap)) { + pmp = current_pmp(ap); + // If we are working on the PMP port + if ( pmp < ap->nr_pmp_links ) { + link = &ap->pmp_link[pmp]; + ehi = &link->eh_info; + active_qc = ata_qc_from_tag(ap, link->active_tag); + err_mask |= AC_ERR_DEV; + ata_ehi_clear_desc(ehi); + ata_ehi_push_desc(ehi, "irq_stat 0x%08x", irq_stat); + } else { + err_mask |= AC_ERR_HSM; + action |= ATA_EH_RESET; + freeze = true; + } + + } + // Work on SATA port + else { + freeze = true; + active_qc = ata_qc_from_tag(ap, link->active_tag); + } + + if ( active_qc) { + active_qc->err_mask |= err_mask; + } else { + ehi->err_mask = err_mask; + } + } + + if ( freeze | abort ) { + //sata_dwc_qc_complete(ap, active_qc, 1); + // Terminate DMA channel if it is currenly in use + if ( dma_request_channel(ap) != -1 ) { + dwc_port_dbg(ap, "Terminate DMA channel %d for handling error\n", hsdev->dma_channel); + dma_dwc_terminate_dma(ap, hsdev->dma_channel); + } + } + + if (freeze) { + ret = ata_port_freeze(ap); + ata_port_printk(ap, KERN_INFO, "Freeze port with %d QCs aborted\n", ret); + } + else if (abort) { + if (active_qc) { + ret = ata_link_abort(active_qc->dev->link); + ata_link_printk(link, KERN_INFO, "Abort %d QCs\n", ret); + } else { + ret = ata_port_abort(ap); + ata_port_printk(ap, KERN_INFO, "Abort %d QCs on the SATA port\n", ret); + } + } +} + + +/* + * Function : sata_dwc_isr + * arguments : irq, void *dev_instance, struct pt_regs *regs + * Return value : irqreturn_t - status of IRQ + * This Interrupt handler called via port ops registered function. + * .irq_handler = sata_dwc_isr + */ +static irqreturn_t sata_dwc_isr(int irq, void *dev_instance) +{ + struct ata_host *host = (struct ata_host *)dev_instance; + struct sata_dwc_device *hsdev = HSDEV_FROM_HOST(host); + struct ata_port *ap; + struct ata_queued_cmd *qc; + unsigned long flags; + u8 status, tag; + int handled, num_processed, port = 0; + u32 intpr, sactive, sactive2, tag_mask; + struct sata_dwc_device_port *hsdevp; + + spin_lock_irqsave(&host->lock, flags); + + /* Read the interrupt register */ + intpr = in_le32(&hsdev->sata_dwc_regs->intpr); + + ap = host->ports[port]; + hsdevp = HSDEVP_FROM_AP(ap); + + dwc_port_dbg(ap,"%s\n",__func__); + if ( intpr != 0x80000080) + dwc_port_dbg(ap, "%s intpr=0x%08x active_tag=%d\n", __func__, intpr, ap->link.active_tag); + //dwc_port_dbg(ap, "%s: INTMR=0x%08x, ERRMR=0x%08x\n", __func__, in_le32(&hsdev->sata_dwc_regs->intmr), in_le32(&hsdev->sata_dwc_regs->errmr)); + + /* Check for error interrupt */ + if (intpr & SATA_DWC_INTPR_ERR) { + sata_dwc_error_intr(ap, hsdev, intpr); + handled = 1; + signal_hdd_led(0 /*off blink*/, 1 /*red color*/); + goto done_irqrestore; + } + + /* Check for DMA SETUP FIS (FP DMA) interrupt */ + if (intpr & SATA_DWC_INTPR_NEWFP) { + dwc_port_dbg(ap, "%s: NEWFP INTERRUPT in HSDEV with DMA channel %d\n", __func__, hsdev->dma_channel); + clear_interrupt_bit(hsdev, SATA_DWC_INTPR_NEWFP); + + tag = (u8)(in_le32(&hsdev->sata_dwc_regs->fptagr)); + dwc_dev_dbg(ap->dev, "%s: NEWFP tag=%d\n", __func__, tag); + if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_PENDING) + dev_warn(ap->dev, "CMD tag=%d not pending?\n", tag); + + hsdevp->sata_dwc_sactive_issued |= qcmd_tag_to_mask(tag); + + qc = ata_qc_from_tag(ap, tag); + /* + * Start FP DMA for NCQ command. At this point the tag is the + * active tag. It is the tag that matches the command about to + * be completed. + */ + qc->ap->link.active_tag = tag; + sata_dwc_bmdma_start_by_tag(qc, tag); + qc->ap->hsm_task_state = HSM_ST_LAST; + + handled = 1; + goto done_irqrestore; + } + + sactive = sata_dwc_core_scr_read(ap, SCR_ACTIVE); + tag_mask = (hsdevp->sata_dwc_sactive_issued | sactive) ^ sactive; + + /* If no sactive issued and tag_mask is zero then this is not NCQ */ + if (hsdevp->sata_dwc_sactive_issued == 0 && tag_mask == 0) { + if (ap->link.active_tag == ATA_TAG_POISON) + tag = 0; + else + tag = ap->link.active_tag; + qc = ata_qc_from_tag(ap, tag); + + /* DEV interrupt w/ no active qc? */ + if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) { + dev_err(ap->dev, "%s intr with no active qc qc=%p\n", + __func__, qc); + ap->ops->sff_check_status(ap); + handled = 1; + goto done_irqrestore; + } + + status = ap->ops->sff_check_status(ap); + + qc->ap->link.active_tag = tag; + hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT; + + if (status & ATA_ERR) { + dwc_dev_dbg(ap->dev, "interrupt ATA_ERR (0x%x)\n", status); + sata_dwc_qc_complete(ap, qc, 1); + handled = 1; + goto done_irqrestore; + } + + dwc_dev_dbg(ap->dev, "%s non-NCQ cmd interrupt, protocol: %s\n", + __func__, prot_2_txt(qc->tf.protocol)); +drv_still_busy: + if (ata_is_dma(qc->tf.protocol)) { + int dma_flag = hsdevp->dma_pending[tag]; + /* + * Each DMA transaction produces 2 interrupts. The DMAC + * transfer complete interrupt and the SATA controller + * operation done interrupt. The command should be + * completed only after both interrupts are seen. + */ + hsdevp->dma_interrupt_count++; + if (unlikely(dma_flag == SATA_DWC_DMA_PENDING_NONE)) { + dev_err(ap->dev, "%s: DMA not pending " + "intpr=0x%08x status=0x%08x pend=%d\n", + __func__, intpr, status, dma_flag); + } + + if ((hsdevp->dma_interrupt_count % 2) == 0) + sata_dwc_dma_xfer_complete(ap, 1); + } else if (ata_is_pio(qc->tf.protocol)) { + ata_sff_hsm_move(ap, qc, status, 0); + handled = 1; + goto done_irqrestore; + } else { + if (unlikely(sata_dwc_qc_complete(ap, qc, 1))) + goto drv_still_busy; + } + + handled = 1; + goto done_irqrestore; + } + + /* + * This is a NCQ command. At this point we need to figure out for which + * tags we have gotten a completion interrupt. One interrupt may serve + * as completion for more than one operation when commands are queued + * (NCQ). We need to process each completed command. + */ + +process_cmd: /* process completed commands */ + sactive = sata_dwc_core_scr_read(ap, SCR_ACTIVE); + tag_mask = (hsdevp->sata_dwc_sactive_issued | sactive) ^ sactive; + + if (sactive != 0 || hsdevp->sata_dwc_sactive_issued > 1 || tag_mask > 1) { + dwc_dev_dbg(ap->dev, "%s NCQ: sactive=0x%08x sactive_issued=0x%08x" + " tag_mask=0x%08x\n", __func__, sactive, + hsdevp->sata_dwc_sactive_issued, tag_mask); + } + + if (unlikely((tag_mask | hsdevp->sata_dwc_sactive_issued) != hsdevp->sata_dwc_sactive_issued)) { + dev_warn(ap->dev, "Bad tag mask? sactive=0x%08x " + "sata_dwc_sactive_issued=0x%08x tag_mask=0x%08x\n", + sactive, hsdevp->sata_dwc_sactive_issued, tag_mask); + } + + /* read just to clear ... not bad if currently still busy */ + status = ap->ops->sff_check_status(ap); + dwc_dev_dbg(ap->dev, "%s ATA status register=0x%x, tag_mask=0x%x\n", __func__, status, tag_mask); + + tag = 0; + num_processed = 0; + while (tag_mask) { + num_processed++; + while (!(tag_mask & 0x00000001)) { + tag++; + tag_mask <<= 1; + } + tag_mask &= (~0x00000001); + qc = ata_qc_from_tag(ap, tag); + + /* To be picked up by completion functions */ + qc->ap->link.active_tag = tag; + hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT; + + /* Let libata/scsi layers handle error */ + if (unlikely(status & ATA_ERR)) { + dwc_dev_vdbg(ap->dev, "%s ATA_ERR (0x%x)\n", + __func__, status); + + sata_dwc_qc_complete(ap, qc, 1); + handled = 1; + goto done_irqrestore; + } + + /* Process completed command */ + dwc_dev_dbg(ap->dev, "%s NCQ command, protocol: %s\n", __func__, + prot_2_txt(qc->tf.protocol)); + if (ata_is_dma(qc->tf.protocol)) { + hsdevp->dma_interrupt_count++; + if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) + dev_warn(ap->dev, + "%s: DMA not pending?\n", __func__); + if ((hsdevp->dma_interrupt_count % 2) == 0) + sata_dwc_dma_xfer_complete(ap, 1); + } else { + if (unlikely(sata_dwc_qc_complete(ap, qc, 1))) + goto still_busy; + } + continue; + +still_busy: + ap->stats.idle_irq++; + dev_warn(ap->dev, "STILL BUSY IRQ ata%d: irq trap\n", + ap->print_id); + } /* while tag_mask */ + + /* + * Check to see if any commands completed while we were processing our + * initial set of completed commands (reading of status clears + * interrupts, so we might miss a completed command interrupt if one + * came in while we were processing: + * we read status as part of processing a completed command). + */ + sactive2 = sata_dwc_core_scr_read(ap, SCR_ACTIVE); + if (sactive2 != sactive) { + dwc_dev_dbg(ap->dev, "More finished - sactive=0x%x sactive2=0x%x\n", + sactive, sactive2); + goto process_cmd; + } + handled = 1; + +done_irqrestore: + spin_unlock_irqrestore(&host->lock, flags); +#if defined(CONFIG_APM82181) + signal_hdd_led(0 /*off blink*/, -1 /* no color */); +#endif + return IRQ_RETVAL(handled); +} + + +/* + * Clear DMA Control Register after completing transferring data + * using AHB DMA. + */ +static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag) +{ + struct sata_dwc_device *hsdev = HSDEV_FROM_HSDEVP(hsdevp); + + if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) { + // Clear receive channel enable bit + out_le32(&(hsdev->sata_dwc_regs->dmacr), + SATA_DWC_DMACR_RX_CLEAR( + in_le32(&(hsdev->sata_dwc_regs->dmacr)))); + } else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) { + // Clear transmit channel enable bit + out_le32(&(hsdev->sata_dwc_regs->dmacr), + SATA_DWC_DMACR_TX_CLEAR( + in_le32(&(hsdev->sata_dwc_regs->dmacr)))); + } else { + /* + * This should not happen, it indicates the driver is out of + * sync. If it does happen, clear dmacr anyway. + */ + dev_err(hsdev->dev, "%s DMA protocol RX and TX DMA not pending " + "tag=0x%02x pending=%d dmacr: 0x%08x\n", + __func__, tag, hsdevp->dma_pending[tag], + in_le32(&(hsdev->sata_dwc_regs->dmacr))); + + // Clear all transmit and receive bit, but TXMOD bit is set to 1 + out_le32(&(hsdev->sata_dwc_regs->dmacr), + SATA_DWC_DMACR_TXRXCH_CLEAR); + } +} + +/* + * + */ +static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status) +{ + struct ata_queued_cmd *qc; + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + u8 tag = 0; + + tag = ap->link.active_tag; + qc = ata_qc_from_tag(ap, tag); + +#ifdef DEBUG_NCQ + if (tag > 0) { + dev_info(ap->dev, "%s tag=%u cmd=0x%02x dma dir=%s proto=%s " + "dmacr=0x%08x\n", __func__, qc->tag, qc->tf.command, + dir_2_txt(qc->dma_dir), prot_2_txt(qc->tf.protocol), + in_le32(&(hsdev->sata_dwc_regs->dmacr))); + } +#endif + + if (ata_is_dma(qc->tf.protocol)) { + // DMA out of sync error + if (unlikely(hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE)) { + dev_err(ap->dev, "%s DMA protocol RX and TX DMA not " + "pending dmacr: 0x%08x\n", __func__, + in_le32(&(hsdev->sata_dwc_regs->dmacr))); + } + + hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE; + sata_dwc_qc_complete(ap, qc, check_status); + ap->link.active_tag = ATA_TAG_POISON; + } else { + sata_dwc_qc_complete(ap, qc, check_status); + } +} + +/* + * + */ +static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc, + u32 check_status) +{ + u8 status = 0; + int i = 0; + u32 mask = 0x0; + u8 tag = qc->tag; + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + u32 serror; + int dma_ch; + + dwc_dev_vdbg(ap->dev, "%s checkstatus? %x\n", __func__, check_status); + + if (unlikely(hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX)) + dev_err(ap->dev, "TX DMA PENDINGING\n"); + else if (unlikely(hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX)) + dev_err(ap->dev, "RX DMA PENDINGING\n"); + + if (check_status) { + i = 0; + do { + /* check main status, clearing INTRQ */ + status = ap->ops->sff_check_status(ap); + if (status & ATA_BUSY) { + dwc_dev_vdbg(ap->dev, "STATUS BUSY (0x%02x) [%d]\n", + status, i); + } + if (++i > 10) + break; + } while (status & ATA_BUSY); + + status = ap->ops->sff_check_status(ap); + if (unlikely(status & ATA_BUSY)) + dev_err(ap->dev, "QC complete cmd=0x%02x STATUS BUSY " + "(0x%02x) [%d]\n", qc->tf.command, status, i); + + + // Check error ==> need to process error here + serror = sata_dwc_core_scr_read(ap, SCR_ERROR); + if (unlikely(serror & SATA_DWC_SERR_ERR_BITS)) + { + dev_err(ap->dev, "****** SERROR=0x%08x ******\n", serror); + ap->link.eh_context.i.action |= ATA_EH_RESET; + if (ata_is_dma(qc->tf.protocol)) { + dma_ch = hsdevp->dma_chan[tag]; + dma_dwc_terminate_dma(ap, dma_ch); + } else { + dma_ch = hsdevp->dma_chan[0]; + dma_dwc_terminate_dma(ap, dma_ch); + } + } + } + dwc_dev_vdbg(ap->dev, "QC complete cmd=0x%02x status=0x%02x ata%u: " + "protocol=%d\n", qc->tf.command, status, ap->print_id, + qc->tf.protocol); + + /* clear active bit */ + mask = (~(qcmd_tag_to_mask(tag))); + hsdevp->sata_dwc_sactive_queued = hsdevp->sata_dwc_sactive_queued & mask; + hsdevp->sata_dwc_sactive_issued = hsdevp->sata_dwc_sactive_issued & mask; + dwc_port_vdbg(ap, "%s - sata_dwc_sactive_queued=0x%08x, sata_dwc_sactive_issued=0x%08x\n",__func__, hsdevp->sata_dwc_sactive_queued, hsdevp->sata_dwc_sactive_issued); + dwc_port_vdbg(ap, "dmacr=0x%08x\n",in_le32(&(hsdev->sata_dwc_regs->dmacr))); + + /* Complete taskfile transaction (does not read SCR registers) */ + ata_qc_complete(qc); + + return 0; +} + +/* + * Clear interrupt and error flags in DMA status register. + */ +void sata_dwc_irq_clear (struct ata_port *ap) +{ + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + dwc_port_dbg(ap,"%s\n",__func__); + + // Clear DMA interrupts + clear_chan_interrupts(hsdev->dma_channel); + //sata_dma_regs + //out_le32(&hsdev->sata_dwc_regs->intmr, + // in_le32(&hsdev->sata_dwc_regs->intmr) & ~SATA_DWC_INTMR_ERRM); + //out_le32(&hsdev->sata_dwc_regs->errmr, 0x0); + //sata_dwc_check_status(ap); +} + +/* + * Turn on IRQ + */ +u8 sata_dwc_irq_on(struct ata_port *ap) +{ + struct ata_ioports *ioaddr = &ap->ioaddr; + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + u8 tmp; + + dwc_port_dbg(ap,"%s\n",__func__); + ap->ctl &= ~ATA_NIEN; + ap->last_ctl = ap->ctl; + + if (ioaddr->ctl_addr) + iowrite8(ap->ctl, ioaddr->ctl_addr); + tmp = ata_wait_idle(ap); + + ap->ops->sff_irq_clear(ap); + enable_err_irq(hsdev); + + return tmp; +} + + +/* + * This function enables the interrupts in IMR and unmasks them in ERRMR + * + */ +static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev) +{ + // Enable interrupts + out_le32(&hsdev->sata_dwc_regs->intmr, + SATA_DWC_INTMR_ERRM | + SATA_DWC_INTMR_NEWFPM | + SATA_DWC_INTMR_PMABRTM | + SATA_DWC_INTMR_DMATM); + + /* + * Unmask the error bits that should trigger an error interrupt by + * setting the error mask register. + */ + out_le32(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERR_ERR_BITS); + + dwc_dev_dbg(hsdev->dev, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n", __func__, + in_le32(&hsdev->sata_dwc_regs->intmr), + in_le32(&hsdev->sata_dwc_regs->errmr)); +} + +/* + * Configure DMA and interrupts on SATA port. This should be called after + * hardreset is executed on the SATA port. + */ +static void sata_dwc_init_port ( struct ata_port *ap ) { + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + + // Configure DMA + if (ap->port_no == 0) { + dwc_dev_dbg(ap->dev, "%s: clearing TXCHEN, RXCHEN in DMAC\n", + __func__); + + // Clear all transmit/receive bits + out_le32(&hsdev->sata_dwc_regs->dmacr, + SATA_DWC_DMACR_TXRXCH_CLEAR); + + dwc_dev_dbg(ap->dev, "%s: setting burst size in DBTSR\n", __func__); + out_le32(&hsdev->sata_dwc_regs->dbtsr, + (SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) | + SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT))); + } + + // Enable interrupts + sata_dwc_enable_interrupts(hsdev); +} + + +/* + * Setup SATA ioport with corresponding register addresses + */ +static void sata_dwc_setup_port(struct ata_ioports *port, unsigned long base) +{ + port->cmd_addr = (void *)base + 0x00; + port->data_addr = (void *)base + 0x00; + + port->error_addr = (void *)base + 0x04; + port->feature_addr = (void *)base + 0x04; + + port->nsect_addr = (void *)base + 0x08; + + port->lbal_addr = (void *)base + 0x0c; + port->lbam_addr = (void *)base + 0x10; + port->lbah_addr = (void *)base + 0x14; + + port->device_addr = (void *)base + 0x18; + port->command_addr = (void *)base + 0x1c; + port->status_addr = (void *)base + 0x1c; + + port->altstatus_addr = (void *)base + 0x20; + port->ctl_addr = (void *)base + 0x20; +} + + +/* + * Function : sata_dwc_port_start + * arguments : struct ata_ioports *port + * Return value : returns 0 if success, error code otherwise + * This function allocates the scatter gather LLI table for AHB DMA + */ +static int sata_dwc_port_start(struct ata_port *ap) +{ + int err = 0; + struct sata_dwc_device *hsdev; + struct sata_dwc_device_port *hsdevp = NULL; + struct device *pdev; + u32 sstatus; + int i; + + hsdev = HSDEV_FROM_AP(ap); + + dwc_dev_dbg(ap->dev, "%s: port_no=%d\n", __func__, ap->port_no); + + hsdev->host = ap->host; + pdev = ap->host->dev; + if (!pdev) { + dev_err(ap->dev, "%s: no ap->host->dev\n", __func__); + err = -ENODEV; + goto cleanup_exit; + } + + /* Allocate Port Struct */ + hsdevp = kmalloc(sizeof(*hsdevp), GFP_KERNEL); + if (!hsdevp) { + dev_err(ap->dev, "%s: kmalloc failed for hsdevp\n", __func__); + err = -ENOMEM; + goto cleanup_exit; + } + memset(hsdevp, 0, sizeof(*hsdevp)); + hsdevp->hsdev = hsdev; + + for (i = 0; i < SATA_DWC_QCMD_MAX; i++) + hsdevp->cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT; + + ap->prd = 0; /* set these so libata doesn't use them */ + ap->prd_dma = 0; + + /* + * DMA - Assign scatter gather LLI table. We can't use the libata + * version since it's PRD is IDE PCI specific. + */ + for (i = 0; i < SATA_DWC_QCMD_MAX; i++) { + hsdevp->llit[i] = dma_alloc_coherent(pdev, + SATA_DWC_DMAC_LLI_TBL_SZ, + &(hsdevp->llit_dma[i]), + GFP_ATOMIC); + if (!hsdevp->llit[i]) { + dev_err(ap->dev, "%s: dma_alloc_coherent failed size " + "0x%x\n", __func__, SATA_DWC_DMAC_LLI_TBL_SZ); + err = -ENOMEM; + goto cleanup_exit; + } + } + + if (ap->port_no == 0) { + dwc_dev_vdbg(ap->dev, "%s: clearing TXCHEN, RXCHEN in DMAC\n", + __func__); + + out_le32(&hsdev->sata_dwc_regs->dmacr, + SATA_DWC_DMACR_TXRXCH_CLEAR); + + dwc_dev_vdbg(ap->dev, "%s: setting burst size in DBTSR\n", __func__); + out_le32(&hsdev->sata_dwc_regs->dbtsr, + (SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) | + SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT))); + ata_port_printk(ap, KERN_INFO, "%s: setting burst size in DBTSR: 0x%08x\n", + __func__, in_le32(&hsdev->sata_dwc_regs->dbtsr)); + } + + /* Clear any error bits before libata starts issuing commands */ + clear_serror(ap); + + ap->private_data = hsdevp; + + /* Are we in Gen I or II */ + sstatus = sata_dwc_core_scr_read(ap, SCR_STATUS); + switch (SATA_DWC_SCR0_SPD_GET(sstatus)) { + case 0x0: + dev_info(ap->dev, "**** No neg speed (nothing attached?) \n"); + break; + case 0x1: + dev_info(ap->dev, "**** GEN I speed rate negotiated \n"); + break; + case 0x2: + dev_info(ap->dev, "**** GEN II speed rate negotiated \n"); + break; + } + +cleanup_exit: + if (err) { + kfree(hsdevp); + sata_dwc_port_stop(ap); + dwc_dev_vdbg(ap->dev, "%s: fail\n", __func__); + } else { + dwc_dev_vdbg(ap->dev, "%s: done\n", __func__); + } + + return err; +} + + +static void sata_dwc_port_stop(struct ata_port *ap) +{ + int i; + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); + + dwc_port_dbg(ap, "%s: stop port\n", __func__); + + if (hsdevp && hsdev) { + /* deallocate LLI table */ + for (i = 0; i < SATA_DWC_QCMD_MAX; i++) { + dma_free_coherent(ap->host->dev, + SATA_DWC_DMAC_LLI_TBL_SZ, + hsdevp->llit[i], hsdevp->llit_dma[i]); + } + + kfree(hsdevp); + } + ap->private_data = NULL; +} + +/* + * Since the SATA DWC is master only. The dev select operation will + * be removed. + */ +void sata_dwc_dev_select(struct ata_port *ap, unsigned int device) +{ + // Do nothing + ndelay(100); +} + +/* + * Function : sata_dwc_exec_command_by_tag + * arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued + * Return value : None + * This function keeps track of individual command tag ids and calls + * ata_exec_command in libata + */ +static void sata_dwc_exec_command_by_tag(struct ata_port *ap, + struct ata_taskfile *tf, + u8 tag, u32 cmd_issued) +{ + unsigned long flags; + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); + + dwc_dev_dbg(ap->dev, "%s cmd(0x%02x): %s tag=%d, ap->link->tag=0x%08x\n", __func__, tf->command, + ata_cmd_2_txt(tf), tag, ap->link.active_tag); + + spin_lock_irqsave(&ap->host->lock, flags); + hsdevp->cmd_issued[tag] = cmd_issued; + spin_unlock_irqrestore(&ap->host->lock, flags); + + /* + * Clear SError before executing a new command. + * + * TODO if we read a PM's registers now, we will throw away the task + * file values loaded into the shadow registers for this command. + * + * sata_dwc_scr_write and read can not be used here. Clearing the PM + * managed SError register for the disk needs to be done before the + * task file is loaded. + */ + clear_serror(ap); + ata_sff_exec_command(ap, tf); +} + +static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd *qc, u8 tag) +{ + sata_dwc_exec_command_by_tag(qc->ap, &qc->tf, tag, + SATA_DWC_CMD_ISSUED_PENDING); +} + +static void sata_dwc_bmdma_setup(struct ata_queued_cmd *qc) +{ + u8 tag = qc->tag; + + dwc_port_dbg(qc->ap, "%s\n", __func__); + if (ata_is_ncq(qc->tf.protocol)) { + dwc_dev_vdbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n", + __func__, qc->ap->link.sactive, tag); + } else { + tag = 0; + } + + sata_dwc_bmdma_setup_by_tag(qc, tag); +} + +static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag) +{ + volatile int start_dma; + u32 reg, dma_chan; + struct sata_dwc_device *hsdev = HSDEV_FROM_QC(qc); + struct ata_port *ap = qc->ap; + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); + int dir = qc->dma_dir; + dma_chan = hsdevp->dma_chan[tag]; + + /* Used for ata_bmdma_start(qc) -- we are not BMDMA compatible */ + + if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_NOT) { + start_dma = 1; + if (dir == DMA_TO_DEVICE) + hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_TX; + else + hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_RX; + } else { + dev_err(ap->dev, "%s: Command not pending cmd_issued=%d " + "(tag=%d) - DMA NOT started\n", __func__, + hsdevp->cmd_issued[tag], tag); + start_dma = 0; + } + + dwc_dev_dbg(ap->dev, "%s qc=%p tag: %x cmd: 0x%02x dma_dir: %s " + "start_dma? %x\n", __func__, qc, tag, qc->tf.command, + dir_2_txt(qc->dma_dir), start_dma); + sata_dwc_tf_dump(hsdev->dev, &(qc->tf)); + + // Start DMA transfer + if (start_dma) { + reg = sata_dwc_core_scr_read(ap, SCR_ERROR); + if (unlikely(reg & SATA_DWC_SERR_ERR_BITS)) { + dev_err(ap->dev, "%s: ****** SError=0x%08x ******\n", + __func__, reg); + //sata_async_notification(ap); + //return; + } + + // Set DMA control registers + if (dir == DMA_TO_DEVICE) + out_le32(&hsdev->sata_dwc_regs->dmacr, + SATA_DWC_DMACR_TXCHEN); + else + out_le32(&hsdev->sata_dwc_regs->dmacr, + SATA_DWC_DMACR_RXCHEN); + + dwc_dev_vdbg(ap->dev, "%s: setting DMACR: 0x%08x\n", __func__, in_le32(&hsdev->sata_dwc_regs->dmacr)); + /* Enable AHB DMA transfer on the specified channel */ + dma_dwc_xfer_start(dma_chan); + } +} + + +static void sata_dwc_bmdma_start(struct ata_queued_cmd *qc) +{ + u8 tag = qc->tag; + + if (ata_is_ncq(qc->tf.protocol)) { + dwc_dev_vdbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n", + __func__, qc->ap->link.sactive, tag); + } else { + tag = 0; + } + + dwc_port_dbg(qc->ap, "%s, tag=0x%08x\n", __func__, tag); + sata_dwc_bmdma_start_by_tag(qc, tag); +} + +/* + * Function : sata_dwc_qc_prep_by_tag + * arguments : ata_queued_cmd *qc, u8 tag + * Return value : None + * qc_prep for a particular queued command based on tag + */ +static void sata_dwc_qc_prep_by_tag(struct ata_queued_cmd *qc, u8 tag) +{ + struct ata_port *ap = qc->ap; + u32 dma_chan; + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); + int dir; + int err; + + // DMA direction + dir = qc->dma_dir; + + if ((dir == DMA_NONE) || (qc->tf.protocol == ATA_PROT_PIO)) + return; + + dwc_dev_vdbg(ap->dev, "%s: port=%d dma dir=%s n_elem=%d\n", + __func__, ap->port_no, dir_2_txt(dir), qc->n_elem); + + // Setup DMA for transfer + dma_chan = dma_dwc_xfer_setup(qc, hsdevp->llit[tag], + hsdevp->llit_dma[tag], + (void *__iomem)(&hsdev->sata_dwc_regs->dmadr)); + + if (unlikely(dma_chan < 0)) { + dev_err(ap->dev, "%s: dma_dwc_xfer_setup returns err %d\n", + __func__, err); + return; + } + + hsdevp->dma_chan[tag] = dma_chan; +} + + + +/** + * ata_sff_exec_command - issue ATA command to host controller + * @ap: port to which command is being issued + * @tf: ATA taskfile register set + * + * Issues ATA command, with proper synchronization with interrupt + * handler / other threads. + * + * LOCKING: + * spin_lock_irqsave(host lock) + */ +void sata_dwc_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) +{ + iowrite8(tf->command, ap->ioaddr.command_addr); + /* If we have an mmio device with no ctl and no altstatus + * method this will fail. No such devices are known to exist. + */ + if (ap->ioaddr.altstatus_addr) + ioread8(ap->ioaddr.altstatus_addr); + ndelay(400); +} + +/** + * sata_dwc_tf_to_host - issue ATA taskfile to host controller + * @ap: port to which command is being issued + * @tf: ATA taskfile register set + * + * Issues ATA taskfile register set to ATA host controller, + * with proper synchronization with interrupt handler and + * other threads. + * + * LOCKING: + * spin_lock_irqsave(host lock) + */ +static inline void sata_dwc_tf_to_host(struct ata_port *ap, + const struct ata_taskfile *tf) +{ + dwc_port_dbg(ap,"%s\n",__func__); + ap->ops->sff_tf_load(ap, tf); + sata_dwc_exec_command(ap, tf); +} + + +/* + * Process command queue issue + */ +static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd *qc) +{ + struct ata_port *ap = qc->ap; + int ret = 0; + struct ata_eh_info *ehi; + u32 scontrol, sstatus; + scontrol = sata_dwc_core_scr_read(ap, SCR_CONTROL); + + ehi = &ap->link.eh_info; + /* + * Fix the problem when PMP card is unplugged from the SATA port. + * QC is still issued but no device present. Ignore the current QC. + * and pass error to error handler + */ + sstatus = sata_dwc_core_scr_read(ap, SCR_STATUS); + if ( sstatus == 0x0) { + ata_port_printk(ap, KERN_INFO, "Detect connection lost while commands are executing --> ignore current command\n"); + ata_ehi_hotplugged(ehi); + ap->link.eh_context.i.action |= ATA_EH_RESET; + return ret; + } + + // Set PMP field in the SCONTROL register + if ( sata_pmp_attached(ap) ) + sata_dwc_pmp_select(ap, qc->dev->link->pmp); + +#ifdef DEBUG_NCQ + if (qc->tag > 0 || ap->link.sactive > 1) { + dev_info(ap->dev, "%s ap id=%d cmd(0x%02x)=%s qc tag=%d prot=%s" + " ap active_tag=0x%08x ap sactive=0x%08x\n", + __func__, ap->print_id, qc->tf.command, + ata_cmd_2_txt(&qc->tf), qc->tag, + prot_2_txt(qc->tf.protocol), ap->link.active_tag, + ap->link.sactive); + } +#endif + + // Process NCQ + if (ata_is_ncq(qc->tf.protocol)) { + dwc_link_dbg(qc->dev->link, "%s --> process NCQ , ap->link.active_tag=0x%08x, active_tag=0%08x\n", __func__, ap->link.active_tag, qc->tag); + ap->link.active_tag = qc->tag; + ap->ops->sff_tf_load(ap, &qc->tf); + sata_dwc_exec_command_by_tag(ap, &qc->tf, qc->tag, + SATA_DWC_CMD_ISSUED_PENDING); + } else { + dwc_link_dbg(qc->dev->link, "%s --> non NCQ process, ap->link.active_tag=%d, active_tag=0%08x\n", __func__, ap->link.active_tag, qc->tag); + // Sync ata_port with qc->tag + ap->link.active_tag = qc->tag; + ret = ata_sff_qc_issue(qc); + } + + return ret; +} + +#if 0 +/* + * Function : sata_dwc_eng_timeout + * arguments : ata_port *ap + * Return value : None + * error handler for DMA time out + * ata_eng_timeout(ap) -- this does bmdma stuff which can not be done by this + * driver. SEE ALSO ata_qc_timeout(ap) + */ +static void sata_dwc_eng_timeout(struct ata_port *ap) +{ + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); + struct ata_queued_cmd *qc; + u8 tag; + uint mask = 0x0; + unsigned long flags; + u32 serror, intpr, dma_ch; + + tag = ap->link.active_tag; + dma_ch = hsdevp->dma_chan[tag]; + qc = ata_qc_from_tag(ap, tag); + + dev_err(ap->dev, "%s: id=%d active_tag=%d qc=%p dma_chan=%d\n", + __func__, ap->print_id, tag, qc, dma_ch); + + intpr = in_le32(&hsdev->sata_dwc_regs->intpr); + serror = sata_dwc_core_scr_read(ap, SCR_ERROR); + + dev_err(ap->dev, "intpr=0x%08x serror=0x%08x\n", intpr, serror); + + /* If there are no error bits set, can we just pass this on to eh? */ + if (!(serror & SATA_DWC_SERR_ERR_BITS) && + !(intpr & SATA_DWC_INTPR_ERR)) { + + spin_lock_irqsave(&ap->host->lock, flags); + if (dma_dwc_channel_enabled(dma_ch)) + dma_dwc_terminate_dma(ap, dma_ch); + + hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE; + + /* clear active bit */ + mask = (~(qcmd_tag_to_mask(tag))); + hsdevp->sata_dwc_sactive_queued = hsdevp->sata_dwc_sactive_queued & mask; + hsdevp->sata_dwc_sactive_issued = hsdevp->sata_dwc_sactive_issued & mask; + + spin_unlock_irqrestore(&ap->host->lock, flags); + } else { + /* This is wrong, what really needs to be done is a reset. */ + + spin_lock_irqsave(ap->lock, flags); + + if (ata_is_dma(qc->tf.protocol)) { + /* disable DMAC */ + dma_dwc_terminate_dma(ap, dma_ch); + } + + spin_unlock_irqrestore(ap->lock, flags); + } + WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE)); + if (qc->flags & ATA_QCFLAG_ACTIVE) { + qc->err_mask |= AC_ERR_TIMEOUT; + /* + * test-only: The original code (AMCC: 2.6.19) called + * ata_eng_timeout(ap) here. This function is not available + * anymore. So what to do now? + */ + } +} +#endif +/* + * Function : sata_dwc_qc_prep + * arguments : ata_queued_cmd *qc + * Return value : None + * qc_prep for a particular queued command + */ +static void sata_dwc_qc_prep(struct ata_queued_cmd *qc) +{ + u32 sactive; + u8 tag = qc->tag; + + if ((qc->dma_dir == DMA_NONE) || (qc->tf.protocol == ATA_PROT_PIO)) + return; + +#ifdef DEBUG_NCQ + if (qc->tag > 0) { + dev_info(qc->ap->dev, "%s: qc->tag=%d ap->active_tag=0x%08x\n", + __func__, tag, qc->ap->link.active_tag); + } +#endif + + if (qc->tf.protocol == ATA_PROT_NCQ) { + sactive = sata_dwc_core_scr_read(qc->ap, SCR_ACTIVE); + sactive |= (0x00000001 << tag); + sata_dwc_core_scr_write(qc->ap, SCR_ACTIVE, sactive); + dwc_dev_vdbg(qc->ap->dev, "%s: tag=%d ap->link.sactive = 0x%08x " + "sactive=0x%08x\n", __func__, tag, qc->ap->link.sactive, + sactive); + } else { + tag = 0; + } + + sata_dwc_qc_prep_by_tag(qc, tag); +} + + + +static void sata_dwc_post_internal_cmd(struct ata_queued_cmd *qc) +{ + if (qc->flags & ATA_QCFLAG_FAILED) + ata_eh_freeze_port(qc->ap); +} + +static void sata_dwc_error_handler(struct ata_port *ap) +{ + u32 serror; + u32 intmr, errmr; + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); + + serror = sata_dwc_core_scr_read(ap, SCR_ERROR); + intmr = in_le32(&hsdev->sata_dwc_regs->intmr); + errmr = in_le32(&hsdev->sata_dwc_regs->errmr); + + //sata_dwc_dma_xfer_complete(ap,1); + dwc_port_dbg(ap, "%s: SERROR=0x%08x, INTMR=0x%08x, ERRMR=0x%08x\n", __func__, serror, intmr, errmr); + + dwc_port_vdbg(ap, "%s - sata_dwc_sactive_queued=0x%08x, sata_dwc_sactive_issued=0x%08x\n",__func__, hsdevp->sata_dwc_sactive_queued, hsdevp->sata_dwc_sactive_issued); + dwc_port_vdbg(ap, "dmacr=0x%08x\n",in_le32(&(hsdev->sata_dwc_regs->dmacr))); + dwc_port_vdbg(ap, "qc_active=0x%08x, qc_allocated=0x%08x, active_tag=%d\n", ap->qc_active, ap->qc_allocated, ap->link.active_tag); + + sata_pmp_error_handler(ap); +} + +/* + * sata_dwc_check_status - Get value of the Status Register + * @ap: Port to check + * + * Output content of the status register (CDR7) + */ +u8 sata_dwc_check_status(struct ata_port *ap) +{ + return ioread8(ap->ioaddr.status_addr); +} + + +/* + * Freeze the port by clear interrupt + * @ap: Port to freeze + */ +void sata_dwc_freeze(struct ata_port *ap) +{ + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + dwc_port_dbg(ap, "call %s ...\n",__func__); + // turn IRQ off + clear_intpr(hsdev); + clear_serror(ap); + out_le32(&hsdev->sata_dwc_regs->intmr, 0x0); +} + +/* + * Thaw the port by turning IRQ on + */ +void sata_dwc_thaw(struct ata_port *ap) +{ + struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); + + dwc_port_dbg(ap, "call %s ...\n",__func__); + // Clear IRQ + clear_intpr(hsdev); + // Turn IRQ back on + sata_dwc_enable_interrupts(hsdev); +} + + +/* + * scsi mid-layer and libata interface structures + */ +static struct scsi_host_template sata_dwc_sht = { + ATA_NCQ_SHT(DRV_NAME), + /* + * test-only: Currently this driver doesn't handle NCQ + * correctly. We enable NCQ but set the queue depth to a + * max of 1. This will get fixed in in a future release. + */ +// .sg_tablesize = LIBATA_MAX_PRD, + .can_queue = ATA_DEF_QUEUE, /* ATA_MAX_QUEUE */ + .dma_boundary = ATA_DMA_BOUNDARY, +}; + + +static struct ata_port_operations sata_dwc_ops = { + .inherits = &sata_pmp_port_ops, + .dev_config = sata_dwc_dev_config, + + .error_handler = sata_dwc_error_handler, + .softreset = sata_dwc_softreset, + .hardreset = sata_dwc_hardreset, + .pmp_softreset = sata_dwc_softreset, + .pmp_hardreset = sata_dwc_pmp_hardreset, + + .qc_defer = sata_pmp_qc_defer_cmd_switch, + .qc_prep = sata_dwc_qc_prep, + .qc_issue = sata_dwc_qc_issue, + .qc_fill_rtf = ata_sff_qc_fill_rtf, + + .scr_read = sata_dwc_scr_read, + .scr_write = sata_dwc_scr_write, + + .port_start = sata_dwc_port_start, + .port_stop = sata_dwc_port_stop, + + .bmdma_setup = sata_dwc_bmdma_setup, + .bmdma_start = sata_dwc_bmdma_start, + // Reuse some SFF functions + .sff_check_status = sata_dwc_check_status, + .sff_tf_read = ata_sff_tf_read, + .sff_data_xfer = ata_sff_data_xfer, + .sff_tf_load = ata_sff_tf_load, + .sff_dev_select = sata_dwc_dev_select, + .sff_exec_command = sata_dwc_exec_command, + + .sff_irq_on = sata_dwc_irq_on, +/* .sff_irq_clear = sata_dwc_irq_clear, + .freeze = sata_dwc_freeze, + .thaw = sata_dwc_thaw, + .sff_irq_on = ata_sff_irq_on, + */ + .sff_irq_clear = ata_sff_irq_clear, + .freeze = ata_sff_freeze, + .thaw = ata_sff_thaw, + .pmp_attach = sata_dwc_pmp_attach, + .pmp_detach = sata_dwc_pmp_detach, + .post_internal_cmd = sata_dwc_post_internal_cmd, + + /* test-only: really needed? */ + //.eng_timeout = sata_dwc_eng_timeout, +}; + +static const struct ata_port_info sata_dwc_port_info[] = { + { + /* + * test-only: Currently this driver doesn't handle NCQ + * correctly. So we disable NCQ here for now. To enable + * it ATA_FLAG_NCQ needs to be added to the flags below. + */ + .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | + ATA_FLAG_MMIO | ATA_FLAG_NCQ | + ATA_FLAG_PMP | ATA_FLAG_AN, + .pio_mask = 0x1f, /* pio 0-4 */ + .udma_mask = ATA_UDMA6, + .port_ops = &sata_dwc_ops, + }, +}; + +static int sata_dwc_probe(struct of_device *ofdev, + const struct of_device_id *match) +{ + struct sata_dwc_device *hsdev; + u32 idr, versionr; + char *ver = (char *)&versionr; + u8 *base = NULL; + int err = 0; + int irq; + struct ata_host *host; + struct ata_port_info pi = sata_dwc_port_info[0]; + const struct ata_port_info *ppi[] = { &pi, NULL }; + + const unsigned int *dma_channel; + /* + * Check if device is enabled + */ + if (!of_device_is_available(ofdev->node)) { + printk(KERN_INFO "%s: Port disabled via device-tree\n", + ofdev->node->full_name); + return 0; + } + + /* Allocate DWC SATA device */ + hsdev = kmalloc(sizeof(*hsdev), GFP_KERNEL); + if (hsdev == NULL) { + dev_err(&ofdev->dev, "kmalloc failed for hsdev\n"); + err = -ENOMEM; + goto error_out; + } + memset(hsdev, 0, sizeof(*hsdev)); + + + // Identify SATA DMA channel used for the current SATA device + dma_channel = of_get_property(ofdev->node, "dma-channel", NULL); + if ( dma_channel ) { + dev_notice(&ofdev->dev, "Gettting DMA channel %d\n", *dma_channel); + hsdev->dma_channel = *dma_channel; + } else + hsdev->dma_channel = 0; + + /* Ioremap SATA registers */ + base = of_iomap(ofdev->node, 0); + if (!base) { + dev_err(&ofdev->dev, "ioremap failed for SATA register address\n"); + err = -ENODEV; + goto error_out; + } + hsdev->reg_base = base; + dwc_dev_vdbg(&ofdev->dev, "ioremap done for SATA register address\n"); + + /* Synopsys DWC SATA specific Registers */ + hsdev->sata_dwc_regs = (void *__iomem)(base + SATA_DWC_REG_OFFSET); + + /* Allocate and fill host */ + host = ata_host_alloc_pinfo(&ofdev->dev, ppi, SATA_DWC_MAX_PORTS); + if (!host) { + dev_err(&ofdev->dev, "ata_host_alloc_pinfo failed\n"); + err = -ENOMEM; + goto error_out; + } + + host->private_data = hsdev; + + /* Setup port */ + host->ports[0]->ioaddr.cmd_addr = base; + host->ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET; + hsdev->scr_base = (u8 *)(base + SATA_DWC_SCR_OFFSET); + sata_dwc_setup_port(&host->ports[0]->ioaddr, (unsigned long)base); + + /* Read the ID and Version Registers */ + idr = in_le32(&hsdev->sata_dwc_regs->idr); + versionr = in_le32(&hsdev->sata_dwc_regs->versionr); + dev_notice(&ofdev->dev, "id %d, controller version %c.%c%c\n", + idr, ver[0], ver[1], ver[2]); + + /* Get SATA DMA interrupt number */ + irq = irq_of_parse_and_map(ofdev->node, 1); + if (irq == NO_IRQ) { + dev_err(&ofdev->dev, "no SATA DMA irq\n"); + err = -ENODEV; + goto error_out; + } + + /* Get physical SATA DMA register base address */ + if (!sata_dma_regs) { + sata_dma_regs = of_iomap(ofdev->node, 1); + if (!sata_dma_regs) { + dev_err(&ofdev->dev, "ioremap failed for AHBDMA register address\n"); + err = -ENODEV; + goto error_out; + } + } + /* Save dev for later use in dev_xxx() routines */ + hsdev->dev = &ofdev->dev; + + /* Init glovbal dev list */ + dwc_dev_list[hsdev->dma_channel] = hsdev; + + /* Initialize AHB DMAC */ + hsdev->irq_dma = irq; + dma_dwc_init(hsdev); + dma_register_interrupt(hsdev); + + + /* Enable SATA Interrupts */ + sata_dwc_enable_interrupts(hsdev); + + /* Get SATA interrupt number */ + irq = irq_of_parse_and_map(ofdev->node, 0); + if (irq == NO_IRQ) { + dev_err(&ofdev->dev, "no SATA irq\n"); + err = -ENODEV; + goto error_out; + } + + /* + * Now, register with libATA core, this will also initiate the + * device discovery process, invoking our port_start() handler & + * error_handler() to execute a dummy Softreset EH session + */ + ata_host_activate(host, irq, sata_dwc_isr, 0, &sata_dwc_sht); + + dev_set_drvdata(&ofdev->dev, host); + + /* Everything is fine */ + return 0; + +error_out: + /* Free SATA DMA resources */ + dma_dwc_exit(hsdev); + + if (base) + iounmap(base); + + if (hsdev) + kfree(hsdev); + + return err; +} + +static int sata_dwc_remove(struct of_device *ofdev) +{ + struct device *dev = &ofdev->dev; + struct ata_host *host = dev_get_drvdata(dev); + struct sata_dwc_device *hsdev = host->private_data; + + ata_host_detach(host); + + dev_set_drvdata(dev, NULL); + + /* Free SATA DMA resources */ + dma_dwc_exit(hsdev); + + iounmap(hsdev->reg_base); + kfree(hsdev); + kfree(host); + + dwc_dev_vdbg(&ofdev->dev, "done\n"); + + return 0; +} + +static const struct of_device_id sata_dwc_match[] = { + { .compatible = "amcc,sata-460ex", }, + { .compatible = "amcc,sata-apm82181", }, + {} +}; +MODULE_DEVICE_TABLE(of, sata_dwc_match); + +static struct of_platform_driver sata_dwc_driver = { + .name = "sata-dwc", + .match_table = sata_dwc_match, + .probe = sata_dwc_probe, + .remove = sata_dwc_remove, +}; + +static int __init sata_dwc_init(void) +{ + return of_register_platform_driver(&sata_dwc_driver); +} + +static void __exit sata_dwc_exit(void) +{ + of_unregister_platform_driver(&sata_dwc_driver); +} + +module_init(sata_dwc_init); +module_exit(sata_dwc_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Mark Miesfeld <mmiesfeld@amcc.com>"); +MODULE_DESCRIPTION("DesignWare Cores SATA controller driver"); +MODULE_VERSION(DRV_VERSION); diff --git a/drivers/char/hw_random/Kconfig b/drivers/char/hw_random/Kconfig index 87060266ef9..9cfbb282e0c 100644 --- a/drivers/char/hw_random/Kconfig +++ b/drivers/char/hw_random/Kconfig @@ -186,3 +186,15 @@ config HW_RANDOM_MXC_RNGA module will be called mxc-rnga. If unsure, say Y. +config HW_RANDOM_TRNG4xx + tristate "AMCC 4xx TRNG True Random Number Generator support" + depends on HW_RANDOM && PPC + default HW_RANDOM + ---help--- + This driver provides kernel-side support for the Random Number + Generator hardware found on AMCC 4XX. + + To compile this driver as a module, choose M here: the + module will be called trng4xx. + + If unsure, say Y. diff --git a/drivers/char/hw_random/Makefile b/drivers/char/hw_random/Makefile index 5eeb1303f0d..252902d42c8 100644 --- a/drivers/char/hw_random/Makefile +++ b/drivers/char/hw_random/Makefile @@ -18,3 +18,4 @@ obj-$(CONFIG_HW_RANDOM_VIRTIO) += virtio-rng.o obj-$(CONFIG_HW_RANDOM_TX4939) += tx4939-rng.o obj-$(CONFIG_HW_RANDOM_MXC_RNGA) += mxc-rnga.o obj-$(CONFIG_HW_RANDOM_OCTEON) += octeon-rng.o +obj-$(CONFIG_HW_RANDOM_TRNG4xx) += trng4xx.o diff --git a/drivers/char/hw_random/trng4xx.c b/drivers/char/hw_random/trng4xx.c new file mode 100644 index 00000000000..ece45e74aa1 --- /dev/null +++ b/drivers/char/hw_random/trng4xx.c @@ -0,0 +1,336 @@ +/** + * + * Copyright (c) 2008 Loc Ho <spulijala@amcc.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * Detail Description: + * This file AMCC TRNG offload Linux device driver + * + * @file trng4xx.c + * + * + */ +#include <linux/version.h> +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/platform_device.h> +#include <linux/of_platform.h> +#include <linux/hw_random.h> +#include <linux/interrupt.h> +#include <linux/io.h> +#include <crypto/trng4xx.h> + +#define TRNG4XX_VER_STR "0.1" +#define TRNG4XX_HDR "TRNG4XX: " + +/* #define TRNG4XX_DEBUG */ + +#if !defined(TRNG4XX_DEBUG) +# define TRNG4XX_LOG(fmt, ...) +#else +# define TRNG4XX_LOG(fmt, ...) \ + do { \ + printk(KERN_INFO TRNG4XX_HDR fmt "\n", ##__VA_ARGS__); \ +} while(0); +#endif + +struct trng4xx_dev { + struct resource res; + u32 irq; + volatile char __iomem *csr; + struct semaphore access_prot; + u32 datum; +}; + +struct hal_config { + struct of_device *ofdev; +}; + +static struct trng4xx_dev trng4xx_dev; + +static irqreturn_t trng4xx_irq_handler(int irq, void *id); +static void trng4xx_chk_overflow(void); + +int trng4xx_config_set(struct hal_config *cfg) +{ + struct device_node *rng_np = cfg->ofdev->node; + int rc = 0; + + rc = of_address_to_resource(rng_np, 0, &trng4xx_dev.res); + if (rc) + return -ENODEV; + + trng4xx_dev.csr = ioremap(trng4xx_dev.res.start, + trng4xx_dev.res.end - + trng4xx_dev.res.start + 1); + if (trng4xx_dev.csr == NULL) { + printk(KERN_ERR "unable to ioremap 0x%02X_%08X size %d\n", + (u32) (trng4xx_dev.res.start >> 32), + (u32) trng4xx_dev.res.start, + (u32) (trng4xx_dev.res.end - + trng4xx_dev.res.start + 1)); + return -ENOMEM; + } + + TRNG4XX_LOG("TRNG1 0x%02X_%08X size %d\n", + (u32) (trng4xx_dev.res.start >> 32), + (u32) trng4xx_dev.res.start, + (u32) (trng4xx_dev.res.end - + trng4xx_dev.res.start + 1)); + + trng4xx_dev.irq = of_irq_to_resource(rng_np, 0, NULL); + + if (trng4xx_dev.irq == NO_IRQ) { + /* Un-map CSR */ + iounmap(trng4xx_dev.csr); + trng4xx_dev.csr = NULL; + return -EINVAL; + } + + return 0; +} + +int trng4xx_pka_config_clear(void) +{ + iounmap(trng4xx_dev.csr); + return 0; +} + +inline int trng4xx_hw_read32(u32 reg_addr, u32 *data_val) +{ + *data_val = in_be32((unsigned __iomem *) + (trng4xx_dev.csr + reg_addr)); + return 0; +} + +inline int trng4xx_hw_write32(u32 reg_addr, u32 data_val) +{ + out_be32((unsigned __iomem *) (trng4xx_dev.csr + reg_addr), + data_val); + return 0; +} + +int trng4xx_hw_init(void) +{ + int rc; + + rc = request_irq(trng4xx_dev.irq, trng4xx_irq_handler, + 0, "TRNG", NULL); + if (rc != 0) { + printk(KERN_ERR "failed to register interrupt IRQ %d\n", + trng4xx_dev.irq); + return rc; + } + return 0; +} + +int trng4xx_hw_deinit(void) +{ + free_irq(trng4xx_dev.irq, NULL); + return 0; +} + +static irqreturn_t trng4xx_irq_handler(int irq, void *id) +{ + /* TRNG Alarm Counter overflow */ + trng4xx_chk_overflow(); + return IRQ_HANDLED; +} + +/** + * TRNG Functions + * + */ +static void trng4xx_chk_overflow(void) +{ + /* TRNG Alarm Counter overflow */ + int rc; + u32 val; + struct trng4xx_cfg { + u32 ring1_delay_sel :3; + u32 ring2_delay_sel :3; + u32 reset_cnt :6; + } __attribute__((packed)); + + + rc = trng4xx_hw_write32(TRNG4XX_ALARMCNT_ADDR, val); + if (rc != 0) + return; + + if (val > 128) { + struct trng4xx_cfg *trng4xx_cfg; + + /* Alarm count is half, reset it */ + rc = trng4xx_hw_read32(TRNG4XX_CFG_ADDR, &val); + if (rc != 0) + return; + trng4xx_cfg = (struct trng4xx_cfg *) &val; + ++trng4xx_cfg->ring1_delay_sel; + trng4xx_cfg->ring2_delay_sel = + (~trng4xx_cfg->ring1_delay_sel) & 0x07; + + rc = trng4xx_hw_write32(TRNG4XX_CFG_ADDR, val); + if (rc != 0) + return; + trng4xx_hw_write32(TRNG4XX_ALARMCNT_ADDR, 0x00000000); + if (rc != 0) + return; + } +} + +#define MAX_TRY 3 +int trng4xx_random(u32 *rand_val) +{ + u32 val = 0; + int rc; + u16 try_cnt = 0; + + down(&trng4xx_dev.access_prot); + do { + rc = trng4xx_hw_read32(TRNG4XX_STATUS_ADDR, &val); + if (rc != 0) + goto err; + } while ((val & TRNG4XX_STATUS_BUSY) && ++try_cnt <= MAX_TRY); + if (val & TRNG4XX_STATUS_BUSY) { + rc = -EINPROGRESS; + goto err; + } + rc = trng4xx_hw_read32(TRNG4XX_OUTPUT_ADDR, rand_val); + +err: + up(&trng4xx_dev.access_prot); + return rc; +} +EXPORT_SYMBOL_GPL(trng4xx_random); + +static int trng4xx_data_present(struct hwrng *rng, int wait) +{ + struct trng4xx_dev *dev = (struct trng4xx_dev *) rng->priv; + int i; + u32 val; + + down(&trng4xx_dev.access_prot); + for (i = 0; i < 20; i++) { + udelay(10); + trng4xx_hw_read32(TRNG4XX_STATUS_ADDR, &val); + if (!(val & TRNG4XX_STATUS_BUSY)) { + trng4xx_hw_read32(TRNG4XX_OUTPUT_ADDR, &dev->datum); + break; + } + if (!wait) + break; + } + up(&trng4xx_dev.access_prot); + return (val & TRNG4XX_STATUS_BUSY) ? 0 : 1; +} + +static int trng4xx_data_read(struct hwrng *rng, u32 *data) +{ + struct trng4xx_dev *dev = (struct trng4xx_dev *) rng->priv; + + *data = dev->datum; + //printk("*data = 0x%08x\n", *data); + return 4; +} + +static int trng4xx_init(struct hwrng *rng) +{ + return trng4xx_hw_init(); +} + +static void trng4xx_cleanup(struct hwrng *rng) +{ + trng4xx_hw_deinit(); +} + +static struct hwrng trng4xx_func = { + .name = "ppc4xx-trng", + .init = trng4xx_init, + .cleanup = trng4xx_cleanup, + .data_present = trng4xx_data_present, + .data_read = trng4xx_data_read, + .priv = (unsigned long) &trng4xx_dev, +}; + +/** + * Setup Driver with platform registration + * + */ +static int __devinit trng4xx_probe(struct of_device *ofdev, + const struct of_device_id *match) +{ + struct hal_config hw_cfg; + int rc; + + hw_cfg.ofdev = ofdev; + rc = trng4xx_config_set(&hw_cfg); + if (rc != 0) + return rc; + + TRNG4XX_LOG("AMCC 4xx TRNG v%s @0x%02X_%08X size %d IRQ %d\n", + TRNG4XX_VER_STR, + (u32) (trng4xx_dev.res.start >> 32), + (u32) trng4xx_dev.res.start, + (u32) (trng4xx_dev.res.end - trng4xx_dev.res.start + 1), + trng4xx_dev.irq); + + init_MUTEX(&trng4xx_dev.access_prot); + + rc = hwrng_register(&trng4xx_func); + if (rc) { + printk(KERN_ERR + "AMCC 4xx TRNG registering failed error %d\n", rc); + goto err; + } + + return rc; + +err: + trng4xx_pka_config_clear(); + return rc; +} + +static int __devexit trng4xx_remove(struct of_device *dev) +{ + hwrng_unregister(&trng4xx_func); + trng4xx_pka_config_clear(); + return 0; +} + +static struct of_device_id trng4xx_match[] = { + { .compatible = "ppc4xx-trng", }, + { .compatible = "amcc,ppc4xx-trng", }, + { }, +}; + +static struct of_platform_driver trng4xx_driver = { + .name = "ppc4xx-trng", + .match_table = trng4xx_match, + .probe = trng4xx_probe, + .remove = trng4xx_remove, +}; + +static int __init mod_init(void) +{ + return of_register_platform_driver(&trng4xx_driver); +} + +static void __exit mod_exit(void) +{ + of_unregister_platform_driver(&trng4xx_driver); +} + +module_init(mod_init); +module_exit(mod_exit); + +MODULE_DESCRIPTION("AMCC 4xx True Random Number Generator"); +MODULE_LICENSE("GPL"); diff --git a/drivers/crypto/Kconfig b/drivers/crypto/Kconfig index b08403d7d1c..d0921a72d59 100644 --- a/drivers/crypto/Kconfig +++ b/drivers/crypto/Kconfig @@ -213,6 +213,15 @@ config CRYPTO_DEV_IXP4XX help Driver for the IXP4xx NPE crypto engine. +config CRYPTO_DEV_PKA4xx + tristate "Support for the AMCC 4xx PKA" + depends on PPC + help + Select this option if you want to have support for the AMCC 4xx PKA. + + To compile this driver as a module, choose M here: the module + will be called pka4xx + config CRYPTO_DEV_PPC4XX tristate "Driver AMCC PPC4xx crypto accelerator" depends on PPC && 4xx @@ -222,4 +231,47 @@ config CRYPTO_DEV_PPC4XX help This option allows you to have support for AMCC crypto acceleration. +config SEC_HW_POLL + bool "Turn on HW Polling instead of Doing Force Descriptor Write" + depends on CRYPTO_DEV_PPC4XX + default n + +config SEC_HW_RING_POLL_FREQ + int "Basic HW polling frequency" + help + HW Polling Frequency which the Packet Engine reads a segment of the external PDR + depends on CRYPTO_DEV_PPC4XX && SEC_HW_POLL + default "2" + +config SEC_HW_POLL_RETRY_FREQ + int "HW Polling Retry interval" + help + HW Polling Retry interval that specifies how much Packet + Engine wait between re-reads on an invalid descriptor entry + depends on CRYPTO_DEV_PPC4XX && SEC_HW_POLL + default "1" + +config SEC_PD_OCM + bool "Security Packet Descriptors on OCM" + default n + help + This enables the Security Packet Descriptors to be allocated on the OCM + depends on CRYPTO_DEV_PPC4XX && 460EX + +config SEC_SA_OCM + bool "Security SA on OCM" + default n + help + This option enables the SA and State Record to be alloctaed on the OCM. + depends on CRYPTO_DEV_PPC4XX && 460EX + +config CRYPTO_DEV_ASYNC_SAMPLE + tristate "Async crypto and hash sample driver using software algorithms" + select CRYPTO_HASH + select CRYPTO_ALGAPI + select CRYPTO_BLKCIPHER + help + This is a sample asynchronous crypto and hash device driver over synchronous + software crypto and hash algorithms. + endif # CRYPTO_HW diff --git a/drivers/crypto/Makefile b/drivers/crypto/Makefile index 6ffcb3f7f94..b9d434e28e4 100644 --- a/drivers/crypto/Makefile +++ b/drivers/crypto/Makefile @@ -5,4 +5,6 @@ obj-$(CONFIG_CRYPTO_DEV_HIFN_795X) += hifn_795x.o obj-$(CONFIG_CRYPTO_DEV_MV_CESA) += mv_cesa.o obj-$(CONFIG_CRYPTO_DEV_TALITOS) += talitos.o obj-$(CONFIG_CRYPTO_DEV_IXP4XX) += ixp4xx_crypto.o +pka4xx-objs := pka_4xx_access.o pka_4xx.o +obj-$(CONFIG_CRYPTO_DEV_PKA4xx) += pka4xx.o obj-$(CONFIG_CRYPTO_DEV_PPC4XX) += amcc/ diff --git a/drivers/crypto/amcc/crypto4xx_alg.c b/drivers/crypto/amcc/crypto4xx_alg.c index a33243c17b0..9d81d8f7571 100644 --- a/drivers/crypto/amcc/crypto4xx_alg.c +++ b/drivers/crypto/amcc/crypto4xx_alg.c @@ -20,18 +20,39 @@ #include <linux/kernel.h> #include <linux/interrupt.h> #include <linux/spinlock_types.h> +#include <linux/highmem.h> #include <linux/scatterlist.h> #include <linux/crypto.h> #include <linux/hash.h> #include <crypto/internal/hash.h> +#include <crypto/aead.h> #include <linux/dma-mapping.h> +#include <linux/pci.h> #include <crypto/algapi.h> #include <crypto/aes.h> +#include <crypto/des.h> #include <crypto/sha.h> +#include <crypto/authenc.h> +#include <net/ip.h> + #include "crypto4xx_reg_def.h" #include "crypto4xx_sa.h" #include "crypto4xx_core.h" +#define DEBUG_CRYPTESP 1 +#ifdef DEBUG_CRYPTESP +# define ESP_PHD print_hex_dump +#else +# define ESP_PHD(arg...) +#endif + +#ifdef DEBUG_CRYPTESP + +#define ESP_PRINTK printk +#else +#define ESP_PRINTK(KERN_INFO arg...) +#endif + void set_dynamic_sa_command_0(struct dynamic_sa_ctl *sa, u32 save_h, u32 save_iv, u32 ld_h, u32 ld_iv, u32 hdr_proc, u32 h, u32 c, u32 pad_type, u32 op_grp, u32 op, @@ -56,11 +77,11 @@ void set_dynamic_sa_command_1(struct dynamic_sa_ctl *sa, u32 cm, u32 hmac_mc, u32 cfb, u32 esn, u32 sn_mask, u32 mute, u32 cp_pad, u32 cp_pay, u32 cp_hdr) { - sa->sa_command_1.w = 0; sa->sa_command_1.bf.crypto_mode31 = (cm & 4) >> 2; - sa->sa_command_1.bf.crypto_mode9_8 = cm & 3; + sa->sa_command_1.bf.crypto_mode9_8 = (cm & 3); sa->sa_command_1.bf.feedback_mode = cfb, sa->sa_command_1.bf.sa_rev = 1; + sa->sa_command_1.bf.hmac_muting = hmac_mc; sa->sa_command_1.bf.extended_seq_num = esn; sa->sa_command_1.bf.seq_num_mask = sn_mask; sa->sa_command_1.bf.mutable_bit_proc = mute; @@ -69,6 +90,423 @@ void set_dynamic_sa_command_1(struct dynamic_sa_ctl *sa, u32 cm, u32 hmac_mc, sa->sa_command_1.bf.copy_hdr = cp_hdr; } +/** Table lookup for SA Hash Digest length and + * Hash Contents (based on Hash type) + */ +unsigned int crypto4xx_sa_hash_tbl[3][HASH_ALG_MAX_CNT] = { + /* Hash Contents */ + { SA_HASH128_CONTENTS, SA_HASH160_CONTENTS, SA_HASH256_CONTENTS, + SA_HASH256_CONTENTS, SA_HASH512_CONTENTS, SA_HASH512_CONTENTS }, + /* Digest len */ + {4 * 4, 5 * 4, 7 * 4, 8 * 4, 12 * 4, 16 * 4}, + /* SA Length */ + { SA_HASH128_LEN, SA_HASH160_LEN, SA_HASH256_LEN, SA_HASH256_LEN, + SA_HASH512_LEN, SA_HASH512_LEN } +}; + +/** Table lookup for Hash Algorithms based on Hash type, used in + * crypto4xx_pre_compute_hmac() + */ +char *crypto4xx_hash_alg_map_tbl[HASH_ALG_MAX_CNT] = CRYPTO4XX_MAC_ALGS; + +static void crypto4xx_sg_setbuf(unsigned char *data, size_t bufsize, + struct scatterlist *sg, int sg_num) +{ + int remainder_of_page; + int i = 0; + + sg_init_table(sg, sg_num); + while (bufsize > 0 && i < sg_num) { + sg_set_buf(&sg[i], data, bufsize); + remainder_of_page = PAGE_SIZE - sg[i].offset; + if (bufsize > remainder_of_page) { + /* the buffer was split over multiple pages */ + sg[i].length = remainder_of_page; + bufsize -= remainder_of_page; + data += remainder_of_page; + } else { + bufsize = 0; + } + i++; + } +} + +int crypto4xx_pre_compute_hmac(struct crypto4xx_ctx *ctx, + void *key, + unsigned int keylen, + unsigned int bs, + unsigned char ha, + unsigned char digs) +{ + u8 *ipad = NULL; + u8 *opad; + struct crypto_hash *child_hash = NULL; + struct hash_desc desc; + struct scatterlist sg[1]; + struct scatterlist asg[2]; + struct crypto_tfm *child_tfm; + char *child_name = NULL; + int i, rc = 0; + int ds; + + BUG_ON(ha >= HASH_ALG_MAX_CNT); + child_name = crypto4xx_hash_alg_map_tbl[ha]; + child_hash = crypto_alloc_hash(child_name, 0, 0); + if (IS_ERR(child_hash)) { + rc = PTR_ERR(child_hash); + printk(KERN_ERR "failed to load " + "transform for %s error %d\n", + child_name, rc); + return rc; + } + + ipad = kmalloc(bs * 2, GFP_KERNEL); + if (ipad == NULL) { + crypto_free_hash(child_hash); + return -ENOMEM; + } + + opad = ipad + bs; + child_tfm = crypto_hash_tfm(child_hash); + ds = crypto_hash_digestsize(child_hash); + desc.tfm = child_hash; + desc.flags = 0; + if (keylen > bs) { + crypto4xx_sg_setbuf(key, keylen, asg, 2); + rc = crypto_hash_init(&desc); + if (rc < 0) + goto err_alg_hash_key; + rc = crypto_hash_update(&desc, asg, keylen); + if (rc < 0) + goto err_alg_hash_key; + rc = crypto_hash_final(&desc, ipad); + keylen = ds; + } else { + memcpy(ipad, key, keylen); + } + memset(ipad + keylen, 0, bs-keylen); + memcpy(opad, ipad, bs); + + for (i = 0; i < bs; i++) { + ipad[i] ^= 0x36; + opad[i] ^= 0x5c; + } + + sg_init_one(&sg[0], ipad, bs); + rc = crypto_hash_init(&desc); + if (rc < 0) + goto err_alg_hash_key; + rc = crypto_hash_update(&desc, sg, bs); + if (rc < 0) + goto err_alg_hash_key; + + if (ha == SA_HASH_ALG_SHA224) + ds = SHA256_DIGEST_SIZE; + else if (ha == SA_HASH_ALG_SHA384) + ds = SHA512_DIGEST_SIZE; + + crypto_hash_partial(&desc, ipad); + crypto4xx_memcpy_le(ctx->sa_in + + get_dynamic_sa_offset_inner_digest(ctx), ipad, ds); + + sg_init_one(&sg[0], opad, bs); + rc = crypto_hash_init(&desc); + if (rc < 0) + goto err_alg_hash_key; + + rc = crypto_hash_update(&desc, sg, bs); + if (rc < 0) + goto err_alg_hash_key; + + crypto_hash_partial(&desc, opad); + crypto4xx_memcpy_le(ctx->sa_in + + get_dynamic_sa_offset_outer_digest(ctx), opad, ds); + +err_alg_hash_key: + kfree(ipad); + crypto_free_hash(child_hash); + return rc; +} + +int crypto4xx_pre_compute_ssl_mac(struct crypto4xx_ctx *ctx, + void *key, + unsigned int keylen, + unsigned int bs, + unsigned char ha) + +{ + u8 *ipad; + u8 *opad; + struct crypto_hash *child_hash = NULL; + struct hash_desc desc; + struct scatterlist sg[1]; + struct crypto_tfm *child_tfm; + unsigned char *digest = NULL; + int padsize = 0; + char *child_name = NULL; + int i, rc = 0; + int ds; + + digest = kmalloc(bs, GFP_KERNEL); + if (digest == NULL) { + rc = -ENOMEM; + goto err_nomem; + } + + if (ha == SA_HASH_ALG_MD5) { + child_name = "md5"; + padsize = 48; + } else if (ha == SA_HASH_ALG_SHA1) { + child_name = "sha1"; + padsize = 40; + } + + child_hash = crypto_alloc_hash(child_name, 0, 0); + if (IS_ERR(child_hash)) { + rc = PTR_ERR(child_hash); + printk(KERN_ERR + "failed to load transform for %s error %d\n", + child_name, rc); + goto err_alg; + } + + child_tfm = crypto_hash_tfm(child_hash); + ds = crypto_hash_digestsize(child_hash); + desc.tfm = child_hash; + desc.flags = 0; + + if (keylen > bs) { + sg_init_one(&sg[0], key, keylen); + rc = crypto_hash_init(&desc); + if (rc < 0) + goto err_alg_hash_key; + rc = crypto_hash_update(&desc, &sg[0], keylen); + if (rc < 0) + goto err_alg_hash_key; + rc = crypto_hash_final(&desc, digest); + key = digest; + keylen = ds; + } + + ipad = kmalloc(bs * 4, GFP_KERNEL); + if (ipad == NULL) + goto err_nomem; + + memcpy(ipad, key, keylen); + memset(ipad + keylen, 0, bs); + opad = ipad + bs; + memcpy(opad, ipad, bs); + + for (i = 0; i < bs; i++) { + ipad[i] ^= 0x36; + opad[i] ^= 0x5c; + } + + sg_init_one(&sg[0], ipad, bs); + rc = crypto_hash_init(&desc); + if (rc < 0) + goto err_alg_hash_key; + rc = crypto_hash_update(&desc, sg, bs); + if (rc < 0) + goto err_alg_hash_key; + + crypto_hash_partial(&desc, digest); + memcpy(ctx->sa_in + get_dynamic_sa_offset_inner_digest(ctx), digest, ds); + + sg_init_one(&sg[0], opad, bs); + rc = crypto_hash_init(&desc); + if (rc < 0) + goto err_alg_hash_key; + rc = crypto_hash_update(&desc, sg, bs); + if (rc < 0) + goto err_alg_hash_key; + + crypto_hash_partial(&desc, digest); + memcpy(ctx->sa_in + get_dynamic_sa_offset_outer_digest(ctx), digest, ds); + +err_alg_hash_key: + crypto_free_hash(child_hash); +err_alg: + kfree(digest); +err_nomem: + return rc; +} + +int crypto4xx_compute_gcm_hash_key_sw(struct crypto4xx_ctx *ctx, + const u8 *key, + unsigned int keylen) +{ + struct crypto_blkcipher *aes_tfm = NULL; + struct blkcipher_desc desc; + struct scatterlist sg[1]; + char src[16]; + int rc = 0; + + aes_tfm = crypto_alloc_blkcipher("ecb(aes)", 0, CRYPTO_ALG_ASYNC); + if (IS_ERR(aes_tfm)) { + printk(KERN_ERR "failed to load transform for %ld\n", + PTR_ERR(aes_tfm)); + rc = PTR_ERR(aes_tfm); + return rc; + } + desc.tfm = aes_tfm; + desc.flags = 0; + + memset(src, 0, 16); + rc = crypto_blkcipher_setkey(aes_tfm, key, keylen); + if (rc) { + printk(KERN_ERR "setkey() failed flags=%x\n", + crypto_blkcipher_get_flags(aes_tfm)); + goto out; + } + + sg_init_one(sg, src, 16); + rc = crypto_blkcipher_encrypt(&desc, sg, sg, 16); + if (rc) + goto out; + crypto4xx_memcpy_le(ctx->sa_in + + get_dynamic_sa_offset_inner_digest(ctx), src, 16); + +out: + crypto_free_blkcipher(aes_tfm); + return rc; +} + +/** + * 3DES/DES Functions + * + */ +static int crypto4xx_setkey_3des(struct crypto_ablkcipher *cipher, + const u8 *key, + unsigned int keylen, + unsigned char cm, + unsigned char fb) +{ + struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); + struct crypto_alg *alg = tfm->__crt_alg; + struct crypto4xx_alg *my_alg = crypto_alg_to_crypto4xx_alg(alg); + struct dynamic_sa_ctl *sa; + int rc; + + ctx->dev = my_alg->dev; + + if (keylen != DES_KEY_SIZE && keylen != DES3_EDE_KEY_SIZE) { + crypto_ablkcipher_set_flags(cipher, + CRYPTO_TFM_RES_BAD_KEY_LEN); + + return -EINVAL; + } + + if (keylen == DES_KEY_SIZE) { + u32 tmp[32]; + rc = des_ekey(tmp, key); + if (unlikely(rc == 0) && + (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) { + crypto_ablkcipher_set_flags(cipher, + CRYPTO_TFM_RES_WEAK_KEY); + return -EINVAL; + } + } + + /* Create SA */ + if (ctx->sa_in_dma_addr || ctx->sa_out_dma_addr) + crypto4xx_free_sa(ctx); + + rc = crypto4xx_alloc_sa(ctx, keylen == 8 ? SA_DES_LEN : SA_3DES_LEN); + if (rc) + return rc; + /* + * state record will state in base ctx, so iv and + * hash result can be reused + * also don't need to alloc each packet coming + */ + if (ctx->state_record_dma_addr == 0) { + rc = crypto4xx_alloc_state_record(ctx); + if (rc) { + crypto4xx_free_sa(ctx); + return rc; + } + } + + /* Setup SA */ + ctx->direction = DIR_INBOUND; + ctx->hash_final = 0; + + sa = (struct dynamic_sa_ctl *) ctx->sa_in; + set_dynamic_sa_command_0(sa, SA_NOT_SAVE_HASH, SA_NOT_SAVE_IV, + SA_LOAD_HASH_FROM_SA, SA_LOAD_IV_FROM_STATE, + SA_NO_HEADER_PROC, SA_HASH_ALG_NULL, + SA_CIPHER_ALG_DES, + SA_PAD_TYPE_ZERO, SA_OP_GROUP_BASIC, + SA_OPCODE_DECRYPT, DIR_INBOUND); + + set_dynamic_sa_command_1(sa, cm, SA_HASH_MODE_HASH, + fb, SA_EXTENDED_SN_OFF, + SA_SEQ_MASK_OFF, SA_MC_ENABLE, + SA_NOT_COPY_PAD, SA_COPY_PAYLOAD, + SA_NOT_COPY_HDR); + + if (keylen == DES_KEY_SIZE) { + crypto4xx_memcpy_le(((struct dynamic_sa_des *) sa)->key, + key, keylen); + ((struct dynamic_sa_des *)sa)->ctrl.sa_contents = + SA_DES_CONTENTS; + sa->sa_command_0.bf.cipher_alg = SA_CIPHER_ALG_DES; + } else { + crypto4xx_memcpy_le(((struct dynamic_sa_3des *) sa)->key, + key, keylen); + ((struct dynamic_sa_3des *)sa)->ctrl.sa_contents = + SA_3DES_CONTENTS; + sa->sa_command_0.bf.cipher_alg = SA_CIPHER_ALG_3DES; + } + + memcpy((void *)(ctx->sa_in + + get_dynamic_sa_offset_state_ptr_field(ctx)), + (void *)&ctx->state_record_dma_addr, 4); + ctx->offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(ctx); + ctx->is_hash = 0; + sa->sa_command_0.bf.dir = DIR_INBOUND; + memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4); + sa = (struct dynamic_sa_ctl *) ctx->sa_out; + sa->sa_command_0.bf.dir = DIR_OUTBOUND; + + return 0; +} + +int crypto4xx_setkey_3des_cfb(struct crypto_ablkcipher *cipher, + const u8 *key, unsigned int keylen) +{ + return crypto4xx_setkey_3des(cipher, key, keylen, + CRYPTO_MODE_CFB, + CRYPTO_FEEDBACK_MODE_8BIT_CFB); +} + +int crypto4xx_setkey_3des_ofb(struct crypto_ablkcipher *cipher, + const u8 *key, unsigned int keylen) +{ + return crypto4xx_setkey_3des(cipher, key, keylen, + CRYPTO_MODE_OFB, + CRYPTO_FEEDBACK_MODE_64BIT_OFB); +} + +int crypto4xx_setkey_3des_cbc(struct crypto_ablkcipher *cipher, + const u8 *key, unsigned int keylen) +{ + return crypto4xx_setkey_3des(cipher, key, keylen, + CRYPTO_MODE_CBC, + CRYPTO_FEEDBACK_MODE_NO_FB); +} + +int crypto4xx_setkey_3des_ecb(struct crypto_ablkcipher *cipher, + const u8 *key, unsigned int keylen) +{ + return crypto4xx_setkey_3des(cipher, key, keylen, + CRYPTO_MODE_ECB, + CRYPTO_FEEDBACK_MODE_NO_FB); +} + + int crypto4xx_encrypt(struct ablkcipher_request *req) { struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); @@ -79,22 +517,54 @@ int crypto4xx_encrypt(struct ablkcipher_request *req) ctx->pd_ctl = 0x1; return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, - req->nbytes, req->info, - get_dynamic_sa_iv_size(ctx)); + req->nbytes, NULL, 0, req->info, + get_dynamic_sa_iv_size(ctx)); } int crypto4xx_decrypt(struct ablkcipher_request *req) { struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); + ctx->hash_final = 0; + ctx->is_hash = 0; + ctx->pd_ctl = 0x1; ctx->direction = DIR_INBOUND; + + return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, + req->nbytes, NULL, 0, req->info, + get_dynamic_sa_iv_size(ctx)); +} + +int crypto4xx_encrypt_ctr(struct ablkcipher_request *req) +{ + struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req); + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); + ctx->hash_final = 0; ctx->is_hash = 0; - ctx->pd_ctl = 1; + ctx->pd_ctl = 0x1; + ctx->direction = DIR_OUTBOUND; return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, - req->nbytes, req->info, - get_dynamic_sa_iv_size(ctx)); + req->nbytes, NULL, 0, + req->info, + crypto_ablkcipher_ivsize(ablkcipher)); +} + +int crypto4xx_decrypt_ctr(struct ablkcipher_request *req) +{ + struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req); + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); + + ctx->hash_final = 0; + ctx->is_hash = 0; + ctx->pd_ctl = 0x1; + ctx->direction = DIR_INBOUND; + + return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, + req->nbytes, NULL, 0, + req->info, + crypto_ablkcipher_ivsize(ablkcipher)); } /** @@ -106,11 +576,15 @@ static int crypto4xx_setkey_aes(struct crypto_ablkcipher *cipher, unsigned char cm, u8 fb) { - struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); - struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); - struct dynamic_sa_ctl *sa; + struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); + struct crypto_alg *alg = tfm->__crt_alg; + struct crypto4xx_alg *my_alg = crypto_alg_to_crypto4xx_alg(alg); + struct dynamic_sa_ctl *sa; int rc; + ctx->dev = my_alg->dev; + if (keylen != AES_KEYSIZE_256 && keylen != AES_KEYSIZE_192 && keylen != AES_KEYSIZE_128) { crypto_ablkcipher_set_flags(cipher, @@ -162,10 +636,17 @@ static int crypto4xx_setkey_aes(struct crypto_ablkcipher *cipher, memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4); sa = (struct dynamic_sa_ctl *) ctx->sa_out; sa->sa_command_0.bf.dir = DIR_OUTBOUND; - + return 0; } +int crypto4xx_setkey_aes_ecb(struct crypto_ablkcipher *cipher, + const u8 *key, unsigned int keylen) +{ + return crypto4xx_setkey_aes(cipher, key, keylen, CRYPTO_MODE_ECB, + CRYPTO_FEEDBACK_MODE_NO_FB); +} + int crypto4xx_setkey_aes_cbc(struct crypto_ablkcipher *cipher, const u8 *key, unsigned int keylen) { @@ -173,19 +654,716 @@ int crypto4xx_setkey_aes_cbc(struct crypto_ablkcipher *cipher, CRYPTO_FEEDBACK_MODE_NO_FB); } +int crypto4xx_setkey_aes_ctr(struct crypto_ablkcipher *cipher, + const u8 *key, unsigned int keylen) +{ + struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); + struct crypto_alg *alg = tfm->__crt_alg; + struct crypto4xx_alg *my_alg = crypto_alg_to_crypto4xx_alg(alg); + struct dynamic_sa_ctl *sa; + u32 cnt = 1; + int rc; + u32 cm = CRYPTO_MODE_AES_CTR; + + ctx->dev = my_alg->dev; + + keylen -= 4; + /* Create SA */ + if (ctx->sa_in_dma_addr || ctx->sa_out_dma_addr) + crypto4xx_free_sa(ctx); + + if (keylen != AES_KEYSIZE_256 && + keylen != AES_KEYSIZE_192 && keylen != AES_KEYSIZE_128) { + crypto_ablkcipher_set_flags(cipher, + CRYPTO_TFM_RES_BAD_KEY_LEN); + return -EINVAL; + } + + rc = crypto4xx_alloc_sa(ctx, SA_AES128_LEN + (keylen-16) / 4); + if (rc) + return rc; + + if (ctx->state_record_dma_addr == 0) { + rc = crypto4xx_alloc_state_record(ctx); + if (rc) { + crypto4xx_free_sa(ctx); + return rc; + } + } + + sa = (struct dynamic_sa_ctl *) ctx->sa_in; + ctx->hash_final = 0; + ctx->ctr_aes = 1; + /* Setup SA */ + set_dynamic_sa_command_0(sa, SA_NOT_SAVE_HASH, SA_NOT_SAVE_IV, + SA_LOAD_HASH_FROM_SA, SA_LOAD_IV_FROM_STATE, + SA_NO_HEADER_PROC, SA_HASH_ALG_NULL, + SA_CIPHER_ALG_AES, SA_PAD_TYPE_ZERO, + SA_OP_GROUP_BASIC, SA_OPCODE_ENCRYPT, + DIR_INBOUND); + set_dynamic_sa_command_1(sa, cm, SA_HASH_MODE_HASH, + CRYPTO_FEEDBACK_MODE_NO_FB, + SA_EXTENDED_SN_OFF, SA_SEQ_MASK_OFF, + SA_MC_ENABLE, SA_NOT_COPY_PAD, + SA_NOT_COPY_PAYLOAD, + SA_NOT_COPY_HDR); + + crypto4xx_memcpy_le(ctx->sa_in + get_dynamic_sa_offset_key_field(ctx), + key, keylen); + sa->sa_contents = SA_AES_CONTENTS | (keylen << 2); + sa->sa_command_1.bf.key_len = keylen >> 3; + + ctx->direction = DIR_INBOUND; + memcpy(ctx->sa_in + get_dynamic_sa_offset_state_ptr_field(ctx), + (void *)&ctx->state_record_dma_addr, 4); + ctx->offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(ctx); + + crypto4xx_memcpy_le(ctx->state_record, key + keylen, 4); + crypto4xx_memcpy_le(ctx->state_record + 12, (void *)&cnt, 4); + + sa->sa_command_0.bf.dir = DIR_INBOUND; + + memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4); + sa = (struct dynamic_sa_ctl *) ctx->sa_out; + sa->sa_command_0.bf.dir = DIR_OUTBOUND; + + return 0; +} + +int crypto4xx_setkey_aes_cfb(struct crypto_ablkcipher *cipher, + const u8 *key, unsigned int keylen) +{ + return crypto4xx_setkey_aes(cipher, key, keylen, CRYPTO_MODE_CFB, + CRYPTO_FEEDBACK_MODE_128BIT_CFB); +} + +int crypto4xx_setkey_aes_ofb(struct crypto_ablkcipher *cipher, + const u8 *key, unsigned int keylen) +{ + return crypto4xx_setkey_aes(cipher, key, keylen, CRYPTO_MODE_OFB, + CRYPTO_FEEDBACK_MODE_64BIT_OFB); +} + +int crypto4xx_setkey_aes_icm(struct crypto_ablkcipher *cipher, + const u8 *key, unsigned int keylen) +{ + return crypto4xx_setkey_aes(cipher, key, keylen, CRYPTO_MODE_AES_ICM, + CRYPTO_FEEDBACK_MODE_NO_FB); +} + +/** + * AES-GCM Functions + */ +static inline int crypto4xx_aes_gcm_validate_keylen(unsigned int keylen) +{ + switch (keylen) { + case 16: + case 20: + case 24: + case 30: + case 32: + case 36: + return 0; + default: + printk(KERN_ERR "crypto4xx_setkey_aes_gcm: " + "ERROR keylen = 0x%08x\n", keylen); + return -EINVAL; + } + return -EINVAL; +} + +int crypto4xx_setkey_aes_gcm(struct crypto_aead *cipher, + const u8 *key, unsigned int keylen) + +{ + struct crypto_tfm *tfm = crypto_aead_tfm(cipher); + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); + struct crypto_alg *alg = tfm->__crt_alg; + struct crypto4xx_alg *my_alg = crypto_alg_to_crypto4xx_alg(alg); + struct dynamic_sa_ctl *sa; + int rc = 0; + + u32 cm = 4; + + ctx->dev = my_alg->dev; + + if (crypto4xx_aes_gcm_validate_keylen(keylen) != 0) { + printk(KERN_ERR "crypto4xx_setkey_aes_gcm:" + "ERROR keylen = 0x%08x\n", keylen); + crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); + return -EINVAL; + } + + if (ctx->sa_in_dma_addr || ctx->sa_out_dma_addr) + crypto4xx_free_sa(ctx); + + rc = crypto4xx_alloc_sa(ctx, SA_AES128_GCM_LEN + (keylen-16) / 4); + if (rc) + return rc; + + if (ctx->state_record_dma_addr == 0) { + rc = crypto4xx_alloc_state_record(ctx); + if (rc) + goto err; + } + + sa = (struct dynamic_sa_ctl *) ctx->sa_in; + + sa->sa_contents = SA_AES_GCM_CONTENTS | (keylen << 2); + sa->sa_command_1.bf.key_len = keylen >> 3; + + ctx->direction = DIR_INBOUND; + crypto4xx_memcpy_le(ctx->sa_in + get_dynamic_sa_offset_key_field(ctx), + key, keylen); + + memcpy(ctx->sa_in + get_dynamic_sa_offset_state_ptr_field(ctx), + (void *)&ctx->state_record_dma_addr, 4); + + rc = crypto4xx_compute_gcm_hash_key_sw(ctx, key, keylen); + if (rc) { + printk(KERN_ERR "GCM hash key setting failed = %d\n", rc); + goto err; + } + + ctx->offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(ctx); + ctx->is_gcm = 1; + ctx->hash_final = 1; + ctx->is_hash = 0; + ctx->pd_ctl = 0x11; + + set_dynamic_sa_command_0(sa, SA_SAVE_HASH, SA_NOT_SAVE_IV, + SA_LOAD_HASH_FROM_SA, SA_LOAD_IV_FROM_STATE, + SA_NO_HEADER_PROC, SA_HASH_ALG_GHASH, + SA_CIPHER_ALG_AES, SA_PAD_TYPE_ZERO, + SA_OP_GROUP_BASIC, SA_OPCODE_HASH_DECRYPT, + DIR_INBOUND); + + sa->sa_command_1.bf.crypto_mode31 = (cm & 4) >> 2; + sa->sa_command_1.bf.crypto_mode9_8 = (cm & 3); + sa->sa_command_1.bf.feedback_mode = 0; + + sa->sa_command_1.bf.hash_crypto_offset = 0; + sa->sa_command_1.bf.sa_rev = 1; + sa->sa_command_1.bf.copy_payload = 1; + + sa->sa_command_1.bf.copy_pad = 0; + sa->sa_command_1.bf.copy_hdr = 0; + sa->sa_command_1.bf.mutable_bit_proc = 1; + sa->sa_command_1.bf.seq_num_mask = 1; + + memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4); + sa = (struct dynamic_sa_ctl *) ctx->sa_out; + sa->sa_command_0.bf.dir = DIR_OUTBOUND; + sa->sa_command_0.bf.opcode = SA_OPCODE_ENCRYPT_HASH; + + return 0; +err: + crypto4xx_free_sa(ctx); + return rc; +} + +int crypto4xx_encrypt_aes_gcm(struct aead_request *req) +{ + struct crypto_aead *aead = crypto_aead_reqtfm(req); + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); + + ctx->direction = DIR_OUTBOUND; + ctx->append_icv = 1; + + return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, + req->cryptlen, req->assoc, req->assoclen, + req->iv, crypto_aead_ivsize(aead)); +} + +int crypto4xx_decrypt_aes_gcm(struct aead_request *req) +{ + struct crypto_aead *aead = crypto_aead_reqtfm(req); + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); + int len = req->cryptlen - crypto_aead_authsize(aead); + + ctx->direction = DIR_INBOUND; + ctx->append_icv = 0; + return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, + len, req->assoc, req->assoclen, + req->iv, crypto_aead_ivsize(aead)); +} + +int crypto4xx_givencrypt_aes_gcm(struct aead_givcrypt_request *req) +{ + return -ENOSYS; +} + +int crypto4xx_givdecrypt_aes_gcm(struct aead_givcrypt_request *req) +{ + return -ENOSYS; +} + +/** + * AES-CCM Functions + */ +int crypto4xx_setauthsize_aes(struct crypto_aead *ciper, + unsigned int authsize) +{ + struct aead_tfm *tfm = crypto_aead_crt(ciper); + + switch (authsize) { + case 8: + case 12: + case 16: + case 10: + break; + default: + return -EINVAL; + } + + tfm->authsize = authsize; + return 0; +} + +int crypto4xx_setkey_aes_ccm(struct crypto_aead *cipher, const u8 *key, + unsigned int keylen) +{ + struct crypto_tfm *tfm = crypto_aead_tfm(cipher); + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); + struct crypto_alg *alg = tfm->__crt_alg; + struct crypto4xx_alg *my_alg = crypto_alg_to_crypto4xx_alg(alg); + struct dynamic_sa_ctl *sa; + int rc = 0; + + ctx->dev = my_alg->dev; + + if (ctx->sa_in_dma_addr || ctx->sa_out_dma_addr) + crypto4xx_free_sa(ctx); + + rc = crypto4xx_alloc_sa(ctx, SA_AES128_CCM_LEN + (keylen-16) / 4); + if (rc) + return rc; + + if (ctx->state_record_dma_addr == 0) { + rc = crypto4xx_alloc_state_record(ctx); + if (rc) { + crypto4xx_free_sa(ctx); + return rc; + } + } + + /* Setup SA */ + sa = (struct dynamic_sa_ctl *) ctx->sa_in; + sa->sa_contents = SA_AES_CCM_CONTENTS | (keylen << 2); + + set_dynamic_sa_command_0(sa, SA_NOT_SAVE_HASH, SA_NOT_SAVE_IV, + SA_LOAD_HASH_FROM_SA, SA_LOAD_IV_FROM_STATE, + SA_NO_HEADER_PROC, SA_HASH_ALG_CBC_MAC, + SA_CIPHER_ALG_AES, + SA_PAD_TYPE_ZERO, SA_OP_GROUP_BASIC, + SA_OPCODE_HASH_DECRYPT, DIR_INBOUND); + + sa->sa_command_0.bf.digest_len = 0; + sa->sa_command_1.bf.key_len = keylen >> 3; + ctx->direction = DIR_INBOUND; + ctx->append_icv = 0; + ctx->is_gcm = 0; + ctx->hash_final = 1; + ctx->is_hash = 0; + ctx->pd_ctl = 0x11; + + crypto4xx_memcpy_le(ctx->sa_in + get_dynamic_sa_offset_key_field(ctx), + key, keylen); + memcpy(ctx->sa_in + get_dynamic_sa_offset_state_ptr_field(ctx), + (void *)&ctx->state_record_dma_addr, 4); + ctx->offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(ctx); + + set_dynamic_sa_command_1(sa, CRYPTO_MODE_AES_CTR, SA_HASH_MODE_HASH, + CRYPTO_FEEDBACK_MODE_NO_FB, SA_EXTENDED_SN_OFF, + SA_SEQ_MASK_OFF, SA_MC_ENABLE, + SA_NOT_COPY_PAD, SA_COPY_PAYLOAD, + SA_NOT_COPY_HDR); + + memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4); + sa = (struct dynamic_sa_ctl *) ctx->sa_out; + set_dynamic_sa_command_0(sa, SA_SAVE_HASH, SA_NOT_SAVE_IV, + SA_LOAD_HASH_FROM_SA, SA_LOAD_IV_FROM_STATE, + SA_NO_HEADER_PROC, SA_HASH_ALG_CBC_MAC, + SA_CIPHER_ALG_AES, + SA_PAD_TYPE_ZERO, SA_OP_GROUP_BASIC, + SA_OPCODE_ENCRYPT_HASH, DIR_OUTBOUND); + set_dynamic_sa_command_1(sa, CRYPTO_MODE_AES_CTR, SA_HASH_MODE_HASH, + CRYPTO_FEEDBACK_MODE_NO_FB, SA_EXTENDED_SN_OFF, + SA_SEQ_MASK_OFF, SA_MC_ENABLE, + SA_NOT_COPY_PAD, SA_COPY_PAYLOAD, + SA_NOT_COPY_HDR); + + return 0; +} + +int crypto4xx_encrypt_aes_ccm(struct aead_request *req) +{ + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); + struct crypto_aead *aead = crypto_aead_reqtfm(req); + struct dynamic_sa_ctl *sa; + + ctx->direction = DIR_OUTBOUND; + + sa = (struct dynamic_sa_ctl *) ctx->sa_out; + if (req->assoclen) + sa->sa_command_1.bf.hash_crypto_offset = req->assoclen >> 2; + + sa->sa_command_0.bf.digest_len = (crypto_aead_authsize(aead) >> 2); + if ((req->iv[0] & 7) == 1) + sa->sa_command_1.bf.crypto_mode9_8 = 1; + + ctx->append_icv = 1; + return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, + req->cryptlen, req->assoc, req->assoclen, + req->iv, 16); +} + +int crypto4xx_decrypt_aes_ccm(struct aead_request *req) +{ + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); + struct crypto_aead *aead = crypto_aead_reqtfm(req); + struct dynamic_sa_ctl *sa; + + /* Support only counter field length of 2 and 4 bytes */ + if ((req->iv[0] & 0x7) != 1 && (req->iv[0] & 0x7) != 3) { + printk(KERN_ERR "algorithm AES-CCM " + "unsupported counter length %d\n", + req->iv[0] & 0x7); + return -EINVAL; + } + + ctx->direction = DIR_INBOUND; + sa = (struct dynamic_sa_ctl *) ctx->sa_in; + + sa->sa_command_0.bf.digest_len = (crypto_aead_authsize(aead) >> 2); + if ((req->iv[0] & 7) == 1) + sa->sa_command_1.bf.crypto_mode9_8 = 1; + else + sa->sa_command_1.bf.crypto_mode9_8 = 0; + + return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, + req->cryptlen, req->assoc, req->assoclen, + req->iv, 16); +} + +int crypto4xx_givencrypt_aes_ccm(struct aead_givcrypt_request *req) +{ + return -ENOSYS; +} + +int crypto4xx_givdecrypt_aes_ccm(struct aead_givcrypt_request *req) +{ + return -ENOSYS; +} + /** - * HASH SHA1 Functions + * Kasumi Functions + * + */ +int crypto4xx_setkey_kasumi(struct crypto_ablkcipher *cipher, + const u8 *key, + unsigned int keylen, + unsigned char cm) +{ + struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); + struct crypto_alg *alg = tfm->__crt_alg; + struct crypto4xx_alg *my_alg = crypto_alg_to_crypto4xx_alg(alg); + struct dynamic_sa_ctl *sa; + u32 sa_len = 0; + int rc; + + if (keylen != 16) { + crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); + printk(KERN_ERR "%s: keylen fail\n", __func__); + return -EINVAL; + } + + ctx->dev = my_alg->dev; + + /* Create SA - SA is created here as the alg init function is + * common to many algorithm and it does not have the SA length + * as it is specify to an algorithm. See setkey function has + * to be called for encryption/decryption algorithm once, + * it is okay to do this here. + */ + if (ctx->sa_in_dma_addr || ctx->sa_out_dma_addr) + crypto4xx_free_sa(ctx); + + if (cm == CRYPTO_MODE_KASUMI) + sa_len = SA_KASUMI_LEN; + else if (cm == CRYPTO_MODE_KASUMI_f8) + sa_len = SA_KASUMI_F8_LEN; + + rc = crypto4xx_alloc_sa(ctx, sa_len); + if (rc) + return rc; + + if (!ctx->state_record) { + rc = crypto4xx_alloc_state_record(ctx); + if (rc) { + crypto4xx_free_sa(ctx); + return rc; + } + } + + sa = (struct dynamic_sa_ctl *) ctx->sa_in; + /* Setup SA - SA is a shared resource for request operation. As + * crypto alg and crypto mode can not be change, it should be + * ok to store them there. SA control words are not used by the + * hardware (configured in token instead), we use it to store + * software algorithm and mode selected. + */ + + if (cm == CRYPTO_MODE_KASUMI) { + sa->sa_contents = SA_KASUMI_CONTENTS; + sa->sa_command_0.bf.cipher_alg = SA_CIPHER_ALG_KASUMI; + sa->sa_command_0.bf.hash_alg = SA_HASH_ALG_NULL; + sa->sa_command_0.bf.pad_type = 3; /* set to zero padding */ + sa->sa_command_0.bf.opcode = 0; + sa->sa_command_1.bf.crypto_mode31 = (cm & 4) >> 2; + sa->sa_command_1.bf.crypto_mode9_8 = (cm & 3); + sa->sa_command_1.bf.feedback_mode = 0; + } else { + sa->sa_contents = SA_KASUMI_F8_CONTENTS; + sa->sa_command_0.bf.cipher_alg = SA_CIPHER_ALG_KASUMI; + sa->sa_command_0.bf.hash_alg = SA_HASH_ALG_NULL; + sa->sa_command_0.bf.pad_type = 3; + sa->sa_command_0.bf.load_iv = SA_LOAD_IV_FROM_STATE; + sa->sa_command_0.bf.opcode = SA_OPCODE_ENCRYPT; + sa->sa_command_1.bf.crypto_mode31 = (cm & 4) >> 2;; + sa->sa_command_1.bf.crypto_mode9_8 = (cm & 3); + sa->sa_command_1.bf.feedback_mode = 0; + sa->sa_command_1.bf.mutable_bit_proc = 1; + } + + ctx->direction = DIR_INBOUND; + sa->sa_command_1.bf.sa_rev = 1; + crypto4xx_memcpy_le(ctx->sa_in + get_dynamic_sa_offset_key_field(ctx), + key, keylen); + ctx->is_hash = 0; + + memcpy(ctx->sa_in + get_dynamic_sa_offset_state_ptr_field(ctx), + (void *)&ctx->state_record_dma_addr, 4); + ctx->offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(ctx); + sa->sa_command_0.bf.dir = DIR_INBOUND; + + memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4); + sa = (struct dynamic_sa_ctl *) ctx->sa_out; + sa->sa_command_0.bf.dir = DIR_OUTBOUND; + + return 0; +} + +int crypto4xx_setkey_kasumi_p(struct crypto_ablkcipher *cipher, + const u8 *key, + unsigned int keylen) +{ + return crypto4xx_setkey_kasumi(cipher, key, keylen, + CRYPTO_MODE_KASUMI); +} + +int crypto4xx_setkey_kasumi_f8(struct crypto_ablkcipher *cipher, + const u8 *key, + unsigned int keylen) +{ + return crypto4xx_setkey_kasumi(cipher, key, keylen, + CRYPTO_MODE_KASUMI_f8); +} + +/** + * Kasumi and Kasumi f8 work with number of bits. + * The crypto engine can only take number bytes as source/destination length + * User should round up bit number to byte number. When receive the result + * packet and then mask off the extra bits in the last + * byte. + */ +int crypto4xx_encrypt_kasumi(struct ablkcipher_request *req) +{ + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); + ctx->direction = DIR_OUTBOUND; + ctx->pd_ctl = 0x1; + + return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, + req->nbytes, NULL, 0, NULL, 0); +} + +/** + * Kasumi and Kasumi f8 work with number of bits. + * The crypto engine can only take number bytes as source/destination length + * User should round up bit number to byte number. + * When receive the result packet and then mask off the extra bits in the last + * byte. + */ +int crypto4xx_decrypt_kasumi(struct aead_request *req) +{ + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); + + ctx->pd_ctl = 0x1; + ctx->direction = DIR_INBOUND; + + return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, + req->cryptlen, NULL, 0, NULL, 0); +} + +/** + * Kasumi and Kasumi f8 work with number of bits. + * The crypto engine can only take number bytes as source/destination length + * The user should round up bit number to byte number. + * When receive the result packet and then mask + * off the extra bits in the last byte. + */ +int crypto4xx_encrypt_kasumi_f8(struct ablkcipher_request *req) +{ + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); + + ctx->direction = DIR_OUTBOUND; + ctx->is_hash = 0; + ctx->pd_ctl = 0x1; + + return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, + req->nbytes, NULL, 0, req->info, 8); +} + +/** Note: + * Kasumi and Kasumi f8 work with number of bits. + * The crypto engine can only take number bytes as source/destination length + * User should round up bit number to byte number. + * When receive the result packet and then mask off the extra bits in the last + * byte. + */ +int crypto4xx_decrypt_kasumi_f8(struct ablkcipher_request *req) +{ + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); + + ctx->direction = DIR_INBOUND; + ctx->is_hash = 0; + ctx->pd_ctl = 0x1; + + return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, + req->nbytes, NULL, 0, req->info, 8); +} + +/** + * ARC4 Functions + * + */ +int crypto4xx_setkey_arc4(struct crypto_ablkcipher *cipher, + const u8 *key, unsigned int keylen) +{ + struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); + struct crypto_alg *alg = tfm->__crt_alg; + struct crypto4xx_alg *my_alg = crypto_alg_to_crypto4xx_alg(alg); + struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in; + int rc = 0; + + ctx->dev = my_alg->dev; + + /* Create SA */ + if (ctx->sa_in_dma_addr || ctx->sa_out_dma_addr) + crypto4xx_free_sa(ctx); + + rc = crypto4xx_alloc_sa(ctx, SA_ARC4_LEN); + if (rc) + return rc; + +#if 0 + crypto4xx_alloc_arc4_state_record(ctx); + if (ctx->arc4_state_record == NULL) { + crypto4xx_free_sa(ctx); + return -ENOMEM; + } +#endif + if (ctx->arc4_state_record == NULL) { + rc = crypto4xx_alloc_arc4_state_record(ctx); + if (rc) { + crypto4xx_free_sa(ctx); + return -ENOMEM; + } + } + /* Setup SA */ + ctx->sa_len = SA_ARC4_LEN; + ctx->init_arc4 = 1; + ctx->direction = DIR_INBOUND; + + sa = ctx->sa_in; + memset(((struct dynamic_sa_arc4 *)sa)->key, 0, 16); + + crypto4xx_memcpy_le(((struct dynamic_sa_arc4 *)sa)->key, key, keylen); + sa->sa_contents = SA_ARC4_CONTENTS; + + set_dynamic_sa_command_0(sa, SA_NOT_SAVE_HASH, SA_NOT_SAVE_IV, + SA_LOAD_HASH_FROM_SA, SA_LOAD_IV_FROM_STATE, + SA_NO_HEADER_PROC, SA_HASH_ALG_NULL, + SA_CIPHER_ALG_ARC4, SA_PAD_TYPE_ZERO, + SA_OP_GROUP_BASIC, SA_OPCODE_ENCRYPT, + DIR_INBOUND); + + set_dynamic_sa_command_1(sa, 0, SA_HASH_MODE_HASH, + CRYPTO_FEEDBACK_MODE_NO_FB, + SA_EXTENDED_SN_OFF, SA_SEQ_MASK_OFF, + SA_MC_ENABLE, SA_NOT_COPY_PAD, + SA_COPY_PAYLOAD, SA_NOT_COPY_HDR); + + sa->sa_command_1.bf.key_len = keylen; + memcpy(sa + get_dynamic_sa_offset_arc4_state_ptr(ctx), + (void *)&ctx->arc4_state_record_dma_addr, 4); + + memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4); + sa = (struct dynamic_sa_ctl *) ctx->sa_out; + sa->sa_command_0.bf.dir = DIR_OUTBOUND; + + + return 0; +} + +int crypto4xx_arc4_encrypt(struct ablkcipher_request *req) +{ + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); + + if (ctx->init_arc4) { + ctx->init_arc4 = 0; + ctx->pd_ctl = 9; + } else { + ctx->pd_ctl = 0x1; + } + + return crypto4xx_build_pd(&req->base, ctx, req->src, + req->dst, + req->nbytes, NULL, 0, NULL, 0); +} + +int crypto4xx_arc4_decrypt(struct ablkcipher_request *req) +{ + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); + + if (ctx->init_arc4) { + ctx->init_arc4 = 0; + ctx->pd_ctl = 9; + } else { + ctx->pd_ctl = 0x1; + } + + return crypto4xx_build_pd(&req->base, ctx, req->src, + req->dst, + req->nbytes, NULL, 0, NULL, 0); +} + +/** + * Support MD5/SHA/HMAC Hashing Algorithms + * */ static int crypto4xx_hash_alg_init(struct crypto_tfm *tfm, unsigned int sa_len, unsigned char ha, unsigned char hm) { - struct crypto_alg *alg = tfm->__crt_alg; - struct crypto4xx_alg *my_alg = crypto_alg_to_crypto4xx_alg(alg); - struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); - struct dynamic_sa_ctl *sa; - struct dynamic_sa_hash160 *sa_in; + struct crypto_alg *alg = tfm->__crt_alg; + struct crypto4xx_alg *my_alg = crypto_alg_to_crypto4xx_alg(alg); + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); + struct dynamic_sa_ctl *sa; int rc; ctx->dev = my_alg->dev; @@ -200,6 +1378,7 @@ static int crypto4xx_hash_alg_init(struct crypto_tfm *tfm, if (rc) return rc; + if (ctx->state_record_dma_addr == 0) { crypto4xx_alloc_state_record(ctx); if (!ctx->state_record_dma_addr) { @@ -207,10 +1386,15 @@ static int crypto4xx_hash_alg_init(struct crypto_tfm *tfm, return -ENOMEM; } } - + crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct crypto4xx_ctx)); sa = (struct dynamic_sa_ctl *) ctx->sa_in; + + + /* + * Setup hash algorithm and hash mode + */ set_dynamic_sa_command_0(sa, SA_SAVE_HASH, SA_NOT_SAVE_IV, SA_NOT_LOAD_HASH, SA_LOAD_IV_FROM_SA, SA_NO_HEADER_PROC, ha, SA_CIPHER_ALG_NULL, @@ -221,13 +1405,12 @@ static int crypto4xx_hash_alg_init(struct crypto_tfm *tfm, SA_SEQ_MASK_OFF, SA_MC_ENABLE, SA_NOT_COPY_PAD, SA_NOT_COPY_PAYLOAD, SA_NOT_COPY_HDR); + + BUG_ON(ha >= HASH_ALG_MAX_CNT); + sa->sa_contents = crypto4xx_sa_hash_tbl[0][ha]; ctx->direction = DIR_INBOUND; - sa->sa_contents = SA_HASH160_CONTENTS; - sa_in = (struct dynamic_sa_hash160 *) ctx->sa_in; - /* Need to zero hash digest in SA */ - memset(sa_in->inner_digest, 0, sizeof(sa_in->inner_digest)); - memset(sa_in->outer_digest, 0, sizeof(sa_in->outer_digest)); - sa_in->state_ptr = ctx->state_record_dma_addr; + memcpy(ctx->sa_in + get_dynamic_sa_offset_state_ptr_field(ctx), + (void *)&ctx->state_record_dma_addr, 4); ctx->offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(ctx); return 0; @@ -261,7 +1444,7 @@ int crypto4xx_hash_update(struct ahash_request *req) return crypto4xx_build_pd(&req->base, ctx, req->src, (struct scatterlist *) req->result, - req->nbytes, NULL, 0); + req->nbytes, NULL, 0, NULL, 0); } int crypto4xx_hash_final(struct ahash_request *req) @@ -279,16 +1462,2627 @@ int crypto4xx_hash_digest(struct ahash_request *req) return crypto4xx_build_pd(&req->base, ctx, req->src, (struct scatterlist *) req->result, - req->nbytes, NULL, 0); + req->nbytes, NULL, 0, NULL, 0); } /** * SHA1 Algorithm */ + +int crypto4xx_md5_alg_init(struct crypto_tfm *tfm) +{ + return crypto4xx_hash_alg_init(tfm, SA_HASH128_LEN, SA_HASH_ALG_MD5, + SA_HASH_MODE_HASH); +} + +int crypto4xx_hash_hmac_setkey(struct crypto_ahash *hash, + const u8 *key, + unsigned int keylen, + unsigned int sa_len, + unsigned char ha, + unsigned char hm, + unsigned int max_keylen) +{ + struct crypto_tfm *tfm = crypto_ahash_tfm(hash); + struct crypto_alg *alg = tfm->__crt_alg; + struct crypto4xx_alg *my_alg = crypto_alg_to_crypto4xx_alg(alg); + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); + struct dynamic_sa_ctl *sa; + int bs = crypto_tfm_alg_blocksize(tfm); + int ds = crypto_ahash_digestsize(hash); + int rc; + + ctx->dev = my_alg->dev; + + if (keylen > max_keylen) { + crypto_ahash_set_flags(hash, CRYPTO_TFM_RES_BAD_KEY_LEN); + return -1; + } + + if (ctx->sa_in_dma_addr || ctx->sa_out_dma_addr) + crypto4xx_free_sa(ctx); + + /* Create SA */ + rc = crypto4xx_alloc_sa(ctx, sa_len); + if (rc) + return rc; + + if (ctx->state_record_dma_addr == 0) { + rc = crypto4xx_alloc_state_record(ctx); + if (rc) + goto err; + } + + sa = (struct dynamic_sa_ctl *) ctx->sa_in; + + /* + * Setup hash algorithm and hash mode + */ + set_dynamic_sa_command_0(sa, SA_SAVE_HASH, SA_NOT_SAVE_IV, + SA_NOT_LOAD_HASH, SA_LOAD_IV_FROM_SA, + SA_NO_HEADER_PROC, + ha, SA_CIPHER_ALG_NULL, SA_PAD_TYPE_ZERO, + SA_OP_GROUP_BASIC, SA_OPCODE_HASH, + DIR_INBOUND); + set_dynamic_sa_command_1(sa, 0, hm, + CRYPTO_FEEDBACK_MODE_NO_FB, + SA_EXTENDED_SN_OFF, + SA_SEQ_MASK_OFF, SA_MC_ENABLE, + SA_NOT_COPY_PAD, SA_NOT_COPY_PAYLOAD, + SA_NOT_COPY_HDR); + + BUG_ON(ha >= HASH_ALG_MAX_CNT); + sa->sa_contents = crypto4xx_sa_hash_tbl[0][ha]; + ctx->direction = DIR_INBOUND; + memcpy((ctx->sa_in) + get_dynamic_sa_offset_state_ptr_field(ctx), + (void *)&ctx->state_record_dma_addr, 4); + + ctx->offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(ctx); + rc = crypto4xx_pre_compute_hmac(ctx, (void *)key, keylen, bs, ha, ds); + if (rc) { + printk(KERN_ERR "Hmac Initial Digest Calculation failed\n"); + goto err; + } + + ctx->hash_final = 1; + ctx->is_hash = 1; + + memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4); + sa = (struct dynamic_sa_ctl *) ctx->sa_out; + sa->sa_command_0.bf.dir = DIR_OUTBOUND; + + return 0; +err: + crypto4xx_free_sa(ctx); + return rc; +} + +int crypto4xx_md5_hmac_setkey(struct crypto_ahash *hash, const u8 *key, + unsigned int keylen) +{ + return crypto4xx_hash_hmac_setkey(hash, key, keylen, SA_HASH128_LEN, + SA_HASH_ALG_MD5, SA_HASH_MODE_HMAC, + 256); +} + +/** + * SHA1 and SHA2 Algorithm + * + */ + int crypto4xx_sha1_alg_init(struct crypto_tfm *tfm) { return crypto4xx_hash_alg_init(tfm, SA_HASH160_LEN, SA_HASH_ALG_SHA1, SA_HASH_MODE_HASH); } +int crypto4xx_sha1_hmac_setkey(struct crypto_ahash *hash, const u8 *key, + unsigned int keylen) +{ + return crypto4xx_hash_hmac_setkey(hash, key, keylen, SA_HASH160_LEN, + SA_HASH_ALG_SHA1, SA_HASH_MODE_HMAC, + 256); +} + +int crypto4xx_sha2_alg_init(struct crypto_tfm *tfm) +{ + int ds = crypto_ahash_digestsize(__crypto_ahash_cast(tfm)); + u8 ha; + + switch (ds) { + default: + case 256/8: + ha = SA_HASH_ALG_SHA256; + break; + case 224/8: + ha = SA_HASH_ALG_SHA224; + break; + case 512/8: + ha = SA_HASH_ALG_SHA512; + break; + case 384/8: + ha = SA_HASH_ALG_SHA384; + break; + } + BUG_ON(ha >= HASH_ALG_MAX_CNT); + + return crypto4xx_hash_alg_init(tfm, + crypto4xx_sa_hash_tbl[2][ha], ha, 0); +} + +int crypto4xx_sha2_hmac_setkey(struct crypto_ahash *hash, + const u8 *key, + unsigned int keylen) +{ + int ds = crypto_ahash_digestsize(hash); + unsigned char ha; + + switch (ds) { + default: + case 256/8: + ha = SA_HASH_ALG_SHA256; + break; + case 224/8: + ha = SA_HASH_ALG_SHA224; + break; + case 512/8: + ha = SA_HASH_ALG_SHA512; + break; + case 384/8: + ha = SA_HASH_ALG_SHA384; + break; + } + BUG_ON(ha >= HASH_ALG_MAX_CNT); + + return crypto4xx_hash_hmac_setkey(hash, key, keylen, + crypto4xx_sa_hash_tbl[2][ha], + ha, + SA_HASH_MODE_HMAC, + 512); +} + +/** + * AES-XCBC-MAC Algorithm + * + */ +int crypto4xx_xcbc_digest(const unsigned char *key, + unsigned int keylen, + u8 *sa_hash, int bs) +{ + struct scatterlist sg[1]; + struct crypto_blkcipher *aes_tfm = NULL; + struct blkcipher_desc desc; + int rc; + u8 *digest; + + /* Load pre-computed key value into SA */ + aes_tfm = crypto_alloc_blkcipher("ecb(aes)", 0, CRYPTO_ALG_ASYNC); + if (IS_ERR(aes_tfm)) { + rc = PTR_ERR(aes_tfm); + printk(KERN_ERR "failed to load transform" + " for ecb(aes) error %d\n", rc); + goto err_alg; + } + desc.tfm = aes_tfm; + desc.flags = 0; + rc = crypto_blkcipher_setkey(desc.tfm, key, keylen); + if (rc) { + printk(KERN_ERR "failed to load key error %d\n", rc); + goto err_alg; + } + digest = kmalloc(16, GFP_KERNEL); + if (digest == NULL) { + rc = -ENOMEM; + goto err_alg; + } + + memset(digest, 0x01, bs); + sg_init_one(&sg[0], digest, bs); + rc = crypto_blkcipher_encrypt(&desc, sg, sg, bs); + if (rc < 0) { + printk(KERN_ERR "failed to hash key error %d\n", rc); + goto err_alg; + } + + crypto4xx_memcpy_le((void *) sa_hash, digest, bs); + + memset(digest, 0x02, bs); + sg_init_one(&sg[0], digest, bs); + rc = crypto_blkcipher_encrypt(&desc, sg, sg, bs); + if (rc < 0) { + printk(KERN_ERR "failed to hash key error %d\n", rc); + goto err_alg; + } + + sa_hash += 32; + crypto4xx_memcpy_le((void *) sa_hash, digest, bs); + + memset(digest, 0x03, bs); + sg_init_one(&sg[0], digest, bs); + rc = crypto_blkcipher_encrypt(&desc, sg, sg, bs); + if (rc < 0) { + printk(KERN_ERR "failed to hash key error %d\n", rc); + goto err_alg; + } + + sa_hash += 16; + crypto4xx_memcpy_le((void *) sa_hash, digest, bs); + + crypto_free_blkcipher(aes_tfm); + + return 0; +err_alg: +#if 0 + if (aes_tfm) + crypto_free_blkcipher(aes_tfm); +#endif + return rc; +} + +int crypto4xx_xcbc_setkey(struct crypto_ahash *hash, + const u8 *key, + unsigned int keylen) +{ + struct crypto_tfm *tfm = crypto_ahash_tfm(hash); + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); + struct crypto_alg *alg = tfm->__crt_alg; + struct crypto4xx_alg *my_alg = crypto_alg_to_crypto4xx_alg(alg); + int bs = crypto_tfm_alg_blocksize(tfm); + struct dynamic_sa_ctl *sa; + u8 *sa_hash; + int rc = 0; + + ctx->dev = my_alg->dev; + + if (keylen != 128/8) { + crypto_ahash_set_flags(hash, CRYPTO_TFM_RES_BAD_KEY_LEN); + return -EINVAL; + } + + if (ctx->sa_in_dma_addr || ctx->sa_out_dma_addr) + crypto4xx_free_sa(ctx); + + /* Create SA */ + rc = crypto4xx_alloc_sa(ctx, SA_AES128_XCBC_MAC_LEN); + if (rc) + return rc; + + if (ctx->state_record_dma_addr == 0) { + rc = crypto4xx_alloc_state_record(ctx); + if (rc) { + rc = -ENOMEM; + goto err; + } + } + + ctx->direction = DIR_INBOUND; + sa = (struct dynamic_sa_ctl *) ctx->sa_in; + /* + * Setup hash algorithm and hash mode + */ + sa->sa_contents = SA_AES128_XCBC_MAC_CONTENTS; + set_dynamic_sa_command_0(sa, SA_SAVE_HASH, SA_NOT_SAVE_IV, + SA_NOT_LOAD_HASH, SA_LOAD_IV_FROM_SA, + SA_NO_HEADER_PROC, + SA_HASH_ALG_AES_XCBC_MAC_128, + SA_CIPHER_ALG_NULL, SA_PAD_TYPE_ZERO, + SA_OP_GROUP_BASIC, SA_OPCODE_HASH, + DIR_INBOUND); + set_dynamic_sa_command_1(sa, 0, SA_HASH_MODE_HASH, + CRYPTO_FEEDBACK_MODE_NO_FB, + SA_EXTENDED_SN_OFF, + SA_SEQ_MASK_OFF, SA_MC_ENABLE, + SA_NOT_COPY_PAD, SA_NOT_COPY_PAYLOAD, + SA_NOT_COPY_HDR); + crypto4xx_memcpy_le(ctx->sa_in + get_dynamic_sa_offset_key_field(ctx), + key, keylen); + + memcpy((void *)(ctx->sa_in + + get_dynamic_sa_offset_state_ptr_field(ctx)), + (void *)&ctx->state_record_dma_addr, 4); + ctx->is_hash = 1; + ctx->offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(ctx); + sa_hash = (u8 *)(&(((struct dynamic_sa_aes128_xcbc_mac *) + ctx->sa_in)->inner_digest)); + rc = crypto4xx_xcbc_digest(key, keylen, sa_hash, bs); + if (rc) { + printk(KERN_ERR "XCBC Digest Calculation Failed %d\n", rc); + goto err; + } + + ctx->is_hash = 1; + ctx->hash_final = 1; + ctx->pd_ctl = 0x11; + + ctx->direction = DIR_INBOUND; + + memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4); + sa = (struct dynamic_sa_ctl *) ctx->sa_out; + sa->sa_command_0.bf.dir = DIR_OUTBOUND; + + return 0; +err: + crypto4xx_free_sa(ctx); + return rc; +} + +/** + * Kasumi F9 - Hash Algorithms + * + */ +int crypto4xx_kasumi_f9_setkey(struct crypto_ahash *hash, + const u8 *key, unsigned int keylen) +{ + struct crypto_tfm *tfm = crypto_ahash_tfm(hash); + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); + struct crypto_alg *alg = tfm->__crt_alg; + struct crypto4xx_alg *my_alg = crypto_alg_to_crypto4xx_alg(alg); + struct dynamic_sa_ctl *sa; + int rc; + + ctx->dev = my_alg->dev; + + if (keylen != 16) { + crypto_ahash_set_flags(hash, CRYPTO_TFM_RES_BAD_KEY_LEN); + return -EINVAL; + } + + /* Create SA */ + if (ctx->sa_in_dma_addr || ctx->sa_out_dma_addr) + crypto4xx_free_sa(ctx); + + rc = crypto4xx_alloc_sa(ctx, SA_KASUMI_F9_LEN); + if (rc) + return rc; + + if (ctx->state_record_dma_addr == 0) { + rc = crypto4xx_alloc_state_record(ctx); + if (rc) { + crypto4xx_free_sa(ctx); + return rc; + } + } + + sa = (struct dynamic_sa_ctl *) ctx->sa_in; + /* + * Setup hash algorithm and hash mode + */ + set_dynamic_sa_command_0(sa, SA_SAVE_HASH, SA_NOT_SAVE_IV, + SA_NOT_LOAD_HASH, SA_LOAD_IV_FROM_SA, + SA_NO_HEADER_PROC, SA_HASH_ALG_KASUMI_f9, + SA_CIPHER_ALG_NULL, SA_PAD_TYPE_ZERO, + SA_OP_GROUP_BASIC, SA_OPCODE_HASH, + DIR_INBOUND); + set_dynamic_sa_command_1(sa, 0, SA_HASH_MODE_HASH, + CRYPTO_FEEDBACK_MODE_NO_FB, SA_EXTENDED_SN_OFF, + SA_SEQ_MASK_OFF, SA_MC_ENABLE, + SA_NOT_COPY_PAD, SA_NOT_COPY_PAYLOAD, + SA_NOT_COPY_HDR); + sa->sa_contents = SA_KASUMI_F9_CONTENTS; + + ctx->direction = DIR_INBOUND; + memcpy((void *)(ctx->sa_in + + get_dynamic_sa_offset_state_ptr_field(ctx)), + (void *)&ctx->state_record_dma_addr, 4); + + crypto4xx_memcpy_le(ctx->sa_in + + get_dynamic_sa_offset_inner_digest(ctx), key, keylen); + ctx->offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(ctx); + ctx->is_hash = 1; + ctx->hash_final = 1; + ctx->pd_ctl = 0x11; + ctx->bypass = 4; + + return 0; +} + +int crypto4xx_kasumi_f9_digest(struct ahash_request *req) +{ + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); + struct scatterlist *src = req->src; + struct dynamic_sa_ctl *sa; + dma_addr_t addr; + + /* + * We have prepended count/fresh/direction/reserv total + * 16byte before the plaintext + * so, need to modify the length. + * We doing so, to make use of tcrypt.c's hash_test. + */ + sa = (struct dynamic_sa_ctl *) ctx->sa_in; + + addr = dma_map_page(NULL, sg_page(src), src->offset, + src->length, DMA_TO_DEVICE); + crypto4xx_memcpy_le((void *)sa + + get_dynamic_sa_offset_outer_digest(ctx), + phys_to_virt(addr), 12); + + return crypto4xx_build_pd(&req->base, ctx, req->src, + (struct scatterlist *)req->result, + req->nbytes, NULL, 0, NULL, 0); +} +/** IPSEC Related Routines */ + +int crypto4xx_setkey_esp_tunnel(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen, + u32 cipher_alg, + u32 hashing, + u32 c_mode, + u32 sa_len, + u32 sa_contents, + u32 ds, + u32 bypass, + u32 hash_bs) + +{ + struct crypto_tfm *tfm = crypto_aead_tfm(cipher); + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); + struct crypto_alg *alg = tfm->__crt_alg; + struct crypto4xx_alg *my_alg = crypto_alg_to_crypto4xx_alg(alg); + struct rtattr *rta = (void *) key; + struct dynamic_sa_ctl *sa; + + struct esp_authenc_param { + __be32 spi; + __be32 seq; + __be16 pad_block_size; + __be16 encap_uhl; + struct crypto_authenc_key_param authenc_param; + } *param; + + unsigned int enckeylen; + unsigned int authkeylen; + + if (!RTA_OK(rta, keylen)) + goto badkey; + + if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) + goto badkey; + + if (RTA_PAYLOAD(rta) < sizeof(*param)) + goto badkey; + + ctx->dev = my_alg->dev; + + param = RTA_DATA(rta); + + ctx->spi = be32_to_cpu(param->spi); + ctx->seq = be32_to_cpu(param->seq); + ctx->pad_block_size = be16_to_cpu(param->pad_block_size); + ctx->encap_uhl = be16_to_cpu(param->encap_uhl); + + ESP_PRINTK(KERN_INFO "%s: spi = 0x%08x, seq = %d, pad_size = %d, encap uhl = %d\n",__FUNCTION__, + ctx->spi, ctx->seq, ctx->pad_block_size, ctx->encap_uhl); + + enckeylen = be32_to_cpu(param->authenc_param.enckeylen); + + key += RTA_ALIGN(rta->rta_len); + keylen -= RTA_ALIGN(rta->rta_len); + + authkeylen = keylen - enckeylen; + + + printk(KERN_INFO "%s: enckeylen = %d, authkeylen = %d\n", + __FUNCTION__, enckeylen, authkeylen); +#if 0 + ESP_PHD(KERN_CONT, "", DUMP_PREFIX_OFFSET, + 16, 1, + (void*)key, authkeylen, false); + + ESP_PHD(KERN_CONT, "", DUMP_PREFIX_OFFSET, + 16, 1, + (void*)key+authkeylen, enckeylen, false); +#endif + /* Create SA */ + if (ctx->sa_in_dma_addr || ctx->sa_out_dma_addr) { + crypto4xx_free_sa(ctx); + } + + crypto4xx_alloc_sa(ctx, sa_len); + if (!ctx->sa_in_dma_addr || !ctx->sa_out_dma_addr) + goto err_nomem; + + if (!ctx->state_record) { + crypto4xx_alloc_state_record(ctx); + if (!ctx->state_record_dma_addr) + goto err_nomem_sr; + } + + ctx->direction = DIR_INBOUND; + sa = (struct dynamic_sa_ctl *)(ctx->sa_in); + /* + * Setup hash algorithm and hash mode + */ + sa->sa_command_0.w = 0; + sa->sa_command_0.bf.hash_alg = hashing; + sa->sa_command_0.bf.gather = 0; + sa->sa_command_0.bf.save_hash_state = 1; + sa->sa_command_0.bf.load_hash_state = 0; + sa->sa_command_0.bf.cipher_alg = SA_CIPHER_ALG_NULL; + sa->sa_command_0.bf.opcode = SA_OPCODE_HASH; + sa->sa_command_0.bf.dir = DIR_INBOUND; + sa->sa_command_1.w = 0; + sa->sa_command_1.bf.hmac_muting = 0; + sa->sa_command_1.bf.sa_rev = 1; + sa->sa_contents = sa_contents; + + memcpy(ctx->sa_in + get_dynamic_sa_offset_state_ptr_field(ctx), + (void*)&(ctx->state_record_dma_addr), 4); + + crypto4xx_pre_compute_hmac(ctx, (void *)key, authkeylen, + hash_bs, hashing, ds); + + /* + * Now, setup command for ESP + */ + sa->sa_command_0.bf.load_hash_state = 0; + sa->sa_command_0.bf.save_hash_state = 0; + sa->sa_command_0.bf.hdr_proc = 1; + + sa->sa_command_0.bf.load_iv = 2; + sa->sa_command_0.bf.cipher_alg = cipher_alg; + sa->sa_command_0.bf.op_group = SA_OP_GROUP_PROTOCOL; + sa->sa_command_0.bf.opcode = SA_OPCODE_ESP; + + sa->sa_command_1.bf.hmac_muting = 0; + + + printk(KERN_INFO "%s: keylen = %d, enckeylen = %d\n", + __FUNCTION__, keylen, enckeylen); + + if (cipher_alg == SA_CIPHER_ALG_AES) { + if ( enckeylen == 16) + sa->sa_command_1.bf.key_len = SA_AES_KEY_LEN_128; + else if ( enckeylen == 24) + sa->sa_command_1.bf.key_len = SA_AES_KEY_LEN_192; + else + sa->sa_command_1.bf.key_len = SA_AES_KEY_LEN_256; + } else { + sa->sa_command_1.bf.key_len = 0; + } + + sa->sa_command_1.bf.crypto_mode31 = c_mode >> 2; + sa->sa_command_1.bf.crypto_mode9_8 = c_mode & 3; + sa->sa_command_1.bf.feedback_mode = 0; + sa->sa_command_1.bf.copy_payload = 1; + sa->sa_command_1.bf.copy_pad = 1; + sa->sa_command_1.bf.copy_hdr = 1; + + sa->sa_command_1.bf.seq_num_mask = 1; + sa->sa_command_1.bf.mutable_bit_proc = 0; + + sa->sa_command_0.bf.hdr_proc = 1; + + crypto4xx_memcpy_le(ctx->sa_in + get_dynamic_sa_offset_key_field(ctx), + key+authkeylen, enckeylen); + + memcpy(ctx->sa_in + get_dynamic_sa_offset_spi(ctx), + (void*)&(ctx->spi), 4); + memcpy(ctx->sa_in + get_dynamic_sa_offset_seq_num(ctx), + (void*)&(ctx->seq), 4); + + /* + * Setup sa for inbound processing + */ + sa->sa_command_0.bf.dir = DIR_INBOUND; + sa->sa_command_0.bf.load_iv = 1; + sa->sa_command_0.bf.hdr_proc = 1; + + sa->sa_command_1.bf.copy_pad = 1; + sa->sa_command_1.bf.copy_hdr = 0; + sa->sa_command_1.bf.hash_crypto_offset = 6; + + + /* + * Setup sa for outbound processing + */ + memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len*4); + sa = (struct dynamic_sa_ctl *)(ctx->sa_out); + sa->sa_command_0.bf.dir = DIR_OUTBOUND; + sa->sa_command_0.bf.load_iv = 3; + sa->sa_command_0.bf.hdr_proc = 1; + + sa->sa_command_1.bf.hash_crypto_offset = 0; + sa->sa_command_1.bf.copy_pad = 1; + sa->sa_command_1.bf.copy_hdr = 1; + + ctx->bypass = bypass; + ctx->authenc = 0; + ctx->hash_final = 1; + ctx->is_hash = 0; + ctx->pad_ctl = param->pad_block_size/4; + ctx->append_icv = 0; + + return 0; + +err_nomem_sr: + crypto4xx_free_sa(ctx); + +err_nomem: + return -ENOMEM; +badkey: + ESP_PRINTK(KERN_INFO KERN_ERR "%s: badkey\n",__FUNCTION__); + return -EINVAL; +} + +int crypto4xx_setkey_tunnel_esp_cbc_aes_md5(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp_tunnel(cipher, key, keylen, + SA_CIPHER_ALG_AES, + SA_HASH_ALG_MD5, 1, + SA_ESP_MD5_SHA1_LEN, + SA_ESP_MD5_SHA1_CONTENTS, 16, 0, 64); +} + +int crypto4xx_setkey_tunnel_esp_cbc_aes_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp_tunnel(cipher, key, keylen, + SA_CIPHER_ALG_AES, + SA_HASH_ALG_SHA1, 1, + SA_ESP_MD5_SHA1_LEN, + SA_ESP_MD5_SHA1_CONTENTS, 20, 0, 64); +} + +int crypto4xx_setkey_tunnel_esp_cbc_aes_sha224(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp_tunnel(cipher, key, keylen, + SA_CIPHER_ALG_AES, + SA_HASH_ALG_SHA224, 1, + SA_ESP_SHA256_LEN, + SA_ESP_SHA256_CONTENTS, 28, 0, 64); +} + +int crypto4xx_setkey_tunnel_esp_cbc_aes_sha256(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp_tunnel(cipher, key, keylen, + SA_CIPHER_ALG_AES, + SA_HASH_ALG_SHA256, 1, + SA_ESP_SHA256_LEN, + SA_ESP_SHA256_CONTENTS, 32, 0, 64); +} + +int crypto4xx_setkey_tunnel_esp_cbc_aes_sha384(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp_tunnel(cipher, key, keylen, + SA_CIPHER_ALG_AES, + SA_HASH_ALG_SHA384, 1, + SA_ESP_SHA512_LEN, + SA_ESP_SHA512_CONTENTS, 48, 0, 128); +} + +int crypto4xx_setkey_tunnel_esp_cbc_aes_sha512(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp_tunnel(cipher, key, keylen, + SA_CIPHER_ALG_AES, + SA_HASH_ALG_SHA512, 1, + SA_ESP_SHA512_LEN, + SA_ESP_SHA512_CONTENTS, 64, 0, 128); +} +/** DES and 3DES Related IPSEC Algorithms */ +int crypto4xx_setkey_tunnel_esp_cbc_des_md5(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp_tunnel(cipher, key, keylen, + SA_CIPHER_ALG_DES, + SA_HASH_ALG_MD5, 1, + SA_ESP_DES_MD5_SHA1_LEN, + SA_ESP_DES_MD5_SHA1_CONTENTS, + 16, 0, 64); +} + +int crypto4xx_setkey_tunnel_esp_cbc_des_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp_tunnel(cipher, key, keylen, + SA_CIPHER_ALG_DES, + SA_HASH_ALG_SHA1, 1, + SA_ESP_DES_MD5_SHA1_LEN, + SA_ESP_DES_MD5_SHA1_CONTENTS, 20, 0, + 64); + +} + +int crypto4xx_setkey_tunnel_esp_cbc_des_sha224(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp_tunnel(cipher, key, keylen, + SA_CIPHER_ALG_DES, + SA_HASH_ALG_SHA224, 1, + SA_ESP_SHA256_LEN, + SA_ESP_SHA256_CONTENTS, + 28, 0, 64); +} + +int crypto4xx_setkey_tunnel_esp_cbc_des_sha256(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp_tunnel(cipher, key, keylen, + SA_CIPHER_ALG_DES, + SA_HASH_ALG_SHA256, 1, + SA_ESP_SHA256_LEN, + SA_ESP_SHA256_CONTENTS, 32, + 0, 64); +} + +int crypto4xx_setkey_tunnel_esp_cbc_des_sha384(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp_tunnel(cipher, key, keylen, + SA_CIPHER_ALG_DES, + SA_HASH_ALG_SHA384, 1, + SA_ESP_SHA512_LEN, + SA_ESP_SHA512_CONTENTS, + 48, 0, 128); +} + +int crypto4xx_setkey_tunnel_esp_cbc_des_sha512(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp_tunnel(cipher, key, keylen, + SA_CIPHER_ALG_DES, + SA_HASH_ALG_SHA512, 1, + SA_ESP_SHA512_LEN, + SA_ESP_SHA512_CONTENTS, + 64, 0, 128); +} + +int crypto4xx_setkey_tunnel_esp_cbc_3des_md5(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp_tunnel(cipher, key, keylen, + SA_CIPHER_ALG_3DES, + SA_HASH_ALG_MD5, 1, + SA_ESP_3DES_MD5_SHA1_LEN, + SA_ESP_3DES_MD5_SHA1_CONTENTS, + 16, 0, 64); +} +int crypto4xx_setkey_tunnel_esp_cbc_3des_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp_tunnel(cipher, key, keylen, + SA_CIPHER_ALG_3DES, + SA_HASH_ALG_SHA1, 1, + SA_ESP_3DES_MD5_SHA1_LEN, + SA_ESP_3DES_MD5_SHA1_CONTENTS, 20, + 0, + 64); +} + +int crypto4xx_setkey_tunnel_esp_cbc_3des_sha224(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp_tunnel(cipher, key, keylen, + SA_CIPHER_ALG_3DES, + SA_HASH_ALG_SHA224, 1, + SA_ESP_SHA256_LEN, + SA_ESP_SHA256_CONTENTS, + 28, 0, 64); +} + +int crypto4xx_setkey_tunnel_esp_cbc_3des_sha256(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp_tunnel(cipher, key, keylen, + SA_CIPHER_ALG_3DES, + SA_HASH_ALG_SHA256, 1, + SA_ESP_SHA256_LEN, + SA_ESP_SHA256_CONTENTS, + 32, 0, 64); +} + + +int crypto4xx_setkey_tunnel_esp_cbc_3des_sha384(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp_tunnel(cipher, key, keylen, + SA_CIPHER_ALG_3DES, + SA_HASH_ALG_SHA384, + 1, + SA_ESP_SHA512_LEN, + SA_ESP_SHA512_CONTENTS, + 48, 0, 128); +} + +int crypto4xx_setkey_tunnel_esp_cbc_3des_sha512(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp_tunnel(cipher, key, keylen, + SA_CIPHER_ALG_3DES, + SA_HASH_ALG_SHA512, 1, + SA_ESP_SHA512_LEN, + SA_ESP_SHA512_CONTENTS, + 64, 0, 128); +} + +int crypto4xx_encrypt_esp_tunnel(struct aead_givcrypt_request *givreq, + struct aead_request *req) +{ + + struct crypto4xx_ctx *ctx; +#if 0 + struct scatterlist *sg; + struct iphdr *iph; + void * daddr; + struct dynamic_sa_ctl *sa; +#endif + if (givreq) + req = &givreq->areq; + + ctx = crypto_tfm_ctx(req->base.tfm); + +#if 0 + sg = req->dst; + daddr = kmap_atomic(sg_page(sg), KM_SOFTIRQ1); + iph = (struct iphdr *)(daddr + sg->offset - 20); + ctx->next_hdr = (u32)(iph->protocol); + kunmap_atomic(daddr, KM_SOFTIRQ1); + + + ctx->next_hdr = 4; + ctx->pd_ctl =( ctx->pad_ctl << 24) + 0x11 + (ctx->next_hdr << 8); +#endif + ctx->hc_offset = 0; + ctx->pd_ctl =( ctx->pad_ctl << 24) + 0x411; + ctx->direction = DIR_OUTBOUND; + + return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, + req->cryptlen, NULL, 0, NULL, 0); + + +} + +int crypto4xx_decrypt_esp_tunnel(struct aead_request *req) +{ + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); + + ctx->pd_ctl =( ctx->pad_ctl << 24) + 0x11; + ctx->direction = DIR_INBOUND; + ctx->hc_offset = 6; + return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, + req->cryptlen, NULL, 0, NULL, 0); + +} +int crypto4xx_encrypt_esp_cbc(struct aead_request *req) +{ + return crypto4xx_encrypt_esp_tunnel(NULL, req); +} + +int crypto4xx_givencrypt_esp_cbc(struct aead_givcrypt_request *req) +{ + return crypto4xx_encrypt_esp_tunnel(req, NULL); +} + +int crypto4xx_decrypt_esp_cbc(struct aead_request *req) +{ + return crypto4xx_decrypt_esp_tunnel(req); +} + +/** Setkey Routine for IPSEC for Transport */ +int crypto4xx_setkey_esp(struct crypto_aead *cipher, + const u8 *key, unsigned int keylen, u32 cipher_alg, + u32 hashing, u32 c_mode, u32 sa_len, + u32 sa_contents, u32 ds, + u32 bypass, u32 hash_bs) + +{ + struct crypto_tfm *tfm = crypto_aead_tfm(cipher); + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); + struct crypto_alg *alg = tfm->__crt_alg; + struct crypto4xx_alg *my_alg = crypto_alg_to_crypto4xx_alg(alg); + struct rtattr *rta = (void *) key; + struct dynamic_sa_ctl *sa; + + struct esp_authenc_param { + __be32 spi; + __be32 seq; + __be16 pad_block_size; + __be16 encap_uhl; + struct crypto_authenc_key_param authenc_param; + } *param; + + unsigned int enckeylen; + unsigned int authkeylen; + + if (!RTA_OK(rta, keylen)) + goto badkey; + if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) + goto badkey; + + if (RTA_PAYLOAD(rta) < sizeof(*param)) + goto badkey; + + ctx->dev = my_alg->dev; + + param = RTA_DATA(rta); + + ctx->spi = be32_to_cpu(param->spi); + ctx->seq = be32_to_cpu(param->seq); + ctx->pad_block_size = be16_to_cpu(param->pad_block_size); + ctx->encap_uhl = be16_to_cpu(param->encap_uhl); + + ESP_PRINTK(KERN_INFO "%s: spi = 0x%08x, seq = %d, pad_size = %d, encap uhl = %d\n",__FUNCTION__, + ctx->spi, ctx->seq, ctx->pad_block_size, ctx->encap_uhl); + + enckeylen = be32_to_cpu(param->authenc_param.enckeylen); + + key += RTA_ALIGN(rta->rta_len); + keylen -= RTA_ALIGN(rta->rta_len); + + authkeylen = keylen - enckeylen; + + ESP_PRINTK(KERN_INFO "%s: enckeylen = %d, authkeylen = %d\n", + __FUNCTION__, enckeylen, authkeylen); + + ESP_PHD(KERN_CONT, "", DUMP_PREFIX_OFFSET, + 16, 1, + (void*)key, authkeylen, false); + + ESP_PHD(KERN_CONT, "", DUMP_PREFIX_OFFSET, + 16, 1, + (void*)key+authkeylen, enckeylen, false); + + /* Create SA */ + if (ctx->sa_in_dma_addr || ctx->sa_out_dma_addr) { + crypto4xx_free_sa(ctx); + } + + crypto4xx_alloc_sa(ctx, sa_len); + if (!ctx->sa_in_dma_addr || !ctx->sa_out_dma_addr) + goto err_nomem; + + if (!ctx->state_record) { + crypto4xx_alloc_state_record(ctx); + if (!ctx->state_record_dma_addr) + goto err_nomem_sr; + } + + sa = (struct dynamic_sa_ctl *) ctx->sa_in; + /* + * Setup hash algorithm and hash mode + */ + sa->sa_command_0.w = 0; + sa->sa_command_0.bf.hash_alg = hashing; + sa->sa_command_0.bf.gather = 0; + sa->sa_command_0.bf.save_hash_state = 1; + sa->sa_command_0.bf.load_hash_state = 0; + sa->sa_command_0.bf.cipher_alg = SA_CIPHER_ALG_NULL; + sa->sa_command_0.bf.opcode = SA_OPCODE_HASH; + sa->sa_command_0.bf.dir = DIR_INBOUND; + sa->sa_command_1.w = 0; + sa->sa_command_1.bf.hmac_muting = 0; + sa->sa_command_1.bf.sa_rev = 1; + sa->sa_contents = sa_contents; + + ctx->direction = DIR_INBOUND; + memcpy((ctx->sa_in) + get_dynamic_sa_offset_state_ptr_field(ctx), + (void*)&(ctx->state_record_dma_addr), 4); + + crypto4xx_pre_compute_hmac(ctx, (void *)key, authkeylen, + hash_bs, hashing, ds); + + /* + * Now, setup command for ESP + */ + sa->sa_command_0.bf.load_hash_state = 0; + sa->sa_command_0.bf.save_hash_state = 0; + sa->sa_command_0.bf.hdr_proc = 1; + + + sa->sa_command_0.bf.load_iv = 2; + sa->sa_command_0.bf.cipher_alg = cipher_alg; + sa->sa_command_0.bf.op_group = SA_OP_GROUP_PROTOCOL; + sa->sa_command_0.bf.opcode = SA_OPCODE_ESP; + + sa->sa_command_1.bf.hmac_muting = 0; + + + ESP_PRINTK(KERN_INFO "%s: keylen = %d, enckeylen = %d\n", + __FUNCTION__, keylen, enckeylen); + + if (cipher_alg == SA_CIPHER_ALG_AES) { + if ( enckeylen == 16) + { + ESP_PRINTK(KERN_INFO "%s: AES 128\n", __FUNCTION__); + sa->sa_command_1.bf.key_len = SA_AES_KEY_LEN_128; + } else if ( enckeylen == 24){ + ESP_PRINTK(KERN_INFO "%s: AES 192\n", __FUNCTION__); + sa->sa_command_1.bf.key_len = SA_AES_KEY_LEN_192; + } else { + ESP_PRINTK(KERN_INFO "%s: AES 256\n", __FUNCTION__); + sa->sa_command_1.bf.key_len = SA_AES_KEY_LEN_256; + } + } else { + sa->sa_command_1.bf.key_len = 0; + } + + sa->sa_command_1.bf.crypto_mode31 = c_mode >> 2; + sa->sa_command_1.bf.crypto_mode9_8 = c_mode & 3; + sa->sa_command_1.bf.feedback_mode = 0; + sa->sa_command_1.bf.copy_payload = 1; + sa->sa_command_1.bf.copy_pad = 1; + sa->sa_command_1.bf.copy_hdr = 1; + + sa->sa_command_1.bf.seq_num_mask = 1; + sa->sa_command_1.bf.mutable_bit_proc = 0; + + sa->sa_command_0.bf.hdr_proc = 1; + + crypto4xx_memcpy_le((void*)(ctx->sa_in) + get_dynamic_sa_offset_key_field(ctx), + key+authkeylen, enckeylen); + + memcpy(ctx->sa_in + get_dynamic_sa_offset_spi(ctx), + (void*)&(ctx->spi), + 4); + memcpy(ctx->sa_in + get_dynamic_sa_offset_seq_num(ctx), + (void*)&(ctx->seq), 4); + + + sa->sa_command_1.bf.copy_hdr = 0; + sa->sa_command_1.bf.hash_crypto_offset = 6; + + sa->sa_command_0.bf.load_iv = 1; + sa->sa_command_0.bf.dir = DIR_INBOUND; + + memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4); + sa = (struct dynamic_sa_ctl *) ctx->sa_out; + sa->sa_command_0.bf.dir = DIR_OUTBOUND; + sa->sa_command_0.bf.load_iv = 3; + sa->sa_command_1.bf.hash_crypto_offset = 0; + sa->sa_command_1.bf.copy_hdr = 1; + + + ctx->bypass = bypass; + ctx->authenc = 0; + ctx->hash_final = 1; + ctx->is_hash = 0; + ctx->pad_ctl = param->pad_block_size/4; + ctx->append_icv = 0; + + return 0; + +err_nomem_sr: + crypto4xx_free_sa(ctx); + +err_nomem: + return -ENOMEM; +badkey: + ESP_PRINTK(KERN_INFO "%s: badkey\n",__FUNCTION__); + return -EINVAL; +} + +/** Encrypt/Decrypt Routines for IPSEC for Transport */ +int crypto4xx_encrypt_esp(struct aead_givcrypt_request *givreq, + struct aead_request *req) +{ + struct crypto4xx_ctx *ctx; + struct scatterlist *sg; + struct iphdr *iph; + void * saddr; + + if (givreq) + req = &givreq->areq; + + ctx = crypto_tfm_ctx(req->base.tfm); + + sg = req->src; + saddr = kmap_atomic(sg_page(sg), KM_SOFTIRQ1); + iph = (struct iphdr *)(saddr + sg->offset); + ctx->next_hdr = (u32)(iph->protocol); + iph->protocol = 0x32; + +#if 1 + ESP_PHD(KERN_CONT, "", DUMP_PREFIX_OFFSET, + 16, 1, + (void*)saddr+ sg->offset, sg->length, false); + + ESP_PRINTK(KERN_INFO "%s: next_hdr = %d\n",__FUNCTION__, ctx->next_hdr); +#endif + kunmap_atomic(saddr, KM_SOFTIRQ1); + + ctx->hc_offset = 0; + ctx->pd_ctl = (ctx->pad_ctl << 24) + 0x11; + ctx->direction = DIR_OUTBOUND; + return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, + req->cryptlen, NULL, 0, NULL, 0); + +} + +int crypto4xx_decrypt_esp(struct aead_request *req) +{ + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); +#if 1 + struct scatterlist *sg; + void * saddr; + + sg = req->src; + saddr = kmap_atomic(sg_page(sg), KM_SOFTIRQ1); + ESP_PHD(KERN_CONT, "", DUMP_PREFIX_OFFSET, + 16, 1, + (void*)saddr+sg->offset, sg->length, false); + kunmap_atomic(saddr, KM_SOFTIRQ1); +#endif + ctx->hc_offset = 0; + ctx->pd_ctl =( ctx->pad_ctl << 24) + 0x11; + + ctx->direction = DIR_INBOUND; + + return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, + req->cryptlen, NULL, 0, NULL, 0); +} + +/**AES Transport Related Algorithms for IPSEC */ +int crypto4xx_setkey_transport_esp_cbc_aes_md5(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + return crypto4xx_setkey_esp(cipher, key, keylen, + SA_CIPHER_ALG_AES, + SA_HASH_ALG_MD5, 1, + SA_ESP_MD5_SHA1_LEN, + SA_ESP_MD5_SHA1_CONTENTS, 16, 5, 64); +} + +int crypto4xx_setkey_transport_esp_cbc_aes_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp(cipher, key, keylen, + SA_CIPHER_ALG_AES, + SA_HASH_ALG_SHA1, 1, + SA_ESP_MD5_SHA1_LEN, + SA_ESP_MD5_SHA1_CONTENTS, 20, 5, 64); +} + +int crypto4xx_setkey_transport_esp_cbc_aes_sha224(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp(cipher, key, keylen, + SA_CIPHER_ALG_AES, + SA_HASH_ALG_SHA224, 1, + SA_ESP_SHA256_LEN, + SA_ESP_SHA256_CONTENTS, 28, 5, 64); +} + +int crypto4xx_setkey_transport_esp_cbc_aes_sha256(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp(cipher, key, keylen, + SA_CIPHER_ALG_AES, + SA_HASH_ALG_SHA256, 1, + SA_ESP_SHA256_LEN, + SA_ESP_SHA256_CONTENTS, 32, 5, 64); +} + +int crypto4xx_setkey_transport_esp_cbc_aes_sha384(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp(cipher, key, keylen, + SA_CIPHER_ALG_AES, + SA_HASH_ALG_SHA384, 1, + SA_ESP_SHA512_LEN, + SA_ESP_SHA512_CONTENTS, 48, 5, 128); +} + +int crypto4xx_setkey_transport_esp_cbc_aes_sha512(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp(cipher, key, keylen, + SA_CIPHER_ALG_AES, + SA_HASH_ALG_SHA512, 1, + SA_ESP_SHA512_LEN, + SA_ESP_SHA512_CONTENTS, 64, 5, 128); +} + +/**DES Transport Related Algorithms for IPSEC */ +int crypto4xx_setkey_transport_esp_cbc_des_md5(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp(cipher, key, keylen, + SA_CIPHER_ALG_DES, + SA_HASH_ALG_MD5, 1, + SA_ESP_MD5_SHA1_LEN, + SA_ESP_MD5_SHA1_CONTENTS, 16, 5, 64); +} + +int crypto4xx_setkey_transport_esp_cbc_des_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp(cipher, + key, + keylen, + SA_CIPHER_ALG_DES, + SA_HASH_ALG_SHA1, 1, + SA_ESP_MD5_SHA1_LEN, + SA_ESP_MD5_SHA1_CONTENTS, 20, 5, 64); +} + +int crypto4xx_setkey_transport_esp_cbc_des_sha224(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp(cipher, key, keylen, + SA_CIPHER_ALG_DES, + SA_HASH_ALG_SHA224, 1, + SA_ESP_SHA256_LEN, + SA_ESP_SHA256_CONTENTS, 28, 5, 64); +} + +int crypto4xx_setkey_transport_esp_cbc_des_sha256(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp(cipher, key, keylen, + SA_CIPHER_ALG_DES, + SA_HASH_ALG_SHA256, 1, + SA_ESP_SHA256_LEN, + SA_ESP_SHA256_CONTENTS, 32, 5, 64); +} + +int crypto4xx_setkey_transport_esp_cbc_des_sha384(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp(cipher, key, keylen, + SA_CIPHER_ALG_DES, + SA_HASH_ALG_SHA384, 1, + SA_ESP_SHA512_LEN, + SA_ESP_SHA512_CONTENTS, 48, 5, 128); +} + +int crypto4xx_setkey_transport_esp_cbc_des_sha512(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp(cipher, key, keylen, + SA_CIPHER_ALG_DES, + SA_HASH_ALG_SHA512, 1, + SA_ESP_SHA512_LEN, + SA_ESP_SHA512_CONTENTS, 64, 5, 128); +} + +/**3DES Transport Related Algorithms for IPSEC */ +int crypto4xx_setkey_transport_esp_cbc_3des_md5(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp(cipher, key, keylen, + SA_CIPHER_ALG_3DES, + SA_HASH_ALG_MD5, 1, + SA_ESP_MD5_SHA1_LEN, + SA_ESP_MD5_SHA1_CONTENTS, 16, 5, 64); +} +int crypto4xx_setkey_transport_esp_cbc_3des_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp(cipher, key, keylen, + SA_CIPHER_ALG_3DES, + SA_HASH_ALG_SHA1, 1, + SA_ESP_MD5_SHA1_LEN, + SA_ESP_MD5_SHA1_CONTENTS, 20, 5, 64); +} + + +int crypto4xx_setkey_transport_esp_cbc_3des_sha224(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp(cipher, key, keylen, + SA_CIPHER_ALG_3DES, + SA_HASH_ALG_SHA224, 1, + SA_ESP_SHA256_LEN, + SA_ESP_SHA256_CONTENTS, 28, 5, 64); +} + +int crypto4xx_setkey_transport_esp_cbc_3des_sha256(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp(cipher, key, keylen, + SA_CIPHER_ALG_3DES, + SA_HASH_ALG_SHA256, 1, + SA_ESP_SHA256_LEN, + SA_ESP_SHA256_CONTENTS, 32, 5,64); +} + +int crypto4xx_setkey_transport_esp_cbc_3des_sha384(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp(cipher, key, keylen, + SA_CIPHER_ALG_3DES, + SA_HASH_ALG_SHA384, 1, + SA_ESP_SHA512_LEN, + SA_ESP_SHA512_CONTENTS, 48, 5, 128); +} + +int crypto4xx_setkey_transport_esp_cbc_3des_sha512(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + ESP_PRINTK(KERN_INFO "%s: called\n", __FUNCTION__); + return crypto4xx_setkey_esp(cipher, key, keylen, + SA_CIPHER_ALG_3DES, + SA_HASH_ALG_SHA512, 1, + SA_ESP_SHA512_LEN, + SA_ESP_SHA512_CONTENTS, 64, 5, 128); +} + +int crypto4xx_encrypt_transport_esp_cbc(struct aead_request *req) +{ + return crypto4xx_encrypt_esp(NULL, req); +} + +int crypto4xx_givencrypt_transport_esp_cbc(struct aead_givcrypt_request *req) +{ + return crypto4xx_encrypt_esp(req, NULL); +} + +int crypto4xx_decrypt_transport_esp_cbc(struct aead_request *req) +{ + return crypto4xx_decrypt_esp(req); +} +/** Setkey and Encrypt/Decrypt Functions for Macsec */ +int crypto4xx_setkey_macsec_gcm(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + struct crypto_tfm *tfm = crypto_aead_tfm(cipher); + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); + struct crypto_alg *alg = tfm->__crt_alg; + struct crypto4xx_alg *my_alg = crypto_alg_to_crypto4xx_alg(alg); + struct dynamic_sa_ctl *sa; + int rc; + struct offload_param { + __be32 spi; + __be32 seq; + __be32 iv_h; + __be32 iv_l; + } *param; + + + ctx->dev = my_alg->dev; + + /* Create SA */ + if (ctx->sa_in_dma_addr || ctx->sa_out_dma_addr) { + crypto4xx_free_sa(ctx); + } + + crypto4xx_alloc_sa(ctx, SA_MACSEC_GCM_LEN ); + if (!ctx->sa_in_dma_addr || !ctx->sa_out_dma_addr) + goto err_nomem; + + ctx->direction = DIR_INBOUND; + + if (!ctx->state_record) { + crypto4xx_alloc_state_record(ctx); + if (!ctx->state_record_dma_addr) + goto err_nomem_sr; + } + + param = (struct offload_param *) key; + key += sizeof(struct offload_param); + + sa = (struct dynamic_sa_ctl *) ctx->sa_in; + sa->sa_contents = SA_MACSEC_GCM_CONTENTS; + + keylen -= 16; + rc = crypto4xx_compute_gcm_hash_key_sw(ctx, key, keylen); + if (rc) + goto err_nomem_sr; + + memcpy(ctx->sa_in + get_dynamic_sa_offset_state_ptr_field(ctx), + (void*)&(ctx->state_record_dma_addr), 4); + + ctx->offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(ctx); + set_dynamic_sa_command_0(sa, + SA_SAVE_HASH, + SA_NOT_SAVE_IV, + SA_LOAD_HASH_FROM_SA, + SA_LOAD_IV_FROM_INPUT, + SA_HEADER_PROC, + SA_HASH_ALG_GHASH, + SA_CIPHER_ALG_AES, + SA_PAD_TYPE_ZERO, + SA_OP_GROUP_PROTOCOL, + SA_OPCODE_EXT_PROT_MACSEC, + DIR_INBOUND); + + set_dynamic_sa_command_1(sa, CRYPTO_MODE_AES_CTR, + SA_HASH_MODE_HASH, + CRYPTO_FEEDBACK_MODE_NO_FB, + SA_EXTENDED_SN_OFF, + SA_SEQ_MASK_ON, + SA_MC_ENABLE, + SA_NOT_COPY_PAD, + SA_COPY_PAYLOAD, + SA_COPY_HDR); + + + sa->sa_command_1.bf.byte_offset = 1; + sa->sa_command_1.bf.key_len = keylen >> 3; + crypto4xx_memcpy_le(ctx->sa_in + get_dynamic_sa_offset_key_field(ctx), + key, keylen); + + /* + * Setup sa for inbound processing + */ + ((struct dynamic_sa_macsec_gcm *) ctx->sa_in)->seq_mask[0] = 0x00000001; + ((struct dynamic_sa_macsec_gcm *) ctx->sa_in)->seq_mask[1] = 0x00000000; + ((struct dynamic_sa_macsec_gcm *) ctx->sa_in)->seq_mask[2] = 0x00000000; + ((struct dynamic_sa_macsec_gcm *) ctx->sa_in)->seq_mask[3] = 0x00000000; + + ((struct dynamic_sa_macsec_gcm *) ctx->sa_in)->spi = cpu_to_le32(param->spi); + ((struct dynamic_sa_macsec_gcm *) ctx->sa_in)->seq = cpu_to_be32(param->seq); + ((struct dynamic_sa_macsec_gcm *) ctx->sa_in)->iv[0] = cpu_to_le32(param->iv_h); + ((struct dynamic_sa_macsec_gcm *) ctx->sa_in)->iv[1] = cpu_to_le32(param->iv_l); + + + sa->sa_command_1.bf.copy_payload = 1; + sa->sa_command_1.bf.copy_pad = 1; + sa->sa_command_1.bf.copy_hdr = 1; + sa->sa_command_1.bf.hash_crypto_offset = 0; + + /* + * Setup sa for outbound processing + */ + ctx->direction = DIR_OUTBOUND; + memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4); + sa = (struct dynamic_sa_ctl *) ctx->sa_out; + set_dynamic_sa_command_0(sa, + SA_SAVE_HASH, + SA_SAVE_IV, + SA_LOAD_HASH_FROM_SA, + SA_LOAD_IV_FROM_SA, + SA_HEADER_PROC, + SA_HASH_ALG_GHASH, + SA_CIPHER_ALG_AES, + 0, + SA_OP_GROUP_PROTOCOL, + SA_OPCODE_EXT_PROT_MACSEC, + DIR_OUTBOUND); + + set_dynamic_sa_command_1(sa, CRYPTO_MODE_AES_CTR, + SA_HASH_MODE_HASH, + CRYPTO_FEEDBACK_MODE_NO_FB, + SA_EXTENDED_SN_OFF, + SA_SEQ_MASK_ON, + SA_MC_ENABLE, + SA_NOT_COPY_PAD, + SA_COPY_PAYLOAD, + SA_COPY_HDR); + + ctx->authenc = 0; + ctx->hash_final = 1; + ctx->is_hash = 0; + ctx->bypass = 0; + + return 0; + +err_nomem_sr: + crypto4xx_free_sa(ctx); + +err_nomem: + return -ENOMEM; + +} + +int crypto4xx_encrypt_macsec(struct aead_request *req) +{ + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); + ctx->direction = DIR_OUTBOUND; + ctx->pd_ctl =( ctx->pad_ctl << 24) + 0x11; + + return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, + req->cryptlen, NULL, 0, NULL, 0); +} + +int crypto4xx_decrypt_macsec(struct aead_request *req) +{ + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); + struct crypto4xx_device *dev = ctx->dev; + + dev->macsec_decrypt_num++; + ctx->pd_ctl =(ctx->pad_ctl << 24) + 0x11; + ctx->direction = DIR_INBOUND; + ctx->bypass = 0; + + return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, + req->cryptlen, NULL, 0, NULL, 0); +} + +/** DTLS/SSL/TLS Related Algorithms */ +static int crypto4xx_setkey_dtls(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen, + u32 hash_alg, + u32 cipher_alg, + u32 opcode, + u32 op_grp) +{ + struct crypto_tfm *tfm = crypto_aead_tfm(cipher); + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); + struct crypto_alg *alg = tfm->__crt_alg; + struct crypto4xx_alg *my_alg = crypto_alg_to_crypto4xx_alg(alg); + int bs = crypto_tfm_alg_blocksize(tfm); + struct rtattr *rta = (void *) key; + struct dynamic_sa_ctl *sa; + struct offload_param { + __be32 spi; + __be32 seq_h; + __be32 seq_l; + struct crypto_authenc_key_param authenc_param; + } *param; + + unsigned int enckeylen; + unsigned int authkeylen; + int rc; + + if (!RTA_OK(rta, keylen)) + goto badkey; + + if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) + goto badkey; + + if (RTA_PAYLOAD(rta) < sizeof(*param)) + goto badkey; + + ctx->dev = my_alg->dev; + param = RTA_DATA(rta); + enckeylen = be32_to_cpu(param->authenc_param.enckeylen); + + key += RTA_ALIGN(rta->rta_len); + keylen -= RTA_ALIGN(rta->rta_len); + authkeylen = keylen - enckeylen; + + /* Create SA */ + if (ctx->sa_in_dma_addr || ctx->sa_out_dma_addr) + crypto4xx_free_sa(ctx); + + rc = crypto4xx_alloc_sa(ctx, SA_DTLS_LEN); + if (rc) + goto err_nomem; + + if (!ctx->state_record) { + rc = crypto4xx_alloc_state_record(ctx); + if (rc) + goto err_nomem_sr; + } + + ctx->direction = DIR_INBOUND; + sa = (struct dynamic_sa_ctl *) ctx->sa_in; + sa->sa_contents = SA_DTLS_CONTENTS; + memcpy(ctx->sa_in + get_dynamic_sa_offset_state_ptr_field(ctx), + (void *)&(ctx->state_record_dma_addr), 4); + + set_dynamic_sa_command_0(sa, + SA_SAVE_HASH, + SA_NOT_SAVE_IV, + SA_LOAD_HASH_FROM_SA, + SA_LOAD_IV_FROM_INPUT, + SA_HEADER_PROC, + hash_alg, + cipher_alg, + SA_PAD_TYPE_DTLS, + op_grp, + opcode, + DIR_INBOUND); + + set_dynamic_sa_command_1(sa, CRYPTO_MODE_CBC, + SA_HASH_MODE_HASH, + CRYPTO_FEEDBACK_MODE_NO_FB, + SA_EXTENDED_SN_OFF, + SA_SEQ_MASK_OFF, + SA_MC_ENABLE, + SA_NOT_COPY_PAD, + SA_COPY_PAYLOAD, + SA_NOT_COPY_HDR); + + sa->sa_command_1.bf.mutable_bit_proc = 0; + + crypto4xx_pre_compute_hmac(ctx, (void *)key, authkeylen, bs, hash_alg, + authkeylen); + crypto4xx_memcpy_le((u32 *)((void *) sa + + get_dynamic_sa_offset_key_field(ctx)), + key + authkeylen, enckeylen); + + if (cipher_alg == SA_CIPHER_ALG_AES) + sa->sa_command_1.bf.key_len = enckeylen >> 3; + + ((struct dynamic_sa_dtls *) sa)->spi.w = cpu_to_le32(param->spi); + ((struct dynamic_sa_dtls *) sa)->seq[1] = cpu_to_be32(param->seq_h); + ((struct dynamic_sa_dtls *) sa)->seq[0] = cpu_to_be32(param->seq_l); + + ctx->hash_final = 1; + ctx->is_hash = 0; + ctx->pad_ctl = 4; + ctx->append_icv = 0; + ctx->pd_ctl =( ctx->pad_ctl << 24) + 0x11; + + memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4); + sa = (struct dynamic_sa_ctl *) ctx->sa_out; + + set_dynamic_sa_command_0(sa, SA_NOT_SAVE_HASH, SA_NOT_SAVE_IV, + SA_LOAD_HASH_FROM_SA, /*SA_LOAD_IV_FROM_STATE */SA_GEN_IV, + SA_HEADER_PROC, hash_alg, cipher_alg, + SA_PAD_TYPE_DTLS, SA_OP_GROUP_EXTEND_PROTOCOL, + opcode, DIR_OUTBOUND); + + set_dynamic_sa_command_1(sa, CRYPTO_MODE_CBC, SA_HASH_MODE_HASH, + CRYPTO_FEEDBACK_MODE_NO_FB, SA_EXTENDED_SN_ON, + SA_SEQ_MASK_OFF, SA_MC_ENABLE, + SA_COPY_PAD, SA_COPY_PAYLOAD, SA_COPY_HDR); + return 0; + +err_nomem_sr: + crypto4xx_free_sa(ctx); +err_nomem: + return -ENOMEM; + +badkey: + printk("%s: badkey\n",__FUNCTION__); + return -EINVAL; +} + +int crypto4xx_setkey_dtls_aes_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + return crypto4xx_setkey_dtls(cipher, key, keylen, SA_HASH_ALG_SHA1, + SA_CIPHER_ALG_AES, SA_OPCODE_DTLS, + SA_OP_GROUP_EXTEND_PROTOCOL); +} + +int crypto4xx_setkey_dtls_des_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + + return crypto4xx_setkey_dtls(cipher, key, keylen, SA_HASH_ALG_SHA1, + SA_CIPHER_ALG_DES, SA_OPCODE_DTLS, + SA_OP_GROUP_EXTEND_PROTOCOL); +} + +int crypto4xx_setkey_dtls_des3_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + return crypto4xx_setkey_dtls(cipher, key, keylen, SA_HASH_ALG_SHA1, + SA_CIPHER_ALG_3DES, SA_OPCODE_DTLS, + SA_OP_GROUP_EXTEND_PROTOCOL); +} + +int crypto4xx_setkey_dtls_null_md5(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + return crypto4xx_setkey_dtls(cipher, key, keylen, SA_HASH_ALG_MD5, + SA_CIPHER_ALG_NULL, SA_OPCODE_DTLS, + SA_OP_GROUP_EXTEND_PROTOCOL); +} + +int crypto4xx_setkey_dtls_null_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + return crypto4xx_setkey_dtls(cipher, key, keylen, SA_HASH_ALG_SHA1, + SA_CIPHER_ALG_NULL, SA_OPCODE_DTLS, + SA_OP_GROUP_EXTEND_PROTOCOL); +} +/** DTLS/SSL/TLS Related Encrypt/Decrypt Algorithms */ + +int crypto4xx_encrypt_dtls(struct aead_request *req) +{ + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); + + ctx->direction = DIR_OUTBOUND; + + return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, + req->cryptlen, NULL, 0, NULL, 0); +} + +int crypto4xx_decrypt_dtls(struct aead_request *req) +{ + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); + + ctx->direction = DIR_INBOUND; + + return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, + req->cryptlen, NULL, 0, NULL, 0); +} +int tls; +/** Setkey Functions for SSL/TLS */ + +static int crypto4xx_setkey_ssl_tls(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen, + u32 hash_alg, + u32 cipher_alg, + u32 opcode, + u32 op_grp) +{ + struct crypto_tfm *tfm = crypto_aead_tfm(cipher); + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); + struct crypto_alg *alg = tfm->__crt_alg; + struct crypto4xx_alg *my_alg = crypto_alg_to_crypto4xx_alg(alg); + int bs = crypto_tfm_alg_blocksize(tfm); + struct rtattr *rta = (void *) key; + struct dynamic_sa_ctl *sa; + struct offload_param { + __be32 spi; + __be32 seq_h; + __be32 seq_l; + struct crypto_authenc_key_param authenc_param; + } *param; + + unsigned int enckeylen; + unsigned int authkeylen; + int rc; + + if (!RTA_OK(rta, keylen)) + goto badkey; + + if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) + goto badkey; + + if (RTA_PAYLOAD(rta) < sizeof(*param)) + goto badkey; + + ctx->dev = my_alg->dev; + + param = RTA_DATA(rta); + + enckeylen = be32_to_cpu(param->authenc_param.enckeylen); + + key += RTA_ALIGN(rta->rta_len); + keylen -= RTA_ALIGN(rta->rta_len); + + authkeylen = keylen - enckeylen; + + /* Create SA */ + if (ctx->sa_in_dma_addr || ctx->sa_out_dma_addr) + crypto4xx_free_sa(ctx); + + + rc = crypto4xx_alloc_sa(ctx, SA_DTLS_LEN ); + if (rc) + goto err_nomem; + + if (!ctx->state_record) { + rc = crypto4xx_alloc_state_record(ctx); + if (rc) + goto err_nomem_sr; + } + + ctx->direction = DIR_INBOUND; + + sa = (struct dynamic_sa_ctl *) ctx->sa_in; + /* + * Setup hash algorithm and hash mode + */ + sa->sa_contents = SA_DTLS_CONTENTS; + + ((struct dynamic_sa_dtls *)sa)->state_ptr= (u32)ctx->state_record_dma_addr; + + ctx->offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(ctx); + set_dynamic_sa_command_0(sa, + SA_SAVE_HASH, + SA_NOT_SAVE_IV, + SA_LOAD_HASH_FROM_SA, + SA_LOAD_IV_FROM_STATE, + SA_HEADER_PROC, + hash_alg, + cipher_alg, + SA_PAD_TYPE_TLS, + op_grp, + opcode, + DIR_INBOUND); + + set_dynamic_sa_command_1(sa, CRYPTO_MODE_CBC, + SA_HASH_MODE_HASH, + CRYPTO_FEEDBACK_MODE_NO_FB, + SA_EXTENDED_SN_OFF, + SA_SEQ_MASK_ON, + SA_MC_ENABLE, + SA_NOT_COPY_PAD, + SA_COPY_PAYLOAD, + SA_NOT_COPY_HDR); + + if (opcode == SA_OPCODE_SSL) { + if (hash_alg == SA_HASH_ALG_SHA1) { + memcpy(ctx->sa_in + + get_dynamic_sa_offset_inner_digest(ctx), + (void*)key, authkeylen); + memcpy(ctx->sa_in + + get_dynamic_sa_offset_outer_digest(ctx), + (void*)key, authkeylen); + } else if (hash_alg == SA_HASH_ALG_MD5) { + crypto4xx_pre_compute_ssl_mac(ctx, (void*)key, + authkeylen, bs,hash_alg); + } + } else { + crypto4xx_pre_compute_hmac(ctx, (void *)key, authkeylen, bs, + hash_alg, authkeylen); + sa->sa_command_1.bf.hmac_muting = 1; + } + + ((struct dynamic_sa_dtls *) sa)->spi.w = cpu_to_le32(param->spi); + ((struct dynamic_sa_dtls *) sa)->seq[1] = cpu_to_be32(param->seq_h); + ((struct dynamic_sa_dtls *) sa)->seq[0] = cpu_to_be32(param->seq_l); + + crypto4xx_memcpy_le((u32 *) ((void *) sa + + get_dynamic_sa_offset_key_field(ctx)), + key + authkeylen, enckeylen); + + if (cipher_alg == SA_CIPHER_ALG_AES) + sa->sa_command_1.bf.key_len = enckeylen >> 3; + + ctx->hash_final = 1; + ctx->is_hash = 0; + ctx->pad_ctl = 4; + ctx->append_icv = 0; + ctx->pd_ctl =( ctx->pad_ctl << 24) + 0x11; + ctx->direction = DIR_OUTBOUND; + + memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4); + + sa = (struct dynamic_sa_ctl *) ctx->sa_out; + set_dynamic_sa_command_0(sa, + SA_NOT_SAVE_HASH, + SA_NOT_SAVE_IV, + SA_LOAD_HASH_FROM_SA, + SA_LOAD_IV_FROM_STATE, + SA_HEADER_PROC, + hash_alg, + cipher_alg, + SA_PAD_TYPE_TLS, + op_grp, opcode, + DIR_OUTBOUND); + set_dynamic_sa_command_1(sa, + CRYPTO_MODE_CBC, + SA_HASH_MODE_HASH, + CRYPTO_FEEDBACK_MODE_NO_FB, + SA_EXTENDED_SN_ON, + SA_SEQ_MASK_ON, + SA_MC_ENABLE, + SA_COPY_PAD, + SA_COPY_PAYLOAD, + SA_COPY_HDR); + + return 0; + +err_nomem_sr: + crypto4xx_free_sa(ctx); +err_nomem: + return -ENOMEM; +badkey: + printk("%s: badkey\n",__FUNCTION__); + return -EINVAL; +} +extern int ssl_arc4; + +int crypto4xx_setkey_ssl_tls_arc4(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen, + u32 hash_alg, + u32 cipher_alg, + u32 opcode, + u32 op_grp) +{ + struct crypto_tfm *tfm = crypto_aead_tfm(cipher); + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); + struct crypto_alg *alg = tfm->__crt_alg; + struct crypto4xx_alg *my_alg = crypto_alg_to_crypto4xx_alg(alg); + int bs = crypto_tfm_alg_blocksize(tfm); + struct rtattr *rta = (void *) key; + struct dynamic_sa_ctl *sa; + int i, j = 0, k = 0; + u8 a; + const u8 arc4_key[256]; + + struct offload_param { + __be32 spi; + __be32 seq_h; + __be32 seq_l; + struct crypto_authenc_key_param authenc_param; + } *param; + + unsigned int enckeylen; + unsigned int authkeylen; + int rc; + + if (!RTA_OK(rta, keylen)) + goto badkey; + if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) + goto badkey; + + if (RTA_PAYLOAD(rta) < sizeof(*param)) + goto badkey; + + ctx->dev = my_alg->dev; + param = RTA_DATA(rta); + enckeylen = be32_to_cpu(param->authenc_param.enckeylen); + + key += RTA_ALIGN(rta->rta_len); + keylen -= RTA_ALIGN(rta->rta_len); + + authkeylen = keylen - enckeylen; + /* Create SA */ + if (ctx->sa_in_dma_addr || ctx->sa_out_dma_addr) { + crypto4xx_free_sa(ctx); + } + + rc = crypto4xx_alloc_sa(ctx, SA_SSL_ARC4_LEN); + if (rc) + return rc; + + if (!ctx->state_record) { + rc = crypto4xx_alloc_state_record(ctx); + if (rc) + goto err_nomem_sr; + } + + if (ctx->arc4_state_record == NULL) { + rc = crypto4xx_alloc_arc4_state_record(ctx); + if (rc) + goto err_nomem_arc4; + } + + sa = (struct dynamic_sa_ctl *) ctx->sa_in; + + ctx->direction = DIR_INBOUND; + ctx->init_arc4 = 1; + sa->sa_contents = SA_SSL_ARC4_CONTENTS; + + memcpy(ctx->sa_in + get_dynamic_sa_offset_state_ptr_field(ctx), + (void *)&(ctx->state_record_dma_addr), 4); + ctx->offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(ctx); + set_dynamic_sa_command_0(sa, + SA_NOT_SAVE_HASH, SA_NOT_SAVE_IV, + SA_LOAD_HASH_FROM_SA, + SA_LOAD_IV_FROM_SA, + SA_HEADER_PROC, + hash_alg, + cipher_alg, + SA_PAD_TYPE_TLS, + op_grp, + opcode, + DIR_INBOUND); + + set_dynamic_sa_command_1(sa, + CRYPTO_MODE_CBC, + SA_HASH_MODE_HASH, + CRYPTO_FEEDBACK_MODE_NO_FB, + SA_EXTENDED_SN_ON, + SA_SEQ_MASK_OFF, + SA_MC_ENABLE, + SA_NOT_COPY_PAD, + SA_COPY_PAYLOAD, + SA_NOT_COPY_HDR); + + sa->sa_command_1.bf.arc4_stateful = 1; + sa->sa_command_1.bf.save_arc4_state = 1; + + if (opcode == SA_OPCODE_SSL) { + if (hash_alg == SA_HASH_ALG_SHA1) { + crypto4xx_memcpy_le(ctx->sa_in + + get_dynamic_sa_offset_inner_digest(ctx), + (void*) key, authkeylen); + crypto4xx_memcpy_le(ctx->sa_in + + get_dynamic_sa_offset_outer_digest(ctx), + (void*) key, authkeylen); + } else if (hash_alg == SA_HASH_ALG_MD5) { + crypto4xx_pre_compute_ssl_mac(ctx, (void*)key, + authkeylen, bs, hash_alg); + } + sa->sa_command_1.bf.hmac_muting = 0; + } else { + crypto4xx_pre_compute_hmac(ctx, (void*) key, authkeylen, bs, + hash_alg, authkeylen); + sa->sa_command_1.bf.hmac_muting = 1; + } + + ((struct dynamic_sa_ssl_tls_arc4 *) sa)->arc4_state_ptr = + (u32)ctx->arc4_state_record_dma_addr; + + /* Setting Key */ + crypto4xx_memcpy_le((u32 *) ((void *) sa + + get_dynamic_sa_offset_key_field(ctx)), + key + authkeylen, enckeylen); + + memcpy((u8 *)arc4_key, key + authkeylen, enckeylen); + + ((struct dynamic_sa_ssl_tls_arc4 *) sa)->spi.w = + cpu_to_le32(param->spi); + ((struct dynamic_sa_ssl_tls_arc4 *) sa)->seq[1] = + cpu_to_be32(param->seq_h); + ((struct dynamic_sa_ssl_tls_arc4 *) sa)->seq[0] = + cpu_to_be32(param->seq_l); + /* For stateful mode we need to initialize the ARC4 state record */ + ((struct dynamic_sa_ssl_tls_arc4 *) ctx->sa_in)->ij.i = 1; + ((struct dynamic_sa_ssl_tls_arc4 *) ctx->sa_in)->ij.j = 0; + + for (i = 0; i < 256; i++) + ((struct arc4_sr *) ctx->arc4_state_record)->arc4_state[i] = i; + + for (i = 0; i < 256; i++) { + a = ((struct arc4_sr *) ctx->arc4_state_record)->arc4_state[i]; + j = (j + arc4_key[k] + a) & 0xff; + ((struct arc4_sr *) ctx->arc4_state_record)->arc4_state[i] = + ((struct arc4_sr *) ctx->arc4_state_record)->arc4_state[j]; + ((struct arc4_sr *) ctx->arc4_state_record)->arc4_state[j] = a; + if (++k >= enckeylen) + k = 0; + } + + ctx->hash_final = 1; + ctx->is_hash = 0; + ctx->pad_ctl = 4; + ctx->append_icv = 0; + ctx->direction = DIR_OUTBOUND; + ctx->pd_ctl =( ctx->pad_ctl << 24) + 0x11; + + /* Setup SA command for outbound process */ + memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4); + sa = (struct dynamic_sa_ctl *) ctx->sa_out; + set_dynamic_sa_command_0(sa, + SA_NOT_SAVE_HASH, + SA_NOT_SAVE_IV, + SA_LOAD_HASH_FROM_SA, + SA_LOAD_IV_FROM_SA, + SA_HEADER_PROC, + hash_alg, + cipher_alg, + SA_PAD_TYPE_TLS, + op_grp, + opcode, + DIR_OUTBOUND); + + set_dynamic_sa_command_1(sa, + CRYPTO_MODE_CBC, + SA_HASH_MODE_HASH, + CRYPTO_FEEDBACK_MODE_NO_FB, + SA_EXTENDED_SN_ON, + SA_SEQ_MASK_ON, + SA_MC_ENABLE, + SA_COPY_PAD, + SA_COPY_PAYLOAD, + SA_COPY_HDR); + + sa->sa_command_1.bf.arc4_stateful = 1; + sa->sa_command_1.bf.save_arc4_state = 1; + + return 0; + +err_nomem_arc4: + crypto4xx_free_state_record(ctx); +err_nomem_sr: + crypto4xx_free_sa(ctx); + return -ENOMEM; +badkey: + printk("%s: badkey\n",__FUNCTION__); + return 0xffffffff; +} + +int crypto4xx_setkey_ssl_aes_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + return crypto4xx_setkey_ssl_tls(cipher, key, keylen, SA_HASH_ALG_SHA1, + SA_CIPHER_ALG_AES, SA_OPCODE_SSL, + SA_OP_GROUP_EXTEND_PROTOCOL); +} + +int crypto4xx_setkey_ssl_des_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + + return crypto4xx_setkey_ssl_tls(cipher, key, keylen, SA_HASH_ALG_SHA1, + SA_CIPHER_ALG_DES, SA_OPCODE_SSL, + SA_OP_GROUP_EXTEND_PROTOCOL); +} +int crypto4xx_setkey_ssl_des3_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + return crypto4xx_setkey_ssl_tls(cipher, key, keylen, SA_HASH_ALG_SHA1, + SA_CIPHER_ALG_3DES, SA_OPCODE_SSL, + SA_OP_GROUP_EXTEND_PROTOCOL); +} + +int crypto4xx_setkey_ssl_arc4_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + return crypto4xx_setkey_ssl_tls_arc4(cipher, key, keylen, + SA_HASH_ALG_SHA1, + SA_CIPHER_ALG_ARC4, + SA_OPCODE_SSL, + SA_OP_GROUP_EXTEND_PROTOCOL); +} + +int crypto4xx_setkey_ssl_arc4_md5(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + return crypto4xx_setkey_ssl_tls_arc4(cipher, key, keylen, + SA_HASH_ALG_MD5, + SA_CIPHER_ALG_ARC4, SA_OPCODE_SSL, + SA_OP_GROUP_EXTEND_PROTOCOL); +} + +int crypto4xx_setkey_ssl_null_md5(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + + return crypto4xx_setkey_ssl_tls(cipher, key, keylen, SA_HASH_ALG_MD5, + SA_CIPHER_ALG_NULL, SA_OPCODE_SSL, + SA_OP_GROUP_EXTEND_PROTOCOL); +} + +int crypto4xx_setkey_ssl_null_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + return crypto4xx_setkey_ssl_tls(cipher, key, keylen, SA_HASH_ALG_SHA1, + SA_CIPHER_ALG_NULL, SA_OPCODE_SSL, + SA_OP_GROUP_EXTEND_PROTOCOL); +} + +/** Encrypt Decrpt Functions for SSL-AES*/ +int crypto4xx_encrypt_ssl_aes(struct aead_request *req) +{ + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); + + ctx->direction = DIR_OUTBOUND; + return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, + req->cryptlen, NULL, 0, + req->iv, AES_BLOCK_SIZE); +} + +int crypto4xx_decrypt_ssl_aes(struct aead_request *req) +{ + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); + + ctx->direction = DIR_INBOUND; + + return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, + req->cryptlen, NULL, 0, + req->iv, AES_BLOCK_SIZE); +} + +/** Encrypt Decrpt Functions for SSL-DES*/ +int crypto4xx_encrypt_ssl_des(struct aead_request *req) +{ + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); + + ctx->direction = DIR_OUTBOUND; + + return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, + req->cryptlen, NULL, 0, + req->iv, DES_BLOCK_SIZE); +} + +int crypto4xx_decrypt_ssl_des(struct aead_request *req) +{ + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); + + ctx->direction = DIR_INBOUND; + + return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, + req->cryptlen, NULL, 0, + req->iv, DES_BLOCK_SIZE); +} + +/** Encrypt Decyrpt Functions for SSL-NULL*/ +int crypto4xx_encrypt_ssl_null(struct aead_request *req) +{ + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); + + ctx->direction = DIR_OUTBOUND; + + return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, + req->cryptlen, NULL, 0, NULL, 0); +} + +int crypto4xx_decrypt_ssl_null(struct aead_request *req) +{ + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); + + ctx->direction = DIR_INBOUND; + + return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, + req->cryptlen, NULL, 0, NULL, 0); +} + +int ssl_arc4 = 0; +/** Encrypt Decyrpt Functions for SSL- ARC4*/ +int crypto4xx_encrypt_ssl_arc4(struct aead_request *req) +{ + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); + int ret = 0; + + ctx->direction = DIR_OUTBOUND; + ssl_arc4 = 1; + ret = crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, + req->cryptlen, NULL, 0, NULL, 0); + ssl_arc4 = 0; + return ret; +} + +int crypto4xx_decrypt_ssl_arc4(struct aead_request *req) +{ + int ret; + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); + ssl_arc4 = 1; + ctx->direction = DIR_INBOUND; + + ret = crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, + req->cryptlen, NULL, 0, NULL, 0); + ssl_arc4 = 0; + return ret; +} + +/** TLS and TLS V1 Setkey Functions */ +int crypto4xx_setkey_tls_aes_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + return crypto4xx_setkey_ssl_tls(cipher, key, keylen, SA_HASH_ALG_SHA1, + SA_CIPHER_ALG_AES, SA_OPCODE_TLS, + SA_OP_GROUP_EXTEND_PROTOCOL); +} + +int crypto4xx_setkey_tls_des_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + return crypto4xx_setkey_ssl_tls(cipher, key, keylen, SA_HASH_ALG_SHA1, + SA_CIPHER_ALG_DES, SA_OPCODE_TLS, + SA_OP_GROUP_EXTEND_PROTOCOL); +} + +int crypto4xx_setkey_tls_des3_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + return crypto4xx_setkey_ssl_tls(cipher, key, keylen, SA_HASH_ALG_SHA1, + SA_CIPHER_ALG_3DES, SA_OPCODE_TLS, + SA_OP_GROUP_EXTEND_PROTOCOL); +} + +int crypto4xx_setkey_tls_arc4_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + return crypto4xx_setkey_ssl_tls_arc4(cipher, key, keylen, + SA_HASH_ALG_SHA1, + SA_CIPHER_ALG_ARC4, SA_OPCODE_TLS, + SA_OP_GROUP_EXTEND_PROTOCOL); +} + +int crypto4xx_setkey_tls_arc4_md5(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + return crypto4xx_setkey_ssl_tls_arc4(cipher, key, keylen, + SA_HASH_ALG_MD5, + SA_CIPHER_ALG_ARC4, SA_OPCODE_TLS, + SA_OP_GROUP_EXTEND_PROTOCOL); +} + +int crypto4xx_setkey_tls_null_md5(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + return crypto4xx_setkey_ssl_tls(cipher, key, keylen, SA_HASH_ALG_MD5, + SA_CIPHER_ALG_NULL, SA_OPCODE_TLS, + SA_OP_GROUP_EXTEND_PROTOCOL); +} +int crypto4xx_setkey_tls_null_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + return crypto4xx_setkey_ssl_tls(cipher, key, keylen, SA_HASH_ALG_SHA1, + SA_CIPHER_ALG_NULL, SA_OPCODE_TLS, + SA_OP_GROUP_EXTEND_PROTOCOL); +} + +int crypto4xx_setkey_tls1_1_aes_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + tls = 1; + return crypto4xx_setkey_ssl_tls(cipher, key, keylen, SA_HASH_ALG_SHA1, + SA_CIPHER_ALG_AES, SA_OPCODE_TLS1_1, + SA_OP_GROUP_EXTEND_PROTOCOL); +} + +int crypto4xx_setkey_tls1_1_des_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + return crypto4xx_setkey_ssl_tls(cipher, key, keylen, SA_HASH_ALG_SHA1, + SA_CIPHER_ALG_DES, SA_OPCODE_TLS1_1, + SA_OP_GROUP_EXTEND_PROTOCOL); +} + +int crypto4xx_setkey_tls1_1_des3_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + return crypto4xx_setkey_ssl_tls(cipher, key, keylen, SA_HASH_ALG_SHA1, + SA_CIPHER_ALG_3DES, SA_OPCODE_TLS1_1, + SA_OP_GROUP_EXTEND_PROTOCOL); +} + +int crypto4xx_setkey_tls1_1_arc4_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + return crypto4xx_setkey_ssl_tls_arc4(cipher, key, keylen, + SA_HASH_ALG_SHA1, + SA_CIPHER_ALG_ARC4, SA_OPCODE_TLS1_1, + SA_OP_GROUP_EXTEND_PROTOCOL); +} + +int crypto4xx_setkey_tls1_1_arc4_md5(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + return crypto4xx_setkey_ssl_tls_arc4(cipher, key, keylen, + SA_HASH_ALG_MD5, + SA_CIPHER_ALG_ARC4, SA_OPCODE_TLS1_1, + SA_OP_GROUP_EXTEND_PROTOCOL); +} + +int crypto4xx_setkey_tls1_1_null_md5(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + return crypto4xx_setkey_ssl_tls(cipher, key, keylen, SA_HASH_ALG_MD5, + SA_CIPHER_ALG_NULL, SA_OPCODE_TLS1_1, + SA_OP_GROUP_EXTEND_PROTOCOL); +} +int crypto4xx_setkey_tls1_1_null_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + return crypto4xx_setkey_ssl_tls(cipher, key, keylen, SA_HASH_ALG_SHA1, + SA_CIPHER_ALG_NULL, SA_OPCODE_TLS1_1, + SA_OP_GROUP_EXTEND_PROTOCOL); +} + +int crypto4xx_setkey_transport_esp_rfc4106_gcm(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen) +{ + struct crypto_tfm *tfm = crypto_aead_tfm(cipher); + struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); + struct crypto_alg *alg = tfm->__crt_alg; + struct crypto4xx_alg *my_alg = crypto_alg_to_crypto4xx_alg(alg); + struct rtattr *rta = (void *) key; + struct dynamic_sa_ctl *sa; + u32 rc; + + ctx->dev = my_alg->dev; + struct esp_authenc_param { + __be32 spi; + __be32 seq; + __be16 pad_block_size; + __be16 encap_uhl; + struct crypto_authenc_key_param authenc_param; + } *param; + + unsigned int enckeylen; + + ESP_PRINTK("%s: keylen = %d\n",__FUNCTION__, keylen); + ESP_PHD(KERN_CONT, "", DUMP_PREFIX_OFFSET, + 16, 1, + (void*)key, keylen, false); + + if (!RTA_OK(rta, keylen)) { + printk("%s: badkey 1\n",__FUNCTION__); + goto badkey; + } + + param = RTA_DATA(rta); + enckeylen = be32_to_cpu(param->authenc_param.enckeylen); + + key += RTA_ALIGN(rta->rta_len); + key += 4; + //keylen -= RTA_ALIGN(rta->rta_len); + keylen = keylen - sizeof(*param) - 4; + + ctx->spi = be32_to_cpu(param->spi); + ctx->seq = be32_to_cpu(param->seq); + ctx->pad_block_size = be16_to_cpu(param->pad_block_size); + ctx->encap_uhl = be16_to_cpu(param->encap_uhl); + + ESP_PRINTK("%s: spi = 0x%08x, seq = %d, pad_size = %d, encap uhl = %d\n",__FUNCTION__, + ctx->spi, ctx->seq, ctx->pad_block_size, ctx->encap_uhl); + + /* Create SA */ + if (ctx->sa_in_dma_addr || ctx->sa_out_dma_addr) { + crypto4xx_free_sa(ctx); + } + + rc = crypto4xx_alloc_sa(ctx, SA_ESP_GCM_LEN); + if (rc) + return rc; + + if (!ctx->state_record) { + crypto4xx_alloc_state_record(ctx); + if (!ctx->state_record_dma_addr) + goto err_nomem_sr; + } + + sa = (struct dynamic_sa_ctl *) ctx->sa_in; + ctx->direction = DIR_INBOUND; + sa->sa_contents = SA_ESP_GCM_CONTENTS; + ctx->offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(ctx); + + rc = crypto4xx_compute_gcm_hash_key_sw(ctx, key, keylen); + if (rc) + goto err_nomem_sr; + + memcpy(ctx->sa_in + get_dynamic_sa_offset_state_ptr_field(ctx), + (void*)&(ctx->state_record_dma_addr), 4); + + crypto4xx_memcpy_le(ctx->sa_in + get_dynamic_sa_offset_key_field(ctx), + key, keylen); + + memcpy(ctx->sa_in + get_dynamic_sa_offset_spi(ctx), + (void*)&(ctx->spi), 4); + memcpy(ctx->sa_in + get_dynamic_sa_offset_seq_num(ctx), + (void*)&(ctx->seq), 4); + + + set_dynamic_sa_command_0(sa, + SA_NOT_SAVE_HASH, + SA_NOT_SAVE_IV, + SA_LOAD_HASH_FROM_SA, + SA_LOAD_IV_FROM_INPUT, + SA_HEADER_PROC, + SA_HASH_ALG_GHASH, + SA_CIPHER_ALG_AES, + 0, + SA_OP_GROUP_PROTOCOL, + SA_OPCODE_ESP, + DIR_INBOUND); + + sa->sa_command_0.bf.digest_len = 3; + set_dynamic_sa_command_1(sa, CRYPTO_MODE_AES_CTR, + SA_HASH_MODE_HASH, + CRYPTO_FEEDBACK_MODE_NO_FB, + SA_EXTENDED_SN_OFF, + SA_SEQ_MASK_ON, + SA_MC_ENABLE, + SA_COPY_PAD, + SA_COPY_PAYLOAD, + SA_NOT_COPY_HDR); + + sa->sa_command_1.bf.key_len = SA_AES_KEY_LEN_128; + sa->sa_command_1.bf.hash_crypto_offset = 0; + /* + * Setup sa for outbound processing + */ + memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4); + sa = (struct dynamic_sa_ctl *) ctx->sa_out; + + set_dynamic_sa_command_0(sa, + SA_NOT_SAVE_HASH, + SA_NOT_SAVE_IV, + SA_LOAD_HASH_FROM_SA, + //SA_LOAD_IV_FROM_SA, + SA_LOAD_IV_GEN_IV, + SA_HEADER_PROC, + SA_HASH_ALG_GHASH, + SA_CIPHER_ALG_AES, + 0, + SA_OP_GROUP_PROTOCOL, + SA_OPCODE_ESP, + DIR_OUTBOUND); + + sa->sa_command_0.bf.digest_len = 3; + set_dynamic_sa_command_1(sa, CRYPTO_MODE_AES_CTR, + SA_HASH_MODE_HASH, + CRYPTO_FEEDBACK_MODE_NO_FB, + SA_EXTENDED_SN_OFF, + SA_SEQ_MASK_ON, + SA_MC_ENABLE, + SA_COPY_PAD, + SA_COPY_PAYLOAD, + SA_COPY_HDR); + + sa->sa_command_1.bf.key_len = SA_AES_KEY_LEN_128; + sa->sa_command_1.bf.hash_crypto_offset = 0; + + ctx->bypass = 5; + ctx->authenc = 0; + ctx->hash_final = 1; + ctx->is_hash = 0; + printk("param->pad_block_size = %d\n", param->pad_block_size); + //ctx->pad_ctl = param->pad_block_size / 4; + ctx->pad_ctl = 0x08; + ctx->append_icv = 0; + + return 0; + +err_nomem_sr: + crypto4xx_free_sa(ctx); + + return -ENOMEM; +badkey: + + ESP_PRINTK("%s: badkey\n",__FUNCTION__); + return -EINVAL; +} diff --git a/drivers/crypto/amcc/crypto4xx_core.c b/drivers/crypto/amcc/crypto4xx_core.c index 46e899ac924..8c00e30e9e6 100644 --- a/drivers/crypto/amcc/crypto4xx_core.c +++ b/drivers/crypto/amcc/crypto4xx_core.c @@ -28,17 +28,40 @@ #include <linux/platform_device.h> #include <linux/init.h> #include <linux/of_platform.h> +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/highmem.h> #include <asm/dcr.h> #include <asm/dcr-regs.h> #include <asm/cacheflush.h> +#include <crypto/internal/hash.h> +#include <crypto/algapi.h> +#include <asm/ppc4xx_ocm.h> +#include <crypto/internal/hash.h> +#include <crypto/algapi.h> #include <crypto/aes.h> +#include <crypto/des.h> #include <crypto/sha.h> +#include <crypto/ctr.h> #include "crypto4xx_reg_def.h" #include "crypto4xx_core.h" #include "crypto4xx_sa.h" #define PPC4XX_SEC_VERSION_STR "0.5" - +void my_dump_Data(const u_char* dptr, u_int size) +{ + int i; + for (i = 0; i < size; i++) { + printk("0x%02x, ", dptr[i]); + if ((i+1) % 8 == 0) + printk(" "); + if ((i+1) % 16 == 0) + printk("\n"); + } + printk("\n"); +} +static struct proc_dir_entry *proc_crypto4xx = NULL; +struct proc_dir_entry *entry; /** * PPC4xx Crypto Engine Initialization Routine */ @@ -72,16 +95,24 @@ static void crypto4xx_hw_init(struct crypto4xx_device *dev) writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG); writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE); writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE); - writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL); get_random_bytes(&rand_num, sizeof(rand_num)); writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L); get_random_bytes(&rand_num, sizeof(rand_num)); writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H); + writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL); + ring_size.w = 0; ring_size.bf.ring_offset = PPC4XX_PD_SIZE; ring_size.bf.ring_size = PPC4XX_NUM_PD; writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE); ring_ctrl.w = 0; + + if (dev->core_dev->revb_ver == 1) { +#ifdef CONFIG_SEC_HW_POLL + ring_ctrl.bf.ring_retry_divisor = CONFIG_SEC_HW_POLL_RETRY_FREQ; + ring_ctrl.bf.ring_poll_divisor = CONFIG_SEC_HW_RING_POLL_FREQ; +#endif + } writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL); writel(PPC4XX_DC_3DES_EN, dev->ce_base + CRYPTO4XX_DEVICE_CTRL); writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE); @@ -95,11 +126,19 @@ static void crypto4xx_hw_init(struct crypto4xx_device *dev) io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD; io_threshold.bf.input_threshold = PPC4XX_INPUT_THRESHOLD; writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD); + +#ifdef CONFIG_SEC_PD_OCM + writel((dev->pdr_ocm_addr >> 32), dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR); + writel((dev->pdr_ocm_addr >> 32), dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR); +#else writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR); writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR); +#endif writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR); writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR); + writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR); + writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR); writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR); /* un reset pe,sg and pdr */ @@ -112,13 +151,108 @@ static void crypto4xx_hw_init(struct crypto4xx_device *dev) /*clear all pending interrupt*/ writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR); writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT); - writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT); - writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG); - writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN); + + if (dev->core_dev->revb_ver == 1) { + writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10, + dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT); + /* For RevB, 460EX and 460ExR Rev B */ + writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT, + dev->ce_base + CRYPTO4XX_INT_EN); + } else + writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN); +} + +void crypto4xx_dump_regs(struct crypto4xx_core_device* core_dev) +{ + u32 reg_dump; + + reg_dump = readl(core_dev->dev->ce_base + CRYPTO4XX_CTRL_STAT); + printk("crypto4xx_dump_regs: CRYPTO4XX_PD_CTRL_STAT = 0x%08x\n", reg_dump); + + reg_dump = readl(core_dev->dev->ce_base + CRYPTO4XX_SOURCE); + printk("crypto4xx_dump_regs: CRYPTO4XX_Source_REG = 0x%08x\n", reg_dump); + + reg_dump = readl(core_dev->dev->ce_base + CRYPTO4XX_DEST); + printk("crypto4xx_dump_regs: CRYPTO4XX_Des_REG= 0x%08x\n", reg_dump); + + reg_dump = readl(core_dev->dev->ce_base + CRYPTO4XX_SA); + printk("crypto4xx_dump_regs: CRYPTO4XX_SA_REG= 0x%08x\n", reg_dump); + + reg_dump = readl(core_dev->dev->ce_base + CRYPTO4XX_PE_DMA_CFG); + printk("crypto4xx_dump_regs: CRYPTO4XX_PE_DMA_CFG = 0x%08x\n", reg_dump); + + reg_dump = readl(core_dev->dev->ce_base + CRYPTO4XX_RING_SIZE); + printk("crypto4xx_dump_regs: CRYPTO4XX_RING_SIZE = 0x%08x\n", reg_dump); + + reg_dump = readl(core_dev->dev->ce_base + CRYPTO4XX_RING_CTRL); + printk("crypto4xx_dump_regs: CRYPTO4XX_RING_CTRL = 0x%08x\n", reg_dump); + + reg_dump = readl(core_dev->dev->ce_base + CRYPTO4XX_IO_THRESHOLD); + printk("crypto4xx_dump_regs: CRYPTO4XX_IO_THRESHOLD = 0x%08x\n", reg_dump); + + reg_dump = readl(core_dev->dev->ce_base + CRYPTO4XX_PE_DMA_STAT); + printk("crypto4xx_dump_regs: CRYPTO4XX_PE_DMA_STAT= 0x%08x\n", reg_dump); + + reg_dump = readl(core_dev->dev->ce_base + CRYPTO4XX_PDR_BASE); + printk("crypto4xx_dump_regs: CRYPTO4XX_PDR_BASE = 0x%08x\n", reg_dump); + + reg_dump = readl(core_dev->dev->ce_base + CRYPTO4XX_STATE_PTR); + printk("crypto4xx_dump_regs: CRYPTO4XX_STATE_PTR = 0x%08x\n", reg_dump); + + reg_dump = readl(core_dev->dev->ce_base + CRYPTO4XX_SA_CMD_0); + printk("crypto4xx_dump_regs: CRYPTO4XX_SA_CMD_0 = 0x%08x\n", reg_dump); + + reg_dump = readl(core_dev->dev->ce_base + CRYPTO4XX_SA_CMD_1); + printk("crypto4xx_dump_regs: CRYPTO4XX_SA_CMD_1 = 0x%08x\n", reg_dump); + + reg_dump = readl(core_dev->dev->ce_base + CRYPTO4XX_SPI); + printk("crypto4xx_dump_regs: CRYPTO4XX_SPI = 0x%08x\n", reg_dump); + + reg_dump = readl(core_dev->dev->ce_base + CRYPTO4XX_SEQ_NUM0); + printk("crypto4xx_dump_regs: CRYPTO4XX_SEQ_NUM_0 = 0x%08x\n", reg_dump); + + reg_dump = readl(core_dev->dev->ce_base + CRYPTO4XX_SEQ_NUM1); + printk("crypto4xx_dump_regs: CRYPTO4XX_SEQ_NUM_1 = 0x%08x\n", reg_dump); + + reg_dump = readl(core_dev->dev->ce_base + CRYPTO4XX_STATE_IV + 0); + printk("crypto4xx_dump_regs: CRYPTO4XX_STATE_IV + 0 = 0x%08x\n", reg_dump); + + reg_dump = readl(core_dev->dev->ce_base + CRYPTO4XX_STATE_IV + 4); + printk("crypto4xx_dump_regs: CRYPTO4XX_STATE_IV + 4 = 0x%08x\n", reg_dump); + + reg_dump = readl(core_dev->dev->ce_base +CRYPTO4XX_STATE_IV + 8); + printk("crypto4xx_dump_regs: CRYPTO4XX_STATE_IV + 8 = 0x%08x\n", reg_dump); + + reg_dump = readl(core_dev->dev->ce_base + CRYPTO4XX_STATE_IV + 12); + printk("crypto4xx_dump_regs: CRYPTO4XX_STATE_IV + 12 = 0x%08x\n", reg_dump); + + reg_dump = readl(core_dev->dev->ce_base + CRYPTO4XX_STATE_HASH_BYTE_CNT_0); + printk("crypto4xx_dump_regs: CRYPTO4XX_STATE_HASH_BYTE_CNT_0 = 0x%08x\n", reg_dump); + } int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size) { +#ifdef CONFIG_SEC_SA_OCM + ctx->sa_out = ocm_alloc(&ctx->sa_out_ocm_addr, size * 4, 4, + OCM_NON_CACHED, "sec_sa_out"); + ctx->sa_out_dma_addr = (u32)ctx->sa_out_ocm_addr; + printk("OCM Allocation done for SA Out %llx\n", (unsigned long long)ctx->sa_out_ocm_addr); + if (ctx->sa_out == NULL) + return -ENOMEM; + ctx->sa_in = ocm_alloc(&ctx->sa_in_ocm_addr, size * 4, 4, + OCM_NON_CACHED, "sec_sa_in"); + if (ctx->sa_in == NULL) { + ocm_free(ctx->sa_out); + return -ENOMEM; + } + ctx->sa_in_dma_addr = (u32)ctx->sa_in_ocm_addr; + //printk("OCM Allocation done for SA In %llx\n", (unsigned long long)ctx->sa_in_ocm_addr); + memset(ctx->sa_in, 0, size * 4); + memset(ctx->sa_out, 0, size * 4); + ctx->sa_len = size; + return 0; +#endif ctx->sa_in = dma_alloc_coherent(ctx->dev->core_dev->device, size * 4, &ctx->sa_in_dma_addr, GFP_ATOMIC); if (ctx->sa_in == NULL) @@ -142,6 +276,14 @@ int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size) void crypto4xx_free_sa(struct crypto4xx_ctx *ctx) { +#ifdef CONFIG_SEC_SA_OCM + ocm_free(ctx->sa_out); + ocm_free(ctx->sa_in); + ctx->sa_in_dma_addr = 0; + ctx->sa_out_dma_addr = 0; + ctx->sa_len = 0; + return; +#endif if (ctx->sa_in != NULL) dma_free_coherent(ctx->dev->core_dev->device, ctx->sa_len * 4, ctx->sa_in, ctx->sa_in_dma_addr); @@ -151,16 +293,28 @@ void crypto4xx_free_sa(struct crypto4xx_ctx *ctx) ctx->sa_in_dma_addr = 0; ctx->sa_out_dma_addr = 0; + ctx->sa_in = NULL; + ctx->sa_out = NULL; ctx->sa_len = 0; } u32 crypto4xx_alloc_state_record(struct crypto4xx_ctx *ctx) { +#ifdef CONFIG_SEC_SA_OCM + ctx->state_record = ocm_alloc(&ctx->state_record_ocm_addr, + sizeof(struct sa_state_record), 4, + OCM_NON_CACHED, "sec_state_record"); + if (ctx->state_record == NULL) + return -ENOMEM; + ctx->state_record_dma_addr = (u32)ctx->state_record_ocm_addr; +#else ctx->state_record = dma_alloc_coherent(ctx->dev->core_dev->device, sizeof(struct sa_state_record), &ctx->state_record_dma_addr, GFP_ATOMIC); - if (!ctx->state_record_dma_addr) + + if (!ctx->state_record_dma_addr || !ctx->state_record) return -ENOMEM; +#endif memset(ctx->state_record, 0, sizeof(struct sa_state_record)); return 0; @@ -168,14 +322,82 @@ u32 crypto4xx_alloc_state_record(struct crypto4xx_ctx *ctx) void crypto4xx_free_state_record(struct crypto4xx_ctx *ctx) { +#ifdef CONFIG_SEC_SA_OCM + if (ctx->state_record != NULL) + ocm_free(ctx->state_record); +#else if (ctx->state_record != NULL) dma_free_coherent(ctx->dev->core_dev->device, sizeof(struct sa_state_record), ctx->state_record, ctx->state_record_dma_addr); +#endif + ctx->state_record = NULL; ctx->state_record_dma_addr = 0; } +u32 crypto4xx_alloc_arc4_state_record(struct crypto4xx_ctx *ctx) +{ +#ifdef CONFIG_SEC_SA_OCM + ctx->arc4_state_record = ocm_alloc(&ctx->arc4_state_ocm_addr, + sizeof(struct arc4_sr), 4, + OCM_NON_CACHED, "sec_state_arc4_record"); + if (ctx->arc4_state_record == NULL) + return -ENOMEM; + ctx->arc4_state_record_dma_addr = (u32)ctx->arc4_state_ocm_addr; +#else + ctx->arc4_state_record = dma_alloc_coherent(ctx->dev->core_dev->device, + sizeof(struct arc4_sr), + /* &dma_addr */ &ctx->arc4_state_record_dma_addr, + GFP_ATOMIC); + + if (!ctx->arc4_state_record_dma_addr) + return -ENOMEM; +#endif + memset(ctx->arc4_state_record, 0, sizeof(struct arc4_sr)); + + return 0; +} + +void crypto4xx_free_arc4_state_record(struct crypto4xx_ctx *ctx) +{ + + if (ctx->arc4_state_record != NULL) { +#ifdef CONFIG_SEC_SA_OCM + ocm_free(ctx->arc4_state_record); + +#else + dma_free_coherent(ctx->dev->core_dev->device, + sizeof(struct arc4_sr), + ctx->arc4_state_record, + ctx->arc4_state_record_dma_addr); +#endif + } + ctx->arc4_state_record = NULL; + ctx->arc4_state_record_dma_addr = 0; +} + +int datalen_check; +static int crypto4xx_device_read_procmem(char *buffer, char **start, off_t offset, + int count, int *eof, void *data) +{ + struct crypto4xx_core_device *core_dev = (struct crypto4xx_core_device *)data; + int len = 0; + u32 ring_ctrl_val; + + ring_ctrl_val = readl(core_dev->dev->ce_base + CRYPTO4XX_RING_CTRL); + + len += sprintf(buffer + len, "ring_ctrl_val = 0x%08x\n", ring_ctrl_val); + len += sprintf(buffer + len, + "Crypto4xx Controller on AMCC PPC 460EX Canyonlands Board\n"); + len += sprintf(buffer + len, + "%u packets received for packetsize = %d\n", core_dev->dev->pkt_cnt, + datalen_check); + len += sprintf(buffer + len, + "%lld interrupts received\n", core_dev->irq_cnt); + *eof = 1; + return len; +} /** * alloc memory for the gather ring * no need to alloc buf for the ring @@ -185,20 +407,37 @@ static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev) { int i; struct pd_uinfo *pd_uinfo; + +#ifdef CONFIG_SEC_PD_OCM + int pd_size; + pd_size = sizeof(struct ce_pd) * PPC4XX_NUM_PD; + dev->pdr = ocm_alloc(&dev->pdr_ocm_addr, pd_size, 4, + OCM_NON_CACHED, "sec_pd"); + dev->pdr_pa = (u32)dev->pdr_ocm_addr; + printk(KERN_INFO "Security OCM Allocation done for packet Descriptor: %llx,\n" + "Virtual OCM Address: %p, OCM Allocation size: %d\n", + (unsigned long long)dev->pdr_ocm_addr, dev->pdr, pd_size); + if (dev->pdr == NULL) { + printk("PD Allocation failed on OCM\n"); + return -ENOMEM; + } +#else dev->pdr = dma_alloc_coherent(dev->core_dev->device, sizeof(struct ce_pd) * PPC4XX_NUM_PD, &dev->pdr_pa, GFP_ATOMIC); if (!dev->pdr) return -ENOMEM; - +#endif dev->pdr_uinfo = kzalloc(sizeof(struct pd_uinfo) * PPC4XX_NUM_PD, GFP_KERNEL); if (!dev->pdr_uinfo) { +#ifndef CONFIG_SEC_PD_OCM dma_free_coherent(dev->core_dev->device, sizeof(struct ce_pd) * PPC4XX_NUM_PD, dev->pdr, dev->pdr_pa); return -ENOMEM; +#endif } memset(dev->pdr, 0, sizeof(struct ce_pd) * PPC4XX_NUM_PD); dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device, @@ -233,10 +472,14 @@ static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev) static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev) { +#ifndef CONFIG_SEC_PD_OCM if (dev->pdr != NULL) dma_free_coherent(dev->core_dev->device, sizeof(struct ce_pd) * PPC4XX_NUM_PD, dev->pdr, dev->pdr_pa); +#else + ocm_free(dev->pdr); +#endif if (dev->shadow_sa_pool) dma_free_coherent(dev->core_dev->device, 256 * PPC4XX_NUM_PD, dev->shadow_sa_pool, dev->shadow_sa_pool_pa); @@ -245,6 +488,7 @@ static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev) sizeof(struct sa_state_record) * PPC4XX_NUM_PD, dev->shadow_sr_pool, dev->shadow_sr_pool_pa); + dev->pkt_cnt = 0; kfree(dev->pdr_uinfo); } @@ -526,7 +770,7 @@ static u32 crypto4xx_fill_one_page(struct crypto4xx_device *dev, (*idx)++; return 0; - } + } } static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev, @@ -589,9 +833,25 @@ static u32 crypto4xx_copy_digest_to_dst(struct pd_uinfo *pd_uinfo, struct sa_state_record *state_record = (struct sa_state_record *) pd_uinfo->sr_va; - if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) { - memcpy((void *) pd_uinfo->dest_va, state_record->save_digest, - SA_HASH_ALG_SHA1_DIGEST_SIZE); + switch (sa->sa_command_0.bf.hash_alg) { + case SA_HASH_ALG_KASUMI_f9: + crypto4xx_memcpy_le((void *)pd_uinfo->dest_va, + (u8 *)state_record->save_digest, 8); + break; + case SA_HASH_ALG_AES_XCBC_MAC_128: + crypto4xx_memcpy_le((void *)pd_uinfo->dest_va, + (u8 *) state_record->save_digest, 16); + break; + case SA_HASH_ALG_MD5: + crypto4xx_memcpy_le((void *)pd_uinfo->dest_va, + (u8 *) state_record->save_digest, + SA_HASH_ALG_MD5_DIGEST_SIZE); + break; + default: + memcpy((void *)pd_uinfo->dest_va, + state_record->save_digest, + crypto4xx_sa_hash_tbl[1][sa->sa_command_0.bf.hash_alg]); + break; } return 0; @@ -616,6 +876,57 @@ static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev, } } +void crypto4xx_append_icv_to_end(struct crypto4xx_device *dev, + struct scatterlist *dst, + struct sa_state_record *sr, + u32 offset, + u32 len) +{ + struct scatterlist *sg; + int i = 0; + u32 cp_len; + dma_addr_t addr; + + sg = &dst[i]; + while (len) { + while (sg->length < offset) { + offset -= sg->length; + i++; + sg = &sg[i]; + } + /* at here, icv could be in this sg, + * or icv could be in the next sg + */ + if (sg->length > offset) { + /* icv should be in middle of this sg */ + addr = dma_map_page(dev->core_dev->device, sg_page(sg), + sg->offset, + sg->length, DMA_TO_DEVICE); + cp_len = (sg->length-offset >= len) ? len : + sg->length-offset; + len -= cp_len; + crypto4xx_memcpy_le((u32 *)(phys_to_virt(addr) + + offset), + (u8 *)sr->save_digest, cp_len); + } else { + /* start from begin of next sg*/ + i++; + sg = &sg[i]; + offset = 0; + addr = dma_map_page(dev->core_dev->device, sg_page(sg), + sg->offset, + sg->length, DMA_FROM_DEVICE); + cp_len = (sg->length >= len) ? len : sg->length; + len -= cp_len; + crypto4xx_memcpy_le((u32 *) (phys_to_virt(addr) + + offset), + (u8 *) sr->save_digest, cp_len); + } + i++; + sg = &sg[i]; + } +} + static u32 crypto4xx_ablkcipher_done(struct crypto4xx_device *dev, struct pd_uinfo *pd_uinfo, struct ce_pd *pd) @@ -637,6 +948,11 @@ static u32 crypto4xx_ablkcipher_done(struct crypto4xx_device *dev, dst->offset, dst->length, DMA_FROM_DEVICE); } crypto4xx_ret_sg_desc(dev, pd_uinfo); + + if (pd->pd_ctl.bf.status & 0xff) { + printk("ablkcipher return err status = 0x%08x\n", + pd->pd_ctl.bf.status & 0xff); + } if (ablk_req->base.complete != NULL) ablk_req->base.complete(&ablk_req->base, 0); @@ -644,7 +960,8 @@ static u32 crypto4xx_ablkcipher_done(struct crypto4xx_device *dev, } static u32 crypto4xx_ahash_done(struct crypto4xx_device *dev, - struct pd_uinfo *pd_uinfo) + struct pd_uinfo *pd_uinfo, + struct ce_pd *pd) { struct crypto4xx_ctx *ctx; struct ahash_request *ahash_req; @@ -656,24 +973,101 @@ static u32 crypto4xx_ahash_done(struct crypto4xx_device *dev, crypto_tfm_ctx(ahash_req->base.tfm)); crypto4xx_ret_sg_desc(dev, pd_uinfo); /* call user provided callback function x */ + if (pd->pd_ctl.bf.status & 0xff) { + printk("ahash return err status = 0x%08x\n", + pd->pd_ctl.bf.status & 0xff); + } if (ahash_req->base.complete != NULL) ahash_req->base.complete(&ahash_req->base, 0); return 0; } -static u32 crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx) +static u32 crypto4xx_aead_done(struct crypto4xx_device *dev, + struct pd_uinfo *pd_uinfo, + struct ce_pd *pd) +{ + struct aead_request *aead_req; + struct crypto4xx_ctx *ctx; + struct scatterlist *dst; + dma_addr_t addr; + struct crypto_aead *aead; + + aead_req = container_of(pd_uinfo->async_req, + struct aead_request, base); + aead = crypto_aead_reqtfm(aead_req); + ctx = crypto_tfm_ctx(aead_req->base.tfm); + + if (pd_uinfo->using_sd) { + crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo, + pd->pd_ctl_len.bf.pkt_len, + aead_req->dst); + } else { + dst = pd_uinfo->dest_va; + addr = dma_map_page(dev->core_dev->device, sg_page(dst), + dst->offset, + dst->length, DMA_FROM_DEVICE); + } + + if (ctx->append_icv != 0) { + dst = pd_uinfo->dest_va; + crypto4xx_append_icv_to_end(dev, dst, + (struct sa_state_record *) + pd_uinfo->sr_va, + aead_req->cryptlen, + crypto_aead_authsize(aead)); + } + crypto4xx_ret_sg_desc(dev, pd_uinfo); + /* call user provided callback function x */ + + if (pd->pd_ctl.bf.status & 0xff) { + if (pd->pd_ctl.bf.status & 1) + printk("authentication error\n"); + if (pd->pd_ctl.bf.status & 2) + printk("pad fail error\n"); + if (pd->pd_ctl.bf.status & 4) + printk("seqnum fail\n"); + if (pd->pd_ctl.bf.status & 8) + printk("error _notify\n"); + printk("aead return err status = 0x%08x\n", + pd->pd_ctl.bf.status & 0xff); + printk("pd pad_ctl = 0x%08x\n", pd->pd_ctl.bf.pd_pad_ctl); + } + +#if 0 + void * saddr; + dst = pd_uinfo->dest_va; + printk("dumping aead_done length = %d\n", dst->length); + saddr = kmap_atomic(sg_page(dst), KM_SOFTIRQ1); + print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET, + 16, 1, + (void*)saddr+dst->offset, dst->length, false); + kunmap_atomic(saddr, KM_SOFTIRQ1); +#endif + if (aead_req->base.complete != NULL) + aead_req->base.complete(&aead_req->base, 0); + return 0; +} + +u32 crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx) { struct ce_pd *pd; struct pd_uinfo *pd_uinfo; pd = dev->pdr + sizeof(struct ce_pd)*idx; pd_uinfo = dev->pdr_uinfo + sizeof(struct pd_uinfo)*idx; + if (crypto_tfm_alg_type(pd_uinfo->async_req->tfm) == + CRYPTO_ALG_TYPE_AEAD) + return crypto4xx_aead_done(dev, pd_uinfo, pd); + else if (crypto_tfm_alg_type(pd_uinfo->async_req->tfm) == CRYPTO_ALG_TYPE_ABLKCIPHER) return crypto4xx_ablkcipher_done(dev, pd_uinfo, pd); - else - return crypto4xx_ahash_done(dev, pd_uinfo); + else if (crypto_tfm_alg_type(pd_uinfo->async_req->tfm) == + CRYPTO_ALG_TYPE_AHASH) + return crypto4xx_ahash_done(dev, pd_uinfo, pd); + + return 0; } /** @@ -769,18 +1163,23 @@ static u32 get_next_sd(u32 current) else return 0; } - +extern int ssl_arc4; +extern int tls; +int var = 0; u32 crypto4xx_build_pd(struct crypto_async_request *req, struct crypto4xx_ctx *ctx, struct scatterlist *src, struct scatterlist *dst, unsigned int datalen, + struct scatterlist *assoc, + u32 aad_len, void *iv, u32 iv_len) { struct crypto4xx_device *dev = ctx->dev; dma_addr_t addr, pd_dma, sd_dma, gd_dma; struct dynamic_sa_ctl *sa; struct scatterlist *sg; + struct scatterlist *aad; struct ce_gd *gd; struct ce_pd *pd; u32 num_gd, num_sd; @@ -790,13 +1189,19 @@ u32 crypto4xx_build_pd(struct crypto_async_request *req, unsigned long flags; struct pd_uinfo *pd_uinfo = NULL; unsigned int nbytes = datalen, idx; - unsigned int ivlen = 0; u32 gd_idx = 0; + unsigned int aadlen = 0; + datalen_check = datalen; /* figure how many gd is needed */ - num_gd = get_sg_count(src, datalen); - if (num_gd == 1) - num_gd = 0; + if (aad_len) { + num_gd = get_sg_count(assoc, aad_len) + + get_sg_count(src, datalen); + } else { + num_gd = get_sg_count(src, datalen); + if (num_gd == 1) + num_gd = 0; + } /* figure how many sd is needed */ if (sg_is_last(dst) || ctx->is_hash) { @@ -852,8 +1257,8 @@ u32 crypto4xx_build_pd(struct crypto_async_request *req, pd_uinfo->num_gd = num_gd; pd_uinfo->num_sd = num_sd; + writel(0, ctx->dev->ce_base + CRYPTO4XX_SA_UADDR); if (iv_len || ctx->is_hash) { - ivlen = iv_len; pd->sa = pd_uinfo->sa_pa; sa = (struct dynamic_sa_ctl *) pd_uinfo->sa_va; if (ctx->direction == DIR_INBOUND) @@ -864,17 +1269,48 @@ u32 crypto4xx_build_pd(struct crypto_async_request *req, memcpy((void *) sa + ctx->offset_to_sr_ptr, &pd_uinfo->sr_pa, 4); - if (iv_len) - crypto4xx_memcpy_le(pd_uinfo->sr_va, iv, iv_len); + if (iv_len) { + if (ctx->ctr_aes) { + /* First the nonce */ + memcpy(pd_uinfo->sr_va, ctx->state_record, + CTR_RFC3686_NONCE_SIZE); + /* Copy the IV that is passed through + * each operation + */ + crypto4xx_memcpy_le(pd_uinfo->sr_va + + CTR_RFC3686_NONCE_SIZE, iv, iv_len); + } else + crypto4xx_memcpy_le(pd_uinfo->sr_va, + iv, iv_len); + } + if (ctx->is_gcm || ctx->ctr_aes) { + u32 seq = 1; + /*For GCM and CTR(AES) algs adding the counter value*/ + crypto4xx_memcpy_le(pd_uinfo->sr_va + 12, + (void *)&seq, 4); + } } else { if (ctx->direction == DIR_INBOUND) { +#ifdef CONFIG_SEC_SA_OCM + writel((ctx->sa_in_ocm_addr >> 32), + ctx->dev->ce_base + CRYPTO4XX_SA_UADDR); +#endif pd->sa = ctx->sa_in_dma_addr; sa = (struct dynamic_sa_ctl *) ctx->sa_in; - } else { + } else { +#ifdef CONFIG_SEC_SA_OCM + writel((ctx->sa_out_ocm_addr >> 32), + ctx->dev->ce_base + CRYPTO4XX_SA_UADDR); +#endif pd->sa = ctx->sa_out_dma_addr; sa = (struct dynamic_sa_ctl *) ctx->sa_out; } } + + //u32 sa_upper = readl(ctx->dev->ce_base + CRYPTO4XX_SA_UADDR); + //printk("Dumping the Upper SA address = 0x%x\n", sa_upper); + //printk("Dumping the lower SA address = 0x%x\n", pd->sa); + pd->sa_len = ctx->sa_len; if (num_gd) { /* get first gd we are going to use */ @@ -886,6 +1322,35 @@ u32 crypto4xx_build_pd(struct crypto_async_request *req, /* enable gather */ sa->sa_command_0.bf.gather = 1; idx = 0; + if (aad_len) { + aadlen = aad_len; + aad = assoc; + /* walk the sg, and setup gather array for aad*/ + while (aadlen) { + sg = &aad[idx]; + addr = dma_map_page(dev->core_dev->device, + sg_page(sg), sg->offset, + sg->length, DMA_TO_DEVICE); + + gd->ptr = addr; + gd->ctl_len.len = sg->length; + gd->ctl_len.done = 0; + gd->ctl_len.ready = 1; + + if (sg->length >= aadlen) + break; + + aadlen -= sg->length; + + gd_idx = get_next_gd(gd_idx); + gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx); + idx++; + } + /* prepare gd for src */ + gd_idx = get_next_gd(gd_idx); + gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx); + } + idx = 0; src = &src[0]; /* walk the sg, and setup gather array */ while (nbytes) { @@ -970,13 +1435,24 @@ u32 crypto4xx_build_pd(struct crypto_async_request *req, } } - sa->sa_command_1.bf.hash_crypto_offset = 0; + sa->sa_command_1.bf.hash_crypto_offset = (aad_len >> 2); pd->pd_ctl.w = ctx->pd_ctl; - pd->pd_ctl_len.w = 0x00400000 | (ctx->bypass << 24) | datalen; + pd->pd_ctl_len.w = 0x00400000 | (ctx->bypass << 24) | + (datalen + aad_len); + if (ctx->next_hdr) + pd->pd_ctl.bf.next_hdr = ctx->next_hdr; pd_uinfo->state = PD_ENTRY_INUSE; wmb(); /* write any value to push engine to read a pd */ - writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD); + if (dev->core_dev->revb_ver == 1) { +#ifndef CONFIG_SEC_HW_POLL + writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD); +#endif + } else + writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD); + + + dev->pkt_cnt++; return -EINPROGRESS; } @@ -995,6 +1471,8 @@ static int crypto4xx_alg_init(struct crypto_tfm *tfm) ctx->sa_in_dma_addr = 0; ctx->sa_out_dma_addr = 0; ctx->sa_len = 0; + ctx->is_gcm = 0; + ctx->append_icv = 0; switch (alg->cra_flags & CRYPTO_ALG_TYPE_MASK) { default: @@ -1004,6 +1482,9 @@ static int crypto4xx_alg_init(struct crypto_tfm *tfm) crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct crypto4xx_ctx)); break; + case CRYPTO_ALG_TYPE_AEAD: + tfm->crt_aead.reqsize = sizeof(struct crypto4xx_ctx); + break; } return 0; @@ -1015,6 +1496,7 @@ static void crypto4xx_alg_exit(struct crypto_tfm *tfm) crypto4xx_free_sa(ctx); crypto4xx_free_state_record(ctx); + crypto4xx_free_arc4_state_record(ctx); } int crypto4xx_register_alg(struct crypto4xx_device *sec_dev, @@ -1098,6 +1580,14 @@ static void crypto4xx_bh_tasklet_cb(unsigned long data) } } } +#define SRAM_OCM_ADDR_ERR 0x0B4 +#define SRAM_OCM_STATUS0 0x0B5 +#define SRAM_OCM_STATUS1 0X0B6 + +#define PLBA0_ESRL 0x0082 +#define PLBA0_ESRH 0x0083 +#define PLBA0_EARL 0x0084 +#define PLBA0_EARH 0x0085 /** * Top Half of isr. @@ -1106,33 +1596,140 @@ static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data) { struct device *dev = (struct device *)data; struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev); + //u32 int_status; if (core_dev->dev->ce_base == 0) return 0; - writel(PPC4XX_INTERRUPT_CLR, - core_dev->dev->ce_base + CRYPTO4XX_INT_CLR); + //int_status = readl(core_dev->dev->ce_base + CRYPTO4XX_INT_UNMASK_STAT); + //printk("Interrupt status = 0x%08x\n", int_status); + + /* For RevB, 460EX and 460ExR Rev B */ + if (core_dev->revb_ver == 1) { + writel(PPC4XX_INTERRUPT_CLR_REVB, + core_dev->dev->ce_base + CRYPTO4XX_INT_CLR); + } else { + writel(PPC4XX_INTERRUPT_CLR, + core_dev->dev->ce_base + CRYPTO4XX_INT_CLR); + } + + core_dev->irq_cnt++; tasklet_schedule(&core_dev->tasklet); return IRQ_HANDLED; } + /** * Supported Crypto Algorithms */ struct crypto4xx_alg_common crypto4xx_alg[] = { + /* Crypto DES ECB, CBC, modes */ +#if 1 + { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = { + .cra_name = "cbc(des)", + .cra_driver_name = "ppc4xx-cbc-des", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, + .cra_blocksize = DES_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_ablkcipher_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .ablkcipher = { + .min_keysize = DES_KEY_SIZE, + .max_keysize = DES_KEY_SIZE, + .ivsize = DES_BLOCK_SIZE, + .setkey = crypto4xx_setkey_3des_cbc, + .encrypt = crypto4xx_encrypt, + .decrypt = crypto4xx_decrypt, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = { + .cra_name = "ecb(des)", + .cra_driver_name = "ppc4xx-ecb-des", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, + .cra_blocksize = DES_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_ablkcipher_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .ablkcipher = { + .min_keysize = DES_KEY_SIZE, + .max_keysize = DES_KEY_SIZE, + .setkey = crypto4xx_setkey_3des_ecb, + .encrypt = crypto4xx_encrypt, + .decrypt = crypto4xx_decrypt, + } + } + }}, + + /* Crypto 3DES ECB, CBC, CFB, and OFB modes */ + { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = { + .cra_name = "cbc(des3_ede)", + .cra_driver_name = "ppc4xx-cbc-3des", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, + .cra_blocksize = DES3_EDE_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_ablkcipher_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .ablkcipher = { + .min_keysize = DES3_EDE_KEY_SIZE, + .max_keysize = DES3_EDE_KEY_SIZE, + .ivsize = DES3_EDE_BLOCK_SIZE, + .setkey = crypto4xx_setkey_3des_cbc, + .encrypt = crypto4xx_encrypt, + .decrypt = crypto4xx_decrypt, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = { + .cra_name = "ecb(des3_ede)", + .cra_driver_name = "ppc4xx-ecb-3des", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, + .cra_blocksize = DES3_EDE_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_ablkcipher_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .ablkcipher = { + .min_keysize = DES3_EDE_KEY_SIZE, + .max_keysize = DES3_EDE_KEY_SIZE, + .setkey = crypto4xx_setkey_3des_ecb, + .encrypt = crypto4xx_encrypt, + .decrypt = crypto4xx_decrypt, + } + } + }}, /* Crypto AES modes */ { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = { - .cra_name = "cbc(aes)", - .cra_driver_name = "cbc-aes-ppc4xx", - .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, - .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, - .cra_blocksize = AES_BLOCK_SIZE, - .cra_ctxsize = sizeof(struct crypto4xx_ctx), - .cra_type = &crypto_ablkcipher_type, - .cra_init = crypto4xx_alg_init, - .cra_exit = crypto4xx_alg_exit, - .cra_module = THIS_MODULE, + .cra_name = "cbc(aes)", + .cra_driver_name = "cbc-aes-ppc4xx", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, + .cra_blocksize = AES_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_type = &crypto_ablkcipher_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, .cra_u = { .ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, @@ -1144,8 +1741,2184 @@ struct crypto4xx_alg_common crypto4xx_alg[] = { } } }}, -}; + { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = { + .cra_name = "ofb(aes)", + .cra_driver_name = "ppc4xx-ofb-aes", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, + .cra_blocksize = AES_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_ablkcipher_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .ablkcipher = { + .min_keysize = AES_MIN_KEY_SIZE, + .max_keysize = AES_MAX_KEY_SIZE, + .ivsize = AES_BLOCK_SIZE, + .setkey = crypto4xx_setkey_aes_ofb, + .encrypt = crypto4xx_encrypt, + .decrypt = crypto4xx_decrypt, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = { + .cra_name = "cfb(aes)", + .cra_driver_name = "ppc4xx-cfb-aes", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, + .cra_blocksize = AES_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_ablkcipher_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .ablkcipher = { + .min_keysize = AES_MIN_KEY_SIZE, + .max_keysize = AES_MAX_KEY_SIZE, + .ivsize = AES_BLOCK_SIZE, + .setkey = crypto4xx_setkey_aes_cfb, + .encrypt = crypto4xx_encrypt, + .decrypt = crypto4xx_decrypt, + } + } + }}, + /* Crypto AES ECB, CBC, CTR, GCM, CCM, and GMAC modes */ + { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = { + .cra_name = "ecb(aes)", + .cra_driver_name = "ppc4xx-ecb-aes", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, + .cra_blocksize = AES_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_ablkcipher_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .ablkcipher = { + .min_keysize = AES_MIN_KEY_SIZE, + .max_keysize = AES_MAX_KEY_SIZE, + .setkey = crypto4xx_setkey_aes_ecb, + .encrypt = crypto4xx_encrypt, + .decrypt = crypto4xx_decrypt, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = { + .cra_name = "rfc3686(ctr(aes))", + .cra_driver_name = "ppc4xx-ctr-aes", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, + .cra_blocksize = CTR_RFC3686_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_ablkcipher_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .ablkcipher = { + .min_keysize = AES_MIN_KEY_SIZE, + .max_keysize = AES_MAX_KEY_SIZE, + .ivsize = CTR_RFC3686_BLOCK_SIZE, + .setkey = crypto4xx_setkey_aes_ctr, + .encrypt = crypto4xx_encrypt_ctr, + .decrypt = crypto4xx_decrypt_ctr, + } + } + }}, + + /* AEAD Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "gcm(aes)", + .cra_driver_name = "ppc4xx-gcm-aes", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = AES_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .maxauthsize = 16, + .ivsize = 12, + .setkey = crypto4xx_setkey_aes_gcm, + .setauthsize = crypto4xx_setauthsize_aes, + .encrypt = crypto4xx_encrypt_aes_gcm, + .decrypt = crypto4xx_decrypt_aes_gcm, + .givencrypt = crypto4xx_givencrypt_aes_gcm, + .givdecrypt = crypto4xx_givdecrypt_aes_gcm, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "ccm(aes)", + .cra_driver_name = "ppc4xx-ccm-aes", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = AES_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = AES_BLOCK_SIZE, + .maxauthsize = 16, + .setkey = crypto4xx_setkey_aes_ccm, + .setauthsize = crypto4xx_setauthsize_aes, + .encrypt = crypto4xx_encrypt_aes_ccm, + .decrypt = crypto4xx_decrypt_aes_ccm, + .givencrypt = crypto4xx_givencrypt_aes_ccm, + .givdecrypt = crypto4xx_givdecrypt_aes_ccm, + } + } + }}, + + /* Hash MD5 */ + { .type = CRYPTO_ALG_TYPE_AHASH, .u.hash = { + .init = crypto4xx_hash_init, + .update = crypto4xx_hash_update, + .final = crypto4xx_hash_final, + .digest = crypto4xx_hash_digest, + .halg.digestsize = SA_HASH_ALG_MD5_DIGEST_SIZE, + .halg.base = { + .cra_name = "md5", + .cra_driver_name = "ppc4xx-md5", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_ahash_type, + .cra_init = crypto4xx_md5_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + } + }}, +#endif +#if 1 + /* Hash MD5-HMAC */ + { .type = CRYPTO_ALG_TYPE_AHASH, .u.hash = { + .init = crypto4xx_hash_init, + .update = crypto4xx_hash_update, + .final = crypto4xx_hash_final, + .digest = crypto4xx_hash_digest, + .setkey = crypto4xx_md5_hmac_setkey, + .halg.digestsize = SA_HASH_ALG_MD5_DIGEST_SIZE, + .halg.base = { + .cra_name = "hmac(md5)", + .cra_driver_name = "ppc4xx-hmac-md5", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_ahash_type, + .cra_module = THIS_MODULE, + } + }}, + + /* Hash SHA1, SHA2 and HMAC */ + { .type = CRYPTO_ALG_TYPE_AHASH, .u.hash = { + .init = crypto4xx_hash_init, + .update = crypto4xx_hash_update, + .final = crypto4xx_hash_final, + .digest = crypto4xx_hash_digest, + .halg.digestsize = SHA1_DIGEST_SIZE, + .halg.base = { + .cra_name = "sha1", + .cra_driver_name = "ppc4xx-sha1", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, + .cra_blocksize = SHA1_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_ahash_type, + .cra_init = crypto4xx_sha1_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + } + }}, +#endif + { .type = CRYPTO_ALG_TYPE_AHASH, .u.hash = { + .init = crypto4xx_hash_init, + .update = crypto4xx_hash_update, + .final = crypto4xx_hash_final, + .digest = crypto4xx_hash_digest, + .setkey = crypto4xx_sha1_hmac_setkey, + .halg.digestsize = SHA1_DIGEST_SIZE, + .halg.base = { + .cra_name = "hmac(sha1)", + .cra_driver_name = "ppc4xx-hmac-sha1", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, + .cra_blocksize = SHA1_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_ahash_type, + .cra_module = THIS_MODULE, + } + }}, + +#if 1 + { .type = CRYPTO_ALG_TYPE_AHASH, .u.hash = { + .init = crypto4xx_hash_init, + .update = crypto4xx_hash_update, + .final = crypto4xx_hash_final, + .digest = crypto4xx_hash_digest, + .halg.digestsize = SHA224_DIGEST_SIZE, + .halg.base = { + .cra_name = "sha224", + .cra_driver_name = "ppc4xx-sha224", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, + .cra_blocksize = SHA224_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_ahash_type, + .cra_init = crypto4xx_sha2_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + } + }}, + + { .type = CRYPTO_ALG_TYPE_AHASH, .u.hash = { + .init = crypto4xx_hash_init, + .update = crypto4xx_hash_update, + .final = crypto4xx_hash_final, + .digest = crypto4xx_hash_digest, + .setkey = crypto4xx_sha2_hmac_setkey, + .halg.digestsize = SHA224_DIGEST_SIZE, + .halg.base = { + .cra_name = "hmac(sha224)", + .cra_driver_name = "ppc4xx-hmac-sha224", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, + .cra_blocksize = SHA224_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_ahash_type, + .cra_module = THIS_MODULE, + } + }}, + + { .type = CRYPTO_ALG_TYPE_AHASH, .u.hash = { + .init = crypto4xx_hash_init, + .update = crypto4xx_hash_update, + .final = crypto4xx_hash_final, + .digest = crypto4xx_hash_digest, + .halg.digestsize = SHA256_DIGEST_SIZE, + .halg.base = { + .cra_name = "sha256", + .cra_driver_name = "ppc4xx-sha256", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, + .cra_blocksize = SHA256_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_ahash_type, + .cra_init = crypto4xx_sha2_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + } + }}, + { .type = CRYPTO_ALG_TYPE_AHASH, .u.hash = { + .init = crypto4xx_hash_init, + .update = crypto4xx_hash_update, + .final = crypto4xx_hash_final, + .digest = crypto4xx_hash_digest, + .setkey = crypto4xx_sha2_hmac_setkey, + .halg.digestsize = SHA256_DIGEST_SIZE, + .halg.base = { + .cra_name = "hmac(sha256)", + .cra_driver_name = "ppc4xx-hmac-sha256", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, + .cra_blocksize = SHA256_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_ahash_type, + .cra_module = THIS_MODULE, + } + }}, + + { .type = CRYPTO_ALG_TYPE_AHASH, .u.hash = { + .init = crypto4xx_hash_init, + .update = crypto4xx_hash_update, + .final = crypto4xx_hash_final, + .digest = crypto4xx_hash_digest, + .halg.digestsize = SHA384_DIGEST_SIZE, + .halg.base = { + .cra_name = "sha384", + .cra_driver_name = "ppc4xx-sha384", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, + .cra_blocksize = SHA384_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_ahash_type, + .cra_init = crypto4xx_sha2_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + } + }}, + + { .type = CRYPTO_ALG_TYPE_AHASH, .u.hash = { + .init = crypto4xx_hash_init, + .update = crypto4xx_hash_update, + .final = crypto4xx_hash_final, + .digest = crypto4xx_hash_digest, + .setkey = crypto4xx_sha2_hmac_setkey, + .halg.digestsize = SHA384_DIGEST_SIZE, + .halg.base = { + .cra_name = "hmac(sha384)", + .cra_driver_name = "ppc4xx-hmac-sha384", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, + .cra_blocksize = SHA384_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_ahash_type, + .cra_module = THIS_MODULE, + } + }}, + + { .type = CRYPTO_ALG_TYPE_AHASH, .u.hash = { + .init = crypto4xx_hash_init, + .update = crypto4xx_hash_update, + .final = crypto4xx_hash_final, + .digest = crypto4xx_hash_digest, + .halg.digestsize = SHA512_DIGEST_SIZE, + .halg.base = { + .cra_name = "sha512", + .cra_driver_name = "ppc4xx-sha512", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, + .cra_blocksize = SHA512_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_ahash_type, + .cra_init = crypto4xx_sha2_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + } + }}, +#endif +#if 1 + { .type = CRYPTO_ALG_TYPE_AHASH, .u.hash = { + .init = crypto4xx_hash_init, + .update = crypto4xx_hash_update, + .final = crypto4xx_hash_final, + .digest = crypto4xx_hash_digest, + .setkey = crypto4xx_sha2_hmac_setkey, + .halg.digestsize = SHA512_DIGEST_SIZE, + .halg.base = { + .cra_name = "hmac(sha512)", + .cra_driver_name = "ppc4xx-hmac-sha512", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, + .cra_blocksize = SHA512_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_ahash_type, + .cra_module = THIS_MODULE, + } + }}, + /* Hash XCBC, GHASH, and Kasumi F9 */ + { .type = CRYPTO_ALG_TYPE_AHASH, .u.hash = { + .init = crypto4xx_hash_init, + .update = crypto4xx_hash_update, + .final = crypto4xx_hash_final, + .digest = crypto4xx_hash_digest, + .setkey = crypto4xx_xcbc_setkey, + .halg.digestsize = 16, + .halg.base = { + .cra_name = "xcbc(aes)", + .cra_driver_name = "ppc4xx-xcbc-aes", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, + .cra_blocksize = AES_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_ahash_type, + .cra_module = THIS_MODULE, + } + }}, + + /* Crypto Kasumi and Kasumi F8 */ + { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = { + .cra_name = "kasumi", + .cra_driver_name = "ppc4xx-kasumi", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, + .cra_blocksize = KASUMI_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_ablkcipher_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .ablkcipher = { + .min_keysize = KASUMI_KEY_SIZE, + .max_keysize = KASUMI_KEY_SIZE, + .ivsize = KASUMI_BLOCK_SIZE, + .setkey = crypto4xx_setkey_kasumi_p, + .encrypt = crypto4xx_encrypt, + .decrypt = crypto4xx_decrypt, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = { + .cra_name = "f8(kasumi)", + .cra_driver_name = "ppc4xx-f8-kasumi", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, + .cra_blocksize = KASUMI_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_ablkcipher_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .ablkcipher = { + .min_keysize = KASUMI_KEY_SIZE, + .max_keysize = KASUMI_KEY_SIZE, + .ivsize = KASUMI_BLOCK_SIZE, + .setkey = crypto4xx_setkey_kasumi_f8, + .encrypt = crypto4xx_encrypt_kasumi_f8, + .decrypt = crypto4xx_decrypt_kasumi_f8, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_AHASH, .u.hash = { + .init = crypto4xx_hash_init, + .update = crypto4xx_hash_update, + .final = crypto4xx_hash_final, + .digest = crypto4xx_kasumi_f9_digest, + .setkey = crypto4xx_kasumi_f9_setkey, + .halg.digestsize = 8, + .halg.base = { + .cra_name = "f9(kasumi)", + .cra_driver_name = "ppc4xx-f9-kasumi", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, + .cra_blocksize = KASUMI_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_ahash_type, + .cra_module = THIS_MODULE, + } + }}, +#endif +#if 1 + /* Crypto ARC4 - stateless */ + { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = { + .cra_name = "ecb(arc4)", + .cra_driver_name = "ppc4xx-arc4", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, + .cra_blocksize = 1, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_ablkcipher_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .ablkcipher = { + .min_keysize = 1, + .max_keysize = 16, + .setkey = crypto4xx_setkey_arc4, + .encrypt = crypto4xx_arc4_encrypt, + .decrypt = crypto4xx_arc4_decrypt, + } + } + }}, + /* Crypto ARC4 - statefull */ + { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = { + .cra_name = "cbc(arc4)", + .cra_driver_name = "ppc4xx-arc4", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER | CRYPTO_ALG_ASYNC, + .cra_blocksize = 1, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_ablkcipher_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .ablkcipher = { + .min_keysize = 1, + .max_keysize = 16, + .setkey = crypto4xx_setkey_arc4, + .encrypt = crypto4xx_arc4_encrypt, + .decrypt = crypto4xx_arc4_decrypt, + } + } + }}, +#endif +#if 1 + /* IPSec combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tunnel(esp(authenc(hmac(md5),cbc(aes))))", + .cra_driver_name = "tunnel-esp-cbc-aes-md5", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 16, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u ={ + .aead = { + .ivsize = 16, /* IV size is 16 bytes */ + .maxauthsize = 16, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tunnel_esp_cbc_aes_md5, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_esp_cbc, + .decrypt = crypto4xx_decrypt_esp_cbc, + .givencrypt = crypto4xx_givencrypt_esp_cbc, + } + } + }}, + /* IPSec combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tunnel(esp(authenc(hmac(sha1),cbc(aes))))", + .cra_driver_name = "tunnel-esp-cbc-aes-sha1", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 16, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 16, /* IV size is 16 bytes */ + .maxauthsize = 20, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tunnel_esp_cbc_aes_sha1, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_esp_cbc, + .decrypt = crypto4xx_decrypt_esp_cbc, + .givencrypt = crypto4xx_givencrypt_esp_cbc, + } + } + }}, +#endif +#if 1 + /* IPSec combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tunnel(esp(authenc(hmac(sha224),cbc(aes))))", + .cra_driver_name = "tunnel-esp-cbc-aes-sha224", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 16, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 16, /* IV size is 16 bytes */ + .maxauthsize = 28, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tunnel_esp_cbc_aes_sha224, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_esp_cbc, + .decrypt = crypto4xx_decrypt_esp_cbc, + .givencrypt = crypto4xx_givencrypt_esp_cbc, + } + } + }}, +#endif +#if 1 + /* IPSec combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tunnel(esp(authenc(hmac(sha256),cbc(aes))))", + .cra_driver_name = "tunnel-esp-cbc-aes-sha256", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 16, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 16, /* IV size is 16 bytes */ + .maxauthsize = 32, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tunnel_esp_cbc_aes_sha256, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_esp_cbc, + .decrypt = crypto4xx_decrypt_esp_cbc, + .givencrypt = crypto4xx_givencrypt_esp_cbc, + } + } + }}, + + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tunnel(esp(authenc(hmac(sha384),cbc(aes))))", + .cra_driver_name = "tunnel-esp-cbc-aes-sha384", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 16, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 16, /* IV size is 16 bytes */ + .maxauthsize = 48, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tunnel_esp_cbc_aes_sha384, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_esp_cbc, + .decrypt = crypto4xx_decrypt_esp_cbc, + .givencrypt = crypto4xx_givencrypt_esp_cbc, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tunnel(esp(authenc(hmac(sha512),cbc(aes))))", + .cra_driver_name = "tunnel-esp-cbc-aes-sha512", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 16, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 16, /* IV size is 16 bytes */ + .maxauthsize = 64, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tunnel_esp_cbc_aes_sha512, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_esp_cbc, + .decrypt = crypto4xx_decrypt_esp_cbc, + .givencrypt = crypto4xx_givencrypt_esp_cbc, + } + } + }}, + /* IPSec combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tunnel(esp(authenc(hmac(md5),cbc(des))))", + .cra_driver_name = "tunnel-esp-cbc-des-md5", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 8, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 16, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tunnel_esp_cbc_des_md5, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_esp_cbc, + .decrypt = crypto4xx_decrypt_esp_cbc, + .givencrypt = crypto4xx_givencrypt_esp_cbc, + } + } + }}, + /* IPSec combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tunnel(esp(authenc(hmac(sha1),cbc(des))))", + .cra_driver_name = "tunnel-esp-cbc-des-sha1", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 8, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 20, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tunnel_esp_cbc_des_sha1, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_esp_cbc, + .decrypt = crypto4xx_decrypt_esp_cbc, + .givencrypt = crypto4xx_givencrypt_esp_cbc, + } + } + }}, + /* IPSec combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tunnel(esp(authenc(hmac(sha224),cbc(des))))", + .cra_driver_name = "tunnel-esp-cbc-des-sha224", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 8, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 28, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tunnel_esp_cbc_des_sha224, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_esp_cbc, + .decrypt = crypto4xx_decrypt_esp_cbc, + .givencrypt = crypto4xx_givencrypt_esp_cbc, + } + } + }}, + /* IPSec combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tunnel(esp(authenc(hmac(sha256),cbc(des))))", + .cra_driver_name = "tunnel-esp-cbc-des-sha256", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 8, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 32, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tunnel_esp_cbc_des_sha256, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_esp_cbc, + .decrypt = crypto4xx_decrypt_esp_cbc, + .givencrypt = crypto4xx_givencrypt_esp_cbc, + } + } + }}, + /* IPSec combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tunnel(esp(authenc(hmac(sha384),cbc(des))))", + .cra_driver_name = "tunnel-esp-cbc-des-sha384", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 8, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 48, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tunnel_esp_cbc_des_sha384, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_esp_cbc, + .decrypt = crypto4xx_decrypt_esp_cbc, + .givencrypt = crypto4xx_givencrypt_esp_cbc, + } + } + }}, + /* IPSec combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tunnel(esp(authenc(hmac(sha512),cbc(des))))", + .cra_driver_name = "tunnel-esp-cbc-des-sha512", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 8, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 64, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tunnel_esp_cbc_des_sha512, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_esp_cbc, + .decrypt = crypto4xx_decrypt_esp_cbc, + .givencrypt = crypto4xx_givencrypt_esp_cbc, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tunnel(esp(authenc(hmac(md5),cbc(des3_ede))))", + .cra_driver_name = "tunnel-esp-cbc-3des-md5", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 8, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 16, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tunnel_esp_cbc_3des_md5, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_esp_cbc, + .decrypt = crypto4xx_decrypt_esp_cbc, + .givencrypt = crypto4xx_givencrypt_esp_cbc, + } + } + }}, + /* IPSec combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tunnel(esp(authenc(hmac(md5),cbc(des3_ede))))", + .cra_driver_name = "tunnel-esp-cbc-3des-md5", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 8, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 16, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tunnel_esp_cbc_3des_md5, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_esp_cbc, + .decrypt = crypto4xx_decrypt_esp_cbc, + .givencrypt = crypto4xx_givencrypt_esp_cbc, + } + } + }}, + /* IPSec combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tunnel(esp(authenc(hmac(sha1),cbc(des3_ede))))", + .cra_driver_name = "tunnel-esp-cbc-3des-sha1", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 8, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 20, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tunnel_esp_cbc_3des_sha1, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_esp_cbc, + .decrypt = crypto4xx_decrypt_esp_cbc, + .givencrypt = crypto4xx_givencrypt_esp_cbc, + } + } + }}, + /* IPSec combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tunnel(esp(authenc(hmac(sha224),cbc(des3_ede))))", + .cra_driver_name = "tunnel-esp-cbc-3des-sha224", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 8, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 28, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tunnel_esp_cbc_3des_sha224, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_esp_cbc, + .decrypt = crypto4xx_decrypt_esp_cbc, + .givencrypt = crypto4xx_givencrypt_esp_cbc, + } + } + }}, + /* IPSec combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tunnel(esp(authenc(hmac(sha256),cbc(des3_ede))))", + .cra_driver_name = "tunnel-esp-cbc-3des-sha256", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 8, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 32, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tunnel_esp_cbc_3des_sha256, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_esp_cbc, + .decrypt = crypto4xx_decrypt_esp_cbc, + .givencrypt = crypto4xx_givencrypt_esp_cbc, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tunnel(esp(authenc(hmac(sha384),cbc(des3_ede))))", + .cra_driver_name = "tunnel-esp-cbc-3des-sha384", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 8, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 48, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tunnel_esp_cbc_3des_sha384, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_esp_cbc, + .decrypt = crypto4xx_decrypt_esp_cbc, + .givencrypt = crypto4xx_givencrypt_esp_cbc, + } + } + }}, + /* IPSec combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tunnel(esp(authenc(hmac(sha512),cbc(des3_ede))))", + .cra_driver_name = "tunnel-esp-cbc-3des-sha512", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 8, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 8 bytes */ + .maxauthsize = 64, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tunnel_esp_cbc_3des_sha512, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_esp_cbc, + .decrypt = crypto4xx_decrypt_esp_cbc, + .givencrypt = crypto4xx_givencrypt_esp_cbc, + } + } + }}, + + /** IPSec transport combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "transport(esp(authenc(hmac(md5),cbc(aes))))", + .cra_driver_name = "transport-esp-cbc-aes-md5", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 16, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 16, /* IV size is 16 bytes */ + .maxauthsize = 16, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_transport_esp_cbc_aes_md5, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_transport_esp_cbc, + .decrypt = crypto4xx_decrypt_transport_esp_cbc, + .givencrypt = crypto4xx_givencrypt_transport_esp_cbc, + } + } + }}, + + + /* IPSec combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "transport(esp(authenc(hmac(sha1),cbc(aes))))", + .cra_driver_name = "transport-esp-cbc-aes-sha1", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 16, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 16, /* IV size is 16 bytes */ + .maxauthsize = 20, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_transport_esp_cbc_aes_sha1, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_transport_esp_cbc, + .decrypt = crypto4xx_decrypt_transport_esp_cbc, + .givencrypt = crypto4xx_givencrypt_transport_esp_cbc, + } + } + }}, + + /* IPSec combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "transport(esp(authenc(hmac(sha224),cbc(aes))))", + .cra_driver_name = "transport-esp-cbc-aes-sha224", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 16, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 16, /* IV size is 16 bytes */ + .maxauthsize = 28, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_transport_esp_cbc_aes_sha224, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_transport_esp_cbc, + .decrypt = crypto4xx_decrypt_transport_esp_cbc, + .givencrypt = crypto4xx_givencrypt_transport_esp_cbc, + } + } + }}, + + /* IPSec combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "transport(esp(authenc(hmac(sha256),cbc(aes))))", + .cra_driver_name = "transport-esp-cbc-aes-sha224", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 16, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 16, /* IV size is 16 bytes */ + .maxauthsize = 32, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_transport_esp_cbc_aes_sha256, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_transport_esp_cbc, + .decrypt = crypto4xx_decrypt_transport_esp_cbc, + .givencrypt = crypto4xx_givencrypt_transport_esp_cbc, + } + } + }}, + + /* IPSec combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "transport(esp(authenc(hmac(sha384),cbc(aes))))", + .cra_driver_name = "transport-esp-cbc-aes-sha384", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 16, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 16, /* IV size is 16 bytes */ + .maxauthsize = 48, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_transport_esp_cbc_aes_sha384, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_transport_esp_cbc, + .decrypt = crypto4xx_decrypt_transport_esp_cbc, + .givencrypt = crypto4xx_givencrypt_transport_esp_cbc, + } + } + }}, + + + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "transport(esp(authenc(hmac(sha512),cbc(aes))))", + .cra_driver_name = "transport-esp-cbc-aes-sha512", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 16, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 16, /* IV size is 16 bytes */ + .maxauthsize = 64, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_transport_esp_cbc_aes_sha512, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_transport_esp_cbc, + .decrypt = crypto4xx_decrypt_transport_esp_cbc, + .givencrypt = crypto4xx_givencrypt_transport_esp_cbc, + } + } + }}, + + /* IPSec transport combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "transport(esp(authenc(hmac(md5),cbc(des))))", + .cra_driver_name = "transport-esp-cbc-des-md5", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 8, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 16, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_transport_esp_cbc_des_md5, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_transport_esp_cbc, + .decrypt = crypto4xx_decrypt_transport_esp_cbc, + .givencrypt = crypto4xx_givencrypt_transport_esp_cbc, + } + } + }}, + + + /* IPSec combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "transport(esp(authenc(hmac(sha1),cbc(des))))", + .cra_driver_name = "transport-esp-cbc-des-sha1", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 8, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 20, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_transport_esp_cbc_des_sha1, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_transport_esp_cbc, + .decrypt = crypto4xx_decrypt_transport_esp_cbc, + .givencrypt = crypto4xx_givencrypt_transport_esp_cbc, + } + } + }}, + + /* IPSec combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "transport(esp(authenc(hmac(sha224),cbc(des))))", + .cra_driver_name = "transport-esp-cbc-des-sha224", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 8, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 28, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_transport_esp_cbc_des_sha224, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_transport_esp_cbc, + .decrypt = crypto4xx_decrypt_transport_esp_cbc, + .givencrypt = crypto4xx_givencrypt_transport_esp_cbc, + } + } + }}, + + /* IPSec combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "transport(esp(authenc(hmac(sha256),cbc(des))))", + .cra_driver_name = "transport-esp-cbc-des-sha256", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 8, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 32, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_transport_esp_cbc_des_sha256, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_transport_esp_cbc, + .decrypt = crypto4xx_decrypt_transport_esp_cbc, + .givencrypt = crypto4xx_givencrypt_transport_esp_cbc, + } + } + }}, + + + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "transport(esp(authenc(hmac(sha384),cbc(des))))", + .cra_driver_name = "transport-esp-cbc-des-sha384", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 8, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 48, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_transport_esp_cbc_des_sha384, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_transport_esp_cbc, + .decrypt = crypto4xx_decrypt_transport_esp_cbc, + .givencrypt = crypto4xx_givencrypt_transport_esp_cbc, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "transport(esp(authenc(hmac(sha512),cbc(des))))", + .cra_driver_name = "transport-esp-cbc-des-sha512", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 8, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 64, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_transport_esp_cbc_des_sha512, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_transport_esp_cbc, + .decrypt = crypto4xx_decrypt_transport_esp_cbc, + .givencrypt = crypto4xx_givencrypt_transport_esp_cbc, + } + } + }}, + + /* IPSec transport combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "transport(esp(authenc(hmac(md5),cbc(des3_ede))))", + .cra_driver_name = "transport-esp-cbc-3des-md5", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 8, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 16, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_transport_esp_cbc_3des_md5, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_transport_esp_cbc, + .decrypt = crypto4xx_decrypt_transport_esp_cbc, + .givencrypt = crypto4xx_givencrypt_transport_esp_cbc, + } + } + }}, + + + /* IPSec combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "transport(esp(authenc(hmac(sha1),cbc(des3_ede))))", + .cra_driver_name = "transport-esp-cbc-3des-sha1", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 8, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 20, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_transport_esp_cbc_3des_sha1, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_transport_esp_cbc, + .decrypt = crypto4xx_decrypt_transport_esp_cbc, + .givencrypt = crypto4xx_givencrypt_transport_esp_cbc, + } + } + }}, + + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "transport(esp(authenc(hmac(sha224),cbc(des3_ede))))", + .cra_driver_name = "transport-esp-cbc-3des-sha224", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 8, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 28, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_transport_esp_cbc_3des_sha224, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_transport_esp_cbc, + .decrypt = crypto4xx_decrypt_transport_esp_cbc, + .givencrypt = crypto4xx_givencrypt_transport_esp_cbc, + } + } + }}, +#endif +#if 1 + /* IPSec combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "transport(esp(authenc(hmac(sha256),cbc(des3_ede))))", + .cra_driver_name = "transport-esp-cbc-3des-sha256", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 8, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 32, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_transport_esp_cbc_3des_sha256, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_transport_esp_cbc, + .decrypt = crypto4xx_decrypt_transport_esp_cbc, + .givencrypt = crypto4xx_givencrypt_transport_esp_cbc, + } + } + }}, + + /* IPSec combined hash and crypto Algorithms */ + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "transport(esp(authenc(hmac(sha384),cbc(des3_ede))))", + .cra_driver_name = "transport-esp-cbc-3des-sha384", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 8, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 48, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_transport_esp_cbc_3des_sha384, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_transport_esp_cbc, + .decrypt = crypto4xx_decrypt_transport_esp_cbc, + .givencrypt = crypto4xx_givencrypt_transport_esp_cbc, + } + } + }}, + + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "transport(esp(authenc(hmac(sha512),cbc(des3_ede))))", + .cra_driver_name = "transport-esp-cbc-3des-sha512", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 8, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 64, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_transport_esp_cbc_3des_sha512, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_transport_esp_cbc, + .decrypt = crypto4xx_decrypt_transport_esp_cbc, + .givencrypt = crypto4xx_givencrypt_transport_esp_cbc, + } + } + }}, + + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "transport(esp(rfc4106(gcm(aes))))", + .cra_driver_name = "transport-esp-rfc4106-gcm-aes", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 16, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, /* Hardware requires 16 bytes aligned */ + .cra_type = &crypto_aead_type, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size for crypto */ + .maxauthsize = 12, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_transport_esp_rfc4106_gcm, + .setauthsize = crypto4xx_setauthsize_aes, + .encrypt = crypto4xx_encrypt_transport_esp_cbc, + .decrypt = crypto4xx_decrypt_transport_esp_cbc, + .givencrypt = crypto4xx_givencrypt_transport_esp_cbc, + } + } + }}, + + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "rfc4106(gcm(aes))", + .cra_driver_name = "transport-esp-rfc4104-gcm-aes", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY_IPSEC-100, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 16, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_exit = crypto4xx_alg_exit, + .cra_u = {.aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .setkey = crypto4xx_setkey_transport_esp_rfc4106_gcm, + .setauthsize = crypto4xx_setauthsize_aes, + .encrypt = crypto4xx_encrypt_transport_esp_cbc, + .decrypt = crypto4xx_decrypt_transport_esp_cbc, + .givencrypt = crypto4xx_givencrypt_transport_esp_cbc, + } + }}}, + + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "macsec(gcm)", + .cra_driver_name = "macsec-ppc4xx", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 16, /* IV size is 16 bytes */ + .maxauthsize = 128, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_macsec_gcm, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_macsec, + .decrypt = crypto4xx_decrypt_macsec, + .givencrypt = NULL, + .givdecrypt = NULL, + } + } + }}, +#endif +#if 1 + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "dtls(aes-sha1)", + .cra_driver_name = "dtls-ppc4xx", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 16, /* IV size is 16 bytes */ + .maxauthsize = 128, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_dtls_aes_sha1, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_dtls, + .decrypt = crypto4xx_decrypt_dtls, + .givencrypt = NULL, + .givdecrypt = NULL, + } + } + }}, +#endif +#if 1 + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "dtls(des-sha1)", + .cra_driver_name = "ppc4xx-dtls-des-sha1", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 128, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_dtls_des_sha1, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_dtls, + .decrypt = crypto4xx_decrypt_dtls, + .givencrypt = NULL, + .givdecrypt = NULL, + } + } + }}, +#endif +#if 1 + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "dtls(des3-sha1)", + .cra_driver_name = "ppc4xx-dtls-des3-sha1", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 128, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_dtls_des3_sha1, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_dtls, + .decrypt = crypto4xx_decrypt_dtls, + .givencrypt = NULL, + .givdecrypt = NULL, + } + } + }}, + + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "dtls(NULL-md5)", + .cra_driver_name = "ppc4xx-dtls-null-md5", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 0, /* IV size is 16 bytes */ + .maxauthsize = 128, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_dtls_null_md5, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_dtls, + .decrypt = crypto4xx_decrypt_dtls, + .givencrypt = NULL, + .givdecrypt = NULL, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "dtls(NULL-sha1)", + .cra_driver_name = "ppc4xx-dtls-null-sha1", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 0, /* IV size is 16 bytes */ + .maxauthsize = 128, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_dtls_null_sha1, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_dtls, + .decrypt = crypto4xx_decrypt_dtls, + .givencrypt = NULL, + .givdecrypt = NULL, + } + } + }}, + +#endif +#if 1 + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "ssl(aes-sha1)", + .cra_driver_name = "ppc4xx-ssl-aes-sha1", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, /* 64 bits ... 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0xF, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 16, /* IV size is 16 bytes */ + .maxauthsize = 128, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_ssl_aes_sha1, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_ssl_aes, + .decrypt = crypto4xx_decrypt_ssl_aes, + .givencrypt = NULL, + .givdecrypt = NULL, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "ssl(des-sha1)", + .cra_driver_name = "ppc4xx-ssl-des-sha1", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 16, /* IV size is 16 bytes */ + .maxauthsize = 128, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_ssl_des_sha1, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_ssl_des, + .decrypt = crypto4xx_decrypt_ssl_des, + .givencrypt = NULL, + .givdecrypt = NULL, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "ssl(des3-sha1)", + .cra_driver_name = "ppc4xx-ssl-des3-sha1", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 128, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_ssl_des3_sha1, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_ssl_des, + .decrypt = crypto4xx_decrypt_ssl_des, + .givencrypt = NULL, + .givdecrypt = NULL, + } + } + }}, + + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "ssl(arc4-sha1)", + .cra_driver_name = "ppc4xx-ssl-arc4-sha1", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 16, /* IV size is 16 bytes */ + .maxauthsize = 128, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_ssl_arc4_sha1, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_ssl_arc4, + .decrypt = crypto4xx_decrypt_ssl_arc4, + .givencrypt = NULL, + .givdecrypt = NULL, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "ssl(arc4-md5)", + .cra_driver_name = "ppc4xx-ssl-arc4-md5", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 16, /* IV size is 16 bytes */ + .maxauthsize = 128, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_ssl_arc4_md5, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_ssl_arc4, + .decrypt = crypto4xx_decrypt_ssl_arc4, + .givencrypt = NULL, + .givdecrypt = NULL, + } + } + }}, +#endif +#if 1 + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "ssl(NULL-md5)", + .cra_driver_name = "ppc4xx-ssl-null-md5", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 0, /* IV size is 16 bytes */ + .maxauthsize = 128, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_ssl_null_md5, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_ssl_null, + .decrypt = crypto4xx_decrypt_ssl_null, + .givencrypt = NULL, + .givdecrypt = NULL, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "ssl(NULL-sha1)", + .cra_driver_name = "ppc4xx-ssl-null-sha1", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 0, /* IV size is 16 bytes */ + .maxauthsize = 128, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_ssl_null_sha1, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_ssl_null, + .decrypt = crypto4xx_decrypt_ssl_null, + .givencrypt = NULL, + .givdecrypt = NULL, + } + } + }}, +#endif +#if 1 + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tls(aes-sha1)", + .cra_driver_name = "ppc4xx-tls-aes-sha1", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 16, /* IV size is 16 bytes */ + .maxauthsize = 128, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tls_aes_sha1, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_ssl_aes, + .decrypt = crypto4xx_decrypt_ssl_aes, + .givencrypt = NULL, + .givdecrypt = NULL, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tls(des-sha1)", + .cra_driver_name = "ppc4xx-tls-des-sha1", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 16, /* IV size is 16 bytes */ + .maxauthsize = 128, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tls_des_sha1, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_ssl_des, + .decrypt = crypto4xx_decrypt_ssl_des, + .givencrypt = NULL, + .givdecrypt = NULL, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tls(des3-sha1)", + .cra_driver_name = "ppc4xx-tls-des3-sha1", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 128, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tls_des3_sha1, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_ssl_des, + .decrypt = crypto4xx_decrypt_ssl_des, + .givencrypt = NULL, + .givdecrypt = NULL, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tls(arc4-sha1)", + .cra_driver_name = "ppc4xx-tls-arc4-sha1", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 16, /* IV size is 16 bytes */ + .maxauthsize = 128, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tls_arc4_sha1, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_ssl_arc4, + .decrypt = crypto4xx_decrypt_ssl_arc4, + .givencrypt = NULL, + .givdecrypt = NULL, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tls(arc4-md5)", + .cra_driver_name = "ppc4xx-tls-arc4-md5", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 16, /* IV size is 16 bytes */ + .maxauthsize = 128, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tls_arc4_md5, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_ssl_arc4, + .decrypt = crypto4xx_decrypt_ssl_arc4, + .givencrypt = NULL, + .givdecrypt = NULL, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tls(NULL-md5)", + .cra_driver_name = "ppc4xx-tls-null-md5", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 0, /* IV size is 16 bytes */ + .maxauthsize = 128, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tls_null_md5, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_ssl_null, + .decrypt = crypto4xx_decrypt_ssl_null, + .givencrypt = NULL, + .givdecrypt = NULL, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tls(NULL-sha1)", + .cra_driver_name = "ppc4xx-tls-null-sha1", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 0, /* IV size is 16 bytes */ + .maxauthsize = 128, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tls_null_sha1, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_ssl_null, + .decrypt = crypto4xx_decrypt_ssl_null, + .givencrypt = NULL, + .givdecrypt = NULL, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tls1_1(aes-sha1)", + .cra_driver_name = "ppc4xx-tls1.1-aes-sha1", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 16, /* IV size is 16 bytes */ + .maxauthsize = 128, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tls1_1_aes_sha1, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_dtls, + .decrypt = crypto4xx_decrypt_dtls, + .givencrypt = NULL, + .givdecrypt = NULL, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tls1_1(des-sha1)", + .cra_driver_name = "ppc4xx-tls1.1-des-sha1", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 16, /* IV size is 16 bytes */ + .maxauthsize = 128, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tls1_1_des_sha1, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_dtls, + .decrypt = crypto4xx_decrypt_dtls, + .givencrypt = NULL, + .givdecrypt = NULL, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tls1_1(des3-sha1)", + .cra_driver_name = "ppc4xx-tls1.1-des3-sha1", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 8, /* IV size is 16 bytes */ + .maxauthsize = 128, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tls1_1_des3_sha1, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_dtls, + .decrypt = crypto4xx_decrypt_dtls, + .givencrypt = NULL, + .givdecrypt = NULL, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tls1_1(arc4-sha1)", + .cra_driver_name = "ppc4xx-tls1.1-arc4-sha1", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 16, /* IV size is 16 bytes */ + .maxauthsize = 128, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tls1_1_arc4_sha1, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_ssl_arc4, + .decrypt = crypto4xx_decrypt_ssl_arc4, + .givencrypt = NULL, + .givdecrypt = NULL, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tls1_1(arc4-md5)", + .cra_driver_name = "ppc4xx-tls1.1-arc4-md5", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 16, /* IV size is 16 bytes */ + .maxauthsize = 128, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tls1_1_arc4_md5, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_ssl_arc4, + .decrypt = crypto4xx_decrypt_ssl_arc4, + .givencrypt = NULL, + .givdecrypt = NULL, + } + } + }}, + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tls1_1(NULL-md5)", + .cra_driver_name = "ppc4xx-tls1.1-null-md5", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 0, /* IV size is 16 bytes */ + .maxauthsize = 128, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tls1_1_null_md5, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_dtls, + .decrypt = crypto4xx_decrypt_dtls, + .givencrypt = NULL, + .givdecrypt = NULL, + } + } + }}, + + { .type = CRYPTO_ALG_TYPE_AEAD, .u.cipher = { + .cra_name = "tls1_1(NULL-sha1)", + .cra_driver_name = "ppc4xx-tls1.1-null-sha1", + .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, + .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC, + .cra_blocksize = 64, /* 128-bits block */ + .cra_ctxsize = sizeof(struct crypto4xx_ctx), + .cra_alignmask = 0, + .cra_type = &crypto_aead_type, + .cra_init = crypto4xx_alg_init, + .cra_exit = crypto4xx_alg_exit, + .cra_module = THIS_MODULE, + .cra_u = { + .aead = { + .ivsize = 0, /* IV size is 16 bytes */ + .maxauthsize = 128, /* Max auth data size in bytes */ + .setkey = crypto4xx_setkey_tls1_1_null_sha1, + .setauthsize = NULL, + .encrypt = crypto4xx_encrypt_dtls, + .decrypt = crypto4xx_decrypt_dtls, + .givencrypt = NULL, + .givdecrypt = NULL, + } + } + }}, +#endif +}; +#define CRYPTO4XX_CONSOLE_DRIVER_NAME "crypto4xx" /** * Module Initialization Routine */ @@ -1156,6 +3929,9 @@ static int __init crypto4xx_probe(struct of_device *ofdev, struct resource res; struct device *dev = &ofdev->dev; struct crypto4xx_core_device *core_dev; + unsigned int pvr; + unsigned short min; + int revb_ver = 1; /* RevB of crypto core */ rc = of_address_to_resource(ofdev->node, 0, &res); if (rc) @@ -1172,6 +3948,7 @@ static int __init crypto4xx_probe(struct of_device *ofdev, mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET); mtdcri(SDR0, PPC405EX_SDR0_SRST, mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET); + revb_ver = 0; } else if (of_find_compatible_node(NULL, NULL, "amcc,ppc460sx-crypto")) { mtdcri(SDR0, PPC460SX_SDR0_SRST, @@ -1193,8 +3970,23 @@ static int __init crypto4xx_probe(struct of_device *ofdev, if (!core_dev->dev) goto err_alloc_dev; + /* Older version of 460EX/GT does not support H/W based security intr coalescing */ + pvr = mfspr(SPRN_PVR); + printk("Reading pvr value = %x\n", pvr); + if ((pvr & 0xfffffff0) == 0x130218A0) { + min = PVR_MIN(pvr); + if (min < 4) { + printk(KERN_INFO "RevA 460EX/GT ... h/w bug in security intr coal\n"); + revb_ver = 0; + } else { + printk(KERN_INFO "RevB h/w security interrupt coalescing supported ...\n"); + } + } + + core_dev->revb_ver = revb_ver; core_dev->dev->core_dev = core_dev; core_dev->device = dev; + core_dev->irq_cnt = 0ll; spin_lock_init(&core_dev->lock); INIT_LIST_HEAD(&core_dev->dev->alg_list); rc = crypto4xx_build_pdr(core_dev->dev); @@ -1209,6 +4001,25 @@ static int __init crypto4xx_probe(struct of_device *ofdev, if (rc) goto err_build_sdr; + proc_crypto4xx = proc_mkdir("driver/crypto4xx", NULL); + if(proc_crypto4xx == NULL) { + printk(KERN_ERR + "%s: Error creating proc entry\n",__FUNCTION__); + return -ENOMEM; + } + + entry = create_proc_read_entry("crypto4xx", + 0, + proc_crypto4xx, + crypto4xx_device_read_procmem, + core_dev); + if(entry == NULL) { + printk(KERN_CRIT + "%s: crypto4xx: create_proc_read_entry failed!\n", + __FUNCTION__); + return -ENOMEM; + } + /* Init tasklet for bottom half processing */ tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb, (unsigned long) dev); @@ -1216,7 +4027,7 @@ static int __init crypto4xx_probe(struct of_device *ofdev, /* Register for Crypto isr, Crypto Engine IRQ */ core_dev->irq = irq_of_parse_and_map(ofdev->node, 0); rc = request_irq(core_dev->irq, crypto4xx_ce_interrupt_handler, 0, - core_dev->dev->name, dev); + "CRYPTO", dev); if (rc) goto err_request_irq; @@ -1269,8 +4080,12 @@ static int __exit crypto4xx_remove(struct of_device *ofdev) /* Un-register with Linux CryptoAPI */ crypto4xx_unregister_alg(core_dev->dev); /* Free all allocated memory */ - crypto4xx_stop_all(core_dev); + remove_proc_entry("crypto4xx", entry) ; + entry = NULL; + remove_proc_entry("driver/crypto4xx", proc_crypto4xx); + proc_crypto4xx = NULL; + crypto4xx_stop_all(core_dev); return 0; } diff --git a/drivers/crypto/amcc/crypto4xx_core.h b/drivers/crypto/amcc/crypto4xx_core.h index da9cbe3b9fc..658a2416294 100644 --- a/drivers/crypto/amcc/crypto4xx_core.h +++ b/drivers/crypto/amcc/crypto4xx_core.h @@ -32,10 +32,16 @@ #define PPC405EX_CE_RESET 0x00000008 #define CRYPTO4XX_CRYPTO_PRIORITY 300 -#define PPC4XX_LAST_PD 63 -#define PPC4XX_NUM_PD 64 + +//#define PPC4XX_LAST_PD 1022 +//#define PPC4XX_NUM_PD 1023 + +#define PPC4XX_LAST_PD 511 +#define PPC4XX_NUM_PD 512 + #define PPC4XX_LAST_GD 1023 #define PPC4XX_NUM_GD 1024 + #define PPC4XX_LAST_SD 63 #define PPC4XX_NUM_SD 64 #define PPC4XX_SD_BUFFER_SIZE 2048 @@ -76,7 +82,9 @@ struct crypto4xx_device { void *pdr; /* base address of packet descriptor ring */ dma_addr_t pdr_pa; /* physical address used to - program ce pdr_base_register */ + program ce pdr_base_register */ + phys_addr_t pdr_ocm_addr; + void *gdr; /* gather descriptor ring */ dma_addr_t gdr_pa; /* physical address used to program ce gdr_base_register */ @@ -100,6 +108,9 @@ struct crypto4xx_device { void *pdr_uinfo; struct list_head alg_list; /* List of algorithm supported by this device */ + u32 pkt_cnt; + u32 macsec_decrypt_num; + }; struct crypto4xx_core_device { @@ -108,18 +119,31 @@ struct crypto4xx_core_device { struct crypto4xx_device *dev; u32 int_status; u32 irq; + u64 irq_cnt; struct tasklet_struct tasklet; spinlock_t lock; + struct timer_list crypto4xx_timer; + int revb_ver; }; struct crypto4xx_ctx { struct crypto4xx_device *dev; void *sa_in; dma_addr_t sa_in_dma_addr; + phys_addr_t sa_in_ocm_addr; + void *sa_out; dma_addr_t sa_out_dma_addr; + phys_addr_t sa_out_ocm_addr; + + void *arc4_state_record; + dma_addr_t arc4_state_record_dma_addr; + phys_addr_t arc4_state_ocm_addr; + void *state_record; dma_addr_t state_record_dma_addr; + phys_addr_t state_record_ocm_addr; + u32 sa_len; u32 offset_to_sr_ptr; /* offset to state ptr, in dynamic sa */ u32 direction; @@ -127,9 +151,20 @@ struct crypto4xx_ctx { u32 save_iv; u32 pd_ctl_len; u32 pd_ctl; + u32 append_icv; + u32 is_gcm; + u32 ctr_aes; u32 bypass; + u32 init_arc4; u32 is_hash; u32 hash_final; + u32 spi; + u32 seq; + u32 pad_block_size; + u32 encap_uhl; + u32 pad_ctl; + u32 authenc; + u32 hc_offset; }; struct crypto4xx_req_ctx { @@ -166,6 +201,7 @@ static inline struct crypto4xx_alg *crypto_alg_to_crypto4xx_alg( return container_of(x, struct crypto4xx_alg, alg.u.cipher); } +extern void my_dump_Data(const u_char* dptr, u_int size); extern int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size); extern void crypto4xx_free_sa(struct crypto4xx_ctx *ctx); extern u32 crypto4xx_alloc_sa_rctx(struct crypto4xx_ctx *ctx, @@ -173,9 +209,15 @@ extern u32 crypto4xx_alloc_sa_rctx(struct crypto4xx_ctx *ctx, extern void crypto4xx_free_sa_rctx(struct crypto4xx_ctx *rctx); extern void crypto4xx_free_ctx(struct crypto4xx_ctx *ctx); extern u32 crypto4xx_alloc_state_record(struct crypto4xx_ctx *ctx); +extern void crypto4xx_free_state_record(struct crypto4xx_ctx *ctx); +extern u32 crypto4xx_alloc_arc4_state_record(struct crypto4xx_ctx *ctx); +extern void crypto4xx_free_arc4_state_record(struct crypto4xx_ctx *ctx); extern u32 get_dynamic_sa_offset_state_ptr_field(struct crypto4xx_ctx *ctx); extern u32 get_dynamic_sa_offset_key_field(struct crypto4xx_ctx *ctx); extern u32 get_dynamic_sa_iv_size(struct crypto4xx_ctx *ctx); +u32 get_dynamic_sa_offset_arc4_state_ptr(struct crypto4xx_ctx *ctx); +u32 get_dynamic_sa_offset_seq_num(struct crypto4xx_ctx *ctx); +u32 get_dynamic_sa_offset_spi(struct crypto4xx_ctx *ctx); extern void crypto4xx_memcpy_le(unsigned int *dst, const unsigned char *buf, int len); extern u32 crypto4xx_build_pd(struct crypto_async_request *req, @@ -183,9 +225,15 @@ extern u32 crypto4xx_build_pd(struct crypto_async_request *req, struct scatterlist *src, struct scatterlist *dst, unsigned int datalen, + struct scatterlist *assoc, + u32 aad_len, void *iv, u32 iv_len); extern int crypto4xx_setkey_aes_cbc(struct crypto_ablkcipher *cipher, const u8 *key, unsigned int keylen); +extern int crypto4xx_setkey_3des_cbc(struct crypto_ablkcipher *cipher, + const u8 *key, unsigned int keylen); +extern int crypto4xx_setkey_3des_ecb(struct crypto_ablkcipher *cipher, + const u8 *key, unsigned int keylen); extern int crypto4xx_encrypt(struct ablkcipher_request *req); extern int crypto4xx_decrypt(struct ablkcipher_request *req); extern int crypto4xx_sha1_alg_init(struct crypto_tfm *tfm); @@ -193,4 +241,315 @@ extern int crypto4xx_hash_digest(struct ahash_request *req); extern int crypto4xx_hash_final(struct ahash_request *req); extern int crypto4xx_hash_update(struct ahash_request *req); extern int crypto4xx_hash_init(struct ahash_request *req); +extern int crypto4xx_md5_alg_init(struct crypto_tfm *tfm); +extern int crypto4xx_hash_hmac_setkey(struct crypto_ahash *hash, + const u8 *key, + unsigned int keylen, + unsigned int sa_len, + unsigned char ha, + unsigned char hm, + unsigned int max_keylen); +extern int crypto4xx_md5_hmac_setkey(struct crypto_ahash *hash, const u8 *key, + unsigned int keylen); +extern int crypto4xx_sha1_alg_init(struct crypto_tfm *tfm); +extern int crypto4xx_sha2_alg_init(struct crypto_tfm *tfm); +extern int crypto4xx_sha2_hmac_setkey(struct crypto_ahash *hash, + const u8 *key, + unsigned int keylen); +extern int crypto4xx_sha1_hmac_setkey(struct crypto_ahash *hash, const u8 *key, + unsigned int keylen); +extern u32 get_dynamic_sa_offset_inner_digest(struct crypto4xx_ctx *ctx); +extern u32 get_dynamic_sa_offset_outer_digest(struct crypto4xx_ctx *ctx); +extern int crypto4xx_pre_compute_hmac(struct crypto4xx_ctx *ctx, + void *key, + unsigned int keylen, + unsigned int bs, + unsigned char ha, + unsigned char digs); +int crypto4xx_setkey_aes_ecb(struct crypto_ablkcipher *cipher, + const u8 *key, unsigned int keylen); +int crypto4xx_setkey_aes_ofb(struct crypto_ablkcipher *cipher, + const u8 *key, unsigned int keylen); +int crypto4xx_setkey_aes_cfb(struct crypto_ablkcipher *cipher, + const u8 *key, unsigned int keylen); +int crypto4xx_setkey_aes_ctr(struct crypto_ablkcipher *cipher, + const u8 *key, unsigned int keylen); +int crypto4xx_setkey_aes_gcm(struct crypto_aead *cipher, + const u8 *key, unsigned int keylen); +int crypto4xx_setkey_aes_ccm(struct crypto_aead *cipher, + const u8 *key, unsigned int keylen); + +int crypto4xx_encrypt_aes_gcm(struct aead_request *req); +int crypto4xx_decrypt_aes_gcm(struct aead_request *req); +int crypto4xx_encrypt_aes_ccm(struct aead_request *req); +int crypto4xx_decrypt_aes_ccm(struct aead_request *req); +int crypto4xx_encrypt_ctr(struct ablkcipher_request *req); +int crypto4xx_decrypt_ctr(struct ablkcipher_request *req); +int crypto4xx_setauthsize_aes(struct crypto_aead *ciper, + unsigned int authsize); +int crypto4xx_givencrypt_aes_ccm(struct aead_givcrypt_request *req); +int crypto4xx_givencrypt_aes_gcm(struct aead_givcrypt_request *req); +int crypto4xx_givdecrypt_aes_ccm(struct aead_givcrypt_request *req); +int crypto4xx_givdecrypt_aes_gcm(struct aead_givcrypt_request *req); +int crypto4xx_setkey_kasumi_f8(struct crypto_ablkcipher *cipher, + const u8 *key, + unsigned int keylen); + +int crypto4xx_encrypt_kasumi_f8(struct ablkcipher_request *req); +int crypto4xx_decrypt_kasumi_f8(struct ablkcipher_request *req); +int crypto4xx_setkey_kasumi_p(struct crypto_ablkcipher *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_kasumi_f9_digest(struct ahash_request *req); +int crypto4xx_kasumi_f9_setkey(struct crypto_ahash *hash, + const u8 *key, unsigned int keylen); +int crypto4xx_xcbc_setkey(struct crypto_ahash *hash, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_arc4(struct crypto_ablkcipher *cipher, + const u8 *key, unsigned int keylen); +int crypto4xx_arc4_decrypt(struct ablkcipher_request *req); +int crypto4xx_arc4_encrypt(struct ablkcipher_request *req); +u32 crypto4xx_alloc_arc4_state_record(struct crypto4xx_ctx *ctx); +int crypto4xx_setauthsize_aes_ccm(struct crypto_aead *ciper, + unsigned int authsize); + +/* From crypto/md5.c */ +extern void md5_get_immediate_hash(struct crypto_tfm *tfm, u8 *data); +extern unsigned int crypto4xx_sa_hash_tbl[3][6]; + +/** IPSec Deneric Tunnel Related Routine Declarations */ +int crypto4xx_encrypt_esp_cbc(struct aead_request *req); +int crypto4xx_decrypt_esp_cbc(struct aead_request *req); +int crypto4xx_givencrypt_esp_cbc(struct aead_givcrypt_request *req); + +/** IPSec Tunnel AES Routine Declarations */ +int crypto4xx_setkey_tunnel_esp_cbc_aes_md5(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_tunnel_esp_cbc_aes_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_tunnel_esp_cbc_3des_md5(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_tunnel_esp_cbc_aes_sha512(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_tunnel_esp_cbc_aes_sha384(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_tunnel_esp_cbc_aes_sha224(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_tunnel_esp_cbc_aes_sha256(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +/** DES Tunnel Mode ipsec Related Algorithms */ +int crypto4xx_setkey_tunnel_esp_cbc_des_md5(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_tunnel_esp_cbc_des_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_tunnel_esp_cbc_des_sha384(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_tunnel_esp_cbc_des_sha224(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_tunnel_esp_cbc_des_sha256(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_tunnel_esp_cbc_des_sha512(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +/** 3DES Tunnel Mode IPSEC Related Algorithms */ +int crypto4xx_setkey_tunnel_esp_cbc_3des_md5(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_tunnel_esp_cbc_3des_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_tunnel_esp_cbc_3des_sha384(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_tunnel_esp_cbc_3des_sha224(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_tunnel_esp_cbc_3des_sha256(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); + +int crypto4xx_setkey_tunnel_esp_cbc_3des_sha512(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); + +/** Generic Transport Mode IPSEC Related Algorithms */ +int crypto4xx_encrypt_transport_esp_cbc(struct aead_request *req); +int crypto4xx_givencrypt_transport_esp_cbc(struct aead_givcrypt_request *req); +int crypto4xx_decrypt_transport_esp_cbc(struct aead_request *req); + +/** AES Transport Mode IPSEC Related Algorithms */ +int crypto4xx_setkey_transport_esp_cbc_aes_md5(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_transport_esp_cbc_aes_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_transport_esp_cbc_aes_sha224(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_transport_esp_cbc_aes_sha256(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_transport_esp_cbc_aes_sha384(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_transport_esp_cbc_aes_sha512(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); + +/** DES Transport Mode IPSEC Related Algorithms */ +int crypto4xx_setkey_transport_esp_cbc_des_md5(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_transport_esp_cbc_des_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_transport_esp_cbc_des_sha224(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_transport_esp_cbc_des_sha256(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_transport_esp_cbc_des_sha384(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_transport_esp_cbc_des_sha512(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); + +/** 3DES Transport Mode IPSEC Related Algorithms */ +int crypto4xx_setkey_transport_esp_cbc_3des_md5(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_transport_esp_cbc_3des_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_transport_esp_cbc_3des_sha224(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_transport_esp_cbc_3des_sha256(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_transport_esp_cbc_3des_sha384(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_transport_esp_cbc_3des_sha512(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +/**Macsec Related Declarations */ +int crypto4xx_encrypt_macsec(struct aead_request *req); +int crypto4xx_decrypt_macsec(struct aead_request *req); +int crypto4xx_setkey_macsec_gcm(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); + +/** DTLS/SSL/TLS Related Setkey Algorithms */ +int crypto4xx_setkey_dtls_aes_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_dtls_des_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_dtls_des3_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_dtls_null_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_dtls_null_md5(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_ssl_aes_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_ssl_des_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_ssl_null_md5(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_ssl_null_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_ssl_des3_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_ssl_arc4_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_ssl_arc4_md5(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); + +int crypto4xx_setkey_tls_aes_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_tls_des_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); + +int crypto4xx_setkey_tls_des3_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_tls_arc4_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_tls_arc4_md5(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_tls_null_md5(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_tls_null_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_tls1_1_aes_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_tls1_1_des_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_tls1_1_des3_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_tls1_1_arc4_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_tls1_1_arc4_md5(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_tls1_1_null_md5(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); +int crypto4xx_setkey_tls1_1_null_sha1(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); + +/** DTLS/SSL/TLS Related Encrypt/Decrypt Algorithms */ +int crypto4xx_encrypt_dtls(struct aead_request *req); +int crypto4xx_decrypt_dtls(struct aead_request *req); +int crypto4xx_encrypt_ssl_aes(struct aead_request *req); +int crypto4xx_decrypt_ssl_aes(struct aead_request *req); +int crypto4xx_encrypt_ssl_des(struct aead_request *req); +int crypto4xx_decrypt_ssl_des(struct aead_request *req); +int crypto4xx_encrypt_ssl_arc4(struct aead_request *req); +int crypto4xx_decrypt_ssl_arc4(struct aead_request *req); +int crypto4xx_encrypt_ssl_null(struct aead_request *req); +int crypto4xx_decrypt_ssl_null(struct aead_request *req); +int crypto4xx_setkey_transport_esp_rfc4106_gcm(struct crypto_aead *cipher, + const u8 *key, + unsigned int keylen); #endif diff --git a/drivers/crypto/amcc/crypto4xx_reg_def.h b/drivers/crypto/amcc/crypto4xx_reg_def.h index 7d4edb00261..d964f5d5551 100644 --- a/drivers/crypto/amcc/crypto4xx_reg_def.h +++ b/drivers/crypto/amcc/crypto4xx_reg_def.h @@ -54,6 +54,10 @@ #define CRYPTO4XX_SEQ_RD 0x00000408 #define CRYPTO4XX_SEQ_MASK_RD 0x0000040C +#define CRYPTO4XX_SPI 0x000106B0 +#define CRYPTO4XX_SEQ_NUM0 0x000106B4 +#define CRYPTO4XX_SEQ_NUM1 0x000106B8 + #define CRYPTO4XX_SA_CMD_0 0x00010600 #define CRYPTO4XX_SA_CMD_1 0x00010604 @@ -112,6 +116,7 @@ #define CRYPTO4XX_PRNG_LFSR_L 0x00070030 #define CRYPTO4XX_PRNG_LFSR_H 0x00070034 + /** * Initilize CRYPTO ENGINE registers, and memory bases. */ @@ -121,18 +126,21 @@ #define PPC4XX_PD_SIZE 6 #define PPC4XX_CTX_DONE_INT 0x2000 #define PPC4XX_PD_DONE_INT 0x8000 +#define PPC4XX_TMO_ERR_INT 0x40000 #define PPC4XX_BYTE_ORDER 0x22222 #define PPC4XX_INTERRUPT_CLR 0x3ffff +#define PPC4XX_INTERRUPT_CLR_REVB 0x7ffff #define PPC4XX_PRNG_CTRL_AUTO_EN 0x3 #define PPC4XX_DC_3DES_EN 1 -#define PPC4XX_INT_DESCR_CNT 4 +#define PPC4XX_INT_DESCR_CNT 7 #define PPC4XX_INT_TIMEOUT_CNT 0 +#define PPC4XX_INT_TIMEOUT_CNT_REVB 0x3FF #define PPC4XX_INT_CFG 1 /** * all follow define are ad hoc */ -#define PPC4XX_RING_RETRY 100 -#define PPC4XX_RING_POLL 100 +#define PPC4XX_RING_RETRY 1 +#define PPC4XX_RING_POLL 1 #define PPC4XX_SDR_SIZE PPC4XX_NUM_SD #define PPC4XX_GDR_SIZE PPC4XX_NUM_GD diff --git a/drivers/crypto/amcc/crypto4xx_sa.c b/drivers/crypto/amcc/crypto4xx_sa.c index 466fd94cd4a..fa4ff7ac66a 100644 --- a/drivers/crypto/amcc/crypto4xx_sa.c +++ b/drivers/crypto/amcc/crypto4xx_sa.c @@ -84,6 +84,119 @@ u32 get_dynamic_sa_offset_state_ptr_field(struct crypto4xx_ctx *ctx) return sizeof(struct dynamic_sa_ctl) + offset * 4; } +u32 get_dynamic_sa_offset_arc4_state_ptr(struct crypto4xx_ctx *ctx) +{ + u32 offset; + union dynamic_sa_contents cts; + + if (ctx->direction == DIR_INBOUND) + cts.w = ((struct dynamic_sa_ctl *)(ctx->sa_in))->sa_contents; + else + cts.w = ((struct dynamic_sa_ctl *)(ctx->sa_out))->sa_contents; + offset = cts.bf.key_size + + cts.bf.inner_size + + cts.bf.outer_size + + cts.bf.spi + + cts.bf.seq_num0 + + cts.bf.seq_num1 + + cts.bf.seq_num_mask0 + + cts.bf.seq_num_mask1 + + cts.bf.seq_num_mask2 + + cts.bf.seq_num_mask3 + + cts.bf.iv0 + + cts.bf.iv1 + + cts.bf.iv2 + + cts.bf.iv3 + + cts.bf.state_ptr + + cts.bf.arc4_ij_ptr; + + return sizeof(struct dynamic_sa_ctl) + offset * 4; +} + +u32 get_dynamic_sa_offset_inner_digest(struct crypto4xx_ctx *ctx) +{ + u32 offset; + union dynamic_sa_contents cts; + + if (ctx->direction == DIR_INBOUND) + cts.w = ((struct dynamic_sa_ctl *)(ctx->sa_in))->sa_contents; + else + cts.w = ((struct dynamic_sa_ctl *)(ctx->sa_out))->sa_contents; + offset = cts.bf.key_size; + + return sizeof(struct dynamic_sa_ctl) + offset * 4; +} + +u32 get_dynamic_sa_offset_outer_digest(struct crypto4xx_ctx *ctx) +{ + u32 offset; + union dynamic_sa_contents cts; + + if (ctx->direction == DIR_INBOUND) + cts.w = ((struct dynamic_sa_ctl *)(ctx->sa_in))->sa_contents; + else + cts.w = ((struct dynamic_sa_ctl *)(ctx->sa_out))->sa_contents; + + offset = cts.bf.key_size + + cts.bf.inner_size; + + return sizeof(struct dynamic_sa_ctl) + offset * 4; +} + +u32 get_dynamic_sa_offset_spi(struct crypto4xx_ctx *ctx) +{ + u32 offset; + union dynamic_sa_contents cts; + + if (ctx->direction == DIR_INBOUND) + cts.w = ((struct dynamic_sa_ctl *)(ctx->sa_in))->sa_contents; + else + cts.w = ((struct dynamic_sa_ctl *)(ctx->sa_out))->sa_contents; + + offset = cts.bf.key_size + + cts.bf.inner_size + + cts.bf.outer_size; + + return sizeof(struct dynamic_sa_ctl) + offset * 4; +} + +u32 get_dynamic_sa_offset_seq_num(struct crypto4xx_ctx *ctx) +{ + u32 offset; + union dynamic_sa_contents cts; + + if (ctx->direction == DIR_INBOUND) + cts.w = ((struct dynamic_sa_ctl *)(ctx->sa_in))->sa_contents; + else + cts.w = ((struct dynamic_sa_ctl *)(ctx->sa_out))->sa_contents; + + offset = cts.bf.key_size + + cts.bf.inner_size + + cts.bf.outer_size + + cts.bf.spi; + return sizeof(struct dynamic_sa_ctl) + offset * 4; +} + +u32 get_dynamic_sa_offset_seq_num_mask(struct crypto4xx_ctx *ctx) +{ + u32 offset; + union dynamic_sa_contents cts; + + if (ctx->direction == DIR_INBOUND) + cts.w = ((struct dynamic_sa_ctl *)(ctx->sa_in))->sa_contents; + else + cts.w = ((struct dynamic_sa_ctl *)(ctx->sa_out))->sa_contents; + + offset = cts.bf.key_size + + cts.bf.inner_size + + cts.bf.outer_size + + cts.bf.spi + + cts.bf.seq_num0 + + cts.bf.seq_num1; + + return sizeof(struct dynamic_sa_ctl) + offset * 4; +} + u32 get_dynamic_sa_iv_size(struct crypto4xx_ctx *ctx) { union dynamic_sa_contents cts; @@ -92,6 +205,7 @@ u32 get_dynamic_sa_iv_size(struct crypto4xx_ctx *ctx) cts.w = ((struct dynamic_sa_ctl *) ctx->sa_in)->sa_contents; else cts.w = ((struct dynamic_sa_ctl *) ctx->sa_out)->sa_contents; + return (cts.bf.iv0 + cts.bf.iv1 + cts.bf.iv2 + cts.bf.iv3) * 4; } diff --git a/drivers/crypto/amcc/crypto4xx_sa.h b/drivers/crypto/amcc/crypto4xx_sa.h index 4b83ed7e557..5350c4efbc5 100644 --- a/drivers/crypto/amcc/crypto4xx_sa.h +++ b/drivers/crypto/amcc/crypto4xx_sa.h @@ -50,12 +50,42 @@ union dynamic_sa_contents { u32 w; } __attribute__((packed)); +#define SA_OPCODE_ESP 0 +#define SA_OPCODE_AH 1 +#define SA_OPCODE_SSL 4 +#define SA_OPCODE_TLS 5 +#define SA_OPCODE_SRTP 7 +#define SA_OPCODE_DTLS 1 +#define SA_OPCODE_TLS1_1 6 + +#define SA_OP_GROUP_BASIC 0 +#define SA_OP_GROUP_PROTOCOL 1 +#define SA_OP_GROUP_EXTEND_PROTOCOL 3 + +#define SA_OPCODE_EXT_PROT_DTLS 1 +#define SA_OPCODE_EXT_PROT_MACSEC 2 +#define SA_OPCODE_EXT_PROT_SSL 4 +#define SA_OPCODE_EXT_PROT_TLS10 5 +#define SA_OPCODE_EXT_PROT_TLS11 6 + #define DIR_OUTBOUND 0 #define DIR_INBOUND 1 -#define SA_OP_GROUP_BASIC 0 #define SA_OPCODE_ENCRYPT 0 #define SA_OPCODE_DECRYPT 0 +#define SA_OPCODE_ENCRYPT_HASH 1 +#define SA_OPCODE_HASH_DECRYPT 1 #define SA_OPCODE_HASH 3 +#define SA_OPCODE_HASH_ENCRYPT 4 +#define SA_OPCODE_DECRYPT_HASH 4 + +#define SA_OPCODE_ESP 0 +#define SA_OPCODE_AH 1 +#define SA_OPCODE_SSL 4 +#define SA_OPCODE_TLS 5 +#define SA_OPCODE_SRTP 7 +#define SA_OPCODE_DTLS 1 +#define SA_OPCODE_TLS1_1 6 + #define SA_CIPHER_ALG_DES 0 #define SA_CIPHER_ALG_3DES 1 #define SA_CIPHER_ALG_ARC4 2 @@ -65,8 +95,17 @@ union dynamic_sa_contents { #define SA_HASH_ALG_MD5 0 #define SA_HASH_ALG_SHA1 1 +#define SA_HASH_ALG_SHA224 2 +#define SA_HASH_ALG_SHA256 3 +#define SA_HASH_ALG_SHA384 4 +#define SA_HASH_ALG_SHA512 5 +#define HASH_ALG_MAX_CNT 6 +#define SA_HASH_ALG_AES_XCBC_MAC_128 8 +#define SA_HASH_ALG_KASUMI_f9 9 +#define SA_HASH_ALG_GHASH 12 +#define SA_HASH_ALG_GMAC 13 +#define SA_HASH_ALG_CBC_MAC 14 #define SA_HASH_ALG_NULL 15 -#define SA_HASH_ALG_SHA1_DIGEST_SIZE 20 #define SA_LOAD_HASH_FROM_SA 0 #define SA_LOAD_HASH_FROM_STATE 2 @@ -84,9 +123,22 @@ union dynamic_sa_contents { #define SA_SAVE_HASH 1 #define SA_NOT_SAVE_IV 0 #define SA_SAVE_IV 1 +#define SA_GEN_IV 3 + #define SA_HEADER_PROC 1 #define SA_NO_HEADER_PROC 0 +#define SA_HASH_ALG_MD5_DIGEST_SIZE 16 +#define SA_HASH_ALG_SHA1_DIGEST_SIZE 20 +#define SA_HASH_ALG_SHA224_DIGEST_SIZE 28 +#define SA_HASH_ALG_SHA256_DIGEST_SIZE 32 +#define SA_HASH_ALG_SHA384_DIGEST_SIZE 48 +#define SA_HASH_ALG_SHA512_DIGEST_SIZE 64 + +#define CRYPTO4XX_CRYPTO_PRIORITY_IPSEC 300 + +#define CRYPTO4XX_MAC_ALGS { "md5", "sha1", \ + "sha224", "sha256", "sha384", "sha512" } union sa_command_0 { struct { u32 scatter:1; @@ -111,7 +163,13 @@ union sa_command_0 { } __attribute__((packed)); #define CRYPTO_MODE_ECB 0 +#define CRYPTO_MODE_KASUMI 0 #define CRYPTO_MODE_CBC 1 +#define CRYPTO_MODE_OFB 2 +#define CRYPTO_MODE_CFB 3 +#define CRYPTO_MODE_AES_CTR 4 +#define CRYPTO_MODE_KASUMI_f8 4 +#define CRYPTO_MODE_AES_ICM 5 #define CRYPTO_FEEDBACK_MODE_NO_FB 0 #define CRYPTO_FEEDBACK_MODE_64BIT_OFB 0 @@ -124,7 +182,7 @@ union sa_command_0 { #define SA_AES_KEY_LEN_256 4 #define SA_REV2 1 -/** +/* * The follow defines bits sa_command_1 * In Basic hash mode this bit define simple hash or hmac. * In IPsec mode, this bit define muting control. @@ -177,13 +235,46 @@ struct dynamic_sa_ctl { /** * State Record for Security Association (SA) */ -struct sa_state_record { +struct sa_state_record { u32 save_iv[4]; u32 save_hash_byte_cnt[2]; u32 save_digest[16]; } __attribute__((packed)); /** + * Arc4 State Record for Security Association (SA) + */ +struct arc4_sr { + u32 arc4_state[64]; +} __attribute__((packed)); + +/** + * Security Association (SA) for DES + */ +struct dynamic_sa_des { + struct dynamic_sa_ctl ctrl; + u32 key[2]; + u32 iv[2]; + u32 state_ptr; + u32 reserved; +} __attribute__((packed)); +#define SA_DES_LEN (sizeof(struct dynamic_sa_des)/4) +#define SA_DES_CONTENTS 0x26000022 + +/** + * Security Association (SA) for 3DES + */ +struct dynamic_sa_3des { + struct dynamic_sa_ctl ctrl; + u32 key[6]; + u32 iv[2]; /* for CBC, OFC, and CFB mode */ + u32 state_ptr; + u32 reserved; +} __attribute__((packed)); +#define SA_3DES_LEN (sizeof(struct dynamic_sa_3des)/4) +#define SA_3DES_CONTENTS 0x26000062 + +/** * Security Association (SA) for AES128 * */ @@ -194,11 +285,10 @@ struct dynamic_sa_aes128 { u32 state_ptr; u32 reserved; } __attribute__((packed)); - #define SA_AES128_LEN (sizeof(struct dynamic_sa_aes128)/4) #define SA_AES128_CONTENTS 0x3e000042 -/* +/** * Security Association (SA) for AES192 */ struct dynamic_sa_aes192 { @@ -208,7 +298,6 @@ struct dynamic_sa_aes192 { u32 state_ptr; u32 reserved; } __attribute__((packed)); - #define SA_AES192_LEN (sizeof(struct dynamic_sa_aes192)/4) #define SA_AES192_CONTENTS 0x3e000062 @@ -228,6 +317,19 @@ struct dynamic_sa_aes256 { #define SA_AES_CONTENTS 0x3e000002 /** + * Security Association (SA) for HASH128: HMAC-MD5 + */ +struct dynamic_sa_hash128 { + struct dynamic_sa_ctl ctrl; + u32 inner_digest[4]; + u32 outer_digest[4]; + u32 state_ptr; + u32 reserved; +} __attribute__((packed)); +#define SA_HASH128_LEN (sizeof(struct dynamic_sa_hash128)/4) +#define SA_HASH128_CONTENTS 0x20008402 + +/** * Security Association (SA) for HASH160: HMAC-SHA1 */ struct dynamic_sa_hash160 { @@ -240,4 +342,418 @@ struct dynamic_sa_hash160 { #define SA_HASH160_LEN (sizeof(struct dynamic_sa_hash160)/4) #define SA_HASH160_CONTENTS 0x2000a502 +/** + * Security Association (SA) for HASH256: HMAC-SHA224, HMAC-SHA256 + */ +struct dynamic_sa_hash256 { + struct dynamic_sa_ctl ctrl; + u32 inner_digest[8]; + u32 outer_digest[8]; + u32 state_ptr; + u32 reserved; +} __attribute__((packed)); +#define SA_HASH256_LEN (sizeof(struct dynamic_sa_hash256)/4) +#define SA_HASH256_CONTENTS 0x20010802 + +/* + * Security Association (SA) for HASH512: HMAC-SHA512 + */ +struct dynamic_sa_hash512 { + struct dynamic_sa_ctl ctrl; + u32 inner_digest[16]; + u32 outer_digest[16]; + u32 state_ptr; + u32 reserved; +} __attribute__((packed)); +#define SA_HASH512_LEN (sizeof(struct dynamic_sa_hash512)/4) +#define SA_HASH512_CONTENTS 0x20021002 + +/** + * Security Association (SA) for AES128_XCBC_MAC + */ +struct dynamic_sa_aes128_xcbc_mac { + struct dynamic_sa_ctl ctrl; + u32 key[4]; + u32 inner_digest[8]; + u32 outer_digest[8]; + u32 iv[4]; /* for CBC, OFC, and CFB mode */ + u32 state_ptr; + u32 reserved; +} __attribute__((packed)); +#define SA_AES128_XCBC_MAC_LEN (sizeof(struct dynamic_sa_aes128_xcbc_mac)/4) +#define SA_AES128_XCBC_MAC_CONTENTS 0x3e010842 + +/** + * Security Association (SA) for AES128_GCM + */ +struct dynamic_sa_aes128_gcm { + struct dynamic_sa_ctl ctrl; + u32 key[4]; + u32 inner_digest[4]; + u32 outer_digest[4]; + u32 spi; + u32 seq; + u32 iv[4]; /* for CBC, OFC, and CFB mode */ + u32 state_ptr; + u32 reserved; +} __attribute__((packed)); +#define SA_AES128_GCM_LEN (sizeof(struct dynamic_sa_aes128_gcm)/4) +#define SA_AES128_GCM_CONTENTS 0x3e0c8442 + +/** + * Security Association (SA) for AES192_XCBC_MAC + */ +struct dynamic_sa_aes192_xcbc_mac { + struct dynamic_sa_ctl ctrl; + u32 key[6]; + u32 inner_digest[8]; + u32 outer_digest[8]; + u32 iv[4]; /* for CBC, OFC, and CFB mode */ + u32 state_ptr; + u32 reserved; +} __attribute__((packed)); +#define SA_AES192_XCBC_MAC_LEN (sizeof(struct dynamic_sa_aes192_xcbc_mac)/4) +#define SA_AES192_XCBC_MAC_CONTENTS 0x3e010862 + +/** + * Security Association (SA) for AES192_GCM + */ +struct dynamic_sa_aes192_gcm { + struct dynamic_sa_ctl ctrl; + u32 key[6]; + u32 inner_digest[4]; + u32 outer_digest[4]; + u32 spi; + u32 seq; + u32 iv[4]; /* for CBC, OFC, and CFB mode */ + u32 state_ptr; + u32 reserved; +} __attribute__((packed)); +#define SA_AES192_GCM_LEN (sizeof(struct dynamic_sa_aes192_gcm)/4) +#define SA_AES192_GCM_CONTENTS 0x3e0c8462 + + +/** + * Security Association (SA) for AES256_XCBC_MAC + */ +struct dynamic_sa_aes256_xcbc_mac { + struct dynamic_sa_ctl ctrl; + u32 key[8]; + u32 inner_digest[8]; + u32 outer_digest[8]; + u32 iv[4]; /* for CBC, OFC, and CFB mode */ + u32 state_ptr; + u32 reserved; +} __attribute__((packed)); +#define SA_AES256_XCBC_MAC_LEN (sizeof(struct dynamic_sa_aes256_xcbc_mac)/4) +#define SA_AES256_XCBC_MAC_CONTENTS 0x3e010882 + +/** + * Security Association (SA) for AES256_GCM + */ +struct dynamic_sa_aes256_gcm { + struct dynamic_sa_ctl ctrl; + u32 key[8]; + u32 inner_digest[4]; + u32 outer_digest[4]; + u32 spi; + u32 seq; + u32 iv[4]; /* for CBC, OFC, and CFB mode */ + u32 state_ptr; + u32 reserved; +} __attribute__((packed)); +#define SA_AES256_GCM_LEN (sizeof(struct dynamic_sa_aes256_gcm)/4) +#define SA_AES256_GCM_CONTENTS 0x3e0c8482 +#define SA_AES_GCM_CONTENTS 0x3e0c8402 + +/** + * Security Association (SA) for Kasumi + */ +struct dynamic_sa_kasumi { + struct dynamic_sa_ctl ctrl; + u32 key[4]; + u32 state_ptr; + u32 reserved; +} __attribute__((packed)); +#define SA_KASUMI_LEN (sizeof(struct dynamic_sa_kasumi)/4) +#define SA_KASUMI_CONTENTS 0x20000042 + +/** + * Security Association (SA) for Kasumi f8 + */ +struct dynamic_sa_kasumi_f8 { + struct dynamic_sa_ctl ctrl; + u32 key[4]; + u32 iv[2]; + u32 state_ptr; + u32 reserved; +} __attribute__((packed)); +#define SA_KASUMI_F8_LEN (sizeof(struct dynamic_sa_kasumi_f8)/4) +#define SA_KASUMI_F8_CONTENTS 0x26000042 + +#define KASUMI_BLOCK_SIZE 8 +#define KASUMI_KEY_SIZE 16 + +/** + * Security Association (SA) for Kasumi f8 + */ +struct dynamic_sa_kasumi_f9 { + struct dynamic_sa_ctl ctrl; + u32 inner_digest[4]; + u32 outter_digest[3]; + u32 state_ptr; + u32 reserved; +} __attribute__((packed)); +#define SA_KASUMI_F9_LEN (sizeof(struct dynamic_sa_kasumi_f9)/4) +#define SA_KASUMI_F9_CONTENTS 0x20006402 + +/** + * Security Association (SA) for AES256 CCM + */ +struct dynamic_sa_aes256_ccm { + struct dynamic_sa_ctl ctrl; + u32 key[8]; + u32 iv[4]; /* for CBC, OFC, and CFB mode */ + u32 state_ptr; + u32 reserved; +} __attribute__((packed)); +#define SA_AES256_CCM_LEN (sizeof(struct dynamic_sa_aes256_ccm)/4) +#define SA_AES256_CCM_CONTENTS 0x3e000082 +#define SA_AES_CCM_CONTENTS 0x3e000002 + +/** + * Security Association (SA) for AES192 CCM + */ +struct dynamic_sa_aes192_ccm { + struct dynamic_sa_ctl ctrl; + u32 key[6]; + u32 iv[4]; /* for CBC, OFC, and CFB mode */ + u32 state_ptr; + u32 reserved; +} __attribute__((packed)); +#define SA_AES192_CCM_LEN (sizeof(struct dynamic_sa_aes192_ccm)/4) +#define SA_AES192_CCM_CONTENTS 0x3e000062 + +/** + * Security Association (SA) for AES128 CCM + */ +struct dynamic_sa_aes128_ccm { + struct dynamic_sa_ctl ctrl; + u32 key[4]; + u32 iv[4]; /* for CBC, OFC, and CFB mode */ + u32 state_ptr; + u32 reserved; +} __attribute__((packed)); +#define SA_AES128_CCM_LEN (sizeof(struct dynamic_sa_aes128_ccm)/4) +#define SA_AES128_CCM_CONTENTS 0x3e000042 + +/** + * Security Association (SA) for ARC4 + */ +struct arc4_ij_ptr { + u32 rsv:16; + u32 j:8; + u32 i:8; +} __attribute__((packed)); + +struct dynamic_sa_arc4 { + struct dynamic_sa_ctl ctrl; + u32 key[4]; + struct arc4_ij_ptr ij; + u32 arc4_state_ptr; + u32 reserved; +} __attribute__((packed)); + +#define SA_ARC4_LEN (sizeof(struct dynamic_sa_arc4)/4) +#define SA_ARC4_CONTENTS 0xc0000042 + +/** + * Security Association (SA) for IPsec ESP md5 or ESP sha1 + */ +struct dynamic_sa_esp_md5_sha1 +{ + struct dynamic_sa_ctl ctrl; + u32 key[8]; + u32 inner_digest[5]; + u32 outter_digest[5]; + u32 spi; + u32 seq[2]; + u32 seq_mask[4]; + u32 iv[4]; + u32 state_ptr; + u32 reserved; +} __attribute__((packed)); + +#define SA_ESP_MD5_SHA1_LEN sizeof(struct dynamic_sa_esp_md5_sha1)/4 +#define SA_ESP_MD5_SHA1_CONTENTS 0x3ffca582 + +struct dynamic_sa_esp_des_md5_sha1 +{ + struct dynamic_sa_ctl ctrl; + u32 key[2]; + u32 inner_digest[5]; + u32 outter_digest[5]; + u32 spi; + u32 seq[2]; + u32 seq_mask[4]; + u32 iv[4]; + u32 state_ptr; + u32 reserved; +} __attribute__((packed)); + +#define SA_ESP_DES_MD5_SHA1_LEN sizeof(struct dynamic_sa_esp_des_md5_sha1)/4 +#define SA_ESP_DES_MD5_SHA1_CONTENTS 0x3ffca522 + +/** + * Security Association (SA) for IPsec ESP 3des md5 sha1 + */ +struct dynamic_sa_esp_3des_md5_sha1 +{ + struct dynamic_sa_ctl ctrl; + u32 key[6]; + u32 inner_digest[5]; + u32 outter_digest[5]; + u32 spi; + u32 seq[2]; + u32 seq_mask[4]; + u32 iv[4]; + u32 state_ptr; + u32 reserved; +} __attribute__((packed)); + +#define SA_ESP_3DES_MD5_SHA1_LEN sizeof(struct dynamic_sa_esp_3des_md5_sha1)/4 +#define SA_ESP_3DES_MD5_SHA1_CONTENTS 0x3ffca562 + +/** + * Security Association (SA) for IPsec ESP sha512 + */ +struct dynamic_sa_esp_sha512 +{ + struct dynamic_sa_ctl ctrl; + u32 key[8]; + u32 inner_digest[16]; + u32 outter_digest[16]; + u32 spi; + u32 seq[2]; + u32 seq_mask[4]; + u32 iv[4]; + u32 state_ptr; + u32 reserved; +} __attribute__((packed)); + +#define SA_ESP_SHA512_LEN sizeof(struct dynamic_sa_esp_sha512)/4 +#define SA_ESP_SHA512_CONTENTS 0x3ffe1082 + + +/** + * Security Association (SA) for IPsec ESP gcm + */ +struct dynamic_sa_esp_gcm +{ + struct dynamic_sa_ctl ctrl; + u32 key[4]; + u32 inner_digest[4]; + u32 outter_digest[4]; + u32 spi; + u32 seq[2]; + u32 seq_mask[4]; + u32 iv[4]; + u32 state_ptr; + u32 reserved; +} __attribute__((packed)); + +#define SA_ESP_GCM_LEN sizeof(struct dynamic_sa_esp_gcm)/4 +#define SA_ESP_GCM_CONTENTS 0x3ffc8442 +/** + * Security Association (SA) for IPsec ESP aes sha256 + */ +struct dynamic_sa_esp_sha256 +{ + struct dynamic_sa_ctl ctrl; + u32 key[8]; + u32 inner_digest[8]; + u32 outter_digest[8]; + u32 spi; + u32 seq[2]; + u32 seq_mask[4]; + u32 iv[4]; + u32 state_ptr; + u32 reserved; +} __attribute__((packed)); + +#define SA_ESP_SHA256_LEN sizeof(struct dynamic_sa_esp_sha256)/4 +#define SA_ESP_SHA256_CONTENTS 0x3ffd0882 + +/** + * Security Association (SA) for MACsec GCM + */ +struct dynamic_sa_macsec_gcm +{ + struct dynamic_sa_ctl ctrl; + u32 key[4]; + u32 inner_digest[4]; + u32 spi; + u32 seq; + u32 seq_mask[4]; + u32 iv[2]; + u32 state_ptr; + u32 reserved; +} __attribute__((packed)); + +#define SA_MACSEC_GCM_LEN sizeof(struct dynamic_sa_macsec_gcm)/4 +#define SA_MACSEC_GCM_CONTENTS 0x27ec0442 + +/** + * Security Association (SA) for DTLS + */ +union dynamic_sa_dtls_spi +{ + struct { + u32 rsv:8; + u32 version:16; + u32 type:8; + }bf; + u32 w; +}__attribute__((packed)); + +struct dynamic_sa_dtls +{ + struct dynamic_sa_ctl ctrl; + u32 key[8]; + u32 inner_digest[5]; + u32 outter_digest[5]; + union dynamic_sa_dtls_spi spi; + u32 seq[2]; + u32 seq_mask[4]; + u32 iv[4]; + u32 state_ptr; + u32 reserved; +} __attribute__((packed)); + +#define SA_DTLS_LEN sizeof(struct dynamic_sa_dtls)/4 +#define SA_DTLS_CONTENTS 0x3ffca582 + +/** + * + * Security Association (SA) for SSL/TLS ARC4 + */ + struct dynamic_sa_ssl_tls_arc4 +{ + struct dynamic_sa_ctl ctrl; + u32 key[4]; + u32 inner_digest[5]; + u32 outter_digest[5]; + union dynamic_sa_dtls_spi spi; + u32 seq[2]; + u32 seq_mask[4]; + u32 iv[4]; + u32 state_ptr; + struct arc4_ij_ptr ij; + u32 arc4_state_ptr; +} __attribute__((packed)); + +//typedef struct dynamic_sa_ssl_tls_arc4 dynamic_sa_ssl_tls_arc4_t; +#define SA_SSL_ARC4_LEN sizeof(struct dynamic_sa_ssl_tls_arc4)/4 +#define SA_SSL_ARC4_CONTENTS 0xfffca542 + #endif diff --git a/drivers/crypto/pka_4xx.c b/drivers/crypto/pka_4xx.c new file mode 100644 index 00000000000..4dea3eb4b3c --- /dev/null +++ b/drivers/crypto/pka_4xx.c @@ -0,0 +1,1333 @@ +/******************************************************************************* + * + * Copyright (c) 2008 Loc Ho <lho@amcc.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * + * Detail Description: + * This file defines ioctl structures for the Linux CryptoAPI interface. It + * provides user space applications accesss into the Linux CryptoAPI + * functionalities. + * + * @file pka4xx.c + * + * This file provides access and implementation of the high layer API to the + * PKA registers. + * + ******************************************************************************* + */ +#include <asm/delay.h> +#include <asm/dcr-native.h> +#include <linux/irq.h> +#include "pka_4xx_access.h" +#include <crypto/pka_4xx.h> +#include "pka_4xx_firmware.h" + +/** + * PKA Functions + * + */ +/* # of time to poll for synchronous operation */ +#define PKA4XX_POLL_DONE_MAX_CNT 5000 + +#define PKA4XX_CSR_WRITE_RETURN(a, v) \ + do { \ + rc = pka4xx_csr_hw_write32((a), (v)); \ + if (rc != RC_OK) \ + return rc; \ + } while(0); + +#define PKA4XX_CSR_READ_RETURN(a, v) \ + do { \ + rc = pka4xx_csr_hw_read32((a), (v)); \ + if (rc != RC_OK) \ + return rc; \ + } while(0); + + +#define PKA_ALIGN(x, a) do { \ + (x) += ((a)-1); \ + (x) &= ~((a)-1); \ + } while(0); +#define PKA_ALIGN_RVAL(x, a) (((x) + ((a)-1)) & (~((a)-1))) + +static u32 pkt_firmware_sizedw = PKA_FIRMWARE_1_3_SIZEDW; +static const u32 *pka_firmware = pka_firmware_1_3; + +u32 msg_buf[20][10]; +int msg_idx; + +u32 pka4xx_pkcp_set_vec(u32 vecA_cnt, + u32 *vecA, + u32 vecB_cnt, + u32 *vecB) +{ + u32 addr; + int rc, i; + u32 val32; + + addr = PKA_RAM_ADDR; + /* Set PKA RAM address and load input A - multiplicand */ + PKA4XX_CSR_WRITE_RETURN(PKA_ALENGTH_ADDR, vecA_cnt); + PKA4XX_CSR_WRITE_RETURN(PKA_APTR_ADDR, addr >> 2); + PKA4XX_CSR_READ_RETURN(PKA_APTR_ADDR, &val32); + PKA4XX_CSR_READ_RETURN(PKA_ALENGTH_ADDR, &val32); + for(i = 0; i < vecA_cnt; i++, addr += 4) { + PKA4XX_CSR_WRITE_RETURN(addr, vecA[i]); + PKA4XX_CSR_READ_RETURN(addr, &val32); + LPRINTF(LL_INFO, "addr %08X val %08X", addr, val32); + } + PKA_ALIGN(addr, 8); /* Align 8-byte */ + /* Align 8-byte but use 2 as it is DWORD */ + /* Set PKA RAM address and load for input B - multiplier */ + PKA4XX_CSR_WRITE_RETURN(PKA_BLENGTH_ADDR, vecB_cnt); + PKA4XX_CSR_WRITE_RETURN(PKA_BPTR_ADDR, addr >> 2); + PKA4XX_CSR_READ_RETURN(PKA_BPTR_ADDR, &val32); + PKA4XX_CSR_READ_RETURN(PKA_BLENGTH_ADDR, &val32); + for(i = 0; i < vecB_cnt; i++, addr += 4) { + PKA4XX_CSR_WRITE_RETURN(addr, vecB[i]); + PKA4XX_CSR_READ_RETURN(addr, &val32); + LPRINTF(LL_INFO, + "addr %08X val %08X", addr, val32); + } + PKA_ALIGN(addr, 8); /* Align 8-byte */ + /* Set PKA RAM address for output C - product */ + PKA4XX_CSR_WRITE_RETURN(PKA_CPTR_ADDR, addr >> 2); + + return addr; +} + +u32 pka4xx_addsub_set_vec(u32 input_cnt, + u32 *addendA, + u32 *subtrahend, + u32 *addendC) +{ + u32 addr; + int rc, i; + + addr = PKA_RAM_ADDR; + /* Set PKA RAM address and load input A - addendA */ + PKA4XX_CSR_WRITE_RETURN(PKA_ALENGTH_ADDR, input_cnt); + PKA4XX_CSR_WRITE_RETURN(PKA_APTR_ADDR, addr >> 2); + for(i = 0; i < input_cnt; i++, addr += 4) + PKA4XX_CSR_WRITE_RETURN(addr, addendA[i]); + PKA_ALIGN(addr, 8); /* Align 8-byte */ + /* Set PKA RAM address and load input B - subtrahend */ + PKA4XX_CSR_WRITE_RETURN(PKA_BPTR_ADDR, addr >> 2); + for(i = 0; i < input_cnt; i++, addr += 4) + PKA4XX_CSR_WRITE_RETURN(addr, subtrahend[i]); + PKA_ALIGN(addr, 8); /* Align 8-byte */ + /* Set PKA RAM address and load input C - addendC */ + PKA4XX_CSR_WRITE_RETURN(PKA_CPTR_ADDR, addr >> 2); + for(i = 0; i < input_cnt; i++, addr += 4) + PKA4XX_CSR_WRITE_RETURN(addr, addendC[i]); + PKA_ALIGN(addr, 8); /* Align 8-byte */ + /* Set PKA RAM address for output - result */ + PKA4XX_CSR_WRITE_RETURN(PKA_DPTR_ADDR, addr >> 2); + + return addr; +} + + +u32 pka4xx_shift_set_vec(u32 input_cnt, + u32 *input, + u8 shift) +{ + u32 addr; + int rc, i; + + addr = PKA_RAM_ADDR; + /* Set PKA RAM address and load input A - input */ + PKA4XX_CSR_WRITE_RETURN(PKA_ALENGTH_ADDR, input_cnt); + PKA4XX_CSR_WRITE_RETURN(PKA_APTR_ADDR, addr >> 2); + for(i = 0; i < input_cnt; i++, addr += 4) + PKA4XX_CSR_WRITE_RETURN(addr, input[i]); + PKA_ALIGN(addr, 8); /* Align 8-byte */ + /* Set shift value */ + PKA4XX_CSR_WRITE_RETURN(PKA_SHIFT_ADDR, shift); + /* Set PKA RAM address for output - result */ + PKA4XX_CSR_WRITE_RETURN(PKA_CPTR_ADDR, addr >> 2); + /* Save callback for asynchronous operation */ + + return addr; +} + +u32 pka4xx_expmod_crt_set_vec(u32 exp_len, + u32 *expP, + u32 *expQ, + u32 mod_inverse_len, + u32 *modP, + u32 *modQ, + u32 *inverseQ, + u32 *input) +{ + u32 addr; + u32 oaddr_start = 0x00000000; + u32 Daddr; + int i, rc; + u32 val32; + + addr = PKA_RAM_ADDR + (oaddr_start << 2); + + PKA4XX_CSR_WRITE_RETURN(PKA_ALENGTH_ADDR, exp_len); + PKA4XX_CSR_WRITE_RETURN(PKA_APTR_ADDR, addr >> 2); + for(i = 0; i < exp_len; i++, addr += 4) { + PKA4XX_CSR_WRITE_RETURN(addr, expP[i]); + PKA4XX_CSR_READ_RETURN(addr, &val32); + LPRINTF(LL_INFO, "addr 0x%08X expP val 0x%08X\n", + addr, val32); + } + PKA_ALIGN(addr, 8); /* Align 8-byte */ + + for(i = 0; i < exp_len; i++, addr += 4) { + PKA4XX_CSR_WRITE_RETURN(addr, expQ[i]); + PKA4XX_CSR_READ_RETURN(addr, &val32); + LPRINTF(LL_INFO, "addr 0x%08X expQ val 0x%08X\n", + addr, val32); + } + PKA_ALIGN(addr, 8); /* Align 8-byte */ + + /* Set PKA RAM address and load input modP and modQ */ + PKA4XX_CSR_WRITE_RETURN(PKA_BLENGTH_ADDR, mod_inverse_len); + PKA4XX_CSR_WRITE_RETURN(PKA_BPTR_ADDR, addr >> 2); + for(i = 0; i < mod_inverse_len; i++, addr += 4) { + PKA4XX_CSR_WRITE_RETURN(addr, modP[i]); + PKA4XX_CSR_READ_RETURN(addr, &val32); + LPRINTF(LL_INFO, "addr 0x%08X modP val 0x%08X\n", + addr, val32); + } + addr += 8;/*mm */ /* Require 1 extra DWORD */ + PKA_ALIGN(addr, 8); /* Align 8-byte */ + + for(i = 0; i < mod_inverse_len; i++, addr += 4) { + PKA4XX_CSR_WRITE_RETURN(addr, modQ[i]); + PKA4XX_CSR_READ_RETURN(addr, &val32); + LPRINTF(LL_INFO, "addr 0x%08X mod Q val 0x%08X\n", + addr, val32); + } + addr += 4; /* Require 1 extra DWORD */ + PKA_ALIGN(addr, 8); /* Align 8-byte */ + + /* Set PKA RAM address and load input inverseQ */ + PKA4XX_CSR_WRITE_RETURN(PKA_CPTR_ADDR, addr >> 2); + for(i = 0; i < mod_inverse_len; i++, addr += 4) { + PKA4XX_CSR_WRITE_RETURN(addr, inverseQ[i]); + PKA4XX_CSR_READ_RETURN(addr, &val32); + LPRINTF(LL_INFO, "addr 0x%08X invQ val 0x%08X\n", + addr, val32); + } + PKA_ALIGN(addr, 8); /* Align 8-byte */ + + /* Set PKA RAM address for output - result */ + PKA4XX_CSR_WRITE_RETURN(PKA_DPTR_ADDR, addr >> 2); + Daddr = addr; + for(i = 0; i < (mod_inverse_len<<1); i++, addr += 4) { + PKA4XX_CSR_WRITE_RETURN(addr, input[i]); + PKA4XX_CSR_READ_RETURN(addr, &val32); + LPRINTF(LL_INFO, "addr 0x%08X input val 0x%08X\n", + addr, val32); + } + + return Daddr; +} + +u32 pka4xx_expmod_set_vec(u32 base_mod_cnt, u32 *base, + u32 *modulus, + u32 exponent_cnt, + u32 *exponent) +{ + u32 addr; + u32 oaddr_start = 0x00000000; + u32 val32; + int rc, i; + + addr = PKA_RAM_ADDR + (oaddr_start << 2); + + PKA4XX_CSR_WRITE_RETURN(PKA_ALENGTH_ADDR, exponent_cnt); + PKA4XX_CSR_WRITE_RETURN(PKA_APTR_ADDR, addr >> 2); + for(i = 0; i < exponent_cnt; i++, addr += 4) { + PKA4XX_CSR_WRITE_RETURN(addr, exponent[i]); + PKA4XX_CSR_READ_RETURN(addr, &val32); + LPRINTF(LL_INFO, "addr 0x%08X A val 0x%08X", + addr, val32); + } + PKA_ALIGN(addr, 8); /* Align 8-byte */ + /* Set PKA RAM address and load input B - modulus */ + PKA4XX_CSR_WRITE_RETURN(PKA_BLENGTH_ADDR, base_mod_cnt); + PKA4XX_CSR_WRITE_RETURN(PKA_BPTR_ADDR, addr >> 2); + for(i = 0; i < base_mod_cnt; i++, addr += 4) { + PKA4XX_CSR_WRITE_RETURN(addr, modulus[i]); + PKA4XX_CSR_READ_RETURN(addr, &val32); + LPRINTF(LL_INFO, "addr 0x%08X B val 0x%08X", + addr, val32); + } + addr += 4; /* Require 1 extra DWORD */ + PKA_ALIGN(addr, 8); /* Align 8-byte */ + /* Set PKA RAM address and load input C - base */ + PKA4XX_CSR_WRITE_RETURN(PKA_CPTR_ADDR, addr >> 2); + for(i = 0; i < base_mod_cnt; i++, addr += 4) { + PKA4XX_CSR_WRITE_RETURN(addr, base[i]); + PKA4XX_CSR_READ_RETURN(addr, &val32); + LPRINTF(LL_INFO, "addr 0x%08X C val 0x%08X", + addr, val32); + } + addr += 4; /* Require 1 extra DWORD */ + PKA_ALIGN(addr, 8); /* Align 8-byte */ + /* Set PKA RAM address for output - result */ + PKA4XX_CSR_WRITE_RETURN(PKA_DPTR_ADDR, addr >> 2); + + return addr; +} + +void pka4xx_process_completed_event (struct pka4xx_op *op) +{ + int status = RC_OK; + pka4xx_cb callback = NULL; + + callback = op->cb; + op->cb = NULL; + if (callback) + (*callback)(op->ctx, status); +} + +void pka4xx_tasklet_cb (unsigned long data) +{ + struct list_head *pos; + struct list_head *tmp; + + unsigned long flags; + + spin_lock_irqsave(&pka_get_ctx()->lock, flags); + + list_for_each_safe(pos, tmp, &pka_get_ctx()->completed_event_queue) { + struct pka4xx_op *item; + item = list_entry(pos, struct pka4xx_op, next); + list_del(pos); + spin_unlock_irqrestore(&pka_get_ctx()->lock,flags); + pka4xx_process_completed_event(item); + spin_lock_irqsave(&pka_get_ctx()->lock, flags); + } + + spin_unlock_irqrestore(&pka_get_ctx()->lock,flags); +} + +static u8 pka4xx_pending_op(void) +{ + return pka_get_ctx()->op_head != pka_get_ctx()->op_tail; +} + +static struct pka4xx_op * pka4xx_get_op_item(void) +{ + u32 tail; + + if (pka_get_ctx()->op_tail == PKA4XX_PENDING_OP_MAX-1) + tail = 0; + else + tail = pka_get_ctx()->op_tail + 1; + + if (tail == pka_get_ctx()->op_head) { + printk(LL_ERR "No free descriptor available for operation " + "queuing\n"); + return NULL; + } + return &pka_get_ctx()->op[pka_get_ctx()->op_tail]; +} + +static int pka4xx_start_op(struct pka4xx_op *op, int interrupt_mode) +{ + int rc; + u8 restart = 0; + u32 Daddr; + u32 Caddr, addr; + u32 val32; + + if (!interrupt_mode) { + restart = !(pka_get_ctx()->op_head != pka_get_ctx()->op_tail); + + if (pka_get_ctx()->op_tail == PKA4XX_PENDING_OP_MAX-1) + pka_get_ctx()->op_tail = 0; + else + pka_get_ctx()->op_tail++; + } + + if (restart || interrupt_mode) { + switch(op->opcode) { + case 0: /* Canceled */ + return RC_OK; + case PKA_FUNCTION_DIV: + /* Passing to pka4xx_div_set_vec the order of + * dividend_cnt, dividend, divisor_cnt, divisor + */ + LPRINTF(LL_INFO, "Starting async Div PKA operation \n"); + Caddr = pka4xx_pkcp_set_vec(op->async_pkcp.vecA_cnt, + op->async_pkcp.vecA, + op->async_pkcp.vecB_cnt, + op->async_pkcp.vecB); + op->ramC_addr = Caddr; + addr = Caddr; + addr += (op->async_pkcp.vecB_cnt + 1) * 4; + PKA_ALIGN(addr, 8); /* Align 8-byte */ + /* Select PKA RAM address for output D - quotient */ + PKA4XX_CSR_WRITE_RETURN(PKA_DPTR_ADDR, addr >> 2); + PKA4XX_CSR_READ_RETURN(PKA_DPTR_ADDR, &val32); + op->ramD_addr = addr; + break; + case PKA_FUNCTION_MUL: + case PKA_FUNCTION_MOD: + case PKA_FUNCTION_ADD: + case PKA_FUNCTION_SUB: + case PKA_FUNCTION_COMPARE: + Caddr = pka4xx_pkcp_set_vec(op->async_pkcp.vecA_cnt, + op->async_pkcp.vecA, + op->async_pkcp.vecB_cnt, + op->async_pkcp.vecB); + op->ramC_addr = Caddr; + break; + case PKA_FUNCTION_ADDSUB: + LPRINTF(LL_INFO, "Starting async ADDSUB PKA operation\n"); + Daddr = pka4xx_addsub_set_vec(op->async_pkcp.vecA_cnt, + op->async_pkcp.vecA, + op->async_pkcp.vecB, + op->async_pkcp.vec_addsub_C); + op->ramD_addr = Daddr; + break; + case PKA_FUNCTION_RSHIFT: + case PKA_FUNCTION_LSHIFT: + Caddr = pka4xx_shift_set_vec(op->async_pkcp.vecA_cnt, + op->async_pkcp.vecA, + op->async_pkcp.shift_val); + op->ramC_addr = Caddr; + break; + case PKA_FUNCTION_SEQOP_EXPMOD_ACT2: + case PKA_FUNCTION_SEQOP_EXPMOD_ACT4: + case PKA_FUNCTION_SEQOP_EXPMOD_VAR: + Daddr = pka4xx_expmod_set_vec + (op->async_expmod.base_mod_cnt, + op->async_expmod.base, + op->async_expmod.modulus, + op->async_expmod.exp_cnt, + op->async_expmod.exp); + op->ramD_addr = Daddr; + break; + case PKA_FUNCTION_SEQOP_EXPMOD_CRT: + /* No pending operation before adding this operation + * id restart = 1 + */ + Daddr = pka4xx_expmod_crt_set_vec + (op->async_expmod_crt.exp_len, + op->async_expmod_crt.expP, + op->async_expmod_crt.expQ, + op->async_expmod_crt.mod_inverse_len, + op->async_expmod_crt.modP, + op->async_expmod_crt.modQ, + op->async_expmod_crt.inverseQ, + op->async_expmod_crt.input); + op->ramD_addr = Daddr; + break; + default: + printk(LL_ERR "No operation in async mode\n"); + return RC_OK; + } + if (op->opcode == PKA_FUNCTION_SEQOP_EXPMOD_VAR || + op->opcode == PKA_FUNCTION_SEQOP_EXPMOD_CRT) { + PKA4XX_CSR_WRITE_RETURN(PKA_SHIFT_ADDR, op->resultC_cnt); + } + PKA4XX_CSR_WRITE_RETURN(PKA_FUNCTION_ADDR, + PKA_FUNCTION_RUN | op->opcode); + } + return RC_OK; +} + +irqreturn_t pka4xx_irq_handler(int irq, void * id) +{ + int rc; + u32 i; + u32 val; + struct pka4xx_op *op; + struct pka4xx_op *next_op; + unsigned long flags; + + if (!pka4xx_pending_op()) { + LPRINTF(LL_INFO, + "No pending op in pka4xx_irq_handler !!\n"); + return 0; + } + op = &pka_get_ctx()->op[pka_get_ctx()->op_head]; + switch(op->opcode) { + case 0: /* Canceled */ + op->cb = NULL; + break; + case PKA_FUNCTION_COMPARE: + PKA4XX_CSR_READ_RETURN(PKA_COMPARE_ADDR, &val); + if (val & PKA_COMPARE_EQUAL) + *op->resultC_addr = 0; + else if (val & PKA_COMPARE_LESSTHAN) + *op->resultC_addr = -1; + else + *op->resultC_addr = 1; + break; + case PKA_FUNCTION_SEQOP_EXPMOD_ACT2: + case PKA_FUNCTION_SEQOP_EXPMOD_ACT4: + case PKA_FUNCTION_SEQOP_EXPMOD_VAR: + case PKA_FUNCTION_SEQOP_EXPMOD_CRT: + for(i = 0; i < op->resultD_cnt; op->ramD_addr += 4) { + pka4xx_csr_hw_read32(op->ramD_addr, + &op->resultD_addr[i]); + msg_buf[msg_idx][i] = op->resultD_addr[i]; + LPRINTF(LL_INFO, "res expmod 0x%08x", + msg_buf[msg_idx][i]); + i++; + } + break; + case PKA_FUNCTION_ADDSUB: + for(i = 0; i < op->resultD_cnt; op->ramD_addr += 4) + pka4xx_csr_hw_read32(op->ramD_addr, + &op->resultD_addr[i++]); + break; + case PKA_FUNCTION_DIV: + for(i = 0; i < op->resultC_cnt; op->ramC_addr += 4) + pka4xx_csr_hw_read32(op->ramC_addr, + &op->resultC_addr[i++]); + for(i = 0; i < op->resultD_cnt; op->ramD_addr += 4) + pka4xx_csr_hw_read32(op->ramD_addr, + &op->resultD_addr[i++]); + break; + default: + for(i = 0; i < op->resultC_cnt; op->ramC_addr += 4) + pka4xx_csr_hw_read32(op->ramC_addr, + &op->resultC_addr[i++]); + break; + } + + if (pka_get_ctx()->op_head == PKA4XX_PENDING_OP_MAX - 1) + pka_get_ctx()->op_head = 0; + else + pka_get_ctx()->op_head = + (pka_get_ctx()->op_head + 1) % PKA4XX_PENDING_OP_MAX; + + next_op = &pka_get_ctx()->op[pka_get_ctx()->op_head]; + + spin_lock_irqsave(&pka_get_ctx()->lock, flags); + list_add_tail(&op->next, &pka_get_ctx()->completed_event_queue); + spin_unlock_irqrestore(&pka_get_ctx()->lock,flags); + + if (!pka4xx_pending_op()) { + LPRINTF(LL_INFO, "No pending op in pka4xx_irq_handler\n"); + tasklet_schedule(&pka_get_ctx()->tasklet); + return IRQ_HANDLED; + } + pka4xx_start_op(next_op, 1); + tasklet_schedule(&pka_get_ctx()->tasklet); + + return IRQ_HANDLED; +} + +static int pka4xx_wait2complete(void) +{ + int rc; + u32 val; + u32 tried = 0; + + do { + udelay(1); + PKA4XX_CSR_READ_RETURN(PKA_FUNCTION_ADDR, &val); + if (!(val & PKA_FUNCTION_RUN)) { + return RC_OK; + } + tried++; + } while (tried < PKA4XX_POLL_DONE_MAX_CNT); + + LPRINTF(LL_INFO "Returning busy after tried count = %d", tried); + return RC_EBUSY; +} + +int pka4xx_mul(pka4xx_cb cb, void *ctx, u32 *op_id, + u32 multiplicand_cnt, u32 *multiplicand, + u32 multiplier_cnt, u32 *multiplier, + u32 *product) +{ + int rc; + u32 addr; /* Address of PKA RAM */ + struct pka4xx_op *pka_op; + u32 i; + +#ifdef PPR_PKA_DEBUG + if (multiplicand_cnt > PKA4XX_VECTOR_MAXSIZE || + multiplier_cnt > PKA4XX_VECTOR_MAXSIZE) + return RC_INVALID_PARM; +#endif + if (cb == NULL) { + if (pka4xx_pending_op()) + return RC_EBUSY; + pka_op = NULL; + } else { + pka_op = pka4xx_get_op_item(); + if (pka_op == NULL) + return RC_EBUSY; + } + + /* Save callback for asynchronous operation */ + if (!cb) { + addr = pka4xx_pkcp_set_vec(multiplicand_cnt, multiplicand, + multiplier_cnt, multiplier); + /* Start the operation */ + PKA4XX_CSR_WRITE_RETURN(PKA_FUNCTION_ADDR, + PKA_FUNCTION_RUN | PKA_FUNCTION_MUL); + rc = pka4xx_wait2complete(); + + if (rc != RC_OK) + return rc; + multiplicand_cnt += multiplier_cnt; + for(i = 0; i < multiplicand_cnt; i++) { + PKA4XX_CSR_READ_RETURN(addr, &product[i]); + LPRINTF(LL_INFO, "result addr 0x%08x value 0x%08x", + addr, product[i]); + addr += 4; + } + return RC_OK; + } + /* Asynchronous operation */ + pka_op->opcode = PKA_FUNCTION_MUL; + pka_op->cb = cb; + pka_op->ctx = ctx; + pka_op->resultC_cnt = multiplicand_cnt+multiplier_cnt; + pka_op->resultC_addr = product; + pka_op->async_pkcp.vecA_cnt = multiplicand_cnt; + pka_op->async_pkcp.vecA = multiplicand; + pka_op->async_pkcp.vecB_cnt = multiplier_cnt; + pka_op->async_pkcp.vecB = multiplier; + + if (op_id) + *op_id = pka_op->id; + pka4xx_start_op(pka_op, 0); + return RC_EINPROGRESS; +} + +int pka4xx_div(pka4xx_cb cb, void *ctx, u32 *op_id, + u32 dividend_cnt, u32 *dividend, + u32 divisor_cnt, u32 *divisor, + u32 *remainder, u32 *quotient) +{ + int rc; + u32 addr; /* Address of PKA RAM */ + struct pka4xx_op *pka_op; + u32 resultC_addr; + u32 resultD_addr; + u32 i; + u32 val32; + +#ifdef PPR_PKA_DEBUG + if (dividend_cnt > PKA4XX_VECTOR_MAXSIZE || + divisor_cnt > PKA4XX_VECTOR_MAXSIZE || + divisor_cnt > dividend_cnt) + return RC_INVALID_PARM; +#endif + if (cb == NULL) { + if (pka4xx_pending_op()) + return RC_EBUSY; + pka_op = NULL; + } else { + pka_op = pka4xx_get_op_item(); + if (pka_op == NULL) + return RC_EBUSY; + } + + /* Save callback for asynchronous operation */ + if (!cb) { + resultC_addr = pka4xx_pkcp_set_vec(dividend_cnt, dividend, + divisor_cnt, divisor); + addr = resultC_addr; + addr += (divisor_cnt + 1) * 4; + PKA_ALIGN(addr, 8); /* Align 8-byte */ + /* Select PKA RAM address for output D - quotient */ + PKA4XX_CSR_WRITE_RETURN(PKA_DPTR_ADDR, addr >> 2); + PKA4XX_CSR_READ_RETURN(PKA_DPTR_ADDR, &val32); + resultD_addr = addr; + + /* Start the operation */ + PKA4XX_CSR_WRITE_RETURN(PKA_FUNCTION_ADDR, + PKA_FUNCTION_RUN | PKA_FUNCTION_DIV); + rc = pka4xx_wait2complete(); + if (rc != RC_OK) + return rc; + for(i = 0; i < divisor_cnt; i++) { + PKA4XX_CSR_READ_RETURN(resultC_addr, &remainder[i]); + LPRINTF(LL_INFO, "C remaider : 0x%08x", + remainder[i]); + resultC_addr += 4; + } + dividend_cnt -= divisor_cnt; + for(i = 0; i <= dividend_cnt /* Use = for + 1 */; ) { + PKA4XX_CSR_READ_RETURN(resultD_addr, + "ient[i++]); + resultD_addr += 4; + } + + return RC_OK; + } + /* Setting params for Asynchronous operation */ + pka_op->opcode = PKA_FUNCTION_DIV; + pka_op->cb = cb; + pka_op->ctx = ctx; + pka_op->resultC_cnt = divisor_cnt; + pka_op->resultD_cnt = dividend_cnt-divisor_cnt+1; + pka_op->resultC_addr = remainder; + pka_op->resultD_addr = quotient; + pka_op->async_pkcp.vecA_cnt = dividend_cnt; + pka_op->async_pkcp.vecA = dividend; + pka_op->async_pkcp.vecB_cnt = divisor_cnt; + pka_op->async_pkcp.vecB = divisor; + + if (op_id) + *op_id = pka_op->id; + pka4xx_start_op(pka_op, 0); + return RC_EINPROGRESS; +} + +int pka4xx_mod(pka4xx_cb cb, void *ctx, u32 *op_id, + u32 dividend_cnt, u32 *dividend, + u32 divisor_cnt, u32 *divisor, + u32 *remainder) +{ + int rc; + u32 addr; /* Address of PKA RAM */ + struct pka4xx_op *pka_op; + u32 i; + +#ifdef PPR_PKA_DEBUG + if (dividend_cnt > PKA4XX_VECTOR_MAXSIZE || + divisor_cnt > PKA4XX_VECTOR_MAXSIZE) + return RC_INVALID_PARM; +#endif + if (cb == NULL) { + if (pka4xx_pending_op()) + return RC_EBUSY; + pka_op = NULL; + } else { + pka_op = pka4xx_get_op_item(); + if (pka_op == NULL) + return RC_EBUSY; + } + + /* Save callback for asynchronous operation */ + if (!cb) { + addr = pka4xx_pkcp_set_vec(dividend_cnt, dividend, + divisor_cnt, divisor); + /* Start the operation */ + PKA4XX_CSR_WRITE_RETURN(PKA_FUNCTION_ADDR, + PKA_FUNCTION_RUN | PKA_FUNCTION_MOD); + rc = pka4xx_wait2complete(); + if (rc != RC_OK) + return rc; + for(i = 0; i < divisor_cnt; ) { + PKA4XX_CSR_READ_RETURN(addr, &remainder[i++]); + addr += 4; + } + return RC_OK; + } + /* Asynchronous operation */ + pka_op->opcode = PKA_FUNCTION_MOD; + pka_op->cb = cb; + pka_op->ctx = ctx; + pka_op->resultC_cnt = divisor_cnt; + pka_op->resultC_addr = remainder; + pka_op->async_pkcp.vecA_cnt = dividend_cnt; + pka_op->async_pkcp.vecA = dividend; + pka_op->async_pkcp.vecB_cnt = divisor_cnt; + pka_op->async_pkcp.vecB = divisor; + if (op_id) + *op_id = pka_op->id; + pka4xx_start_op(pka_op, 0); + return RC_EINPROGRESS; +} + +int pka4xx_add(pka4xx_cb cb, void *ctx, u32 *op_id, + u32 addendA_cnt, u32 *addendA, + u32 addendB_cnt, u32 *addendB, u32 *sum) +{ + int rc; + u32 addr; /* Address of PKA RAM */ + struct pka4xx_op *pka_op; + u32 result_len; + u32 i; + +#ifdef PPR_PKA_DEBUG + if (addendA_cnt > PKA4XX_VECTOR_MAXSIZE || + addendB_cnt > PKA4XX_VECTOR_MAXSIZE) + return RC_INVALID_PARM; +#endif + result_len = addendA_cnt > addendB_cnt ? (addendA_cnt+1) : + (addendB_cnt+1); + if (cb == NULL) { + if (pka4xx_pending_op()) + return RC_EBUSY; + pka_op = NULL; + } else { + pka_op = pka4xx_get_op_item(); + if (pka_op == NULL) + return RC_EBUSY; + } + + /* Save callback for asynchronous operation */ + if (!cb) { + addr = pka4xx_pkcp_set_vec(addendA_cnt, addendA, + addendB_cnt, addendB); + /* Start the operation */ + PKA4XX_CSR_WRITE_RETURN(PKA_FUNCTION_ADDR, + PKA_FUNCTION_ADD | PKA_FUNCTION_RUN); + rc = pka4xx_wait2complete(); + if (rc != RC_OK) + return rc; + for(i = 0; i < result_len; ) { + PKA4XX_CSR_READ_RETURN(addr, &sum[i++]); + addr += 4; + } + LPRINTF(LL_INFO, "result = %d,addr = 0x%08x", + *sum, (unsigned int)addr); + return RC_OK; + } + /* Asynchronous operation */ + pka_op->opcode = PKA_FUNCTION_ADD; + pka_op->cb = cb; + pka_op->ctx = ctx; + pka_op->resultC_cnt = result_len; + pka_op->resultC_addr = sum; + pka_op->async_pkcp.vecA_cnt = addendA_cnt; + pka_op->async_pkcp.vecA = addendA; + pka_op->async_pkcp.vecB_cnt = addendB_cnt; + pka_op->async_pkcp.vecB = addendB; + + if (op_id) + *op_id = pka_op->id; + pka4xx_start_op(pka_op, 0); + return RC_EINPROGRESS; +} + +int pka4xx_sub(pka4xx_cb cb, void *ctx, u32 *op_id, + u32 minuend_cnt, u32 *minuend, + u32 subtrahend_cnt, u32 *subtrahend, u32 *difference) +{ + int rc; + u32 addr; /* Address of PKA RAM */ + struct pka4xx_op *pka_op; + u32 result_len; + u32 i; + +#ifdef PPR_PKA_DEBUG + if (minuend_cnt > PKA4XX_VECTOR_MAXSIZE || + subtrahend_cnt > PKA4XX_VECTOR_MAXSIZE) + return RC_INVALID_PARM; +#endif + result_len = minuend_cnt > subtrahend_cnt ? minuend_cnt : + subtrahend_cnt; + if (cb == NULL) { + if (pka4xx_pending_op()) + return RC_EBUSY; + pka_op = NULL; + } else { + pka_op = pka4xx_get_op_item(); + if (pka_op == NULL) + return RC_EBUSY; + } + + /* Save callback for asynchronous operation */ + if (!cb) { + addr = pka4xx_pkcp_set_vec(minuend_cnt, minuend, + subtrahend_cnt, subtrahend); + /* Start the operation */ + PKA4XX_CSR_WRITE_RETURN(PKA_FUNCTION_ADDR, + PKA_FUNCTION_SUB | PKA_FUNCTION_RUN); + rc = pka4xx_wait2complete(); + if (rc != RC_OK) + return rc; + for(i = 0; i < result_len; ) { + PKA4XX_CSR_READ_RETURN(addr, &difference[i++]); + addr += 4; + } + return RC_OK; + } + /* Asynchronous operation */ + pka_op->opcode = PKA_FUNCTION_SUB; + pka_op->cb = cb; + pka_op->ctx = ctx; + pka_op->resultC_cnt = result_len; + pka_op->resultC_addr = difference; + pka_op->async_pkcp.vecA_cnt = minuend_cnt; + pka_op->async_pkcp.vecA = minuend; + pka_op->async_pkcp.vecB_cnt = subtrahend_cnt; + pka_op->async_pkcp.vecB = subtrahend; + + if (op_id) + *op_id = pka_op->id; + pka4xx_start_op(pka_op, 0); + + return RC_EINPROGRESS; +} + +int pka4xx_addsub(pka4xx_cb cb, void *ctx, u32 *op_id, + u32 input_cnt, u32 *addendA, + u32 *addendC, u32 *subtrahend, u32 *result) +{ + int rc; + u32 addr; /* Address of PKA RAM */ + struct pka4xx_op * pka_op; + u32 i; + +#ifdef PPR_PKA_DEBUG + if (input_cnt > PKA4XX_VECTOR_MAXSIZE) + return RC_INVALID_PARM; +#endif + if (cb == NULL) { + if (pka4xx_pending_op()) + return RC_EBUSY; + pka_op = NULL; + } else { + pka_op = pka4xx_get_op_item(); + if (pka_op == NULL) + return RC_EBUSY; + } + + /* Save callback for asynchronous operation */ + if (!cb) { + addr = pka4xx_addsub_set_vec(input_cnt, addendA, + subtrahend, addendC); + /* Start the operation */ + PKA4XX_CSR_WRITE_RETURN(PKA_FUNCTION_ADDR, + PKA_FUNCTION_ADDSUB | PKA_FUNCTION_RUN); + rc = pka4xx_wait2complete(); + if (rc != RC_OK) + return rc; + for(i = 0; i <= input_cnt /* Use = for + 1 */; ) { + PKA4XX_CSR_READ_RETURN(addr, &result[i++]); + addr += 4; + } + return RC_OK; + } + /* Asynchronous operation */ + pka_op->opcode = PKA_FUNCTION_ADDSUB; + pka_op->cb = cb; + pka_op->ctx = ctx; + pka_op->resultD_cnt = input_cnt+1; + pka_op->resultD_addr = result; + pka_op->async_pkcp.vecA_cnt = input_cnt; + pka_op->async_pkcp.vecA = addendA; + pka_op->async_pkcp.vecB_cnt = 0; + pka_op->async_pkcp.vecB = subtrahend; + pka_op->async_pkcp.vec_addsub_C = addendC; + + if (op_id) + *op_id = pka_op->id; + pka4xx_start_op(pka_op, 0); + + return RC_EINPROGRESS; +} + +int pka4xx_rshift(pka4xx_cb cb, void *ctx, u32 *op_id, + u32 input_cnt, u32 *input, + u8 shift, u32 *result) +{ + int rc; + u32 addr; /* Address of PKA RAM */ + struct pka4xx_op *pka_op; + u32 i; + +#ifdef PPR_PKA_DEBUG + if (input_cnt > PKA4XX_VECTOR_MAXSIZE) + return RC_INVALID_PARM; +#endif + if (cb == NULL) { + if (pka4xx_pending_op()) + return RC_EBUSY; + pka_op = NULL; + } else { + pka_op = pka4xx_get_op_item(); + if (pka_op == NULL) + return RC_EBUSY; + } + + /* Save callback for asynchronous operation */ + if (!cb) { + addr = pka4xx_shift_set_vec(input_cnt, input, shift); + /* Start the operation */ + PKA4XX_CSR_WRITE_RETURN(PKA_FUNCTION_ADDR, + PKA_FUNCTION_RSHIFT | PKA_FUNCTION_RUN); + rc = pka4xx_wait2complete(); + if (rc != RC_OK) + return rc; + for(i = 0; i < input_cnt;) { + PKA4XX_CSR_READ_RETURN(addr, &result[i++]); + addr += 4; + } + return RC_OK; + } + /* Asynchronous operation */ + pka_op->opcode = PKA_FUNCTION_RSHIFT; + pka_op->cb = cb; + pka_op->ctx = ctx; + pka_op->resultC_cnt = input_cnt; + pka_op->resultC_addr = result; + pka_op->async_pkcp.vecA_cnt = input_cnt; + pka_op->async_pkcp.vecA = input; + pka_op->async_pkcp.shift_val = shift; + + if (op_id) + *op_id = pka_op->id; + pka4xx_start_op(pka_op, 0); + + return RC_EINPROGRESS; +} + +int pka4xx_lshift(pka4xx_cb cb, void *ctx, + u32 *op_id, u32 input_cnt, + u32 *input, u8 shift, + u32 *result) +{ + int rc; + u32 addr; /* Address of PKA RAM */ + struct pka4xx_op *pka_op; + u32 result_len; + u32 i; + +#ifdef PPR_PKA_DEBUG + if (input_cnt > PKA4XX_VECTOR_MAXSIZE) + return RC_INVALID_PARM; +#endif + result_len = shift == 0 ? input_cnt : (input_cnt+1); + if (cb == NULL) { + if (pka4xx_pending_op()) + return RC_EBUSY; + pka_op = NULL; + } else { + pka_op = pka4xx_get_op_item(); + if (pka_op == NULL) + return RC_EBUSY; + } + + /* Save callback for asynchronous operation */ + if (!cb) { + addr = pka4xx_shift_set_vec(input_cnt, input, shift); + /* Start the operation */ + PKA4XX_CSR_WRITE_RETURN(PKA_FUNCTION_ADDR, + PKA_FUNCTION_LSHIFT | PKA_FUNCTION_RUN); + rc = pka4xx_wait2complete(); + if (rc != RC_OK) + return rc; + for(i = 0; i < result_len; ) { + PKA4XX_CSR_READ_RETURN(addr, &result[i++]); + addr += 4; + } + return RC_OK; + } + /* Asynchronous operation */ + pka_op->opcode = PKA_FUNCTION_LSHIFT; + pka_op->cb = cb; + pka_op->ctx = ctx; + pka_op->resultC_cnt = result_len; + pka_op->resultC_addr = result; + pka_op->async_pkcp.vecA_cnt = input_cnt; + pka_op->async_pkcp.vecA = input; + pka_op->async_pkcp.shift_val = shift; + + if (op_id) + *op_id = pka_op->id; + pka4xx_start_op(pka_op, 0); + + return RC_EINPROGRESS; +} + +int pka4xx_compare(pka4xx_cb cb, void *ctx, u32 *op_id, + u32 input1_cnt, u32 *input1, + u32 input2_cnt, u32 *input2, + int *result) +{ + int rc; + struct pka4xx_op *pka_op; + u32 val; + +#ifdef PPR_PKA_DEBUG + if (input1_cnt > PKA4XX_VECTOR_MAXSIZE || + input2_cnt > PKA4XX_VECTOR_MAXSIZE) + return RC_INVALID_PARM; +#endif + if (cb == NULL) { + if (pka4xx_pending_op()) + return RC_EBUSY; + pka_op = NULL; + } else { + pka_op = pka4xx_get_op_item(); + if (pka_op == NULL) + return RC_EBUSY; + } + + /* Save callback for asynchronous operation */ + if (!cb) { + pka4xx_pkcp_set_vec(input1_cnt, input1, input2_cnt, + input2); + /* Start the operation */ + PKA4XX_CSR_WRITE_RETURN(PKA_FUNCTION_ADDR, + PKA_FUNCTION_COMPARE | PKA_FUNCTION_RUN); + rc = pka4xx_wait2complete(); + if (rc != RC_OK) + return rc; + PKA4XX_CSR_READ_RETURN(PKA_COMPARE_ADDR, &val); + if (val & PKA_COMPARE_EQUAL) + *result = 0; + else if (val & PKA_COMPARE_LESSTHAN) + *result = -1; + else + *result = 1; + return RC_OK; + } + /* Asynchronous operation */ + pka_op->opcode = PKA_FUNCTION_COMPARE; + pka_op->cb = cb; + pka_op->ctx = ctx; + pka_op->resultC_cnt = 1; + pka_op->resultC_addr = (u32 *)result; + pka_op->async_pkcp.vecA_cnt = input1_cnt; + pka_op->async_pkcp.vecA = input1; + pka_op->async_pkcp.vecB_cnt = input2_cnt; + pka_op->async_pkcp.vecB = input2; + + if (op_id) + *op_id = pka_op->id; + pka4xx_start_op(pka_op, 0); + + return RC_EINPROGRESS; +} + +int pka4xx_expmod(pka4xx_cb cb, void *ctx, u32 *op_id, + u8 odd_pwr_cnt, + u32 base_mod_cnt, u32 *base, + u32 *modulus, + u32 exponent_cnt, u32 *exponent, + u32 *result) +{ + int rc; + u32 addr; /* Address of PKA RAM */ + struct pka4xx_op * pka_op; + u32 cmd; + u32 i; + +#ifdef PPR_PKA_DEBUG + if (odd_pwr_cnt > 16 || odd_pwr_cnt == 0 || + base_mod_cnt > PKA4XX_VECTOR_MAXSIZE || + exponent_cnt > PKA4XX_VECTOR_MAXSIZE) + return RC_INVALID_PARM; +#endif + + if (cb == NULL) { + if (pka4xx_pending_op()) + return RC_EBUSY; + pka_op = NULL; + } else { + pka_op = pka4xx_get_op_item(); + if (pka_op == NULL) + return RC_EBUSY; + } + + /* Start the operation */ + if (odd_pwr_cnt == 2) { + cmd = PKA_FUNCTION_SEQOP_EXPMOD_ACT2; + } else if (odd_pwr_cnt == 8) { + cmd = PKA_FUNCTION_SEQOP_EXPMOD_ACT4; + } else { + PKA4XX_CSR_WRITE_RETURN(PKA_SHIFT_ADDR, odd_pwr_cnt); + cmd = PKA_FUNCTION_SEQOP_EXPMOD_VAR; + } + /* Save callback for asynchronous operation */ + if (!cb) { + addr = pka4xx_expmod_set_vec(base_mod_cnt, base, modulus, + exponent_cnt, exponent); + PKA4XX_CSR_WRITE_RETURN(PKA_FUNCTION_ADDR, + cmd | PKA_FUNCTION_RUN); + rc = pka4xx_wait2complete(); + if (rc != RC_OK) + return rc; + for(i = 0; i < base_mod_cnt; i++) { + PKA4XX_CSR_READ_RETURN(addr, &result[i]); + LPRINTF(LL_INFO, "output = 0x%08x ", + result[i]); + addr += 4; + } + return RC_OK; + + } + /* Asynchronous operation */ + pka_op->opcode = cmd; + pka_op->cb = cb; + pka_op->ctx = ctx; + pka_op->resultC_cnt = odd_pwr_cnt; /* Save odd power cnt in here */ + pka_op->resultD_cnt = base_mod_cnt; + pka_op->resultC_addr = NULL; + pka_op->resultD_addr = result; + pka_op->async_expmod.base = base; + pka_op->async_expmod.exp = exponent; + pka_op->async_expmod.modulus = modulus; + pka_op->async_expmod.base_mod_cnt = base_mod_cnt; + pka_op->async_expmod.exp_cnt = exponent_cnt; + + if (op_id) + *op_id = pka_op->id; + pka4xx_start_op(pka_op, 0); + + return RC_EINPROGRESS; +} + +int pka4xx_expmod_crt(pka4xx_cb cb, void *ctx, u32 *op_id, + u8 odd_pwr_cnt, + u32 exp_len, u32 *expP, u32 *expQ, + u32 mod_inverse_len, u32 *modP, u32 *modQ, + u32 *inverseQ, u32 *input, + u32 *result) +{ + int rc; + struct pka4xx_op *pka_op; + u32 i; + u32 Daddr; + +#ifdef PPR_PKA_DEBUG + if (exp_len > PKA4XX_VECTOR_MAXSIZE || + mod_inverse_len > PKA4XX_VECTOR_MAXSIZE || + odd_pwr_cnt > 16) + return RC_INVALID_PARM; +#endif + if (cb == NULL) { + if (pka4xx_pending_op()) + return RC_EBUSY; + pka_op = NULL; + } else { + pka_op = pka4xx_get_op_item(); + if (pka_op == NULL) + return RC_EBUSY; + } + + if (!cb) { + Daddr = pka4xx_expmod_crt_set_vec(exp_len, expP, expQ, + mod_inverse_len, + modP, modQ, + inverseQ, input); + } else { + /* Asynchronous operation */ + pka_op->opcode = PKA_FUNCTION_SEQOP_EXPMOD_CRT; + pka_op->cb = cb; + pka_op->ctx = ctx; + pka_op->resultD_cnt = mod_inverse_len<<1; + pka_op->resultC_cnt = odd_pwr_cnt; /* Use result C cnt for pwr cnt */ + pka_op->resultD_addr = result; + pka_op->async_expmod_crt.expP = expP; + pka_op->async_expmod_crt.expQ = expQ; + pka_op->async_expmod_crt.modP = modP; + pka_op->async_expmod_crt.modQ = modQ; + pka_op->async_expmod_crt.inverseQ = inverseQ; + pka_op->async_expmod_crt.exp_len = exp_len; + pka_op->async_expmod_crt.mod_inverse_len = mod_inverse_len; + pka_op->async_expmod_crt.input = input; + } + + /* Save callback for asynchronous operation */ + if (!cb) { + /* Start the operation */ + PKA4XX_CSR_WRITE_RETURN(PKA_SHIFT_ADDR, odd_pwr_cnt); + PKA4XX_CSR_WRITE_RETURN(PKA_FUNCTION_ADDR, + PKA_FUNCTION_SEQOP_EXPMOD_CRT | PKA_FUNCTION_RUN); + rc = pka4xx_wait2complete(); + if (rc != RC_OK) + return rc; + for(i = 0; i < (mod_inverse_len<<1); i++) { + PKA4XX_CSR_READ_RETURN(Daddr, &result[i]); + LPRINTF(LL_INFO, "D addr : 0x%08x val 0x%08x", + Daddr, result[i]); + Daddr += 4; + } + return RC_OK; + } + + if (op_id) + *op_id = pka_op->id; + pka4xx_start_op(pka_op, 0); + + return RC_EINPROGRESS; +} + +int pka4xx_hw_init(void) +{ + int rc; + u32 i; + int result; + u32 prog_addr; + + printk(LL_INFO "Initializing PKA...\n"); + + /* Initialize context variable */ + for(i = 0; i < PKA4XX_PENDING_OP_MAX; i++) { + pka_get_ctx()->op[i].id = i+1; + pka_get_ctx()->op[i].opcode = 0; + } + INIT_LIST_HEAD(&pka_get_ctx()->completed_event_queue); + + /* Load PKA firmware */ + LPRINTF(LL_INFO, "Loading PKA firmware PKA RAM Addr: 0x%08X size " + "(DW): %d...", + pka_get_ctx()->csr_paddr, + pkt_firmware_sizedw); + + /* Put PKA Sequencer into reset to access firmware area */ + rc = pka4xx_csr_hw_write32(PKA_SEQ_CTRL_ADDR, PKA_SEQ_CTRL_RESET); + if (rc != RC_OK) { + LPRINTF(LL_ERR, + "Failed to put PKA Sequencer into reset error 0x%08X", + rc); + return rc; + } + /* Now, load the firmware */ + prog_addr = PKA_PROGRAM_ADDR; + for(i = 0; i < pkt_firmware_sizedw; i++, prog_addr += 4) { + rc = pka4xx_csr_hw_write32(prog_addr, pka_firmware[i]); + + if (rc != RC_OK) { + LPRINTF(LL_ERR, + "Failed to load PKA firmware error 0x%08X", rc); + return rc; + } + } + /* Put PKA Sequencer into normal operation */ + rc = pka4xx_csr_hw_write32(PKA_SEQ_CTRL_ADDR, 0); + if (rc != RC_OK) { + LPRINTF(LL_ERR, + "Failed to put PKA Sequencer into reset error 0x%08X", + rc); + return rc; + } + + /* Register for interrupt */ + tasklet_init(&pka_get_ctx()->tasklet, + pka4xx_tasklet_cb, (unsigned long)pka_get_ctx()->op); + + result = request_irq(pka_get_ctx()->irq, pka4xx_irq_handler, + 0, "PKA", NULL); + if (result != 0) + return result; + + set_irq_type(pka_get_ctx()->irq, IRQ_TYPE_EDGE_RISING); + /* Comment this out to enable interrupt mode -- Now doing only polling mode */ + /* disable_irq(pka_get_ctx()->irq); */ + + return RC_OK; +} + +int pka4xx_hw_deinit(void) +{ + disable_irq(pka_get_ctx()->irq); + free_irq(pka_get_ctx()->irq, NULL); + return RC_OK; +} diff --git a/drivers/crypto/pka_4xx_access.c b/drivers/crypto/pka_4xx_access.c new file mode 100644 index 00000000000..c2452bdc749 --- /dev/null +++ b/drivers/crypto/pka_4xx_access.c @@ -0,0 +1,201 @@ +/******************************************************************************* + * + * Copyright (c) 2008 Loc Ho <lho@amcc.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * + * Detail Description: + * This file defines ioctl structures for the Linux CryptoAPI interface. It + * provides user space applications accesss into the Linux CryptoAPI + * functionalities. + * + * @file pka4xx_acccess.c + * + * This file provides access and implementation of the PKA hardware + * under Linux. + * + ******************************************************************************* + */ +#include <linux/version.h> +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/platform_device.h> +#include <linux/of_platform.h> +#include <linux/interrupt.h> +#include <asm/io.h> +#include <crypto/pka_4xx.h> +#include "pka_4xx_access.h" + +#define PKA4XX_VER_STR "0.1" + +struct pka4xx_dev { + struct pka4xx_ctx ctx; + struct resource csr_res; + struct resource pka_ram_res; +}; + +struct hal_config { + struct of_device *ofdev; +}; + +static struct pka4xx_dev pka_dev = { + .ctx = { + 0, + { { 1, PKA4XX_RAM_FREE_SIZE/4, 0 }, + { 0, 0, 0 } }, + 0, 0 + } +}; + +struct pka4xx_ctx *pka_get_ctx(void) +{ + return &pka_dev.ctx; +} + +int pka4xx_config_set(struct hal_config *cfg) +{ + struct device_node *pka_np = cfg->ofdev->node; + int rc = 0; + + rc = of_address_to_resource(pka_np, 0, &pka_dev.csr_res); + if (rc) { + LPRINTF(LL_INFO, "error getting address to resource"); + return -ENODEV; + } + pka_dev.ctx.csr_paddr = pka_dev.csr_res.start; + pka_dev.ctx.csr = ioremap(pka_dev.csr_res.start, + pka_dev.csr_res.end - pka_dev.csr_res.start + 1); + + if (pka_dev.ctx.csr == NULL) { + LPRINTF(LL_ERR, + "unable to ioremap 0x%02X_%08X size %d", + (u32) (pka_dev.csr_res.start >> 32), + (u32) pka_dev.csr_res.start, + (u32) (pka_dev.csr_res.end - pka_dev.csr_res.start + 1)); + return -ENOMEM; + } + + pka_dev.ctx.irq = of_irq_to_resource(pka_np, 0, NULL); + + if (pka_dev.ctx.irq == NO_IRQ) { + /* Un-map CSR */ + iounmap(pka_dev.ctx.csr); + pka_dev.ctx.csr = NULL; + LPRINTF(LL_ERR, "no irq"); + return -EINVAL; + } + + return 0; +} + +int pka4xx_config_clear(void) +{ + iounmap(pka_dev.ctx.csr); + return 0; +} + +int pka4xx_csr_hw_read32(u32 reg_addr, u32 *data_val) +{ + *data_val = in_le32((volatile unsigned __iomem *) + (pka_dev.ctx.csr + reg_addr)); + return 0; +} + +int pka4xx_csr_hw_write32(u32 reg_addr, u32 data_val) +{ + out_le32((volatile unsigned __iomem *) (pka_dev.ctx.csr + reg_addr), + data_val); + return 0; +} + +/** + * Setup Driver with platform registration + */ +static int __devinit pka4xx_probe(struct of_device *ofdev, + const struct of_device_id *match) +{ + struct hal_config hw_cfg; + int rc; + + hw_cfg.ofdev = ofdev; + rc = pka4xx_config_set(&hw_cfg); + if (rc != 0) + return rc; + + printk(KERN_INFO "AMCC 4xx PKA v%s @0x%02X_%08X size %d IRQ %d\n", + PKA4XX_VER_STR, + (u32) (pka_dev.csr_res.start >> 32), + (u32) pka_dev.csr_res.start, + (u32) (pka_dev.csr_res.end - pka_dev.csr_res.start + 1), + pka_dev.ctx.irq); + + rc = pka4xx_hw_init(); + if (rc < 0) { + LPRINTF(LL_ERR, "failed to initialize PKA"); + goto err; + } + printk(KERN_INFO "PKA Driver Successfully Initialized\n"); + return rc; + +err: + pka4xx_config_clear(); + return rc; +} + +static int __devexit pka4xx_remove(struct of_device *dev) +{ + pka4xx_hw_deinit(); + pka4xx_config_clear(); + return 0; +} + +static struct of_device_id pka4xx_match[] = { + { .compatible = "ppc4xx-pka", }, + { .compatible = "amcc,ppc4xx-pka", }, + { }, +}; + +static struct of_platform_driver pka4xx_driver = { + .name = "ppc4xx-pka", + .match_table = pka4xx_match, + .probe = pka4xx_probe, + .remove = pka4xx_remove, +}; + +static int __init mod_init(void) +{ + return of_register_platform_driver(&pka4xx_driver); +} + +static void __exit mod_exit(void) +{ + of_unregister_platform_driver(&pka4xx_driver); +} + +module_init(mod_init); +module_exit(mod_exit); + +MODULE_DESCRIPTION("AMCC 4xx Public Key Accelerator"); +MODULE_LICENSE("GPL"); + +EXPORT_SYMBOL_GPL(pka4xx_mul); +EXPORT_SYMBOL_GPL(pka4xx_div); +EXPORT_SYMBOL_GPL(pka4xx_mod); +EXPORT_SYMBOL_GPL(pka4xx_add); +EXPORT_SYMBOL_GPL(pka4xx_sub); +EXPORT_SYMBOL_GPL(pka4xx_addsub); +EXPORT_SYMBOL_GPL(pka4xx_rshift); +EXPORT_SYMBOL_GPL(pka4xx_lshift); +EXPORT_SYMBOL_GPL(pka4xx_compare); +EXPORT_SYMBOL_GPL(pka4xx_expmod); +EXPORT_SYMBOL_GPL(pka4xx_expmod_crt); + diff --git a/drivers/crypto/pka_4xx_access.h b/drivers/crypto/pka_4xx_access.h new file mode 100644 index 00000000000..b7baa664f8c --- /dev/null +++ b/drivers/crypto/pka_4xx_access.h @@ -0,0 +1,86 @@ +/******************************************************************************* + * + * Copyright (c) 2008 Loc Ho <lho@amcc.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * + * Detail Description: + * This file defines ioctl structures for the Linux CryptoAPI interface. It + * provides user space applications accesss into the Linux CryptoAPI + * functionalities. + * + * @file pka4xx_access.h + * + * This module provides access to the AMCC SoC PKA hardware under Linux. + * + ******************************************************************************* + */ +#ifndef __PKA4XX_ACCESS_H__ +#define __PKA4XX_ACCESS_H__ + +#include <linux/types.h> +#include <linux/interrupt.h> +#include <asm/errno.h> + +#ifndef AHB_BASE_ADDR_LO + /* FIXME */ +# define AHB_BASE_ADDR_LO 0 +#endif + +/* Debugging Flags */ + +#ifndef LL_EMERG +#define LL_EMERG KERN_EMERG +#define LL_ALERT KERN_ALERT +#define LL_CRIT KERN_CRIT +#define LL_ERR KERN_ERR +#define LL_WARNING KERN_WARNING +#define LL_NOTICE KERN_NOTICE +#define LL_INFO KERN_INFO +#define LL_DEBUG KERN_DEBUG +#define LL_EXTRADEBUG KERN_DEBUG +#endif + +#define PKA4XX_HDR "PKA4XX: " +/* #define PKA4XX_DEBUG */ + +#if !defined(PKA4XX_DEBUG) +# define LPRINTF(ll, fmt, ...) +#else +# define LPRINTF(ll, fmt, ...) \ + do { \ + printk(ll PKA4XX_HDR fmt "\n", ##__VA_ARGS__); \ + } while(0); +#endif + +#ifndef RC_OK + #define RC_OK 0 + #define RC_INVALID_PARM -EINVAL + #define RC_NODEV -ENODEV + #define RC_NO_IMPLEMENTATION -ENOSYS + #define RC_ENOMEM -ENOMEM + #define RC_EINPROGRESS -EINPROGRESS + #define RC_EALREADY -EALREADY + #define RC_EBUSY -EBUSY + #define RC_EIO -EIO + + /* Error code base specify to AMCC */ + #define RC_ERROR_BASE 5000 + #define RC_HWERROR -(RC_ERROR_BASE+0) + #define RC_FATAL -(RC_ERROR_BASE+1) +#endif /* RC_OK */ + +#ifndef ASSERT + #define ASSERT(x) +#endif /* ASSERT */ + +#endif diff --git a/drivers/crypto/pka_4xx_firmware.h b/drivers/crypto/pka_4xx_firmware.h new file mode 100644 index 00000000000..64f79dada4b --- /dev/null +++ b/drivers/crypto/pka_4xx_firmware.h @@ -0,0 +1,515 @@ +/* +// ASMSEQ Generic Sequencer Assembler V1.15 +// EIP28 sequencer firmware including CRT V1.0 +// Written by KLa/AVe, October 2005 +//========================================== +*/ +#define PKA_FIRMWARE_1_3_SIZEDW 506 +const unsigned int pka_firmware_1_3[PKA_FIRMWARE_1_3_SIZEDW] = + { 0x007001C9, + 0x008C0200, + 0x007000C9, + 0x0068401C, + 0x00210008, + 0x00601FEE, + 0x003CA000, + 0x00C80011, + 0x00210002, + 0x003C6000, + 0x00C80011, + 0x00694018, + 0x003C2000, + 0x00C80011, + 0x003C7000, + 0x00CC00A3, + 0x002C0001, + 0x0070001D, + 0x00611FEC, + 0x006A4010, + 0x006B4014, + 0x00621FE6, + 0x00631FE2, + 0x00684000, + 0x00694004, + 0x00601FE4, + 0x00611FE0, + 0x006A4008, + 0x006B400C, + 0x00621FE8, + 0x00631FEA, + 0x00C800A8, + 0x00601FD2, + 0x00611FD0, + 0x00631FD6, + 0x00691FE2, + 0x00621FD4, + 0x00004000, + 0x00240002, + 0x0034FFFE, + 0x00601FDC, + 0x00054000, + 0x006A1FD6, + 0x00614010, + 0x00624000, + 0x00060000, + 0x00621FD8, + 0x00060000, + 0x00624008, + 0x00621FDA, + 0x00218200, + 0x008701AD, + 0x006B1FD0, + 0x00060000, + 0x00070000, + 0x00634004, + 0x00624008, + 0x008701AD, + 0x00020000, + 0x00681FD6, + 0x00691FDA, + 0x00068000, + 0x008701B9, + 0x00681FDC, + 0x006A1FD0, + 0x00691FD2, + 0x006B1FE6, + 0x00060000, + 0x00270001, + 0x0037FFFE, + 0x0005C000, + 0x00611FE4, + 0x00681FD8, + 0x00621FE0, + 0x00601FE8, + 0x00601FEA, + 0x008500A7, + 0x006A1FDC, + 0x00691FD6, + 0x00681FDA, + 0x008701B9, + 0x00691FD8, + 0x00681FD6, + 0x00068000, + 0x008701B9, + 0x00691FD2, + 0x006A1FD0, + 0x00611FE4, + 0x00621FE0, + 0x008500A7, + 0x00681FD6, + 0x006A1FD8, + 0x00691FE2, + 0x00604004, + 0x00624000, + 0x00624008, + 0x00044000, + 0x0030FFFE, + 0x00500000, + 0x00500000, + 0x00064000, + 0x0032FFFE, + 0x00520000, + 0x00520000, + 0x00250001, + 0x00614010, + 0x00614014, + 0x00218020, + 0x008701AD, + 0x00681FD0, + 0x00691FE2, + 0x00604004, + 0x00614010, + 0x00614014, + 0x00250001, + 0x002A0002, + 0x008C0400, + 0x004B8000, + 0x006A1FD8, + 0x003FFFFF, + 0x0015C000, + 0x00064000, + 0x00624008, + 0x00218010, + 0x008701AD, + 0x00691FD4, + 0x006A1FDA, + 0x00614004, + 0x00624008, + 0x00218001, + 0x008701AD, + 0x00624000, + 0x00604004, + 0x00691FD8, + 0x006B1FE2, + 0x00614008, + 0x0007C000, + 0x00634010, + 0x00218200, + 0x008701AD, + 0x00624008, + 0x00691FD8, + 0x006B1FDC, + 0x00614000, + 0x00070000, + 0x00681FE2, + 0x00634004, + 0x00604010, + 0x00218001, + 0x008701AD, + 0x00624004, + 0x006A1FD6, + 0x00040000, + 0x00624000, + 0x00624008, + 0x00604014, + 0x00218018, + 0x008701AD, + 0x00691FD4, + 0x00621FEA, + 0x00611FE8, + 0x00200001, + 0x008001E9, + 0x007000C8, + 0x00200013, + 0x008C0400, + 0x008001F7, + 0x00611FDE, + 0x007000C8, + 0x00691FE0, + 0x006A1FE2, + 0x00004000, + 0x008701B9, + 0x00020000, + 0x0030FFFE, + 0x00490000, + 0x00310001, + 0x00200003, + 0x00D401DA, + 0x00200007, + 0x008C0400, + 0x006B4024, + 0x000B8000, + 0x00C801DA, + 0x0006C000, + 0x00270002, + 0x00631FE2, + 0x00681FEA, + 0x002E0001, + 0x0004C000, + 0x002C0001, + 0x00601FF8, + 0x0032FFFE, + 0x00520000, + 0x00520000, + 0x00691FE4, + 0x006A1FE6, + 0x00004000, + 0x008701B9, + 0x00681FE0, + 0x00210010, + 0x00220000, + 0x0030FFFE, + 0x00480000, + 0x00230001, + 0x00330001, + 0x00D400D3, + 0x0033FFFF, + 0x00070000, + 0x00330001, + 0x003A0001, + 0x00320001, + 0x002DFFFF, + 0x00CC00CD, + 0x00621FFC, + 0x00018000, + 0x00072000, + 0x00681FE0, + 0x00631FFE, + 0x0030FFFE, + 0x00240002, + 0x00480000, + 0x00072000, + 0x006B1FFE, + 0x002E0001, + 0x00078000, + 0x00681FE0, + 0x00210010, + 0x00220000, + 0x0030FFFE, + 0x00480000, + 0x00330001, + 0x00D400ED, + 0x0033FFFF, + 0x00070000, + 0x00330001, + 0x003A0001, + 0x00320001, + 0x002DFFFF, + 0x00CC00E7, + 0x00621FFE, + 0x00691FE4, + 0x008C0400, + 0x00684024, + 0x006A4028, + 0x00180000, + 0x00D001C6, + 0x003E000F, + 0x00238000, + 0x00138000, + 0x00631FF2, + 0x00320003, + 0x00360002, + 0x00030000, + 0x0033FFFE, + 0x00078000, + 0x00631FF4, + 0x004BC000, + 0x00084000, + 0x00631FF0, + 0x0030FFFE, + 0x00048000, + 0x00601FF6, + 0x0018C000, + 0x003C0001, + 0x00C801D1, + 0x00681FF8, + 0x006A1FE2, + 0x002E0001, + 0x00068000, + 0x008701B1, + 0x006A1FE2, + 0x00681FF8, + 0x00691FE8, + 0x00048000, + 0x002A0001, + 0x008701B9, + 0x00691FE0, + 0x00681FF8, + 0x00614004, + 0x00691FE2, + 0x00604000, + 0x00290001, + 0x00614014, + 0x00054000, + 0x00250001, + 0x006A1FF8, + 0x00614010, + 0x00064000, + 0x00260003, + 0x00624008, + 0x00218200, + 0x008701AD, + 0x006B1FEC, + 0x00018000, + 0x00681FEA, + 0x006A1FE2, + 0x002B0002, + 0x00D0013F, + 0x00631FFA, + 0x008701B9, + 0x00010000, + 0x0087019A, + 0x00681FF8, + 0x00260001, + 0x00068000, + 0x00048000, + 0x00010000, + 0x006A1FE2, + 0x00240001, + 0x00048000, + 0x008701B9, + 0x00691FEA, + 0x0087019A, + 0x006B1FFA, + 0x002B0001, + 0x00631FFA, + 0x00D40133, + 0x00681FEA, + 0x00691FF8, + 0x00058000, + 0x00058000, + 0x00250002, + 0x008701B9, + 0x00200000, + 0x0080017A, + 0x00681FEA, + 0x00010000, + 0x0087019A, + 0x00200000, + 0x00040000, + 0x006B1FF0, + 0x00691FF2, + 0x00174000, + 0x00C80150, + 0x00240001, + 0x00691FEC, + 0x00084000, + 0x000C4000, + 0x00D0017A, + 0x00601FF0, + 0x00300001, + 0x00D40155, + 0x00601FFA, + 0x00347FFF, + 0x00C80161, + 0x00601FFA, + 0x00681FEA, + 0x00010000, + 0x0087019A, + 0x00681FFA, + 0x00300001, + 0x00800158, + 0x00681FF0, + 0x00300001, + 0x00D40162, + 0x00347FFF, + 0x00240003, + 0x00691FE2, + 0x00250001, + 0x00072000, + 0x00691FEA, + 0x00058000, + 0x006A1FE2, + 0x00681FEA, + 0x0087019A, + 0x00681FF0, + 0x00300001, + 0x00D00176, + 0x00601FF0, + 0x00681FEA, + 0x00010000, + 0x0087019A, + 0x0080016E, + 0x006B1FF4, + 0x004BC000, + 0x00631FF0, + 0x00200000, + 0x00691FF2, + 0x00310001, + 0x00D40189, + 0x006B1FF6, + 0x002B0002, + 0x00D40183, + 0x00140000, + 0x00C8018D, + 0x00800154, + 0x00631FF6, + 0x006B1FF4, + 0x002B0002, + 0x00631FF4, + 0x004BC000, + 0x00631FF0, + 0x00611FF2, + 0x00140000, + 0x00CC014A, + 0x00800146, + 0x00681FF8, + 0x00691FEA, + 0x008701B9, + 0x00048000, + 0x008701B1, + 0x00681FEA, + 0x00691FF8, + 0x006A1FE2, + 0x008701A5, + 0x002EFFFF, + 0x00621FE2, + 0x00200001, + 0x008001DA, + 0x00604000, + 0x00624010, + 0x00614004, + 0x00624014, + 0x00691FF8, + 0x00614008, + 0x00218001, + 0x008C0480, + 0x00BC01BE, + 0x0061401C, + 0x00691FF8, + 0x00614008, + 0x00624010, + 0x00691FE0, + 0x00614000, + 0x002107FF, + 0x00614004, + 0x0060400C, + 0x00218004, + 0x008C0480, + 0x00BC01BE, + 0x0061401C, + 0x008B2000, + 0x00010000, + 0x0030FFFE, + 0x00500000, + 0x00500000, + 0x00500000, + 0x00500000, + 0x00300002, + 0x002A0002, + 0x00614000, + 0x00624010, + 0x00604008, + 0x00218808, + 0x008001AD, + 0x00707FC8, + 0x0070001D, + 0x00200000, + 0x00010000, + 0x00220001, + 0x008701B9, + 0x0020000F, + 0x008001DA, + 0x00681FEA, + 0x00691FE2, + 0x0030FFFE, + 0x00500001, + 0x0031FFFF, + 0x002DFFFF, + 0x00500000, + 0x002DFFFF, + 0x00CC01CC, + 0x00200005, + 0x008001DA, + 0x00691FE8, + 0x00681FEA, + 0x001C4000, + 0x00C801D9, + 0x0070001D, + 0x00681FEA, + 0x006A1FE2, + 0x008701B9, + 0x00200009, + 0x00691FEE, + 0x0070001F, + 0x003D9000, + 0x00CC01E0, + 0x00691FDE, + 0x00890000, + 0x00300002, + 0x00D001E8, + 0x00601FEC, + 0x00681FEA, + 0x006A1FE2, + 0x00010000, + 0x008701B9, + 0x00681FEC, + 0x0030FFFE, + 0x006A1FE4, + 0x006B1FE6, + 0x00624000, + 0x00634010, + 0x006A1FE0, + 0x006B1FE2, + 0x00624004, + 0x00634014, + 0x006A1FE8, + 0x006B1FEE, + 0x00624008, + 0x00377FFF, + 0x008C0400, + 0x0063401C, + 0x006440C9, + 0x00800001, + 0x00780003 +}; diff --git a/drivers/dma/Kconfig b/drivers/dma/Kconfig index b401dadad4a..3d1b57d4c1b 100644 --- a/drivers/dma/Kconfig +++ b/drivers/dma/Kconfig @@ -111,6 +111,46 @@ config SH_DMAE help Enable support for the Renesas SuperH DMA controllers. +config AMCC_PPC460EX_460GT_ADMA + tristate "AMCC PPC460EX/GT ADMA support" + depends on 460EX || 460GT + select ASYNC_CORE + select DMA_ENGINE + select ARCH_HAS_ASYNC_TX_FIND_CHANNEL + default y + ---help--- + Enable support for the AMCC PPC440SPe RAID engines. + +config AMCC_PPC460EX_460GT_4CHAN_DMA + tristate "AMCC PPC460EX PPC460GT PLB DMA support" + depends on 460EX || 460GT || APM82181 + select DMA_ENGINE + default y + +config AMCC_PPC460EX_460GT_PLB_ADMA + tristate "AMCC PPC460EX/GT 4Channel PLB ADMA support" + depends on 460EX || 460GT + select ASYNC_CORE + select DMA_ENGINE + select ARCH_HAS_ASYNC_TX_FIND_CHANNEL + default y + ---help--- + Enable support for the AMCC PPC460Ex PLB engines. + +config APM82181_ADMA + tristate "APM82181 Asynchonous DMA support" + depends on APM82181 + select ASYNC_CORE + select ASYNC_TX_DMA + select DMA_ENGINE + select ARCH_HAS_ASYNC_TX_FIND_CHANNEL + default y + ---help--- + Enable support for the APM82181 Asynchonous DMA engines. + +config ARCH_HAS_ASYNC_TX_FIND_CHANNEL + bool + config DMA_ENGINE bool diff --git a/drivers/dma/Makefile b/drivers/dma/Makefile index eca71ba78ae..3637a70241f 100644 --- a/drivers/dma/Makefile +++ b/drivers/dma/Makefile @@ -3,6 +3,9 @@ obj-$(CONFIG_NET_DMA) += iovlock.o obj-$(CONFIG_DMATEST) += dmatest.o obj-$(CONFIG_INTEL_IOATDMA) += ioat/ obj-$(CONFIG_INTEL_IOP_ADMA) += iop-adma.o +obj-$(CONFIG_AMCC_PPC460EX_460GT_ADMA) += ppc460ex-adma.o +obj-$(CONFIG_AMCC_PPC460EX_460GT_4CHAN_DMA) += ppc460ex_4chan_dma.o ppc460ex_4chan_sgdma.o +obj-$(CONFIG_APM82181_ADMA) += apm82181-adma.o obj-$(CONFIG_FSL_DMA) += fsldma.o obj-$(CONFIG_MV_XOR) += mv_xor.o obj-$(CONFIG_DW_DMAC) += dw_dmac.o @@ -10,3 +13,4 @@ obj-$(CONFIG_AT_HDMAC) += at_hdmac.o obj-$(CONFIG_MX3_IPU) += ipu/ obj-$(CONFIG_TXX9_DMAC) += txx9dmac.o obj-$(CONFIG_SH_DMAE) += shdma.o +#amcc_ppc460ex_4chan_dma-objs := ppc460ex_4chan_dma.o ppc460ex_4chan_sgdma.o diff --git a/drivers/dma/apm82181-adma.c b/drivers/dma/apm82181-adma.c new file mode 100644 index 00000000000..5800ca15e56 --- /dev/null +++ b/drivers/dma/apm82181-adma.c @@ -0,0 +1,2433 @@ +/* + * Copyright(c) 2010 Applied Micro Circuits Corporation(AMCC). All rights reserved. + * + * Author: Tai Tri Nguyen <ttnguyen@appliedmicro.com> + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the Free + * Software Foundation; either version 2 of the License, or (at your option) + * any later version. + * + * This program is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., 59 + * Temple Place - Suite 330, Boston, MA 02111-1307, USA. + * + * The full GNU General Public License is included in this distribution in the + * file called COPYING. + */ + +/* + * This driver supports the asynchrounous DMA copy and RAID engines available + * on the AppliedMicro APM82181 Processor. + * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x) + * ADMA driver written by D.Williams. + */ +#define ADMA_DEBUG +#undef ADMA_DEBUG + +#include <linux/init.h> +#include <linux/module.h> +#include <linux/async_tx.h> +#include <linux/delay.h> +#include <linux/dma-mapping.h> +#include <linux/spinlock.h> +#include <linux/interrupt.h> +#include <linux/platform_device.h> +#include <linux/uaccess.h> +#include <linux/of_platform.h> +#include <linux/proc_fs.h> +#include <asm/dcr.h> +#include <asm/dcr-regs.h> +#include <asm/apm82181-adma.h> + +#define PPC4XX_EDMA "apm82181-adma: " +#ifdef ADMA_DEBUG +#define DBG(string, args...) \ + printk(PPC4XX_EDMA string ,##args) +#define INFO DBG("<%s> -- line %d\n",__func__,__LINE__); +#define ADMA_HEXDUMP(b, l) \ + print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET, \ + 16, 1, (b), (l), false); +#else +#define DBG(string, args...) \ + {if (0) printk(KERN_INFO PPC4XX_EDMA string ,##args); 0; } +#define INFO DBG(""); +#define ADMA_HEXDUMP(b, l) \ + {if (0) print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET, \ + 8, 1, (b), (l), false); 0;} +#endif + +#define MEM_HEXDUMP(b, l) \ + print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET, \ + 16, 1, (b), (l), false); + +/* The list of channels exported by apm82181 ADMA */ +struct list_head +ppc_adma_chan_list = LIST_HEAD_INIT(ppc_adma_chan_list); + +/* This flag is set when want to refetch the xor chain in the interrupt + * handler + */ +static u32 do_xor_refetch = 0; + +/* Pointers to last submitted to DMA0/1/2/3 and XOR CDBs */ +static apm82181_desc_t *chan_last_sub[5]; +static apm82181_desc_t *chan_first_cdb[5]; + +/* Pointer to last linked and submitted xor CB */ +static apm82181_desc_t *xor_last_linked = NULL; +static apm82181_desc_t *xor_last_submit = NULL; + +/* /proc interface is used here to verify the h/w RAID 5 capabilities + */ +static struct proc_dir_entry *apm82181_proot; + +/* These are used in enable & check routines + */ +static u32 apm82181_xor_verified; +static u32 apm82181_memcpy_verified[4]; +static apm82181_ch_t *apm82181_dma_tchan[5]; +static struct completion apm82181_r5_test_comp; + +static inline int apm82181_chan_is_busy(apm82181_ch_t *chan); +#if 0 +static phys_addr_t fixup_bigphys_addr(phys_addr_t addr, phys_addr_t size) +{ + phys_addr_t page_4gb = 0; + + return (page_4gb | addr); +} +#endif +/** + * apm82181_adma_device_estimate - estimate the efficiency of processing + * the operation given on this channel. It's assumed that 'chan' is + * capable to process 'cap' type of operation. + * @chan: channel to use + * @cap: type of transaction + * @src_lst: array of source pointers + * @src_cnt: number of source operands + * @src_sz: size of each source operand + */ +int apm82181_adma_estimate (struct dma_chan *chan, + enum dma_transaction_type cap, struct page **src_lst, + int src_cnt, size_t src_sz) +{ + int ef = 1; + + /* channel idleness increases the priority */ + if (likely(ef) && + !apm82181_chan_is_busy(to_apm82181_adma_chan(chan))) + ef++; + else { + if(chan->chan_id !=APM82181_XOR_ID) + ef = -1; + } + return ef; +} + +/****************************************************************************** + * Command (Descriptor) Blocks low-level routines + ******************************************************************************/ +/** + * apm82181_desc_init_interrupt - initialize the descriptor for INTERRUPT + * pseudo operation + */ +static inline void apm82181_desc_init_interrupt (apm82181_desc_t *desc, + apm82181_ch_t *chan) +{ + xor_cb_t *p; + + switch (chan->device->id) { + case APM82181_PDMA0_ID: + case APM82181_PDMA1_ID: + case APM82181_PDMA2_ID: + case APM82181_PDMA3_ID: + BUG(); + break; + case APM82181_XOR_ID: + p = desc->hw_desc; + memset (desc->hw_desc, 0, sizeof(xor_cb_t)); + /* NOP with Command Block Complete Enable */ + p->cbc = XOR_CBCR_CBCE_BIT; + break; + default: + printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id, + __FUNCTION__); + break; + } +} + +/** + * apm82181_desc_init_xor - initialize the descriptor for XOR operation + */ +static inline void apm82181_desc_init_xor(apm82181_desc_t *desc, int src_cnt, + unsigned long flags) +{ + xor_cb_t *hw_desc = desc->hw_desc; + + memset (desc->hw_desc, 0, sizeof(xor_cb_t)); + desc->hw_next = NULL; + desc->src_cnt = src_cnt; + desc->dst_cnt = 1; + + hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt; + if (flags & DMA_PREP_INTERRUPT) + /* Enable interrupt on complete */ + hw_desc->cbc |= XOR_CBCR_CBCE_BIT; +} + +/** + * apm82181_desc_init_memcpy - initialize the descriptor for MEMCPY operation + */ +static inline void apm82181_desc_init_memcpy(apm82181_desc_t *desc, + unsigned long flags) +{ + dma_cdb_t *hw_desc = desc->hw_desc; + + memset(hw_desc, 0, sizeof(dma_cdb_t)); + desc->hw_next = NULL; + desc->src_cnt = 1; + desc->dst_cnt = 1; + + if (flags & DMA_PREP_INTERRUPT) + set_bit(APM82181_DESC_INT, &desc->flags); + else + clear_bit(APM82181_DESC_INT, &desc->flags); + /* dma configuration for running */ + hw_desc->ctrl.tm = 2; /* soft init mem-mem mode */ + hw_desc->ctrl.pw = 4; /* transfer width 128 bytes */ + hw_desc->ctrl.ben = 1;/* buffer enable */ + hw_desc->ctrl.sai = 1;/* increase source addr */ + hw_desc->ctrl.dai = 1;/* increase dest addr */ + hw_desc->ctrl.tce = 1;/* chan stops when TC is reached */ + hw_desc->ctrl.cp = 3; /* hinghest priority */ + hw_desc->ctrl.sl = 0; /* source is in PLB */ + hw_desc->ctrl.pl = 0; /* dest is in PLB */ + hw_desc->cnt.tcie = 0;/* no interrupt on init */ + hw_desc->cnt.etie = 0; /* enable error interrupt */ + hw_desc->cnt.eie = 1; /* enable error interrupt */ + hw_desc->cnt.link = 0;/* not link to next cdb */ + hw_desc->cnt.sgl = 0; + hw_desc->ctrl.ce =1; /* enable channel */ + hw_desc->ctrl.cie =1; /* enable int channel */ +} + +/** + * apm82181_desc_init_memset - initialize the descriptor for MEMSET operation + */ +static inline void apm82181_desc_init_memset(apm82181_desc_t *desc, int value, + unsigned long flags) +{ + //dma_cdb_t *hw_desc = desc->hw_desc; + + memset (desc->hw_desc, 0, sizeof(dma_cdb_t)); + desc->hw_next = NULL; + desc->src_cnt = 1; + desc->dst_cnt = 1; + + if (flags & DMA_PREP_INTERRUPT) + set_bit(APM82181_DESC_INT, &desc->flags); + else + clear_bit(APM82181_DESC_INT, &desc->flags); + +} + + + +/** + * apm82181_desc_set_src_addr - set source address into the descriptor + */ +static inline void apm82181_desc_set_src_addr( apm82181_desc_t *desc, + apm82181_ch_t *chan, int src_idx, dma_addr_t addr) +{ + dma_cdb_t *dma_hw_desc; + xor_cb_t *xor_hw_desc; + + switch (chan->device->id) { + case APM82181_PDMA0_ID: + case APM82181_PDMA1_ID: + case APM82181_PDMA2_ID: + case APM82181_PDMA3_ID: + dma_hw_desc = desc->hw_desc; + dma_hw_desc->src_hi = (u32)(addr >> 32); + dma_hw_desc->src_lo = (u32)addr; + break; + case APM82181_XOR_ID: + xor_hw_desc = desc->hw_desc; + xor_hw_desc->ops[src_idx].h = (u32)(addr >>32); + xor_hw_desc->ops[src_idx].l = (u32)addr; + break; + } +} + +static void apm82181_adma_set_src(apm82181_desc_t *sw_desc, + dma_addr_t addr, int index) +{ + apm82181_ch_t *chan = to_apm82181_adma_chan(sw_desc->async_tx.chan); + + sw_desc = sw_desc->group_head; + + if (likely(sw_desc)) + apm82181_desc_set_src_addr(sw_desc, chan, index, addr); +} + +/** + * apm82181_desc_set_dest_addr - set destination address into the descriptor + */ +static inline void apm82181_desc_set_dest_addr(apm82181_desc_t *desc, + apm82181_ch_t *chan, dma_addr_t addr, u32 index) +{ + dma_cdb_t *dma_hw_desc; + xor_cb_t *xor_hw_desc; + + switch (chan->device->id) { + case APM82181_PDMA0_ID: + case APM82181_PDMA1_ID: + case APM82181_PDMA2_ID: + case APM82181_PDMA3_ID: + dma_hw_desc = desc->hw_desc; + dma_hw_desc->dest_hi = (u32)(addr >> 32); + dma_hw_desc->dest_lo = (u32)addr; + break; + case APM82181_XOR_ID: + xor_hw_desc = desc->hw_desc; + xor_hw_desc->cbtah = (u32)(addr >> 32); + xor_hw_desc->cbtal |= (u32)addr; + break; + } +} + +static int plbdma_get_transfer_width(dma_cdb_t *dma_hw_desc) +{ + switch (dma_hw_desc->ctrl.pw){ + case 0: + return 1; /* unit: bytes */ + case 1: + return 2; + case 2: + return 4; + case 3: + return 8; + case 4: + return 16; + } + return 0; +} +/** + * apm82181_desc_set_byte_count - set number of data bytes involved + * into the operation + */ +static inline void apm82181_desc_set_byte_count(apm82181_desc_t *desc, + apm82181_ch_t *chan, size_t byte_count) +{ + dma_cdb_t *dma_hw_desc; + xor_cb_t *xor_hw_desc; + int terminal_cnt, transfer_width = 0; + + DBG("<%s> byte_count %08x\n", __func__,byte_count); + switch (chan->device->id){ + case APM82181_PDMA0_ID: + case APM82181_PDMA1_ID: + case APM82181_PDMA2_ID: + case APM82181_PDMA3_ID: + dma_hw_desc = desc->hw_desc; + transfer_width = plbdma_get_transfer_width(dma_hw_desc); + terminal_cnt = byte_count/transfer_width; + dma_hw_desc->cnt.tc = terminal_cnt; + break; + case APM82181_XOR_ID: + xor_hw_desc = desc->hw_desc; + xor_hw_desc->cbbc = byte_count; + break; + } +} + +/** + * apm82181_xor_set_link - set link address in xor CB + */ +static inline void apm82181_xor_set_link (apm82181_desc_t *prev_desc, + apm82181_desc_t *next_desc) +{ + xor_cb_t *xor_hw_desc = prev_desc->hw_desc; + + if (unlikely(!next_desc || !(next_desc->phys))) { + printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n", + __func__, next_desc, + next_desc ? next_desc->phys : 0); + BUG(); + } + DBG("<%s>:next_desc->phys %llx\n", __func__,next_desc->phys); + xor_hw_desc->cbs = 0; + xor_hw_desc->cblal = (u32)next_desc->phys; + xor_hw_desc->cblah = (u32)(next_desc->phys >> 32); + xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT; +} + +/** + * apm82181_desc_set_link - set the address of descriptor following this + * descriptor in chain + */ +static inline void apm82181_desc_set_link(apm82181_ch_t *chan, + apm82181_desc_t *prev_desc, apm82181_desc_t *next_desc) +{ + unsigned long flags; + apm82181_desc_t *tail = next_desc; + + if (unlikely(!prev_desc || !next_desc || + (prev_desc->hw_next && prev_desc->hw_next != next_desc))) { + /* If previous next is overwritten something is wrong. + * though we may refetch from append to initiate list + * processing; in this case - it's ok. + */ + printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; " + "prev->hw_next=0x%p\n", __FUNCTION__, prev_desc, + next_desc, prev_desc ? prev_desc->hw_next : 0); + BUG(); + } + + local_irq_save(flags); + + /* do s/w chaining both for DMA and XOR descriptors */ + prev_desc->hw_next = next_desc; + + switch (chan->device->id) { + case APM82181_PDMA0_ID: + case APM82181_PDMA1_ID: + case APM82181_PDMA2_ID: + case APM82181_PDMA3_ID: + break; + case APM82181_XOR_ID: + /* bind descriptor to the chain */ + while (tail->hw_next) + tail = tail->hw_next; + xor_last_linked = tail; + + if (prev_desc == xor_last_submit) + /* do not link to the last submitted CB */ + break; + apm82181_xor_set_link (prev_desc, next_desc); + break; + default: + BUG(); + } + + local_irq_restore(flags); +} + +/** + * apm82181_desc_get_src_addr - extract the source address from the descriptor + */ +static inline u32 apm82181_desc_get_src_addr(apm82181_desc_t *desc, + apm82181_ch_t *chan, int src_idx) +{ + dma_cdb_t *dma_hw_desc; + + dma_hw_desc = desc->hw_desc; + + switch (chan->device->id) { + case APM82181_PDMA0_ID: + case APM82181_PDMA1_ID: + case APM82181_PDMA2_ID: + case APM82181_PDMA3_ID: + break; + default: + return 0; + } + /* May have 0, 1, 2, or 3 sources */ + return (dma_hw_desc->src_lo); +} + +/** + * apm82181_desc_get_dest_addr - extract the destination address from the + * descriptor + */ +static inline u32 apm82181_desc_get_dest_addr(apm82181_desc_t *desc, + apm82181_ch_t *chan, int idx) +{ + dma_cdb_t *dma_hw_desc; + + dma_hw_desc = desc->hw_desc; + + switch (chan->device->id) { + case APM82181_PDMA0_ID: + case APM82181_PDMA1_ID: + case APM82181_PDMA2_ID: + case APM82181_PDMA3_ID: + break; + default: + return 0; + } + + /* May have 0, 1, 2, or 3 sources */ + return (dma_hw_desc->dest_lo); +} + +/** + * apm82181_desc_get_byte_count - extract the byte count from the descriptor + */ +static inline u32 apm82181_desc_get_byte_count(apm82181_desc_t *desc, + apm82181_ch_t *chan) +{ + dma_cdb_t *dma_hw_desc; + + dma_hw_desc = desc->hw_desc; + + switch (chan->device->id) { + case APM82181_PDMA0_ID: + case APM82181_PDMA1_ID: + case APM82181_PDMA2_ID: + case APM82181_PDMA3_ID: + break; + default: + return 0; + } + /* May have 0, 1, 2, or 3 sources */ + //return (dma_hw_desc->cnt); +} + + +/** + * apm82181_desc_get_link - get the address of the descriptor that + * follows this one + */ +static inline u32 apm82181_desc_get_link(apm82181_desc_t *desc, + apm82181_ch_t *chan) +{ + if (!desc->hw_next) + return 0; + + return desc->hw_next->phys; +} + +/** + * apm82181_desc_is_aligned - check alignment + */ +static inline int apm82181_desc_is_aligned(apm82181_desc_t *desc, + int num_slots) +{ + return (desc->idx & (num_slots - 1)) ? 0 : 1; +} + + + +/****************************************************************************** + * ADMA channel low-level routines + ******************************************************************************/ + +static inline phys_addr_t apm82181_chan_get_current_descriptor(apm82181_ch_t *chan); +static inline void apm82181_chan_append(apm82181_ch_t *chan); + +/* + * apm82181_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine + */ +static inline void apm82181_adma_device_clear_eot_status (apm82181_ch_t *chan) +{ + u32 val ; + int idx = chan->device->id; + volatile xor_regs_t *xor_reg; + INFO; + switch (idx) { + case APM82181_PDMA0_ID: + case APM82181_PDMA1_ID: + case APM82181_PDMA2_ID: + case APM82181_PDMA3_ID: + val = mfdcr(DCR_DMA2P40_SR); + if(val & DMA_SR_RI(idx)){ + printk(KERN_ERR "Err occurred, DMA%d status: 0x%x\n", idx, val); + } + /* TC reached int, write back to clear */ + mtdcr(DCR_DMA2P40_SR, val); + break; + case APM82181_XOR_ID: + /* reset status bits to ack*/ + xor_reg = chan->device->xor_base; + + val = xor_reg->sr; + DBG("XOR engine status: 0x%08x\n", val); + xor_reg->sr = val; + + if (val & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) { + if (val & XOR_IE_RPTIE_BIT) { + /* Read PLB Timeout Error. + * Try to resubmit the CB + */ + INFO; + xor_reg->cblalr = xor_reg->ccbalr; + xor_reg->crsr |= XOR_CRSR_XAE_BIT; + } else + printk (KERN_ERR "XOR ERR 0x%x status\n", val); + break; + } + + /* if the XORcore is idle, but there are unprocessed CBs + * then refetch the s/w chain here + */ + if (!(xor_reg->sr & XOR_SR_XCP_BIT) && do_xor_refetch) { + apm82181_chan_append(chan); + } + break; + } +} + +/* + * apm82181_chan_is_busy - get the channel status + */ + +static inline int apm82181_chan_is_busy(apm82181_ch_t *chan) +{ + int busy = 0; + volatile xor_regs_t *xor_reg = chan->device->xor_base; + + switch (chan->device->id) { + case APM82181_PDMA0_ID: + case APM82181_PDMA1_ID: + case APM82181_PDMA2_ID: + case APM82181_PDMA3_ID: + if(mfdcr(DCR_DMA2P40_SR) & DMA_SR_CB(chan->device->id)) + busy = 1; + else + busy = 0; + break; + case APM82181_XOR_ID: + /* use the special status bit for the XORcore + */ + busy = (xor_reg->sr & XOR_SR_XCP_BIT) ? 1 : 0; + break; + default: + BUG(); + } + + return busy; +} + +/** + * apm82181_dma_put_desc - put PLB DMA 0/1/2/3 descriptor to FIFO + */ +static inline void apm82181_dma_put_desc(apm82181_ch_t *chan, + apm82181_desc_t *desc) +{ + dma_cdb_t *cdb = desc->hw_desc; + u32 sg_cmd = 0; + + /* Enable TC interrupt */ + if(test_bit(APM82181_DESC_INT, &desc->flags)) + cdb->cnt.tcie = 1; + else + cdb->cnt.tcie = 0; + /* Not link to next cdb */ + cdb->sg_hi = 0xffffffff; + cdb->sg_lo = 0xffffffff; + + chan_last_sub[chan->device->id] = desc; + + /* Update new cdb addr */ + mtdcr(DCR_DMA2P40_SGHx(chan->device->id), (u32)(desc->phys >> 32)); + mtdcr(DCR_DMA2P40_SGLx(chan->device->id), (u32)desc->phys); + + INFO; + DBG("slot id: %d addr: %llx\n", desc->idx, desc->phys); + DBG("S/G addr H: %08x addr L: %08x\n", + mfdcr(DCR_DMA2P40_SGHx(chan->device->id)), + mfdcr(DCR_DMA2P40_SGLx(chan->device->id))); + ADMA_HEXDUMP(cdb, 96); + /* Enable S/G */ + sg_cmd |= (DMA_SGC_SSG(chan->device->id) | DMA_SGC_EM_ALL); + sg_cmd |= DMA_SGC_SGL(chan->device->id, 0); /* S/G addr in PLB */ + + mtdcr(DCR_DMA2P40_SGC, sg_cmd); + DBG("S/G addr H: %08x addr L: %08x\n", + mfdcr(DCR_DMA2P40_SGHx(chan->device->id)), + mfdcr(DCR_DMA2P40_SGLx(chan->device->id))); + /* need to use variable for logging current CDB */ + chan->current_cdb_addr = desc->phys; + +} + +/** + * apm82181_chan_append - update the h/w chain in the channel + */ +static inline void apm82181_chan_append(apm82181_ch_t *chan) +{ + apm82181_desc_t *iter; + volatile xor_regs_t *xor_reg; + phys_addr_t cur_desc; + xor_cb_t *xcb; + unsigned long flags; + INFO; + + local_irq_save(flags); + + switch (chan->device->id) { + case APM82181_PDMA0_ID: + case APM82181_PDMA1_ID: + case APM82181_PDMA2_ID: + case APM82181_PDMA3_ID: + cur_desc = apm82181_chan_get_current_descriptor(chan); + DBG("current_desc %llx\n", cur_desc); + if (likely(cur_desc)) { + INFO; + iter = chan_last_sub[chan->device->id]; + BUG_ON(!iter); + } else { + INFO; + /* first peer */ + iter = chan_first_cdb[chan->device->id]; + BUG_ON(!iter); + INFO; + apm82181_dma_put_desc(chan, iter); + chan->hw_chain_inited = 1; + } + + /* is there something new to append */ + if (!iter->hw_next) + break; + + /* flush descriptors from the s/w queue to fifo */ + list_for_each_entry_continue(iter, &chan->chain, chain_node) { + apm82181_dma_put_desc(chan, iter); + if (!iter->hw_next) + break; + } + break; + case APM82181_XOR_ID: + /* update h/w links and refetch */ + if (!xor_last_submit->hw_next) + break; + xor_reg = chan->device->xor_base; + /* the last linked CDB has to generate an interrupt + * that we'd be able to append the next lists to h/w + * regardless of the XOR engine state at the moment of + * appending of these next lists + */ + xcb = xor_last_linked->hw_desc; + xcb->cbc |= XOR_CBCR_CBCE_BIT; + + if (!(xor_reg->sr & XOR_SR_XCP_BIT)) { + /* XORcore is idle. Refetch now */ + do_xor_refetch = 0; + apm82181_xor_set_link(xor_last_submit, + xor_last_submit->hw_next); + + xor_last_submit = xor_last_linked; + xor_reg->crsr |= XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT; + } else { + /* XORcore is running. Refetch later in the handler */ + do_xor_refetch = 1; + } + + break; + } + + local_irq_restore(flags); +} + +/** + * apm82181_chan_get_current_descriptor - get the currently executed descriptor + */ +static inline phys_addr_t apm82181_chan_get_current_descriptor(apm82181_ch_t *chan) +{ + phys_addr_t curr_cdb_addr; + volatile xor_regs_t *xor_reg; + int idx = chan->device->id; + + if (unlikely(!chan->hw_chain_inited)) + /* h/w descriptor chain is not initialized yet */ + return 0; + switch(idx){ + case APM82181_PDMA0_ID: + case APM82181_PDMA1_ID: + case APM82181_PDMA2_ID: + case APM82181_PDMA3_ID: + curr_cdb_addr = chan->current_cdb_addr; + break; + case APM82181_XOR_ID: + xor_reg = chan->device->xor_base; + curr_cdb_addr = (dma_addr_t)xor_reg->ccbahr; + curr_cdb_addr = (curr_cdb_addr << 32) | xor_reg->ccbalr; + break; + default: + BUG(); + } + return curr_cdb_addr; +} + + +/****************************************************************************** + * ADMA device level + ******************************************************************************/ + +static int apm82181_adma_alloc_chan_resources(struct dma_chan *chan); +static dma_cookie_t apm82181_adma_tx_submit( + struct dma_async_tx_descriptor *tx); + +static void apm82181_adma_set_dest( + apm82181_desc_t *tx, + dma_addr_t addr, int index); + +/** + * apm82181_get_group_entry - get group entry with index idx + * @tdesc: is the last allocated slot in the group. + */ +static inline apm82181_desc_t * +apm82181_get_group_entry ( apm82181_desc_t *tdesc, u32 entry_idx) +{ + apm82181_desc_t *iter = tdesc->group_head; + int i = 0; + + if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) { + printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n", + __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt); + BUG(); + } + list_for_each_entry(iter, &tdesc->group_list, chain_node) { + if (i++ == entry_idx) + break; + } + return iter; +} + +/** + * apm82181_adma_free_slots - flags descriptor slots for reuse + * @slot: Slot to free + * Caller must hold &apm82181_chan->lock while calling this function + */ +static void apm82181_adma_free_slots(apm82181_desc_t *slot, + apm82181_ch_t *chan) +{ + int stride = slot->slots_per_op; + + while (stride--) { + /*async_tx_clear_ack(&slot->async_tx);*/ /* Don't need to clear. It is hack*/ + slot->slots_per_op = 0; + slot = list_entry(slot->slot_node.next, + apm82181_desc_t, + slot_node); + } +} + +static void +apm82181_adma_unmap(apm82181_ch_t *chan, apm82181_desc_t *desc) +{ + u32 src_cnt, dst_cnt; + dma_addr_t addr; + /* + * get the number of sources & destination + * included in this descriptor and unmap + * them all + */ + src_cnt = 1; + dst_cnt = 1; + + /* unmap destinations */ + if (!(desc->async_tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) { + while (dst_cnt--) { + addr = apm82181_desc_get_dest_addr( + desc, chan, dst_cnt); + dma_unmap_page(&chan->device->ofdev->dev, + addr, desc->unmap_len, + DMA_FROM_DEVICE); + } + } + + /* unmap sources */ + if (!(desc->async_tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) { + while (src_cnt--) { + addr = apm82181_desc_get_src_addr( + desc, chan, src_cnt); + dma_unmap_page(&chan->device->ofdev->dev, + addr, desc->unmap_len, + DMA_TO_DEVICE); + } + } + +} +/** + * apm82181_adma_run_tx_complete_actions - call functions to be called + * upon complete + */ +static dma_cookie_t apm82181_adma_run_tx_complete_actions( + apm82181_desc_t *desc, + apm82181_ch_t *chan, + dma_cookie_t cookie) +{ + int i; + //enum dma_data_direction dir; + INFO; + BUG_ON(desc->async_tx.cookie < 0); + if (desc->async_tx.cookie > 0) { + cookie = desc->async_tx.cookie; + desc->async_tx.cookie = 0; + + /* call the callback (must not sleep or submit new + * operations to this channel) + */ + if (desc->async_tx.callback) + desc->async_tx.callback( + desc->async_tx.callback_param); + + /* unmap dma addresses + * (unmap_single vs unmap_page?) + * + * actually, ppc's dma_unmap_page() functions are empty, so + * the following code is just for the sake of completeness + */ + if (chan && chan->needs_unmap && desc->group_head && + desc->unmap_len) { + apm82181_desc_t *unmap = desc->group_head; + /* assume 1 slot per op always */ + u32 slot_count = unmap->slot_cnt; + + /* Run through the group list and unmap addresses */ + for (i = 0; i < slot_count; i++) { + BUG_ON(!unmap); + apm82181_adma_unmap(chan, unmap); + unmap = unmap->hw_next; + } + desc->group_head = NULL; + } + } + + /* run dependent operations */ + dma_run_dependencies(&desc->async_tx); + + return cookie; +} + +/** + * apm82181_adma_clean_slot - clean up CDB slot (if ack is set) + */ +static int apm82181_adma_clean_slot(apm82181_desc_t *desc, + apm82181_ch_t *chan) +{ + /* the client is allowed to attach dependent operations + * until 'ack' is set + */ + if (!async_tx_test_ack(&desc->async_tx)) + return 0; + + /* leave the last descriptor in the chain + * so we can append to it + */ + if (list_is_last(&desc->chain_node, &chan->chain) || + desc->phys == apm82181_chan_get_current_descriptor(chan)) + return 1; + + dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n", + desc->phys, desc->idx, desc->slots_per_op); + + list_del(&desc->chain_node); + apm82181_adma_free_slots(desc, chan); + return 0; +} + +/** + * __apm82181_adma_slot_cleanup - this is the common clean-up routine + * which runs through the channel CDBs list until reach the descriptor + * currently processed. When routine determines that all CDBs of group + * are completed then corresponding callbacks (if any) are called and slots + * are freed. + */ +static void __apm82181_adma_slot_cleanup(apm82181_ch_t *chan) +{ + apm82181_desc_t *iter, *_iter, *group_start = NULL; + dma_cookie_t cookie = 0; + phys_addr_t current_desc = apm82181_chan_get_current_descriptor(chan); + int busy = apm82181_chan_is_busy(chan); + int seen_current = 0, slot_cnt = 0, slots_per_op = 0; + + DBG("apm82181 adma%d: %s\n", + chan->device->id, __FUNCTION__); + DBG("current_desc %llx\n", current_desc); + + if (!current_desc) { + /* There were no transactions yet, so + * nothing to clean + */ + return; + } + + /* free completed slots from the chain starting with + * the oldest descriptor + */ + list_for_each_entry_safe(iter, _iter, &chan->chain, + chain_node) { + DBG(" cookie: %d slot: %d " + "busy: %d this_desc: %llx next_desc: %x cur: %llx ack: %d\n", + iter->async_tx.cookie, iter->idx, busy, iter->phys, + apm82181_desc_get_link(iter, chan), current_desc, + async_tx_test_ack(&iter->async_tx)); + prefetch(_iter); + prefetch(&_iter->async_tx); + + /* do not advance past the current descriptor loaded into the + * hardware channel,subsequent descriptors are either in process + * or have not been submitted + */ + if (seen_current) + break; + + /* stop the search if we reach the current descriptor and the + * channel is busy, or if it appears that the current descriptor + * needs to be re-read (i.e. has been appended to) + */ + if (iter->phys == current_desc) { + BUG_ON(seen_current++); + if (busy || apm82181_desc_get_link(iter, chan)) { + /* not all descriptors of the group have + * been completed; exit. + */ + break; + } + } + + /* detect the start of a group transaction */ + if (!slot_cnt && !slots_per_op) { + slot_cnt = iter->slot_cnt; + slots_per_op = iter->slots_per_op; + if (slot_cnt <= slots_per_op) { + slot_cnt = 0; + slots_per_op = 0; + } + } + + if (slot_cnt) { + if (!group_start) + group_start = iter; + slot_cnt -= slots_per_op; + } + + /* all the members of a group are complete */ + if (slots_per_op != 0 && slot_cnt == 0) { + apm82181_desc_t *grp_iter, *_grp_iter; + int end_of_chain = 0; + + /* clean up the group */ + slot_cnt = group_start->slot_cnt; + grp_iter = group_start; + list_for_each_entry_safe_from(grp_iter, _grp_iter, + &chan->chain, chain_node) { + + cookie = apm82181_adma_run_tx_complete_actions( + grp_iter, chan, cookie); + + slot_cnt -= slots_per_op; + end_of_chain = apm82181_adma_clean_slot( + grp_iter, chan); + if (end_of_chain && slot_cnt) { + /* Should wait for ZeroSum complete */ + if (cookie > 0) + chan->completed_cookie = cookie; + return; + } + + if (slot_cnt == 0 || end_of_chain) + break; + } + + /* the group should be complete at this point */ + BUG_ON(slot_cnt); + + slots_per_op = 0; + group_start = NULL; + if (end_of_chain) + break; + else + continue; + } else if (slots_per_op) /* wait for group completion */ + continue; + + cookie = apm82181_adma_run_tx_complete_actions(iter, chan, + cookie); + + if (apm82181_adma_clean_slot(iter, chan)) + break; + } + + BUG_ON(!seen_current); + + if (cookie > 0) { + chan->completed_cookie = cookie; + DBG("completed cookie %d\n", cookie); + } + +} + +/** + * apm82181_adma_tasklet - clean up watch-dog initiator + */ +static void apm82181_adma_tasklet (unsigned long data) +{ + apm82181_ch_t *chan = (apm82181_ch_t *) data; + spin_lock(&chan->lock); + INFO; + __apm82181_adma_slot_cleanup(chan); + spin_unlock(&chan->lock); +} + +/** + * apm82181_adma_slot_cleanup - clean up scheduled initiator + */ +static void apm82181_adma_slot_cleanup (apm82181_ch_t *chan) +{ + spin_lock_bh(&chan->lock); + __apm82181_adma_slot_cleanup(chan); + spin_unlock_bh(&chan->lock); +} + +/** + * apm82181_adma_alloc_slots - allocate free slots (if any) + */ +static apm82181_desc_t *apm82181_adma_alloc_slots( + apm82181_ch_t *chan, int num_slots, + int slots_per_op) +{ + apm82181_desc_t *iter = NULL, *_iter, *alloc_start = NULL; + struct list_head chain = LIST_HEAD_INIT(chain); + int slots_found, retry = 0; + + + BUG_ON(!num_slots || !slots_per_op); + /* start search from the last allocated descrtiptor + * if a contiguous allocation can not be found start searching + * from the beginning of the list + */ +retry: + slots_found = 0; + if (retry == 0) + iter = chan->last_used; + else + iter = list_entry(&chan->all_slots, apm82181_desc_t, + slot_node); + prefetch(iter); + DBG("---iter at %p idx %d\n ",iter,iter->idx); + list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots, + slot_node) { + prefetch(_iter); + prefetch(&_iter->async_tx); + if (iter->slots_per_op) { + slots_found = 0; + continue; + } + + /* start the allocation if the slot is correctly aligned */ + if (!slots_found++) + alloc_start = iter; + if (slots_found == num_slots) { + apm82181_desc_t *alloc_tail = NULL; + apm82181_desc_t *last_used = NULL; + iter = alloc_start; + while (num_slots) { + int i; + + /* pre-ack all but the last descriptor */ + if (num_slots != slots_per_op) { + async_tx_ack(&iter->async_tx); + } + list_add_tail(&iter->chain_node, &chain); + alloc_tail = iter; + iter->async_tx.cookie = 0; + iter->hw_next = NULL; + iter->flags = 0; + iter->slot_cnt = num_slots; + for (i = 0; i < slots_per_op; i++) { + iter->slots_per_op = slots_per_op - i; + last_used = iter; + iter = list_entry(iter->slot_node.next, + apm82181_desc_t, + slot_node); + } + num_slots -= slots_per_op; + } + alloc_tail->group_head = alloc_start; + alloc_tail->async_tx.cookie = -EBUSY; + list_splice(&chain, &alloc_tail->group_list); + chan->last_used = last_used; + DBG("---slot allocated at %llx idx %d, hw_desc %p tx_ack %d\n", + alloc_tail->phys, alloc_tail->idx, alloc_tail->hw_desc, + async_tx_test_ack(&alloc_tail->async_tx)); + return alloc_tail; + } + } + if (!retry++) + goto retry; +#ifdef ADMA_DEBUG + static int empty_slot_cnt; + if(!(empty_slot_cnt%100)) + printk(KERN_INFO"No empty slots trying to free some\n"); + empty_slot_cnt++; +#endif + /* try to free some slots if the allocation fails */ + tasklet_schedule(&chan->irq_tasklet); + return NULL; +} + +/** + * apm82181_chan_xor_slot_count - get the number of slots necessary for + * XOR operation + */ +static inline int apm82181_chan_xor_slot_count(size_t len, int src_cnt, + int *slots_per_op) +{ + int slot_cnt; + + /* each XOR descriptor provides up to 16 source operands */ + slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS; + + if (likely(len <= APM82181_ADMA_XOR_MAX_BYTE_COUNT)) + return slot_cnt; + + printk(KERN_ERR "%s: len %d > max %d !!\n", + __func__, len, APM82181_ADMA_XOR_MAX_BYTE_COUNT); + BUG(); + return slot_cnt; +} + +/** + * apm82181_desc_init_null_xor - initialize the descriptor for NULL XOR + * pseudo operation + */ +static inline void apm82181_desc_init_null_xor(apm82181_desc_t *desc) +{ + memset (desc->hw_desc, 0, sizeof(xor_cb_t)); + desc->hw_next = NULL; + desc->src_cnt = 0; + desc->dst_cnt = 1; +} +/** + * apm82181_chan_set_first_xor_descriptor - initi XORcore chain + */ +static inline void apm82181_chan_set_first_xor_descriptor(apm82181_ch_t *chan, + apm82181_desc_t *next_desc) +{ + volatile xor_regs_t *xor_reg; + + xor_reg = chan->device->xor_base; + + if (xor_reg->sr & XOR_SR_XCP_BIT) + printk(KERN_INFO "%s: Warn: XORcore is running " + "when try to set the first CDB!\n", + __func__); + + xor_last_submit = xor_last_linked = next_desc; + + xor_reg->crsr = XOR_CRSR_64BA_BIT; + + xor_reg->cblalr = next_desc->phys; + xor_reg->cblahr = 0; + xor_reg->cbcr |= XOR_CBCR_LNK_BIT; + + chan->hw_chain_inited = 1; +} +/** + * apm82181_chan_start_null_xor - initiate the first XOR operation (DMA engines + * use FIFOs (as opposite to chains used in XOR) so this is a XOR + * specific operation) + */ +static void apm82181_chan_start_null_xor(apm82181_ch_t *chan) +{ + apm82181_desc_t *sw_desc, *group_start; + dma_cookie_t cookie; + int slot_cnt, slots_per_op; + volatile xor_regs_t *xor_reg = chan->device->xor_base; + + dev_dbg(chan->device->common.dev, + "apm82181 adma%d: %s\n", chan->device->id, __func__); + INFO; + spin_lock_bh(&chan->lock); + slot_cnt = apm82181_chan_xor_slot_count(0, 2, &slots_per_op); + sw_desc = apm82181_adma_alloc_slots(chan, slot_cnt, slots_per_op); + if (sw_desc) { + INFO; + group_start = sw_desc->group_head; + list_splice_init(&sw_desc->group_list, &chan->chain); + async_tx_ack(&sw_desc->async_tx); + apm82181_desc_init_null_xor(group_start); + INFO; + + cookie = chan->common.cookie; + cookie++; + if (cookie <= 1) + cookie = 2; + + /* initialize the completed cookie to be less than + * the most recently used cookie + */ + chan->completed_cookie = cookie - 1; + chan->common.cookie = sw_desc->async_tx.cookie = cookie; + + /* channel should not be busy */ + BUG_ON(apm82181_chan_is_busy(chan)); + + /* set the descriptor address */ + apm82181_chan_set_first_xor_descriptor(chan, sw_desc); + + /* run the descriptor */ + xor_reg->crsr = XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT; + } else + printk(KERN_ERR "apm82181 adma%d" + " failed to allocate null descriptor\n", + chan->device->id); + spin_unlock_bh(&chan->lock); +} + +/** + * apm82181_adma_alloc_chan_resources - allocate pools for CDB slots + */ +static int apm82181_adma_alloc_chan_resources(struct dma_chan *chan) +{ + apm82181_ch_t *apm82181_chan = to_apm82181_adma_chan(chan); + apm82181_desc_t *slot = NULL; + char *hw_desc; + int i, db_sz; + int init = apm82181_chan->slots_allocated ? 0 : 1; + + chan->chan_id = apm82181_chan->device->id; + + /* Allocate descriptor slots */ + i = apm82181_chan->slots_allocated; + if (apm82181_chan->device->id != APM82181_XOR_ID) + db_sz = sizeof (dma_cdb_t); + else + db_sz = sizeof (xor_cb_t); + + for (; i < (apm82181_chan->device->pool_size/db_sz); i++) { + slot = kzalloc(sizeof(apm82181_desc_t), GFP_KERNEL); + if (!slot) { + printk(KERN_INFO "APM82181/GT ADMA Channel only initialized" + " %d descriptor slots", i--); + break; + } + + hw_desc = (char *) apm82181_chan->device->dma_desc_pool_virt; + slot->hw_desc = (void *) &hw_desc[i * db_sz]; + dma_async_tx_descriptor_init(&slot->async_tx, chan); + slot->async_tx.tx_submit = apm82181_adma_tx_submit; + INIT_LIST_HEAD(&slot->chain_node); + INIT_LIST_HEAD(&slot->slot_node); + INIT_LIST_HEAD(&slot->group_list); + slot->phys = apm82181_chan->device->dma_desc_pool + i * db_sz; + slot->idx = i; + spin_lock_bh(&apm82181_chan->lock); + apm82181_chan->slots_allocated++; + list_add_tail(&slot->slot_node, &apm82181_chan->all_slots); + spin_unlock_bh(&apm82181_chan->lock); + } + + if (i && !apm82181_chan->last_used) { + apm82181_chan->last_used = + list_entry(apm82181_chan->all_slots.next, + apm82181_desc_t, + slot_node); + } + + printk("apm82181 adma%d: allocated %d descriptor slots\n", + apm82181_chan->device->id, i); + + /* initialize the channel and the chain with a null operation */ + if (init) { + switch (apm82181_chan->device->id) + { + apm82181_chan->hw_chain_inited = 0; + case APM82181_PDMA0_ID: + apm82181_dma_tchan[0] = apm82181_chan; + break; + case APM82181_PDMA1_ID: + apm82181_dma_tchan[1] = apm82181_chan; + break; + case APM82181_PDMA2_ID: + apm82181_dma_tchan[2] = apm82181_chan; + break; + case APM82181_PDMA3_ID: + apm82181_dma_tchan[3] = apm82181_chan; + break; + case APM82181_XOR_ID: + apm82181_dma_tchan[4] = apm82181_chan; + apm82181_chan_start_null_xor(apm82181_chan); + break; + default: + BUG(); + } + apm82181_chan->needs_unmap = 1; + } + + return (i > 0) ? i : -ENOMEM; +} + +/** + * apm82181_desc_assign_cookie - assign a cookie + */ +static dma_cookie_t apm82181_desc_assign_cookie(apm82181_ch_t *chan, + apm82181_desc_t *desc) +{ + dma_cookie_t cookie = chan->common.cookie; + cookie++; + if (cookie < 0) + cookie = 1; + chan->common.cookie = desc->async_tx.cookie = cookie; + return cookie; +} + + +/** + * apm82181_adma_check_threshold - append CDBs to h/w chain if threshold + * has been achieved + */ +static void apm82181_adma_check_threshold(apm82181_ch_t *chan) +{ + dev_dbg(chan->device->common.dev, "apm82181 adma%d: pending: %d\n", + chan->device->id, chan->pending); + INFO; + if (chan->pending >= APM82181_ADMA_THRESHOLD) { + chan->pending = 0; + apm82181_chan_append(chan); + } +} + +/** + * apm82181_adma_tx_submit - submit new descriptor group to the channel + * (it's not necessary that descriptors will be submitted to the h/w + * chains too right now) + */ +static dma_cookie_t apm82181_adma_tx_submit(struct dma_async_tx_descriptor *tx) +{ + apm82181_desc_t *sw_desc = tx_to_apm82181_adma_slot(tx); + apm82181_ch_t *chan = to_apm82181_adma_chan(tx->chan); + apm82181_desc_t *group_start, *old_chain_tail; + int slot_cnt; + int slots_per_op; + dma_cookie_t cookie; + group_start = sw_desc->group_head; + slot_cnt = group_start->slot_cnt; + slots_per_op = group_start->slots_per_op; + INFO; + spin_lock_bh(&chan->lock); + cookie = apm82181_desc_assign_cookie(chan, sw_desc); + + if (unlikely(list_empty(&chan->chain))) { + /* first peer */ + list_splice_init(&sw_desc->group_list, &chan->chain); + chan_first_cdb[chan->device->id] = group_start; + } else { + /* isn't first peer, bind CDBs to chain */ + old_chain_tail = list_entry(chan->chain.prev, + apm82181_desc_t, chain_node); + list_splice_init(&sw_desc->group_list, + &old_chain_tail->chain_node); + /* fix up the hardware chain */ + apm82181_desc_set_link(chan, old_chain_tail, group_start); + } + + /* increment the pending count by the number of operations */ + chan->pending += slot_cnt / slots_per_op; + apm82181_adma_check_threshold(chan); + spin_unlock_bh(&chan->lock); + + DBG("apm82181 adma%d:cookie: %d slot: %d tx %p\n", + chan->device->id, sw_desc->async_tx.cookie, sw_desc->idx, sw_desc); + return cookie; +} +/** + * apm82181_adma_prep_dma_xor - prepare CDB for a XOR operation + */ +static struct dma_async_tx_descriptor *apm82181_adma_prep_dma_xor( + struct dma_chan *chan, dma_addr_t dma_dest, + dma_addr_t *dma_src, unsigned int src_cnt, size_t len, + unsigned long flags) +{ + apm82181_ch_t *apm82181_chan = to_apm82181_adma_chan(chan); + apm82181_desc_t *sw_desc, *group_start; + int slot_cnt, slots_per_op; + +#ifdef ADMA_DEBUG + printk("\n%s(%d):\n\tsrc: ", __func__, + apm82181_chan->device->id); + for (slot_cnt=0; slot_cnt < src_cnt; slot_cnt++) + printk("0x%llx ", dma_src[slot_cnt]); + printk("\n\tdst: 0x%llx\n", dma_dest); +#endif + if (unlikely(!len)) + return NULL; + BUG_ON(unlikely(len > APM82181_ADMA_XOR_MAX_BYTE_COUNT)); + + dev_dbg(apm82181_chan->device->common.dev, + "apm82181 adma%d: %s src_cnt: %d len: %u int_en: %d\n", + apm82181_chan->device->id, __func__, src_cnt, len, + flags & DMA_PREP_INTERRUPT ? 1 : 0); + + spin_lock_bh(&apm82181_chan->lock); + slot_cnt = apm82181_chan_xor_slot_count(len, src_cnt, &slots_per_op); + sw_desc = apm82181_adma_alloc_slots(apm82181_chan, slot_cnt, + slots_per_op); + if (sw_desc) { + group_start = sw_desc->group_head; + apm82181_desc_init_xor(group_start, src_cnt, flags); + apm82181_adma_set_dest(group_start, dma_dest, 0); + while (src_cnt--) + apm82181_adma_set_src(group_start, + dma_src[src_cnt], src_cnt); + apm82181_desc_set_byte_count(group_start, apm82181_chan, len); + sw_desc->unmap_len = len; + sw_desc->async_tx.flags = flags; + } + spin_unlock_bh(&apm82181_chan->lock); + + return sw_desc ? &sw_desc->async_tx : NULL; +} +/** + * apm82181_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation + */ +static struct dma_async_tx_descriptor *apm82181_adma_prep_dma_interrupt( + struct dma_chan *chan, unsigned long flags) +{ + apm82181_ch_t *apm82181_chan = to_apm82181_adma_chan(chan); + apm82181_desc_t *sw_desc, *group_start; + int slot_cnt, slots_per_op; + + dev_dbg(apm82181_chan->device->common.dev, + "apm82181 adma%d: %s\n", apm82181_chan->device->id, + __FUNCTION__); + spin_lock_bh(&apm82181_chan->lock); + slot_cnt = slots_per_op = 1; + sw_desc = apm82181_adma_alloc_slots(apm82181_chan, slot_cnt, + slots_per_op); + if (sw_desc) { + group_start = sw_desc->group_head; + apm82181_desc_init_interrupt(group_start, apm82181_chan); + group_start->unmap_len = 0; + sw_desc->async_tx.flags = flags; + } + spin_unlock_bh(&apm82181_chan->lock); + + return sw_desc ? &sw_desc->async_tx : NULL; +} + +/** + * apm82181_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation + */ +static struct dma_async_tx_descriptor *apm82181_adma_prep_dma_memcpy( + struct dma_chan *chan, dma_addr_t dma_dest, + dma_addr_t dma_src, size_t len, unsigned long flags) +{ + apm82181_ch_t *apm82181_chan = to_apm82181_adma_chan(chan); + apm82181_desc_t *sw_desc, *group_start; + int slot_cnt, slots_per_op; + if (unlikely(!len)) + return NULL; + BUG_ON(unlikely(len > APM82181_ADMA_DMA_MAX_BYTE_COUNT)); + + spin_lock_bh(&apm82181_chan->lock); + + dev_dbg(apm82181_chan->device->common.dev, + "apm82181 adma%d: %s len: %u int_en %d \n", + apm82181_chan->device->id, __FUNCTION__, len, + flags & DMA_PREP_INTERRUPT ? 1 : 0); + + slot_cnt = slots_per_op = 1; + sw_desc = apm82181_adma_alloc_slots(apm82181_chan, slot_cnt, + slots_per_op); + if (sw_desc) { + group_start = sw_desc->group_head; + flags |= DMA_PREP_INTERRUPT; + apm82181_desc_init_memcpy(group_start, flags); + apm82181_adma_set_dest(group_start, dma_dest, 0); + apm82181_adma_set_src(group_start, dma_src, 0); + apm82181_desc_set_byte_count(group_start, apm82181_chan, len); + sw_desc->unmap_len = len; + sw_desc->async_tx.flags = flags; + } + spin_unlock_bh(&apm82181_chan->lock); + return sw_desc ? &sw_desc->async_tx : NULL; +} + +/** + * apm82181_adma_prep_dma_memset - prepare CDB for a MEMSET operation + */ +static struct dma_async_tx_descriptor *apm82181_adma_prep_dma_memset( + struct dma_chan *chan, dma_addr_t dma_dest, int value, + size_t len, unsigned long flags) +{ + apm82181_ch_t *apm82181_chan = to_apm82181_adma_chan(chan); + apm82181_desc_t *sw_desc, *group_start; + int slot_cnt, slots_per_op; + if (unlikely(!len)) + return NULL; + BUG_ON(unlikely(len > APM82181_ADMA_DMA_MAX_BYTE_COUNT)); + + spin_lock_bh(&apm82181_chan->lock); + + dev_dbg(apm82181_chan->device->common.dev, + "apm82181 adma%d: %s cal: %u len: %u int_en %d\n", + apm82181_chan->device->id, __FUNCTION__, value, len, + flags & DMA_PREP_INTERRUPT ? 1 : 0); + + slot_cnt = slots_per_op = 1; + sw_desc = apm82181_adma_alloc_slots(apm82181_chan, slot_cnt, + slots_per_op); + if (sw_desc) { + group_start = sw_desc->group_head; + apm82181_desc_init_memset(group_start, value, flags); + apm82181_adma_set_dest(group_start, dma_dest, 0); + apm82181_desc_set_byte_count(group_start, apm82181_chan, len); + sw_desc->unmap_len = len; + sw_desc->async_tx.flags = flags; + } + spin_unlock_bh(&apm82181_chan->lock); + + return sw_desc ? &sw_desc->async_tx : NULL; +} + + +/** + * apm82181_adma_set_dest - set destination address into descriptor + */ +static void apm82181_adma_set_dest(apm82181_desc_t *sw_desc, + dma_addr_t addr, int index) +{ + apm82181_ch_t *chan = to_apm82181_adma_chan(sw_desc->async_tx.chan); + BUG_ON(index >= sw_desc->dst_cnt); + + switch (chan->device->id) { + case APM82181_PDMA0_ID: + case APM82181_PDMA1_ID: + case APM82181_PDMA2_ID: + case APM82181_PDMA3_ID: + /* to do: support transfers lengths > + * APM82181_ADMA_DMA/XOR_MAX_BYTE_COUNT + */ + apm82181_desc_set_dest_addr(sw_desc->group_head, + // chan, 0x8, addr, index); // Enabling HB bus + chan, addr, index); + break; + case APM82181_XOR_ID: + sw_desc = apm82181_get_group_entry(sw_desc, index); + apm82181_desc_set_dest_addr(sw_desc, chan, + addr, index); + break; + default: + BUG(); + } +} + + +/** + * apm82181_adma_free_chan_resources - free the resources allocated + */ +static void apm82181_adma_free_chan_resources(struct dma_chan *chan) +{ + apm82181_ch_t *apm82181_chan = to_apm82181_adma_chan(chan); + apm82181_desc_t *iter, *_iter; + int in_use_descs = 0; + + apm82181_adma_slot_cleanup(apm82181_chan); + + spin_lock_bh(&apm82181_chan->lock); + list_for_each_entry_safe(iter, _iter, &apm82181_chan->chain, + chain_node) { + in_use_descs++; + list_del(&iter->chain_node); + } + list_for_each_entry_safe_reverse(iter, _iter, + &apm82181_chan->all_slots, slot_node) { + list_del(&iter->slot_node); + kfree(iter); + apm82181_chan->slots_allocated--; + } + apm82181_chan->last_used = NULL; + + dev_dbg(apm82181_chan->device->common.dev, + "apm82181 adma%d %s slots_allocated %d\n", + apm82181_chan->device->id, + __FUNCTION__, apm82181_chan->slots_allocated); + spin_unlock_bh(&apm82181_chan->lock); + + /* one is ok since we left it on there on purpose */ + if (in_use_descs > 1) + printk(KERN_ERR "GT: Freeing %d in use descriptors!\n", + in_use_descs - 1); +} + +/** + * apm82181_adma_is_complete - poll the status of an ADMA transaction + * @chan: ADMA channel handle + * @cookie: ADMA transaction identifier + */ +static enum dma_status apm82181_adma_is_complete(struct dma_chan *chan, + dma_cookie_t cookie, dma_cookie_t *done, dma_cookie_t *used) +{ + apm82181_ch_t *apm82181_chan = to_apm82181_adma_chan(chan); + dma_cookie_t last_used; + dma_cookie_t last_complete; + enum dma_status ret; + + last_used = chan->cookie; + last_complete = apm82181_chan->completed_cookie; + + if (done) + *done= last_complete; + if (used) + *used = last_used; + + ret = dma_async_is_complete(cookie, last_complete, last_used); + if (ret == DMA_SUCCESS) + return ret; + + apm82181_adma_slot_cleanup(apm82181_chan); + + last_used = chan->cookie; + last_complete = apm82181_chan->completed_cookie; + + if (done) + *done= last_complete; + if (used) + *used = last_used; + + return dma_async_is_complete(cookie, last_complete, last_used); +} + +/** + * apm82181_adma_eot_handler - end of transfer interrupt handler + */ +static irqreturn_t apm82181_adma_eot_handler(int irq, void *data) +{ + apm82181_ch_t *chan = data; + + dev_dbg(chan->device->common.dev, + "apm82181 adma%d: %s\n", chan->device->id, __FUNCTION__); + INFO; + if(chan->device->id == APM82181_XOR_ID) + tasklet_schedule(&chan->irq_tasklet); + apm82181_adma_device_clear_eot_status(chan); + + return IRQ_HANDLED; +} + +/** + * apm82181_adma_err_handler - DMA error interrupt handler; + * do the same things as a eot handler + */ +#if 0 +static irqreturn_t apm82181_adma_err_handler(int irq, void *data) +{ + apm82181_ch_t *chan = data; + dev_dbg(chan->device->common.dev, + "apm82181 adma%d: %s\n", chan->device->id, __FUNCTION__); + tasklet_schedule(&chan->irq_tasklet); + apm82181_adma_device_clear_eot_status(chan); + + return IRQ_HANDLED; +} +#endif +/** + * apm82181_test_callback - called when test operation has been done + */ +static void apm82181_test_callback (void *unused) +{ + complete(&apm82181_r5_test_comp); +} + +/** + * apm82181_adma_issue_pending - flush all pending descriptors to h/w + */ +static void apm82181_adma_issue_pending(struct dma_chan *chan) +{ + apm82181_ch_t *apm82181_chan = to_apm82181_adma_chan(chan); + + DBG("apm82181 adma%d: %s %d \n", apm82181_chan->device->id, + __FUNCTION__, apm82181_chan->pending); + if (apm82181_chan->pending) { + apm82181_chan->pending = 0; + apm82181_chan_append(apm82181_chan); + } +} + +/** + * apm82181_adma_remove - remove the asynch device + */ +static int __devexit apm82181_pdma_remove(struct platform_device *dev) +{ + apm82181_dev_t *device = platform_get_drvdata(dev); + struct dma_chan *chan, *_chan; + struct ppc_dma_chan_ref *ref, *_ref; + apm82181_ch_t *apm82181_chan; + int i; + + dma_async_device_unregister(&device->common); + + for (i = 0; i < 3; i++) { + u32 irq; + irq = platform_get_irq(dev, i); + free_irq(irq, device); + } + + + do { + struct resource *res; + res = platform_get_resource(dev, IORESOURCE_MEM, 0); + release_mem_region(res->start, res->end - res->start); + } while (0); + + list_for_each_entry_safe(chan, _chan, &device->common.channels, + device_node) { + apm82181_chan = to_apm82181_adma_chan(chan); + list_del(&chan->device_node); + kfree(apm82181_chan); + } + + list_for_each_entry_safe(ref, _ref, &ppc_adma_chan_list, node) { + list_del(&ref->node); + kfree(ref); + } + + kfree(device); + + return 0; +} + +static inline void xor_hw_init (apm82181_dev_t *adev) +{ + volatile xor_regs_t *xor_reg = adev->xor_base; + /* Reset XOR */ + xor_reg->crsr = XOR_CRSR_XASR_BIT; + xor_reg->crrr = XOR_CRSR_64BA_BIT; + + /* enable XOR engine interrupts */ + xor_reg->ier = XOR_IE_CBCIE_BIT | + XOR_IE_ICBIE_BIT | XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT; +} + +/* + * Per channel probe + */ +static int __devinit apm82181_dma_per_chan_probe(struct of_device *ofdev, + const struct of_device_id *match) +{ + int ret = 0, irq; + const u32 *index, *dcr_regs, *pool_size; + apm82181_plb_dma_t *pdma; + apm82181_dev_t *adev; + apm82181_ch_t *chan; + struct ppc_dma_chan_ref *ref; + struct device_node *np = ofdev->node; + struct resource res; + int len; + + INFO; + pdma = dev_get_drvdata(ofdev->dev.parent); + BUG_ON(!pdma); + if ((adev = kzalloc(sizeof(*adev), GFP_KERNEL)) == NULL) { + printk("ERROR:No Free memory for allocating dma channels\n"); + ret = -ENOMEM; + goto out; + } + adev->dev = &ofdev->dev; + index = of_get_property(np, "cell-index", NULL); + if(!index) { + printk(KERN_ERR "adma-channel: Device node %s has missing or invalid " + "cell-index property\n", np->full_name); + goto err; + } + adev->id = (int)*index; + /* The XOR engine/PLB DMA 4 channels have different resources/pool_sizes */ + if (adev->id != APM82181_XOR_ID){ + dcr_regs = of_get_property(np, "dcr-reg", &len); + if (!dcr_regs || (len != 2 * sizeof(u32))) { + printk(KERN_ERR "plb_dma channel%d: Can't get DCR register base !", + adev->id); + goto err; + } + adev->dcr_base = dcr_regs[0]; + + pool_size = of_get_property(np, "pool_size", NULL); + if(!pool_size) { + printk(KERN_ERR "plb_dma channel%d: Device node %s has missing or " + "invalid pool_size property\n", adev->id, np->full_name); + goto err; + } + adev->pool_size = *pool_size; + } else { + if (of_address_to_resource(np, 0, &res)) { + printk(KERN_ERR "adma_xor channel%d %s: could not get resource address.\n", + adev->id,np->full_name); + goto err; + } + + DBG("XOR resource start = %llx end = %llx\n", res.start, res.end); + adev->xor_base = ioremap(res.start, res.end - res.start + 1); + if (!adev->xor_base){ + printk(KERN_ERR "XOR engine registers memory mapping failed.\n"); + goto err; + } + adev->pool_size = PAGE_SIZE << 1; + } + + adev->pdma = pdma; + adev->ofdev = ofdev; + dev_set_drvdata(&(ofdev->dev),adev); + + switch (adev->id){ + case APM82181_PDMA0_ID: + case APM82181_PDMA1_ID: + case APM82181_PDMA2_ID: + case APM82181_PDMA3_ID: + dma_cap_set(DMA_MEMCPY,adev->cap_mask); + break; + case APM82181_XOR_ID: + dma_cap_set(DMA_XOR,adev->cap_mask); + dma_cap_set(DMA_INTERRUPT,adev->cap_mask); + break; + default: + BUG(); + } + /* XOR h/w configuration */ + if(adev->id == APM82181_XOR_ID) + xor_hw_init(adev); + /* allocate coherent memory for hardware descriptors + * note: writecombine gives slightly better performance, but + * requires that we explicitly drain the write buffer + */ + if ((adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev, + adev->pool_size, &adev->dma_desc_pool, GFP_KERNEL)) == NULL) { + ret = -ENOMEM; + goto err_dma_alloc; + } + + adev->common.cap_mask = adev->cap_mask; + INIT_LIST_HEAD(&adev->common.channels); + /* set base routines */ + adev->common.device_alloc_chan_resources = + apm82181_adma_alloc_chan_resources; + adev->common.device_free_chan_resources = + apm82181_adma_free_chan_resources; + adev->common.device_is_tx_complete = apm82181_adma_is_complete; + adev->common.device_issue_pending = apm82181_adma_issue_pending; + adev->common.dev = &ofdev->dev; + + /* set prep routines based on capability */ + if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) { + adev->common.device_prep_dma_memcpy = + apm82181_adma_prep_dma_memcpy; + } + if (dma_has_cap(DMA_MEMSET, adev->common.cap_mask)) { + adev->common.device_prep_dma_memset = + apm82181_adma_prep_dma_memset; + } + + if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) { + adev->common.device_prep_dma_interrupt = + apm82181_adma_prep_dma_interrupt; + } + + if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) { + adev->common.max_xor = XOR_MAX_OPS; + adev->common.device_prep_dma_xor = + apm82181_adma_prep_dma_xor; + } + + /* create a channel */ + if ((chan = kzalloc(sizeof(*chan), GFP_KERNEL)) == NULL) { + ret = -ENOMEM; + goto err_chan_alloc; + } + tasklet_init(&chan->irq_tasklet, apm82181_adma_tasklet, + (unsigned long)chan); + + irq = irq_of_parse_and_map(np, 0); + switch (adev->id){ + case 0: + if (irq >= 0) { + ret = request_irq(irq, apm82181_adma_eot_handler, + IRQF_DISABLED, "adma-chan0", chan); + if (ret) { + printk("Failed to request IRQ %d\n",irq); + ret = -EIO; + goto err_irq; + } + } + break; + case 1: + if (irq >= 0) { + ret = request_irq(irq, apm82181_adma_eot_handler, + IRQF_DISABLED, "adma-chan1", chan); + if (ret) { + printk("Failed to request IRQ %d\n",irq); + ret = -EIO; + goto err_irq; + } + } + break; + case 2: + if (irq >= 0) { + ret = request_irq(irq, apm82181_adma_eot_handler, + IRQF_DISABLED, "adma-chan2", chan); + if (ret) { + printk("Failed to request IRQ %d\n",irq); + ret = -EIO; + goto err_irq; + } + } + break; + case 3: + if (irq >= 0) { + ret = request_irq(irq, apm82181_adma_eot_handler, + IRQF_DISABLED, "adma-chan3", chan); + if (ret) { + printk("Failed to request IRQ %d\n",irq); + ret = -EIO; + goto err_irq; + } + } + break; + case 4: + if (irq >= 0) { + ret = request_irq(irq, apm82181_adma_eot_handler, + IRQF_DISABLED, "adma-xor", chan); + if (ret) { + printk("Failed to request IRQ %d\n",irq); + ret = -EIO; + goto err_irq; + } + } + break; + default: + BUG(); + } + + spin_lock_init(&chan->lock); + chan->device = adev; + INIT_LIST_HEAD(&chan->chain); + INIT_LIST_HEAD(&chan->all_slots); + chan->common.device = &adev->common; + list_add_tail(&chan->common.device_node, &adev->common.channels); + adev->common.chancnt++; + + printk( "AMCC(R) APM82181 ADMA Engine found [%d]: " + "( capabilities: %s%s%s%s%s%s%s)\n", + adev->id, + dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq_xor " : "", + dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : + "", + dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "", + dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : + "", + dma_has_cap(DMA_MEMSET, adev->common.cap_mask) ? "memset " : "", + dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "", + dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "int " : ""); + INFO; + ret = dma_async_device_register(&adev->common); + if (ret) { + dev_err(&ofdev->dev, "failed to register dma async device"); + goto err_irq; + } + INFO; + ref = kmalloc(sizeof(*ref), GFP_KERNEL); + if (ref) { + INFO; + ref->chan = &chan->common; + INIT_LIST_HEAD(&ref->node); + list_add_tail(&ref->node, &ppc_adma_chan_list); + } else + dev_warn(&ofdev->dev, "failed to allocate channel reference!\n"); + + goto out; +err_irq: + kfree(chan); +err_chan_alloc: + dma_free_coherent(&ofdev->dev, adev->pool_size, + adev->dma_desc_pool_virt, adev->dma_desc_pool); +err_dma_alloc: + if (adev->xor_base) + iounmap(adev->xor_base); +err: + kfree(adev); +out: + return ret; +} + +static struct of_device_id dma_4chan_match[] = +{ + { + .compatible = "amcc,apm82181-adma", + }, + {}, +}; + +static struct of_device_id dma_per_chan_match[] = { + {.compatible = "amcc,apm82181-dma-4channel",}, + {.compatible = "amcc,xor",}, + {}, +}; +/* + * apm82181_adma_probe - probe the asynch device + */ +static int __devinit apm82181_pdma_probe(struct of_device *ofdev, + const struct of_device_id *match) +{ + int ret = 0; + apm82181_plb_dma_t *pdma; + + if ((pdma = kzalloc(sizeof(*pdma), GFP_KERNEL)) == NULL) { + ret = -ENOMEM; + goto out; + } + pdma->dev = &ofdev->dev; + pdma->ofdev = ofdev; + printk(PPC4XX_EDMA "Probing AMCC APM82181 ADMA engines...\n"); + + dev_set_drvdata(&(ofdev->dev),pdma); + of_platform_bus_probe(ofdev->node, dma_per_chan_match,&ofdev->dev); + +out: + return ret; +} + +/* + * apm82181_test_xor - test are RAID-5 XOR capability enabled successfully. + * For this we just perform one DMA XOR operation with the 3 sources + * to a destination + */ +static int apm82181_test_xor (apm82181_ch_t *chan) +{ + apm82181_desc_t *sw_desc, *group_start; + struct page *pg_src[3], *pg_dest; + char *a; + dma_addr_t dma_src_addr[3]; + dma_addr_t dma_dst_addr; + int rval = -EFAULT, i; + int len = PAGE_SIZE, src_cnt = 3; + int slot_cnt, slots_per_op; + INFO; + printk("ADMA channel %d XOR testing\n",chan->device->id); + for(i = 0; i < 3; i++){ + pg_src[i] = alloc_page(GFP_KERNEL); + if (!pg_src[i]) + return -ENOMEM; + } + pg_dest = alloc_page(GFP_KERNEL); + if (!pg_dest) + return -ENOMEM; + /* Fill the test page with ones */ + memset(page_address(pg_src[0]), 0xDA, len); + memset(page_address(pg_src[1]), 0xDA, len); + memset(page_address(pg_src[2]), 0x00, len); + memset(page_address(pg_dest), 0xA5, len); + for(i = 0; i < 3; i++){ + a = page_address(pg_src[i]); + printk("The virtual addr of src %d =%x\n",i, (unsigned int)a); + MEM_HEXDUMP(a,50); + } + a = page_address(pg_dest); + printk("The virtual addr of dest=%x\n", (unsigned int)a); + MEM_HEXDUMP(a,50); + + for(i = 0; i < 3; i++){ + dma_src_addr[i] = dma_map_page(chan->device->dev, pg_src[i], 0, len, + DMA_BIDIRECTIONAL); + } + dma_dst_addr = dma_map_page(chan->device->dev, pg_dest, 0, len, + DMA_BIDIRECTIONAL); + printk("dma_src_addr[0]: %llx; dma_src_addr[1]: %llx;\n " + "dma_src_addr[2]: %llx; dma_dst_addr %llx, len: %x\n", dma_src_addr[0], + dma_src_addr[1], dma_src_addr[2], dma_dst_addr, len); + + spin_lock_bh(&chan->lock); + slot_cnt = apm82181_chan_xor_slot_count(len, src_cnt, &slots_per_op); + sw_desc = apm82181_adma_alloc_slots(chan, slot_cnt, slots_per_op); + if (sw_desc) { + group_start = sw_desc->group_head; + apm82181_desc_init_xor(group_start, src_cnt, DMA_PREP_INTERRUPT); + /* Setup addresses */ + while (src_cnt--) + apm82181_adma_set_src(group_start, + dma_src_addr[src_cnt], src_cnt); + apm82181_adma_set_dest(group_start, dma_dst_addr, 0); + apm82181_desc_set_byte_count(group_start, chan, len); + sw_desc->unmap_len = PAGE_SIZE; + } else { + rval = -EFAULT; + spin_unlock_bh(&chan->lock); + goto exit; + } + spin_unlock_bh(&chan->lock); + + printk("Submit CDB...\n"); + MEM_HEXDUMP(sw_desc->hw_desc, 96); + async_tx_ack(&sw_desc->async_tx); + sw_desc->async_tx.callback = apm82181_test_callback; + sw_desc->async_tx.callback_param = NULL; + + init_completion(&apm82181_r5_test_comp); + apm82181_adma_tx_submit(&sw_desc->async_tx); + apm82181_adma_issue_pending(&chan->common); + //wait_for_completion(&apm82181_r5_test_comp); + /* wait for a while so that dma transaction finishes */ + mdelay(100); + /* Now check if the test page zeroed */ + a = page_address(pg_dest); + /* XOR result at destination */ + MEM_HEXDUMP(a,50); + if ((*(u32*)a) == 0x00000000 && memcmp(a, a+4, PAGE_SIZE-4)==0) { + /* page dest XOR is corect as expected - RAID-5 enabled */ + rval = 0; + } else { + /* RAID-5 was not enabled */ + rval = -EINVAL; + } + +exit: + dma_unmap_page(chan->device->dev, dma_src_addr[0], PAGE_SIZE, DMA_BIDIRECTIONAL); + dma_unmap_page(chan->device->dev, dma_src_addr[1], PAGE_SIZE, DMA_BIDIRECTIONAL); + dma_unmap_page(chan->device->dev, dma_src_addr[2], PAGE_SIZE, DMA_BIDIRECTIONAL); + dma_unmap_page(chan->device->dev, dma_dst_addr, PAGE_SIZE, DMA_BIDIRECTIONAL); + __free_page(pg_src[0]); + __free_page(pg_src[1]); + __free_page(pg_src[2]); + __free_page(pg_dest); + return rval; +} + + +/* + * apm82181_test_dma - test are RAID-5 capabilities enabled successfully. + * For this we just perform one WXOR operation with the same source + * and destination addresses, the GF-multiplier is 1; so if RAID-5 + o/of_platform_driver_unregister(&apm82181_pdma_driver); + * capabilities are enabled then we'll get src/dst filled with zero. + */ +static int apm82181_test_dma (apm82181_ch_t *chan) +{ + apm82181_desc_t *sw_desc; + struct page *pg_src, *pg_dest; + char *a, *d; + dma_addr_t dma_src_addr; + dma_addr_t dma_dst_addr; + int rval = -EFAULT; + int len = PAGE_SIZE; + + printk("PLB DMA channel %d memcpy testing\n",chan->device->id); + pg_src = alloc_page(GFP_KERNEL); + if (!pg_src) + return -ENOMEM; + pg_dest = alloc_page(GFP_KERNEL); + if (!pg_dest) + return -ENOMEM; + /* Fill the test page with ones */ + memset(page_address(pg_src), 0x77, len); + memset(page_address(pg_dest), 0xa5, len); + a = page_address(pg_src); + printk("The virtual addr of src =%x\n", (unsigned int)a); + MEM_HEXDUMP(a,50); + a = page_address(pg_dest); + printk("The virtual addr of dest=%x\n", (unsigned int)a); + MEM_HEXDUMP(a,50); + dma_src_addr = dma_map_page(chan->device->dev, pg_src, 0, len, + DMA_BIDIRECTIONAL); + dma_dst_addr = dma_map_page(chan->device->dev, pg_dest, 0, len, + DMA_BIDIRECTIONAL); + printk("dma_src_addr: %llx; dma_dst_addr %llx\n", dma_src_addr, dma_dst_addr); + + spin_lock_bh(&chan->lock); + sw_desc = apm82181_adma_alloc_slots(chan, 1, 1); + if (sw_desc) { + /* 1 src, 1 dst, int_ena */ + apm82181_desc_init_memcpy(sw_desc, DMA_PREP_INTERRUPT); + //apm82181_desc_init_memcpy(sw_desc, 0); + /* Setup adresses */ + apm82181_adma_set_src(sw_desc, dma_src_addr, 0); + apm82181_adma_set_dest(sw_desc, dma_dst_addr, 0); + apm82181_desc_set_byte_count(sw_desc, chan, len); + sw_desc->unmap_len = PAGE_SIZE; + } else { + rval = -EFAULT; + spin_unlock_bh(&chan->lock); + goto exit; + } + spin_unlock_bh(&chan->lock); + + printk("Submit CDB...\n"); + MEM_HEXDUMP(sw_desc->hw_desc, 96); + async_tx_ack(&sw_desc->async_tx); + sw_desc->async_tx.callback = apm82181_test_callback; + sw_desc->async_tx.callback_param = NULL; + + init_completion(&apm82181_r5_test_comp); + apm82181_adma_tx_submit(&sw_desc->async_tx); + apm82181_adma_issue_pending(&chan->common); + //wait_for_completion(&apm82181_r5_test_comp); + + a = page_address(pg_src); + d = page_address(pg_dest); + if (!memcmp(a, d, len)) { + rval = 0; + } else { + rval = -EINVAL; + } + + a = page_address(pg_src); + printk("\nAfter DMA done:"); + printk("\nsrc %x value:\n", (unsigned int)a); + MEM_HEXDUMP(a,96); + a = page_address(pg_dest); + printk("\ndest%x value:\n", (unsigned int)a); + MEM_HEXDUMP(a,96); + +exit: + __free_page(pg_src); + __free_page(pg_dest); + return rval; +} + +static struct of_platform_driver apm82181_pdma_driver = { + .name = "apm82181_plb_dma", + .match_table = dma_4chan_match, + + .probe = apm82181_pdma_probe, + //.remove = apm82181_pdma_remove, +}; +struct of_platform_driver apm82181_dma_per_chan_driver = { + .name = "apm82181-dma-4channel", + .match_table = dma_per_chan_match, + .probe = apm82181_dma_per_chan_probe, +}; + +static int apm82181_xor_read (char *page, char **start, off_t off, + int count, int *eof, void *data) +{ + char *p = page; + + p += sprintf(p, "%s\n", + apm82181_xor_verified ? + "APM82181 ASYNC XOR capability are VERIFIED.\n" : + "APM82181 ASYNC XOR capability are NOT VERIFIED.\n"); + + return p - page; +} + +static int apm82181_xor_write (struct file *file, const char __user *buffer, + unsigned long count, void *data) +{ + if(count != 2) + return -EFAULT; + /* Verify does it really work now */ + if (!apm82181_test_xor(apm82181_dma_tchan[4])) { + /* APM82181 RAID-5 XOR has been activated successfully */; + printk("APM82181 ADMA XOR engine has been verified " + "successfully\n"); + apm82181_xor_verified = 1; + } else { + /* APM82181 RAID-5 memcpy hasn't been activated! */; + printk("APM82181 ADMA XOR engine hasn't been " + "verified yet\n"); + apm82181_xor_verified = 0; + } + + return count; +} + +static int apm82181_dma_read (char *page, char **start, off_t off, + int count, int *eof, void *data) +{ + int i; + + printk("APM82181 ASYNC MEMCPY capability\n"); + for(i = 0; i < 4; i++){ + printk("\tPLB DMA channel %d: %s ", i, + apm82181_memcpy_verified[i] ? + "VERIFIED.\n" : "NOT VERIFIED.\n"); + } + return 0; +} + +static int apm82181_dma_write (struct file *file, const char __user *buffer, + unsigned long count, void *data) +{ + /* e.g. 0xffffffff */ + char tmp[2]; + u32 val; + + if(count != 2) + return -EFAULT; + + if (copy_from_user(tmp, buffer, count)) + return -EFAULT; + val = simple_strtoul(tmp, NULL, 10); /* decimal base */ + if(!(val == 0 || val == 1 || val == 2 || val == 3 )) { + printk("Error! Wrong channel id, please choose 1 valid id [0/1/2/3]\n"); + return -EFAULT; + } + + /* Verify does it really work now */ + if (!apm82181_test_dma(apm82181_dma_tchan[val])) { + /* APM82181 RAID-5 memcpy has been activated successfully */; + printk("APM82181 PLBDMA MEMCPY channel %d has been verified " + "successfully\n", val); + apm82181_memcpy_verified[val] = 1; + } else { + /* APM82181 RAID-5 memcpy hasn't been activated! */; + printk("APM82181 PLBDMA MEMCPY channel %d hasn't been " + "verified yet\n", val); + apm82181_memcpy_verified[val] = 0; + } + + return count; +} + +static int __init apm82181_adma_per_chan_init (void) +{ + int rval; + rval = of_register_platform_driver(&apm82181_dma_per_chan_driver); + return rval; +} + +static int __init apm82181_adma_init (void) +{ + int rval; + struct proc_dir_entry *p; + + rval = of_register_platform_driver(&apm82181_pdma_driver); + + if (rval == 0) { + /* Create /proc entries */ + apm82181_proot = proc_mkdir(APM82181_DMA_PROC_ROOT, NULL); + if (!apm82181_proot) { + printk(KERN_ERR "%s: failed to create %s proc " + "directory\n",__FUNCTION__,APM82181_DMA_PROC_ROOT); + /* User will not be able to enable h/w RAID-6 */ + return rval; + } + + /* ADMA MEMCPY verification entry */ + p = create_proc_entry("adma_memcopy_test", 0, apm82181_proot); + if (p) { + p->read_proc = apm82181_dma_read; + p->write_proc = apm82181_dma_write; + } + /* ADMA XOR capability verification entry */ + p = create_proc_entry("adma_xor_test", 0, apm82181_proot); + if (p) { + p->read_proc = apm82181_xor_read; + p->write_proc = apm82181_xor_write; + } + } + return rval; +} + +#if 0 +static void __exit apm82181_adma_exit (void) +{ + of_unregister_platform_driver(&apm82181_pdma_driver); + return; +} +module_exit(apm82181_adma_exit); +#endif + +module_init(apm82181_adma_per_chan_init); +module_init(apm82181_adma_init); + +MODULE_AUTHOR("Tai Tri Nguyen<ttnguyen@appliedmicro.com>"); +MODULE_DESCRIPTION("APM82181 ADMA Engine Driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/dma/dmaengine.c b/drivers/dma/dmaengine.c index 8f99354082c..0177c3ff6ff 100644 --- a/drivers/dma/dmaengine.c +++ b/drivers/dma/dmaengine.c @@ -680,6 +680,7 @@ int dma_async_device_register(struct dma_device *device) struct dma_chan* chan; atomic_t *idr_ref; + printk( "--------------- %s: %i-------------------------\n",__FUNCTION__,__LINE__); if (!device) return -ENODEV; @@ -858,14 +859,10 @@ dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest, dma_addr_t dma_dest, dma_src; dma_cookie_t cookie; int cpu; - unsigned long flags; dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE); dma_dest = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE); - flags = DMA_CTRL_ACK | - DMA_COMPL_SRC_UNMAP_SINGLE | - DMA_COMPL_DEST_UNMAP_SINGLE; - tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags); + tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, DMA_CTRL_ACK); if (!tx) { dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE); @@ -907,12 +904,10 @@ dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page, dma_addr_t dma_dest, dma_src; dma_cookie_t cookie; int cpu; - unsigned long flags; dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE); dma_dest = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE); - flags = DMA_CTRL_ACK | DMA_COMPL_SRC_UNMAP_SINGLE; - tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags); + tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, DMA_CTRL_ACK); if (!tx) { dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE); diff --git a/drivers/dma/ppc460ex-adma.c b/drivers/dma/ppc460ex-adma.c new file mode 100644 index 00000000000..2ef1e9d6052 --- /dev/null +++ b/drivers/dma/ppc460ex-adma.c @@ -0,0 +1,5409 @@ +/* + * Copyright(c) 2006 DENX Engineering. All rights reserved. + * + * Author: Yuri Tikhonov <yur@emcraft.com> + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the Free + * Software Foundation; either version 2 of the License, or (at your option) + * any later version. + * + * This program is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., 59 + * Temple Place - Suite 330, Boston, MA 02111-1307, USA. + * + * The full GNU General Public License is included in this distribution in the + * file called COPYING. + */ + +/* + * This driver supports the asynchrounous DMA copy and RAID engines available + * on the AMCC PPC460ex Processors. + * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x) + * ADMA driver written by D.Williams. + */ + +#include <linux/init.h> +#include <linux/module.h> +#include <linux/async_tx.h> +#include <linux/delay.h> +#include <linux/dma-mapping.h> +#include <linux/spinlock.h> +#include <linux/interrupt.h> +#include <linux/platform_device.h> +#include <linux/uaccess.h> +#include <linux/of_platform.h> +#include <linux/proc_fs.h> +#include <asm/dcr.h> +#include <asm/dcr-regs.h> +#include <asm/ppc460ex_adma.h> +#include <asm/ppc460ex_xor.h> +#include <asm/ppc4xx_ocm.h> +/* The list of channels exported by ppc460ex ADMA */ +struct list_head +ppc_adma_chan_list = LIST_HEAD_INIT(ppc_adma_chan_list); + +/* This flag is set when want to refetch the xor chain in the interrupt + * handler + */ +static u32 do_xor_refetch = 0; + +/* Pointers to last submitted to DMA0, DMA1 CDBs */ +static ppc460ex_desc_t *chan_last_sub[3]; +static ppc460ex_desc_t *chan_first_cdb[3]; + +/* Pointer to last linked and submitted xor CB */ +static ppc460ex_desc_t *xor_last_linked = NULL; +static ppc460ex_desc_t *xor_last_submit = NULL; + +/* This array is used in data-check operations for storing a pattern */ +static char ppc460ex_qword[16]; + +/* Since RXOR operations use the common register (MQ0_CF2H) for setting-up + * the block size in transactions, then we do not allow to activate more than + * only one RXOR transactions simultaneously. So use this var to store + * the information about is RXOR currently active (PPC460EX_RXOR_RUN bit is + * set) or not (PPC460EX_RXOR_RUN is clear). + */ +static unsigned long ppc460ex_rxor_state; + +/* /proc interface is used here to enable the h/w RAID-6 capabilities + */ +static struct proc_dir_entry *ppc460ex_proot; +static struct proc_dir_entry *ppc460ex_pqroot; + +/* These are used in enable & check routines + */ +static u32 ppc460ex_r6_enabled; +static u32 ppc460ex_r5_enabled; +static ppc460ex_ch_t *ppc460ex_r6_tchan; +static ppc460ex_ch_t *ppc460ex_r5_tchan; +static struct completion ppc460ex_r6_test_comp; +static struct completion ppc460ex_r5_test_comp; + +static int ppc460ex_adma_dma2rxor_prep_src (ppc460ex_desc_t *desc, + ppc460ex_rxor_cursor_t *cursor, int index, + int src_cnt, u32 addr); +static void ppc460ex_adma_dma2rxor_set_src (ppc460ex_desc_t *desc, + int index, dma_addr_t addr); +static void ppc460ex_adma_dma2rxor_set_mult (ppc460ex_desc_t *desc, + int index, u8 mult); +#if 1 +static inline void pr_dma(int x, char *str) +{ + if(mfdcr(0x60)) { + printk("<%s> Line:%d\n",str,x); + } +} +#else +static inline void pr_dma(int x, char *str) +{ +} +#endif +phys_addr_t fixup_bigphys_addr(phys_addr_t addr, phys_addr_t size) +{ + phys_addr_t page_4gb = 0; + + return (page_4gb | addr); +} +/*********************************************************************** + * HW specific initialization + * ********************************************************************/ +static u64 ppc460ex_adma_dmamask = DMA_32BIT_MASK; + +/* DMA and XOR platform devices' resources */ + +static struct resource ppc460ex_dma_1_resources[] = { + { + .flags = IORESOURCE_MEM, + }, + { + .start = DMA1_CS_FIFO_NEED_SERVICE_IRQ, + .end = DMA1_CS_FIFO_NEED_SERVICE_IRQ, + .flags = IORESOURCE_IRQ + }, + { + .start = DMA_ERROR_IRQ, + .end = DMA_ERROR_IRQ, + .flags = IORESOURCE_IRQ + } +}; + + +/* DMA and XOR platform devices' data */ + +/* DMA0,1 engines use FIFO to maintain CDBs, so we + * should allocate the pool accordingly to size of this + * FIFO. Thus, the pool size depends on the FIFO depth: + * how much CDBs pointers FIFO may contaun then so much + * CDBs we should provide in pool. + * That is + * CDB size = 32B; + * CDBs number = (DMA0_FIFO_SIZE >> 3); + * Pool size = CDBs number * CDB size = + * = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2. + * + * As far as the XOR engine is concerned, it does not + * use FIFOs but uses linked list. So there is no dependency + * between pool size to allocate and the engine configuration. + */ + +static struct ppc460ex_adma_platform_data ppc460ex_dma_1_data = { + .hw_id = PPC460EX_DMA1_ID, + .pool_size = DMA1_FIFO_SIZE << 2, +}; + +/* DMA and XOR platform devices definitions */ +#if 1 +static struct platform_device ppc460ex_dma_1_channel = { + .name = "PPC460EX-ADMA", + .id = PPC460EX_DMA1_ID, + .num_resources = ARRAY_SIZE(ppc460ex_dma_1_resources), + .resource = ppc460ex_dma_1_resources, + .dev = { + .dma_mask = &ppc460ex_adma_dmamask, + .coherent_dma_mask = DMA_64BIT_MASK, + .platform_data = (void *) &ppc460ex_dma_1_data, + }, +}; +#endif + +/* + * Init DMA0/1 and XOR engines; allocate memory for DMAx FIFOs; set platform_device + * memory resources addresses + */ +static void ppc460ex_configure_raid_devices(void) +{ + void *fifo_buf; + volatile i2o_regs_t *i2o_reg; + volatile dma_regs_t *dma_reg1; + /* + * volatile dma_regs_t *dma_reg0, *dma_reg1; + volatile xor_regs_t *xor_reg; + */ + u32 mask; + + /* + * Map registers and allocate fifo buffer + */ + if (!(i2o_reg = ioremap(I2O_MMAP_BASE, I2O_MMAP_SIZE))) { + printk(KERN_ERR "I2O registers mapping failed.\n"); + return; + } + if (!(dma_reg1 = ioremap(DMA1_MMAP_BASE, DMA_MMAP_SIZE))) { + printk(KERN_ERR "DMA1 registers mapping failed.\n"); + goto err1; + } + + /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share + * the base address of FIFO memory space. + * Actually we need twice more physical memory than programmed in the + * <fsiz> register (because there are two FIFOs foreach DMA: CP and CS) + */ + fifo_buf = kmalloc(( DMA1_FIFO_SIZE)<<1, GFP_KERNEL); + if (!fifo_buf) { + printk(KERN_ERR "DMA FIFO buffer allocating failed.\n"); + goto err2; + } + + /* + * Configure h/w + */ + /* Reset I2O/DMA */ + SDR_WRITE(SDR0_SRST0, SDR0_SRST_I2ODMA); + SDR_WRITE(SDR0_SRST0, 0); + + + /* Setup the base address of mmaped registers */ + mtdcr(DCRN_I2O0_IBAH, (u32)(I2O_MMAP_BASE >> 32)); + mtdcr(DCRN_I2O0_IBAL, (u32)(I2O_MMAP_BASE) | I2O_REG_ENABLE); + + /* SetUp FIFO memory space base address */ + out_le32(&i2o_reg->ifbah, 0); + out_le32(&i2o_reg->ifbal, ((u32)__pa(fifo_buf))); + + /* set zero FIFO size for I2O, so the whole fifo_buf is used by DMAs. + * DMA0_FIFO_SIZE is defined in bytes, <fsiz> - in number of CDB pointers (8byte). + * DMA FIFO Length = CSlength + CPlength, where + * CSlength = CPlength = (fsiz + 1) * 8. + */ + out_le32(&i2o_reg->ifsiz, 0); + out_le32(&dma_reg1->fsiz, DMA_FIFO_ENABLE | ((DMA1_FIFO_SIZE>>3) - 2)); + /* Configure DMA engine */ + out_le32(&dma_reg1->cfg, DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN); + + /* Clear Status */ + out_le32(&dma_reg1->dsts, ~0); + + /* + * Prepare WXOR/RXOR (finally it is being enabled via /proc interface of + * the ppc460ex ADMA driver) + */ + /* Set HB alias */ + mtdcr(DCRN_MQ0_BAUH, DMA_CUED_XOR_HB); + + /* Set: + * - LL transaction passing limit to 1; + * - Memory controller cycle limit to 1; + * - Galois Polynomial to 0x14d (default) + */ + mtdcr(DCRN_MQ0_CFBHL, 0x88a68000 | (1 << MQ0_CFBHL_TPLM) | + (1 << MQ0_CFBHL_HBCL) | + (PPC460EX_DEFAULT_POLY << MQ0_CFBHL_POLY)); + + /* Unmask 'CS FIFO Attention' interrupts and + * enable generating interrupts on errors + */ + mask = in_le32(&i2o_reg->iopim) & ~( + I2O_IOPIM_P0SNE | I2O_IOPIM_P1SNE | + I2O_IOPIM_P0EM | I2O_IOPIM_P1EM); + out_le32(&i2o_reg->iopim, mask); + + /* enable XOR engine interrupts */ + + /* + * Unmap I2O registers + */ + iounmap(i2o_reg); + printk("<%s> line %d\n", __FUNCTION__, __LINE__); + + /* Configure MQ as follows: + * MQ: 0x80001C80. This means + * - AddrAck First Request, + * - Read Passing Limit = 1, + * - Read Passing Enable, + * - Read Flow Through Enable, + * - MCIF Cycle Limit = 1. + */ +#if 1 + mdelay(1000); + mask = (1 << MQ_CF1_AAFR) | ((1 & MQ_CF1_RPLM_MSK) << MQ_CF1_RPLM) | + (1 << MQ_CF1_RPEN) | (1 << MQ_CF1_RFTE) | + ((1 & MQ_CF1_WRCL_MSK) << MQ_CF1_WRCL); + mtdcr(DCRN_MQ0_CF1H, mask); + mtdcr(DCRN_MQ0_CF1L, mask); +#endif + printk("<%s> line %d\n", __FUNCTION__, __LINE__); + + /* Configure PLB as follows: + * PLB: 0xDF000000. This means + * - Priority level 00 fair priority, + * - Priority level 01 fair priority, + * - Priority level 11 fair priority, + * - High Bus Utilization enabled, + * - 4 Deep read pipe, + * - 2 Deep write pipe. + */ + mask = (1 << PLB_ACR_PPM0) | (1 << PLB_ACR_PPM1) | (1 << PLB_ACR_PPM3) | + (1 << PLB_ACR_HBU) | ((3 & PLB_ACR_RDP_MSK) << PLB_ACR_RDP) | + (1 << PLB_ACR_WRP); + mtdcr(DCRN_PLB0_ACR, mask); + mtdcr(DCRN_PLB1_ACR, mask); + printk("<%s> line %d\n", __FUNCTION__, __LINE__); + + /* + * Set resource addresses + */ + + ppc460ex_dma_1_channel.resource[0].start = (resource_size_t)(dma_reg1); + ppc460ex_dma_1_channel.resource[0].end = + ppc460ex_dma_1_channel.resource[0].start+DMA_MMAP_SIZE; + printk( " ppc460ex_dma_1_channel.resource[0].start=0x%lx \n", + ppc460ex_dma_1_channel.resource[0].start); + printk("<%s> line %d dma_reg1=0x%lx \n", __FUNCTION__, __LINE__,dma_reg1); + + + printk("<%s> line %d\n", __FUNCTION__, __LINE__); + return; +err2: + iounmap(dma_reg1); +err1: + iounmap(i2o_reg); + return; +} +#if 1 +static struct platform_device *ppc460ex_devs[] __initdata = { +/* &ppc460ex_dma_0_channel, */ + &ppc460ex_dma_1_channel, + /*&ppc460ex_xor_channel, */ +}; +#endif + +/****************************************************************************** + * Command (Descriptor) Blocks low-level routines + ******************************************************************************/ +/** + * ppc460ex_desc_init_interrupt - initialize the descriptor for INTERRUPT + * pseudo operation + */ +static inline void ppc460ex_desc_init_interrupt (ppc460ex_desc_t *desc, + ppc460ex_ch_t *chan) +{ + xor_cb_t *p; + + switch (chan->device->id) { + case PPC460EX_XOR_ID: + p = desc->hw_desc; + memset (desc->hw_desc, 0, sizeof(xor_cb_t)); + /* NOP with Command Block Complete Enable */ + p->cbc = XOR_CBCR_CBCE_BIT; + break; + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + memset (desc->hw_desc, 0, sizeof(dma_cdb_t)); + /* NOP with interrupt */ + set_bit(PPC460EX_DESC_INT, &desc->flags); + break; + default: + printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id, + __FUNCTION__); + break; + } +} + +/** + * ppc460ex_desc_init_null_xor - initialize the descriptor for NULL XOR + * pseudo operation + */ +static inline void ppc460ex_desc_init_null_xor(ppc460ex_desc_t *desc) +{ + memset (desc->hw_desc, 0, sizeof(xor_cb_t)); + desc->hw_next = NULL; + desc->src_cnt = 0; + desc->dst_cnt = 1; +} + +/** + * ppc460ex_desc_init_pqxor_xor - initialize the descriptor for PQ_XOR + * operation in DMA2 controller + */ +static inline void ppc460ex_desc_init_dma2rxor(ppc460ex_desc_t *desc, + int dst_cnt, int src_cnt, unsigned long flags) +{ + xor_cb_t *hw_desc = desc->hw_desc; + + memset (desc->hw_desc, 0, sizeof(xor_cb_t)); + desc->hw_next = NULL; + desc->src_cnt = src_cnt; + desc->dst_cnt = dst_cnt; + memset (desc->reverse_flags, 0, sizeof (desc->reverse_flags)); + desc->descs_per_op = 0; + + hw_desc->cbc = XOR_CBCR_TGT_BIT; + if (flags & DMA_PREP_INTERRUPT) + /* Enable interrupt on complete */ + hw_desc->cbc |= XOR_CBCR_CBCE_BIT; +} + +/** + * ppc460ex_desc_init_pq - initialize the descriptor for PQ_XOR operation + */ +static inline void ppc460ex_desc_init_pq(ppc460ex_desc_t *desc, + int dst_cnt, int src_cnt, unsigned long flags, + unsigned long op) +{ + dma_cdb_t *hw_desc; + ppc460ex_desc_t *iter; + u8 dopc; + + + /* Common initialization of a PQ descriptors chain */ + + set_bits(op, &desc->flags); + desc->src_cnt = src_cnt; + desc->dst_cnt = dst_cnt; + + dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ? + DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2; + + list_for_each_entry(iter, &desc->group_list, chain_node) { + hw_desc = iter->hw_desc; + memset (iter->hw_desc, 0, sizeof(dma_cdb_t)); + + if (likely(!list_is_last(&iter->chain_node, + &desc->group_list))) { + /* set 'next' pointer */ + iter->hw_next = list_entry(iter->chain_node.next, + ppc460ex_desc_t, chain_node); + clear_bit(PPC460EX_DESC_INT, &iter->flags); + } else { + /* this is the last descriptor. + * this slot will be pasted from ADMA level + * each time it wants to configure parameters + * of the transaction (src, dst, ...) + */ + iter->hw_next = NULL; + if (flags & DMA_PREP_INTERRUPT) + set_bit(PPC460EX_DESC_INT, &iter->flags); + else + clear_bit(PPC460EX_DESC_INT, &iter->flags); + } + } + + /* Set OPS depending on WXOR/RXOR type of operation */ + if (!test_bit(PPC460EX_DESC_RXOR, &desc->flags)) { + /* This is a WXOR only chain: + * - first descriptors are for zeroing destinations + * if PPC460EX_ZERO_P/Q set; + * - descriptors remained are for GF-XOR operations. + */ + iter = list_first_entry(&desc->group_list, + ppc460ex_desc_t, chain_node); + + if (test_bit(PPC460EX_ZERO_P, &desc->flags)) { + hw_desc = iter->hw_desc; + hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; + iter = list_first_entry(&iter->chain_node, + ppc460ex_desc_t, chain_node); + } + + if (test_bit(PPC460EX_ZERO_Q, &desc->flags)) { + hw_desc = iter->hw_desc; + hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; + iter = list_first_entry(&iter->chain_node, + ppc460ex_desc_t, chain_node); + } + + list_for_each_entry_from(iter, &desc->group_list, chain_node) { + hw_desc = iter->hw_desc; + hw_desc->opc = dopc; + } + } else { + /* This is either RXOR-only or mixed RXOR/WXOR */ + + /* The first 1 or 2 slots in chain are always RXOR, + * if need to calculate P & Q, then there are two + * RXOR slots; if only P or only Q, then there is one + */ + iter = list_first_entry(&desc->group_list, + ppc460ex_desc_t, chain_node); + hw_desc = iter->hw_desc; + hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; + + if (desc->dst_cnt == DMA_DEST_MAX_NUM) { + iter = list_first_entry(&iter->chain_node, + ppc460ex_desc_t, chain_node); + hw_desc = iter->hw_desc; + hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; + } + + /* The remain descs (if any) are WXORs */ + if (test_bit(PPC460EX_DESC_WXOR, &desc->flags)) { + iter = list_first_entry(&iter->chain_node, + ppc460ex_desc_t, chain_node); + list_for_each_entry_from(iter, &desc->group_list, + chain_node) { + hw_desc = iter->hw_desc; + hw_desc->opc = dopc; + } + } + } +} +void ppc460ex_desc_init_xor(ppc460ex_desc_t *desc, + int dst_cnt, int src_cnt, unsigned long flags, + unsigned long op) +{ + dma_cdb_t *hw_desc; + ppc460ex_desc_t *iter; + u8 dopc; + + + /* Common initialization of a PQ descriptors chain */ + + set_bits(op, &desc->flags); + desc->src_cnt = src_cnt; + desc->dst_cnt = dst_cnt; + + dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ? + DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2; + + list_for_each_entry(iter, &desc->group_list, chain_node) { + hw_desc = iter->hw_desc; + memset (iter->hw_desc, 0, sizeof(dma_cdb_t)); + + if (likely(!list_is_last(&iter->chain_node, + &desc->group_list))) { + /* set 'next' pointer */ + iter->hw_next = list_entry(iter->chain_node.next, + ppc460ex_desc_t, chain_node); + clear_bit(PPC460EX_DESC_INT, &iter->flags); + } else { + /* this is the last descriptor. + * this slot will be pasted from ADMA level + * each time it wants to configure parameters + * of the transaction (src, dst, ...) + */ + iter->hw_next = NULL; + if (flags & DMA_PREP_INTERRUPT) + set_bit(PPC460EX_DESC_INT, &iter->flags); + else + clear_bit(PPC460EX_DESC_INT, &iter->flags); + } + } + + /* Set OPS depending on WXOR/RXOR type of operation */ + if (!test_bit(PPC460EX_DESC_RXOR, &desc->flags)) { + /* This is a WXOR only chain: + * - first descriptors are for zeroing destinations + * if PPC460EX_ZERO_P/Q set; + * - descriptors remained are for GF-XOR operations. + */ + iter = list_first_entry(&desc->group_list, + ppc460ex_desc_t, chain_node); + + if (test_bit(PPC460EX_ZERO_P, &desc->flags)) { + hw_desc = iter->hw_desc; + hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; + iter = list_first_entry(&iter->chain_node, + ppc460ex_desc_t, chain_node); + } + + + list_for_each_entry_from(iter, &desc->group_list, chain_node) { + hw_desc = iter->hw_desc; + hw_desc->opc = dopc; + } + } else { + /* This is either RXOR-only or mixed RXOR/WXOR */ + + /* The first 1 or 2 slots in chain are always RXOR, + * if need to calculate P & Q, then there are two + * RXOR slots; if only P or only Q, then there is one + */ + iter = list_first_entry(&desc->group_list, + ppc460ex_desc_t, chain_node); + hw_desc = iter->hw_desc; + hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; + + if (desc->dst_cnt == DMA_DEST_MAX_NUM) { + iter = list_first_entry(&iter->chain_node, + ppc460ex_desc_t, chain_node); + hw_desc = iter->hw_desc; + hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; + } + + /* The remain descs (if any) are WXORs */ + if (test_bit(PPC460EX_DESC_WXOR, &desc->flags)) { + iter = list_first_entry(&iter->chain_node, + ppc460ex_desc_t, chain_node); + list_for_each_entry_from(iter, &desc->group_list, + chain_node) { + hw_desc = iter->hw_desc; + hw_desc->opc = dopc; + } + } + } +} +/** + * ppc460ex_desc_init_dma01_xor - initialize the descriptor for P_XOR operation + */ +static inline void ppc460ex_desc_init_dma01_xor(ppc460ex_desc_t *desc, + int dst_cnt, int src_cnt, unsigned long flags, + unsigned long op) +{ + dma_cdb_t *hw_desc; + ppc460ex_desc_t *iter; + + /* Common initialization of a XOR descriptors chain */ + + set_bits(op, &desc->flags); + desc->src_cnt = src_cnt; + desc->dst_cnt = dst_cnt; + + list_for_each_entry(iter, &desc->group_list, chain_node) { + hw_desc = iter->hw_desc; + memset (iter->hw_desc, 0, sizeof(dma_cdb_t)); + + if (likely(!list_is_last(&iter->chain_node, + &desc->group_list))) { + /* set 'next' pointer */ + iter->hw_next = list_entry(iter->chain_node.next, + ppc460ex_desc_t, chain_node); + clear_bit(PPC460EX_DESC_INT, &iter->flags); + } else { + /* this is the last descriptor. + * this slot will be pasted from ADMA level + * each time it wants to configure parameters + * of the transaction (src, dst, ...) + */ + iter->hw_next = NULL; + if (flags & DMA_PREP_INTERRUPT) + set_bit(PPC460EX_DESC_INT, &iter->flags); + else + clear_bit(PPC460EX_DESC_INT, &iter->flags); + } + } + + /* Set OPS depending on WXOR/RXOR type of operation */ + if (!test_bit(PPC460EX_DESC_RXOR, &desc->flags)) { + /* This is a WXOR only chain: + * - first <dst_cnt> descriptors are for zeroing destinations + * if PPC460EX_ZERO_P is set; + * - descriptors remained are for GF-XOR operations. + */ + iter = list_first_entry(&desc->group_list, + ppc460ex_desc_t, chain_node); + + if (dst_cnt && test_bit(PPC460EX_ZERO_P, + &desc->flags)) { + /* MV_SG1_SG2 to zero P or Q if this is + * just PQ_XOR operation and MV_SG1_SG2 + * if only Q has to be calculated + */ + hw_desc = iter->hw_desc; + hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; + iter = list_first_entry(&iter->chain_node, + ppc460ex_desc_t, chain_node); + } + list_for_each_entry(iter, &desc->group_list, chain_node) { + hw_desc = iter->hw_desc; + if (desc->dst_cnt == DMA_DEST_MAX_NUM) + hw_desc->opc = DMA_CDB_OPC_MULTICAST; + else + hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; + } + } else { + /* This is either RXOR-only or mixed RXOR/WXOR + * The first slot in chain is always RXOR, + * the slots remained (if there are) are WXOR + */ + list_for_each_entry(iter, &desc->group_list, chain_node) { + hw_desc = iter->hw_desc; + /* No DMA_CDB_OPC_MULTICAST option for RXOR */ + hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; + } + } +} + +/** + * ppc460ex_desc_init_pqzero_sum - initialize the descriptor for PQ_VAL + * operation + */ +static inline void ppc460ex_desc_init_pqzero_sum(ppc460ex_desc_t *desc, + int dst_cnt, int src_cnt) +{ + dma_cdb_t *hw_desc; + ppc460ex_desc_t *iter; + int i = 0; + + /* initialize each descriptor in chain */ + list_for_each_entry(iter, &desc->group_list, chain_node) { + hw_desc = iter->hw_desc; + memset (iter->hw_desc, 0, sizeof(dma_cdb_t)); + + /* This is a PQ_VAL operation: + * - first <dst_cnt> descriptors are for GF-XOR operations; + * - <dst_cnt> descriptors remained are for checking the result. + */ + if (i++ < src_cnt) + /* MV_SG1_SG2 if only Q is being verified + * MULTICAST if both P and Q are being verified + */ + hw_desc->opc = (dst_cnt == DMA_DEST_MAX_NUM) ? + DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2; + else + /* DMA_CDB_OPC_DCHECK128 operation */ + hw_desc->opc = DMA_CDB_OPC_DCHECK128; + + if (likely(!list_is_last(&iter->chain_node, + &desc->group_list))) { + /* set 'next' pointer */ + iter->hw_next = list_entry(iter->chain_node.next, + ppc460ex_desc_t, chain_node); + } else { + /* this is the last descriptor. + * this slot will be pasted from ADMA level + * each time it wants to configure parameters + * of the transaction (src, dst, ...) + */ + iter->hw_next = NULL; + /* always enable interrupt generating since we get + * the status of pqzero from the handler + */ + set_bit(PPC460EX_DESC_INT, &iter->flags); + } + } + desc->src_cnt = src_cnt; + desc->dst_cnt = dst_cnt; +} + +/** + * ppc460ex_desc_init_memcpy - initialize the descriptor for MEMCPY operation + */ +static inline void ppc460ex_desc_init_memcpy(ppc460ex_desc_t *desc, + unsigned long flags) +{ + dma_cdb_t *hw_desc = desc->hw_desc; + + memset (desc->hw_desc, 0, sizeof(dma_cdb_t)); + desc->hw_next = NULL; + desc->src_cnt = 1; + desc->dst_cnt = 1; + + if (flags & DMA_PREP_INTERRUPT) + set_bit(PPC460EX_DESC_INT, &desc->flags); + else + clear_bit(PPC460EX_DESC_INT, &desc->flags); + + hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; +} + +/** + * ppc460ex_desc_init_memset - initialize the descriptor for MEMSET operation + */ +static inline void ppc460ex_desc_init_memset(ppc460ex_desc_t *desc, int value, + unsigned long flags) +{ + dma_cdb_t *hw_desc = desc->hw_desc; + + memset (desc->hw_desc, 0, sizeof(dma_cdb_t)); + desc->hw_next = NULL; + desc->src_cnt = 1; + desc->dst_cnt = 1; + + if (flags & DMA_PREP_INTERRUPT) + set_bit(PPC460EX_DESC_INT, &desc->flags); + else + clear_bit(PPC460EX_DESC_INT, &desc->flags); + + hw_desc->sg1u = hw_desc->sg1l = cpu_to_le32((u32)value); + hw_desc->sg3u = hw_desc->sg3l = cpu_to_le32((u32)value); + hw_desc->opc = DMA_CDB_OPC_DFILL128; +} + +/** + * ppc460ex_desc_set_src_addr - set source address into the descriptor + */ +static inline void ppc460ex_desc_set_src_addr( ppc460ex_desc_t *desc, + ppc460ex_ch_t *chan, int src_idx, + dma_addr_t addrh, dma_addr_t addrl) +{ + dma_cdb_t *dma_hw_desc; + phys_addr_t addr64, tmplow, tmphi; + + switch (chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + if (!addrh) { + addr64 = fixup_bigphys_addr(addrl, sizeof(phys_addr_t)); + tmphi = (addr64 >> 32); + tmplow = (addr64 & 0xFFFFFFFF); + } else { + tmphi = addrh; + tmplow = addrl; + } + dma_hw_desc = desc->hw_desc; + dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow); + dma_hw_desc->sg1u = cpu_to_le32((u32)tmphi); + break; + } +} + +/** + * ppc460ex_desc_set_src_mult - set source address mult into the descriptor + */ +static inline void ppc460ex_desc_set_src_mult( ppc460ex_desc_t *desc, + ppc460ex_ch_t *chan, u32 mult_index, int sg_index, + unsigned char mult_value) +{ + dma_cdb_t *dma_hw_desc; + xor_cb_t *xor_hw_desc; + u32 *psgu; + + switch (chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + dma_hw_desc = desc->hw_desc; + + switch(sg_index){ + /* for RXOR operations set multiplier + * into source cued address + */ + case DMA_CDB_SG_SRC: + psgu = &dma_hw_desc->sg1u; + break; + /* for WXOR operations set multiplier + * into destination cued address(es) + */ + case DMA_CDB_SG_DST1: + psgu = &dma_hw_desc->sg2u; + break; + case DMA_CDB_SG_DST2: + psgu = &dma_hw_desc->sg3u; + break; + default: + BUG(); + } + + *psgu |= cpu_to_le32(mult_value << mult_index); + if(mfdcr(0x60) == 0xfee8) { + printk("Line--%d mult_value = 0x%x mult_index=0x%x *psgu=0x%x\n",__LINE__, mult_value,mult_index,*psgu); + } + *psgu |= cpu_to_le32( 1 << mult_index); + if(mfdcr(0x60) == 0xfee8) { + printk("Line--%d mult_value = 0x%x mult_index=0x%x *psgu=0x%x\n",__LINE__, mult_value,mult_index,*psgu); + } + break; + case PPC460EX_XOR_ID: + xor_hw_desc = desc->hw_desc; + break; + default: + BUG(); + } +} + +/** + * ppc460ex_desc_set_dest_addr - set destination address into the descriptor + */ +static inline void ppc460ex_desc_set_dest_addr(ppc460ex_desc_t *desc, + ppc460ex_ch_t *chan, + dma_addr_t addrh, dma_addr_t addrl, + u32 dst_idx) +{ + dma_cdb_t *dma_hw_desc; + xor_cb_t *xor_hw_desc; + phys_addr_t addr64, tmphi, tmplow; + u32 *psgu, *psgl; + + switch (chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + if (!addrh) { + addr64 = fixup_bigphys_addr(addrl, sizeof(phys_addr_t)); + tmphi = (addr64 >> 32); + tmplow = (addr64 & 0xFFFFFFFF); + } else { + tmphi = addrh; + tmplow = addrl; + } + dma_hw_desc = desc->hw_desc; + + psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u; + psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l; + + *psgl = cpu_to_le32((u32)tmplow); + *psgu |= cpu_to_le32((u32)tmphi); + break; + case PPC460EX_XOR_ID: + xor_hw_desc = desc->hw_desc; + xor_hw_desc->cbtal = addrl; + xor_hw_desc->cbtah = 0; + break; + } +} + +/** + * ppc460ex_desc_set_byte_count - set number of data bytes involved + * into the operation + */ +static inline void ppc460ex_desc_set_byte_count(ppc460ex_desc_t *desc, + ppc460ex_ch_t *chan, u32 byte_count) +{ + dma_cdb_t *dma_hw_desc; + + switch (chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + dma_hw_desc = desc->hw_desc; + dma_hw_desc->cnt = cpu_to_le32(byte_count); + break; + } +} + +/** + * ppc460ex_desc_set_rxor_block_size - set RXOR block size + */ +static inline void ppc460ex_desc_set_rxor_block_size(u32 byte_count) +{ + /* assume that byte_count is aligned on the 512-boundary; + * thus write it directly to the register (bits 23:31 are + * reserved there). + */ + mtdcr(DCRN_MQ0_CF2H, byte_count); +} + +/** + * ppc460ex_desc_set_dcheck - set CHECK pattern + */ +static inline void ppc460ex_desc_set_dcheck(ppc460ex_desc_t *desc, + ppc460ex_ch_t *chan, u8 *qword) +{ + dma_cdb_t *dma_hw_desc; + + switch (chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + dma_hw_desc = desc->hw_desc; + out_le32(&dma_hw_desc->sg3l, qword[0]); + out_le32(&dma_hw_desc->sg3u, qword[4]); + out_le32(&dma_hw_desc->sg2l, qword[8]); + out_le32(&dma_hw_desc->sg2u, qword[12]); + break; + default: + BUG(); + } +} + +/** + * ppc460ex_xor_set_link - set link address in xor CB + */ +static inline void ppc460ex_xor_set_link (ppc460ex_desc_t *prev_desc, + ppc460ex_desc_t *next_desc) +{ + xor_cb_t *xor_hw_desc = prev_desc->hw_desc; + + if (unlikely(!next_desc || !(next_desc->phys))) { + printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%x\n", + __FUNCTION__, next_desc, + next_desc ? next_desc->phys : 0); + BUG(); + } + + xor_hw_desc->cbs = 0; + xor_hw_desc->cblal = next_desc->phys; + xor_hw_desc->cblah = 0; + xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT; +} + +/** + * ppc460ex_desc_set_link - set the address of descriptor following this + * descriptor in chain + */ +static inline void ppc460ex_desc_set_link(ppc460ex_ch_t *chan, + ppc460ex_desc_t *prev_desc, ppc460ex_desc_t *next_desc) +{ + unsigned long flags; + ppc460ex_desc_t *tail = next_desc; + + if (unlikely(!prev_desc || !next_desc || + (prev_desc->hw_next && prev_desc->hw_next != next_desc))) { + /* If previous next is overwritten something is wrong. + * though we may refetch from append to initiate list + * processing; in this case - it's ok. + */ + printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; " + "prev->hw_next=0x%p\n", __FUNCTION__, prev_desc, + next_desc, prev_desc ? prev_desc->hw_next : 0); + BUG(); + } + + local_irq_save(flags); + + /* do s/w chaining both for DMA and XOR descriptors */ + prev_desc->hw_next = next_desc; + + switch (chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + break; + case PPC460EX_XOR_ID: + /* bind descriptor to the chain */ + while (tail->hw_next) + tail = tail->hw_next; + xor_last_linked = tail; + + if (prev_desc == xor_last_submit) + /* do not link to the last submitted CB */ + break; + ppc460ex_xor_set_link (prev_desc, next_desc); + break; + } + + local_irq_restore(flags); +} + +/** + * ppc460ex_desc_get_src_addr - extract the source address from the descriptor + */ +static inline u32 ppc460ex_desc_get_src_addr(ppc460ex_desc_t *desc, + ppc460ex_ch_t *chan, int src_idx) +{ + dma_cdb_t *dma_hw_desc; + xor_cb_t *xor_hw_desc; + + switch (chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + dma_hw_desc = desc->hw_desc; + /* May have 0, 1, 2, or 3 sources */ + switch (dma_hw_desc->opc) { + case DMA_CDB_OPC_NO_OP: + case DMA_CDB_OPC_DFILL128: + return 0; + case DMA_CDB_OPC_DCHECK128: + if (unlikely(src_idx)) { + printk(KERN_ERR "%s: try to get %d source for" + " DCHECK128\n", __FUNCTION__, src_idx); + BUG(); + } + return le32_to_cpu(dma_hw_desc->sg1l); + case DMA_CDB_OPC_MULTICAST: + case DMA_CDB_OPC_MV_SG1_SG2: + if (unlikely(src_idx > 2)) { + printk(KERN_ERR "%s: try to get %d source from" + " DMA descr\n", __FUNCTION__, src_idx); + BUG(); + } + if (src_idx) { + if (le32_to_cpu(dma_hw_desc->sg1u) & + DMA_CUED_XOR_WIN_MSK) { + u8 region; + + if (src_idx == 1) + return le32_to_cpu( + dma_hw_desc->sg1l) + + desc->unmap_len; + + region = (le32_to_cpu( + dma_hw_desc->sg1u)) >> + DMA_CUED_REGION_OFF; + + region &= DMA_CUED_REGION_MSK; + switch (region) { + case DMA_RXOR123: + return le32_to_cpu( + dma_hw_desc->sg1l) + + (desc->unmap_len << 1); + case DMA_RXOR124: + return le32_to_cpu( + dma_hw_desc->sg1l) + + (desc->unmap_len * 3); + case DMA_RXOR125: + return le32_to_cpu( + dma_hw_desc->sg1l) + + (desc->unmap_len << 2); + default: + printk (KERN_ERR + "%s: try to" + " get src3 for region %02x" + "PPC460EX_DESC_RXOR12?\n", + __FUNCTION__, region); + BUG(); + } + } else { + printk(KERN_ERR + "%s: try to get %d" + " source for non-cued descr\n", + __FUNCTION__, src_idx); + BUG(); + } + } + return le32_to_cpu(dma_hw_desc->sg1l); + default: + printk(KERN_ERR "%s: unknown OPC 0x%02x\n", + __FUNCTION__, dma_hw_desc->opc); + BUG(); + } + return le32_to_cpu(dma_hw_desc->sg1l); + case PPC460EX_XOR_ID: + /* May have up to 16 sources */ + xor_hw_desc = desc->hw_desc; + return xor_hw_desc->ops[src_idx].l; + } + return 0; +} + +/** + * ppc460ex_desc_get_dest_addr - extract the destination address from the + * descriptor + */ +static inline u32 ppc460ex_desc_get_dest_addr(ppc460ex_desc_t *desc, + ppc460ex_ch_t *chan, int idx) +{ + dma_cdb_t *dma_hw_desc; + xor_cb_t *xor_hw_desc; + + switch (chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + dma_hw_desc = desc->hw_desc; + + if (likely(!idx)) + return le32_to_cpu(dma_hw_desc->sg2l); + return le32_to_cpu(dma_hw_desc->sg3l); + case PPC460EX_XOR_ID: + xor_hw_desc = desc->hw_desc; + return xor_hw_desc->cbtal; + } + return 0; +} + +/** + * ppc460ex_desc_get_byte_count - extract the byte count from the descriptor + */ +static inline u32 ppc460ex_desc_get_byte_count(ppc460ex_desc_t *desc, + ppc460ex_ch_t *chan) +{ + dma_cdb_t *dma_hw_desc; + xor_cb_t *xor_hw_desc; + + switch (chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + dma_hw_desc = desc->hw_desc; + return le32_to_cpu(dma_hw_desc->cnt); + case PPC460EX_XOR_ID: + xor_hw_desc = desc->hw_desc; + return xor_hw_desc->cbbc; + default: + BUG(); + } + return 0; +} + +/** + * ppc460ex_desc_get_src_num - extract the number of source addresses from + * the descriptor + */ +static inline u32 ppc460ex_desc_get_src_num(ppc460ex_desc_t *desc, + ppc460ex_ch_t *chan) +{ + dma_cdb_t *dma_hw_desc; + xor_cb_t *xor_hw_desc; + + switch (chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + dma_hw_desc = desc->hw_desc; + + switch (dma_hw_desc->opc) { + case DMA_CDB_OPC_NO_OP: + case DMA_CDB_OPC_DFILL128: + return 0; + case DMA_CDB_OPC_DCHECK128: + return 1; + case DMA_CDB_OPC_MV_SG1_SG2: + case DMA_CDB_OPC_MULTICAST: + /* + * Only for RXOR operations we have more than + * one source + */ + if (le32_to_cpu(dma_hw_desc->sg1u) & + DMA_CUED_XOR_WIN_MSK) { + /* RXOR op, there are 2 or 3 sources */ + if (((le32_to_cpu(dma_hw_desc->sg1u) >> + DMA_CUED_REGION_OFF) & + DMA_CUED_REGION_MSK) == DMA_RXOR12) { + /* RXOR 1-2 */ + return 2; + } else { + /* RXOR 1-2-3/1-2-4/1-2-5 */ + return 3; + } + } + return 1; + default: + printk(KERN_ERR "%s: unknown OPC 0x%02x\n", + __FUNCTION__, dma_hw_desc->opc); + BUG(); + } + case PPC460EX_XOR_ID: + /* up to 16 sources */ + xor_hw_desc = desc->hw_desc; + return (xor_hw_desc->cbc & XOR_CDCR_OAC_MSK); + default: + BUG(); + } + return 0; +} + +/** + * ppc460ex_desc_get_dst_num - get the number of destination addresses in + * this descriptor + */ +static inline u32 ppc460ex_desc_get_dst_num(ppc460ex_desc_t *desc, + ppc460ex_ch_t *chan) +{ + dma_cdb_t *dma_hw_desc; + + switch (chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + /* May be 1 or 2 destinations */ + dma_hw_desc = desc->hw_desc; + switch (dma_hw_desc->opc) { + case DMA_CDB_OPC_NO_OP: + case DMA_CDB_OPC_DCHECK128: + return 0; + case DMA_CDB_OPC_MV_SG1_SG2: + case DMA_CDB_OPC_DFILL128: + return 1; + case DMA_CDB_OPC_MULTICAST: + return 2; + default: + printk(KERN_ERR "%s: unknown OPC 0x%02x\n", + __FUNCTION__, dma_hw_desc->opc); + BUG(); + } + case PPC460EX_XOR_ID: + /* Always only 1 destination */ + return 1; + default: + BUG(); + } + return 0; +} + +/** + * ppc460ex_desc_get_link - get the address of the descriptor that + * follows this one + */ +static inline u32 ppc460ex_desc_get_link(ppc460ex_desc_t *desc, + ppc460ex_ch_t *chan) +{ + if (!desc->hw_next) + return 0; + + return desc->hw_next->phys; +} + +/** + * ppc460ex_desc_is_aligned - check alignment + */ +static inline int ppc460ex_desc_is_aligned(ppc460ex_desc_t *desc, + int num_slots) +{ + return (desc->idx & (num_slots - 1)) ? 0 : 1; +} + +/** + * ppc460ex_chan_xor_slot_count - get the number of slots necessary for + * XOR operation + */ +static inline int ppc460ex_chan_xor_slot_count(size_t len, int src_cnt, + int *slots_per_op) +{ + int slot_cnt; + + /* each XOR descriptor provides up to 16 source operands */ + slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS; + + if (likely(len <= PPC460EX_ADMA_XOR_MAX_BYTE_COUNT)) + return slot_cnt; + + printk(KERN_ERR "%s: len %d > max %d !!\n", + __FUNCTION__, len, PPC460EX_ADMA_XOR_MAX_BYTE_COUNT); + BUG(); + return slot_cnt; +} + +/** + */ +static inline int ppc460ex_chan_pqxor_slot_count (dma_addr_t *srcs, + int src_cnt, size_t len) +{ + int order = 0; + int state = 0; + int addr_count = 0; + int i; + for (i=1; i<src_cnt; i++) { + char *cur_addr = (char *)srcs[i]; + char *old_addr = (char *)srcs[i-1]; + switch (state) { + case 0: + if (cur_addr == old_addr + len) { + /* direct RXOR */ + order = 1; + state = 1; + if (i == src_cnt-1) { + addr_count++; + } + } else if (old_addr == cur_addr + len) { + /* reverse RXOR */ + order = -1; + state = 1; + if (i == src_cnt-1) { + addr_count++; + } + } else { + state = 3; + } + break; + case 1: + if (i == src_cnt-2 || (order == -1 + && cur_addr != old_addr - len)) { + order = 0; + state = 0; + addr_count++; + } else if (cur_addr == old_addr + len*order) { + state = 2; + if (i == src_cnt-1) { + addr_count++; + } + } else if (cur_addr == old_addr + 2*len) { + state = 2; + if (i == src_cnt-1) { + addr_count++; + } + } else if (cur_addr == old_addr + 3*len) { + state = 2; + if (i == src_cnt-1) { + addr_count++; + } + } else { + order = 0; + state = 0; + addr_count++; + } + break; + case 2: + order = 0; + state = 0; + addr_count++; + break; + } + if (state == 3) break; + } + if (src_cnt <= 1 || (state != 1 && state != 2)) { + /* FIXME. return 0 here and check for this when called. */ + BUG (); + } + + return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS; +} + + +/****************************************************************************** + * ADMA channel low-level routines + ******************************************************************************/ + +static inline u32 ppc460ex_chan_get_current_descriptor(ppc460ex_ch_t *chan); +static inline void ppc460ex_chan_append(ppc460ex_ch_t *chan); + +/** + * ppc460ex_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine + */ +static inline void ppc460ex_adma_device_clear_eot_status (ppc460ex_ch_t *chan) +{ + volatile dma_regs_t *dma_reg; + u8 *p = chan->device->dma_desc_pool_virt; + dma_cdb_t *cdb; + u32 rv, hv, i; + + switch (chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + /* read FIFO to ack */ + //dma_reg = (dma_regs_t *)chan->device->pdev->resource[0].start; + dma_reg = (dma_regs_t *)chan->device->res[0].start; + while (rv = in_le32(&dma_reg->csfpl)) { + + if ( chan->device->desc_memory == ADMA_DESC_MEM_OCM) + hv = in_le32(&dma_reg->csfph);/* clear the upper bits too */ + + i = rv & DMA_CDB_ADDR_MSK; + cdb = (dma_cdb_t *)&p[i - + (u32)chan->device->dma_desc_pool]; + + /* Clear opcode to ack. This is necessary for + * ZeroSum operations only + */ + cdb->opc = 0; + + if (test_bit(PPC460EX_RXOR_RUN, + &ppc460ex_rxor_state)) { + /* probably this is a completed RXOR op, + * get pointer to CDB using the fact that + * physical and virtual addresses of CDB + * in pools have the same offsets + */ + if (le32_to_cpu(cdb->sg1u) & + DMA_CUED_XOR_BASE) { + /* this is a RXOR */ + clear_bit(PPC460EX_RXOR_RUN, + &ppc460ex_rxor_state); + } + } + + if (rv & DMA_CDB_STATUS_MSK) { + /* ZeroSum check failed + */ + ppc460ex_desc_t *iter; + dma_addr_t phys = rv & ~DMA_CDB_MSK; + + /* + * Update the status of corresponding + * descriptor. + */ + list_for_each_entry(iter, &chan->chain, + chain_node) { + if (iter->phys == phys) + break; + } + /* + * if cannot find the corresponding + * slot it's a bug + */ + BUG_ON (&iter->chain_node == &chan->chain); + + if (iter->xor_check_result) + *iter->xor_check_result |= + rv & DMA_CDB_STATUS_MSK; + } + } + + rv = in_le32(&dma_reg->dsts); + if (rv) { + printk("DMA%d err status: 0x%x\n", chan->device->id, + rv); + /* write back to clear */ + out_le32(&dma_reg->dsts, rv); + } + break; + } +} + + +/** + * ppc460ex_chan_is_busy - get the channel status + */ +static inline int ppc460ex_chan_is_busy(ppc460ex_ch_t *chan) +{ + int busy = 0; + volatile xor_regs_t *xor_reg; + volatile dma_regs_t *dma_reg; + + switch (chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + dma_reg = (dma_regs_t *)chan->device->res[0].start; + /* if command FIFO's head and tail pointers are equal and + * status tail is the same as command, then channel is free + */ + if (dma_reg->cpfhp != dma_reg->cpftp || + dma_reg->cpftp != dma_reg->csftp) + busy = 1; + break; + case PPC460EX_XOR_ID: + /* use the gtcial status bit for the XORcore + */ + busy = (xor_reg->sr & XOR_SR_XCP_BIT) ? 1 : 0; + break; + } + + return busy; +} + +/** + * ppc460ex_chan_set_first_xor_descriptor - initi XORcore chain + */ +static inline void ppc460ex_chan_set_first_xor_descriptor(ppc460ex_ch_t *chan, + ppc460ex_desc_t *next_desc) +{ + volatile xor_regs_t *xor_reg; + + //xor_reg = (xor_regs_t *)chan->device->pdev->resource[0].start; + + if (xor_reg->sr & XOR_SR_XCP_BIT) + printk(KERN_INFO "%s: Warn: XORcore is running " + "when try to set the first CDB!\n", + __FUNCTION__); + + xor_last_submit = xor_last_linked = next_desc; + + xor_reg->crsr = XOR_CRSR_64BA_BIT; + + xor_reg->cblalr = next_desc->phys; + xor_reg->cblahr = 0; + xor_reg->cbcr |= XOR_CBCR_LNK_BIT; + + chan->hw_chain_inited = 1; +} + +/** + * ppc460ex_dma_put_desc - put DMA0,1 descriptor to FIFO + */ +static void ppc460ex_dma_put_desc(ppc460ex_ch_t *chan, + ppc460ex_desc_t *desc) +{ + u32 pcdb; + volatile dma_regs_t *dma_reg = + dma_reg = (dma_regs_t *)chan->device->res[0].start; + + pcdb = desc->phys; + if (!test_bit(PPC460EX_DESC_INT, &desc->flags)) + pcdb |= DMA_CDB_NO_INT; + if ( chan->device->desc_memory == ADMA_DESC_MEM_OCM) + pcdb |= DMA_CDB_64B_ADDR; /* 64 bit */ + chan_last_sub[chan->device->id] = desc; + out_le32 (&dma_reg->cpfpl, pcdb); + + if ( chan->device->desc_memory == ADMA_DESC_MEM_OCM) + out_le32 (&dma_reg->cpfph, 0x4); //upper bits +} + +/** + * ppc460ex_chan_append - update the h/w chain in the channel + */ +static inline void ppc460ex_chan_append(ppc460ex_ch_t *chan) +{ + volatile dma_regs_t *dma_reg; + ppc460ex_desc_t *iter; + u32 cur_desc; + unsigned long flags; + + local_irq_save(flags); + switch (chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + //dma_reg = (dma_regs_t *)chan->device->pdev->resource[0].start; + //dma_reg = (dma_regs_t *)chan->device->odev->dev.resource[0].start; + dma_reg = (dma_regs_t *)chan->device->res[0].start; + cur_desc = ppc460ex_chan_get_current_descriptor(chan); + + if (likely(cur_desc)) { + iter = chan_last_sub[chan->device->id]; + BUG_ON(!iter); + } else { + /* first peer */ + iter = chan_first_cdb[chan->device->id]; + BUG_ON(!iter); + ppc460ex_dma_put_desc(chan, iter); + chan->hw_chain_inited = 1; + } + + /* is there something new to append */ + if (!iter->hw_next) + goto out; + + /* flush descriptors from the s/w queue to fifo */ + list_for_each_entry_continue(iter, &chan->chain, chain_node) { + ppc460ex_dma_put_desc(chan, iter); + if (!iter->hw_next) + break; + } + break; + } +out: + local_irq_restore(flags); +} + +/** + * ppc460ex_chan_get_current_descriptor - get the currently executed descriptor + */ +static inline u32 ppc460ex_chan_get_current_descriptor(ppc460ex_ch_t *chan) +{ + volatile dma_regs_t *dma_reg; + volatile xor_regs_t *xor_reg; + + if (unlikely(!chan->hw_chain_inited)) + /* h/w descriptor chain is not initialized yet */ + return 0; + + switch (chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + //dma_reg = (dma_regs_t *)chan->device->pdev->resource[0].start; + dma_reg = (dma_regs_t *)chan->device->res[0].start; + return (le32_to_cpu(dma_reg->acpl)) & (~DMA_CDB_MSK); + case PPC460EX_XOR_ID: + //xor_reg = (xor_regs_t *)chan->device->pdev->resource[0].start; + return xor_reg->ccbalr; + } + return 0; +} + +/** + * ppc460ex_chan_run - enable the channel + */ +static inline void ppc460ex_chan_run(ppc460ex_ch_t *chan) +{ + volatile xor_regs_t *xor_reg; + + switch (chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + /* DMAs are always enabled, do nothing */ + break; + case PPC460EX_XOR_ID: + /* drain write buffer */ + + /* fetch descriptor pointed to in <link> */ + xor_reg->crsr = XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT; + break; + } +} + + +/****************************************************************************** + * ADMA device level + ******************************************************************************/ + +static void ppc460ex_chan_start_null_xor(ppc460ex_ch_t *chan); +static int ppc460ex_adma_alloc_chan_resources(struct dma_chan *chan); +static dma_cookie_t ppc460ex_adma_tx_submit( + struct dma_async_tx_descriptor *tx); + +static void ppc460ex_adma_set_dest( + ppc460ex_desc_t *tx, + dma_addr_t addr, int index); +static void ppc460ex_adma_memcpy_xor_set_src( + ppc460ex_desc_t *tx, + dma_addr_t addr, int index); + +static void ppc460ex_adma_dma01_xor_set_dest( + ppc460ex_desc_t *tx, + dma_addr_t addr, int index); +static void ppc460ex_adma_dma01_xor_set_src( + ppc460ex_desc_t *tx, + dma_addr_t addr, int index); +static void ppc460ex_adma_dma01_xor_set_src_mult( + ppc460ex_desc_t *tx, + unsigned char mult, int index); + +static void ppc460ex_adma_pqxor_set_dest( + ppc460ex_desc_t *tx, + dma_addr_t *paddr, unsigned long flags); +static void ppc460ex_adma_pqxor_set_src( + ppc460ex_desc_t *tx, + dma_addr_t addr, int index); +static void ppc460ex_adma_pqxor_set_src_mult ( + ppc460ex_desc_t *sw_desc, + unsigned char mult, int index,int dst_pos); + +static void ppc460ex_adma_pqzero_sum_set_dest ( + ppc460ex_desc_t *sw_desc, + dma_addr_t paddr, dma_addr_t qaddr); +static void ppc460ex_adma_mq_zero_sum_set_dest ( + ppc460ex_desc_t *sw_desc, + dma_addr_t addr); +static void ppc460ex_adma_pqzero_sum_set_src( + ppc460ex_desc_t *tx, + dma_addr_t addr, int index); +static void ppc460ex_adma_pqzero_sum_set_src_mult( + ppc460ex_desc_t *tx, + unsigned char mult, int index, int dst_pos); + +static void ppc460ex_adma_dma2rxor_set_dest ( + ppc460ex_desc_t *tx, + dma_addr_t addr, int index); + +void ppc460ex_adma_xor_set_dest(ppc460ex_desc_t *sw_desc, + dma_addr_t *addrs, unsigned long flags); +void ppc460ex_adma_xor_set_src( + ppc460ex_desc_t *sw_desc, + dma_addr_t addr, + int index); +void ppc460ex_adma_xor_set_src_mult ( + ppc460ex_desc_t *sw_desc, + unsigned char mult, int index,int dst_pos); +/** + * ppc460ex_can_rxor - check if the operands may be processed with RXOR + */ +static int ppc460ex_can_rxor (struct page **srcs, int src_cnt, size_t len) +{ + int i, order = 0, state = 0; + + if (unlikely(!(src_cnt > 1))) + return 0; + + for (i=1; i<src_cnt; i++) { + char *cur_addr = page_address (srcs[i]); + char *old_addr = page_address (srcs[i-1]); + switch (state) { + case 0: + if (cur_addr == old_addr + len) { + /* direct RXOR */ + order = 1; + state = 1; + } else + if (old_addr == cur_addr + len) { + /* reverse RXOR */ + order = -1; + state = 1; + } else + goto out; + break; + case 1: + if ((i == src_cnt-2) || + (order == -1 && cur_addr != old_addr - len)) { + order = 0; + state = 0; + } else + if ((cur_addr == old_addr + len*order) || + (cur_addr == old_addr + 2*len) || + (cur_addr == old_addr + 3*len)) { + state = 2; + } else { + order = 0; + state = 0; + } + break; + case 2: + order = 0; + state = 0; + break; + } + } + +out: + if (state == 1 || state == 2) + return 1; + + return 0; +} + +/** + * ppc460ex_adma_device_estimate - estimate the efficiency of processing + * the operation given on this channel. It's assumed that 'chan' is + * capable to process 'cap' type of operation. + * @chan: channel to use + * @cap: type of transaction + * @src_lst: array of source pointers + * @src_cnt: number of source operands + * @src_sz: size of each source operand + */ +int ppc460ex_adma_estimate (struct dma_chan *chan, + enum dma_transaction_type cap, struct page **src_lst, + int src_cnt, size_t src_sz) +{ + int ef = 1; + + if (cap == DMA_PQ || cap == DMA_PQ_VAL) { + /* If RAID-6 capabilities were not activated don't try + * to use them + */ + if (unlikely(!ppc460ex_r6_enabled)) + return -1; + } + if(cap == DMA_XOR) { + if (unlikely(!ppc460ex_r5_enabled)) + return -1; + } + /* in the current implementation of ppc460ex ADMA driver it + * makes sense to pick out only pqxor case, because it may be + * processed: + * (1) either using Biskup method on DMA2; + * (2) or on DMA0/1. + * Thus we give a favour to (1) if the sources are suitable; + * else let it be processed on one of the DMA0/1 engines. + */ + if (cap == DMA_PQ && chan->chan_id == PPC460EX_XOR_ID) { + if (ppc460ex_can_rxor(src_lst, src_cnt, src_sz)) + ef = 3; /* override (dma0/1 + idle) */ + else + ef = 0; /* can't process on DMA2 if !rxor */ + } + + /* channel idleness increases the priority */ + if (likely(ef) && + !ppc460ex_chan_is_busy(to_ppc460ex_adma_chan(chan))) + ef++; + + return ef; +} + +/** + * ppc460ex_get_group_entry - get group entry with index idx + * @tdesc: is the last allocated slot in the group. + */ +static inline ppc460ex_desc_t * +ppc460ex_get_group_entry ( ppc460ex_desc_t *tdesc, u32 entry_idx) +{ + ppc460ex_desc_t *iter = tdesc->group_head; + int i = 0; + + if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) { + printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n", + __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt); + BUG(); + } + list_for_each_entry(iter, &tdesc->group_list, chain_node) { + if (i++ == entry_idx) + break; + } + return iter; +} + +/** + * ppc460ex_adma_free_slots - flags descriptor slots for reuse + * @slot: Slot to free + * Caller must hold &ppc460ex_chan->lock while calling this function + */ +static void ppc460ex_adma_free_slots(ppc460ex_desc_t *slot, + ppc460ex_ch_t *chan) +{ + int stride = slot->slots_per_op; + + while (stride--) { + /*async_tx_clear_ack(&slot->async_tx);*/ /* Don't need to clear. It is hack*/ + slot->slots_per_op = 0; + slot = list_entry(slot->slot_node.next, + ppc460ex_desc_t, + slot_node); + } +} + +static void +ppc460ex_adma_unmap(ppc460ex_ch_t *chan, ppc460ex_desc_t *desc) +{ + u32 src_cnt, dst_cnt; + dma_addr_t addr; + /* + * get the number of sources & destination + * included in this descriptor and unmap + * them all + */ + src_cnt = ppc460ex_desc_get_src_num(desc, chan); + dst_cnt = ppc460ex_desc_get_dst_num(desc, chan); + + /* unmap destinations */ + if (!(desc->async_tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) { + while (dst_cnt--) { + addr = ppc460ex_desc_get_dest_addr( + desc, chan, dst_cnt); + dma_unmap_page(&chan->device->odev->dev, + addr, desc->unmap_len, + DMA_FROM_DEVICE); + } + } + + /* unmap sources */ + if (!(desc->async_tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) { + while (src_cnt--) { + addr = ppc460ex_desc_get_src_addr( + desc, chan, src_cnt); + dma_unmap_page(&chan->device->odev->dev, + addr, desc->unmap_len, + DMA_TO_DEVICE); + } + } + +} +/** + * ppc460ex_adma_run_tx_complete_actions - call functions to be called + * upon complete + */ +static dma_cookie_t ppc460ex_adma_run_tx_complete_actions( + ppc460ex_desc_t *desc, + ppc460ex_ch_t *chan, + dma_cookie_t cookie) +{ + int i; + + BUG_ON(desc->async_tx.cookie < 0); + if (desc->async_tx.cookie > 0) { + cookie = desc->async_tx.cookie; + desc->async_tx.cookie = 0; + + /* call the callback (must not sleep or submit new + * operations to this channel) + */ + if (desc->async_tx.callback) + desc->async_tx.callback( + desc->async_tx.callback_param); + + /* unmap dma addresses + * (unmap_single vs unmap_page?) + * + * actually, ppc's dma_unmap_page() functions are empty, so + * the following code is just for the sake of completeness + */ + if (chan && chan->needs_unmap && desc->group_head && + desc->unmap_len) { + ppc460ex_desc_t *unmap = desc->group_head; + /* assume 1 slot per op always */ + u32 slot_count = unmap->slot_cnt; + + /* Run through the group list and unmap addresses */ + for (i = 0; i < slot_count; i++) { + BUG_ON(!unmap); + ppc460ex_adma_unmap(chan, unmap); + unmap = unmap->hw_next; + } + //desc->group_head = NULL; + } + } + + /* run dependent operations */ + dma_run_dependencies(&desc->async_tx); + + return cookie; +} + +/** + * ppc460ex_adma_clean_slot - clean up CDB slot (if ack is set) + */ +static int ppc460ex_adma_clean_slot(ppc460ex_desc_t *desc, + ppc460ex_ch_t *chan) +{ + /* the client is allowed to attach dependent operations + * until 'ack' is set + */ + if (!async_tx_test_ack(&desc->async_tx)) + return 0; + + /* leave the last descriptor in the chain + * so we can append to it + */ + if (list_is_last(&desc->chain_node, &chan->chain) || + desc->phys == ppc460ex_chan_get_current_descriptor(chan)) + return 1; + + if (chan->device->id != PPC460EX_XOR_ID) { + /* our DMA interrupt handler clears opc field of + * each processed descriptor. For all types of + * operations except for ZeroSum we do not actually + * need ack from the interrupt handler. ZeroSum is a + * gtcial case since the result of this operation + * is available from the handler only, so if we see + * such type of descriptor (which is unprocessed yet) + * then leave it in chain. + */ + dma_cdb_t *cdb = desc->hw_desc; + if (cdb->opc == DMA_CDB_OPC_DCHECK128) + return 1; + } + + dev_dbg(chan->device->common.dev, "\tfree slot %x: %d stride: %d\n", + desc->phys, desc->idx, desc->slots_per_op); + + list_del(&desc->chain_node); + ppc460ex_adma_free_slots(desc, chan); + return 0; +} + +/** + * #define DEBUG 1__ppc460ex_adma_slot_cleanup - this is the common clean-up routine + * which runs through the channel CDBs list until reach the descriptor + * currently processed. When routine determines that all CDBs of group + * are completed then corresponding callbacks (if any) are called and slots + * are freed. + */ +static void __ppc460ex_adma_slot_cleanup(ppc460ex_ch_t *chan) +{ + ppc460ex_desc_t *iter, *_iter, *group_start = NULL; + dma_cookie_t cookie = 0; + u32 current_desc = ppc460ex_chan_get_current_descriptor(chan); + int busy = ppc460ex_chan_is_busy(chan); + int seen_current = 0, slot_cnt = 0, slots_per_op = 0; + + dev_dbg(chan->device->common.dev, "ppc460ex adma%d: %s\n", + chan->device->id, __FUNCTION__); + + if (!current_desc) { + /* There were no transactions yet, so + * nothing to clean + */ + return; + } + + /* free completed slots from the chain starting with + * the oldest descriptor + */ + list_for_each_entry_safe(iter, _iter, &chan->chain, + chain_node) { + dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d " + "busy: %d this_desc: %#x next_desc: %#x cur: %#x ack: %d\n", + iter->async_tx.cookie, iter->idx, busy, iter->phys, + ppc460ex_desc_get_link(iter, chan), current_desc, + async_tx_test_ack(&iter->async_tx)); + prefetch(_iter); + prefetch(&_iter->async_tx); + + /* do not advance past the current descriptor loaded into the + * hardware channel,subsequent descriptors are either in process + * or have not been submitted + */ + if (seen_current) + break; + + /* stop the search if we reach the current descriptor and the + * channel is busy, or if it appears that the current descriptor + * needs to be re-read (i.e. has been appended to) + */ + if (iter->phys == current_desc) { + BUG_ON(seen_current++); + if (busy || ppc460ex_desc_get_link(iter, chan)) { + /* not all descriptors of the group have + * been completed; exit. + */ + break; + } + } + + /* detect the start of a group transaction */ + if (!slot_cnt && !slots_per_op) { + slot_cnt = iter->slot_cnt; + slots_per_op = iter->slots_per_op; + if (slot_cnt <= slots_per_op) { + slot_cnt = 0; + slots_per_op = 0; + } + } + + if (slot_cnt) { + if (!group_start) + group_start = iter; + slot_cnt -= slots_per_op; + } + + /* all the members of a group are complete */ + if (slots_per_op != 0 && slot_cnt == 0) { + ppc460ex_desc_t *grp_iter, *_grp_iter; + int end_of_chain = 0; + + /* clean up the group */ + slot_cnt = group_start->slot_cnt; + grp_iter = group_start; + list_for_each_entry_safe_from(grp_iter, _grp_iter, + &chan->chain, chain_node) { + + cookie = ppc460ex_adma_run_tx_complete_actions( + grp_iter, chan, cookie); + + slot_cnt -= slots_per_op; + end_of_chain = ppc460ex_adma_clean_slot( + grp_iter, chan); + if (end_of_chain && slot_cnt) { + /* Should wait for ZeroSum complete */ + if (cookie > 0) + chan->completed_cookie = cookie; + return; + } + + if (slot_cnt == 0 || end_of_chain) + break; + } + + /* the group should be complete at this point */ + BUG_ON(slot_cnt); + + slots_per_op = 0; + group_start = NULL; + if (end_of_chain) + break; + else + continue; + } else if (slots_per_op) /* wait for group completion */ + continue; + + cookie = ppc460ex_adma_run_tx_complete_actions(iter, chan, + cookie); + + if (ppc460ex_adma_clean_slot(iter, chan)) + break; + } + + BUG_ON(!seen_current); + + if (cookie > 0) { + chan->completed_cookie = cookie; + pr_debug("\tcompleted cookie %d\n", cookie); +#ifdef DEBUG_ADMA + static int tcnt=0; + if(tcnt%100 == 0) + printk("\t <%s> completed cookie %d\n",__FUNCTION__, cookie); +#endif + } + +} + +/** + * ppc460ex_adma_tasklet - clean up watch-dog initiator + */ +static void ppc460ex_adma_tasklet (unsigned long data) +{ + ppc460ex_ch_t *chan = (ppc460ex_ch_t *) data; + __ppc460ex_adma_slot_cleanup(chan); +} + +/** + * ppc460ex_adma_slot_cleanup - clean up scheduled initiator + */ +static void ppc460ex_adma_slot_cleanup (ppc460ex_ch_t *chan) +{ + spin_lock_bh(&chan->lock); + __ppc460ex_adma_slot_cleanup(chan); + spin_unlock_bh(&chan->lock); +} + +/** + * ppc460ex_adma_alloc_slots - allocate free slots (if any) + */ +ppc460ex_desc_t *ppc460ex_adma_alloc_slots( + ppc460ex_ch_t *chan, int num_slots, + int slots_per_op) +{ + ppc460ex_desc_t *iter = NULL, *_iter, *alloc_start = NULL; + struct list_head chain = LIST_HEAD_INIT(chain); + int slots_found, retry = 0; + + + BUG_ON(!num_slots || !slots_per_op); + /* start search from the last allocated descrtiptor + * if a contiguous allocation can not be found start searching + * from the beginning of the list + */ +retry: + slots_found = 0; + if (retry == 0) + iter = chan->last_used; + else + iter = list_entry(&chan->all_slots, ppc460ex_desc_t, + slot_node); + list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots, + slot_node) { + prefetch(_iter); + prefetch(&_iter->async_tx); + if (iter->slots_per_op) { + slots_found = 0; + continue; + } + + /* start the allocation if the slot is correctly aligned */ + if (!slots_found++) + alloc_start = iter; + if (slots_found == num_slots) { + ppc460ex_desc_t *alloc_tail = NULL; + ppc460ex_desc_t *last_used = NULL; + iter = alloc_start; + while (num_slots) { + int i; + + /* pre-ack all but the last descriptor */ + if (num_slots != slots_per_op) { + async_tx_ack(&iter->async_tx); + } + + list_add_tail(&iter->chain_node, &chain); + alloc_tail = iter; + iter->async_tx.cookie = 0; + iter->hw_next = NULL; + iter->flags = 0; + iter->slot_cnt = num_slots; + iter->xor_check_result = NULL; + for (i = 0; i < slots_per_op; i++) { + iter->slots_per_op = slots_per_op - i; + last_used = iter; + iter = list_entry(iter->slot_node.next, + ppc460ex_desc_t, + slot_node); + } + num_slots -= slots_per_op; + } + alloc_tail->group_head = alloc_start; + alloc_tail->async_tx.cookie = -EBUSY; + list_splice(&chain, &alloc_tail->group_list); + chan->last_used = last_used; + return alloc_tail; + } + } + if (!retry++) + goto retry; + static empty_slot_cnt; + if(!(empty_slot_cnt%100)) + dev_dbg(chan->device->common.dev, + "No empty slots trying to free some\n"); + empty_slot_cnt++; + /* try to free some slots if the allocation fails */ + tasklet_schedule(&chan->irq_tasklet); + return NULL; +} + +/** + * ppc460ex_adma_alloc_chan_resources - allocate pools for CDB slots + */ +static int ppc460ex_adma_alloc_chan_resources(struct dma_chan *chan) +{ + ppc460ex_ch_t *ppc460ex_chan = to_ppc460ex_adma_chan(chan); + ppc460ex_desc_t *slot = NULL; + char *hw_desc; + int i, db_sz; + int init = ppc460ex_chan->slots_allocated ? 0 : 1; + ppc460ex_aplat_t *plat_data; + + chan->chan_id = ppc460ex_chan->device->id; + plat_data = ppc460ex_chan->device->odev->dev.platform_data; + + /* Allocate descriptor slots */ + i = ppc460ex_chan->slots_allocated; + if (ppc460ex_chan->device->id != PPC460EX_XOR_ID) + db_sz = sizeof (dma_cdb_t); + else + db_sz = sizeof (xor_cb_t); + + for (; i < (plat_data->pool_size/db_sz); i++) { + slot = kzalloc(sizeof(ppc460ex_desc_t), GFP_KERNEL); + if (!slot) { + printk(KERN_INFO "GT ADMA Channel only initialized" + " %d descriptor slots", i--); + break; + } + + hw_desc = (char *) ppc460ex_chan->device->dma_desc_pool_virt; + slot->hw_desc = (void *) &hw_desc[i * db_sz]; + dma_async_tx_descriptor_init(&slot->async_tx, chan); + slot->async_tx.tx_submit = ppc460ex_adma_tx_submit; + INIT_LIST_HEAD(&slot->chain_node); + INIT_LIST_HEAD(&slot->slot_node); + INIT_LIST_HEAD(&slot->group_list); + hw_desc = (char *) ppc460ex_chan->device->dma_desc_pool; + slot->phys = (dma_addr_t) &hw_desc[i * db_sz]; + slot->idx = i; + spin_lock_bh(&ppc460ex_chan->lock); + ppc460ex_chan->slots_allocated++; + list_add_tail(&slot->slot_node, &ppc460ex_chan->all_slots); + spin_unlock_bh(&ppc460ex_chan->lock); + } + + if (i && !ppc460ex_chan->last_used) { + ppc460ex_chan->last_used = + list_entry(ppc460ex_chan->all_slots.next, + ppc460ex_desc_t, + slot_node); + } + + dev_dbg(ppc460ex_chan->device->common.dev, + "ppc460ex adma%d: allocated %d descriptor slots\n", + ppc460ex_chan->device->id, i); + + /* initialize the channel and the chain with a null operation */ + if (init) { + switch (ppc460ex_chan->device->id) + { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + ppc460ex_chan->hw_chain_inited = 0; + /* Use WXOR for self-testing */ + if (!ppc460ex_r5_tchan) + ppc460ex_r5_tchan = ppc460ex_chan; + if (!ppc460ex_r6_tchan) + ppc460ex_r6_tchan = ppc460ex_chan; + break; + case PPC460EX_XOR_ID: + ppc460ex_chan_start_null_xor(ppc460ex_chan); + break; + default: + BUG(); + } + ppc460ex_chan->needs_unmap = 1; + } + + return (i > 0) ? i : -ENOMEM; +} + +/** + * ppc460ex_desc_assign_cookie - assign a cookie + */ +static dma_cookie_t ppc460ex_desc_assign_cookie(ppc460ex_ch_t *chan, + ppc460ex_desc_t *desc) +{ + dma_cookie_t cookie = chan->common.cookie; + cookie++; + if (cookie < 0) + cookie = 1; + chan->common.cookie = desc->async_tx.cookie = cookie; + return cookie; +} + +/** + * ppc460ex_rxor_set_region_data - + */ +static void ppc460ex_rxor_set_region (ppc460ex_desc_t *desc, + u8 xor_arg_no, u32 mask) +{ + xor_cb_t *xcb = desc->hw_desc; + + xcb->ops [xor_arg_no].h |= mask; +} + +/** + * ppc460ex_rxor_set_src - + */ +static void ppc460ex_rxor_set_src (ppc460ex_desc_t *desc, + u8 xor_arg_no, dma_addr_t addr) +{ + xor_cb_t *xcb = desc->hw_desc; + + xcb->ops [xor_arg_no].h |= DMA_CUED_XOR_BASE; + xcb->ops [xor_arg_no].l = addr; +} + +/** + * ppc460ex_rxor_set_mult - + */ +static void ppc460ex_rxor_set_mult (ppc460ex_desc_t *desc, + u8 xor_arg_no, u8 idx, u8 mult) +{ + xor_cb_t *xcb = desc->hw_desc; + + xcb->ops [xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8); +} + +/** + * ppc460ex_wxor_set_base + */ +static void ppc460ex_wxor_set_base (ppc460ex_desc_t *desc) +{ + xor_cb_t *xcb = desc->hw_desc; + + xcb->cbtah = DMA_CUED_XOR_BASE; + xcb->cbtah |= (1 << DMA_CUED_MULT1_OFF); +} + +/** + * ppc460ex_adma_check_threshold - append CDBs to h/w chain if threshold + * has been achieved + */ +static void ppc460ex_adma_check_threshold(ppc460ex_ch_t *chan) +{ + dev_dbg(chan->device->common.dev, "ppc460ex adma%d: pending: %d\n", + chan->device->id, chan->pending); + + if (chan->pending >= PPC460EX_ADMA_THRESHOLD) { + chan->pending = 0; + ppc460ex_chan_append(chan); + } +} + +/** + * ppc460ex_adma_tx_submit - submit new descriptor group to the channel + * (it's not necessary that descriptors will be submitted to the h/w + * chains too right now) + */ +static dma_cookie_t ppc460ex_adma_tx_submit(struct dma_async_tx_descriptor *tx) +{ + ppc460ex_desc_t *sw_desc = tx_to_ppc460ex_adma_slot(tx); + ppc460ex_ch_t *chan = to_ppc460ex_adma_chan(tx->chan); + ppc460ex_desc_t *group_start, *old_chain_tail; + int slot_cnt; + int slots_per_op; + dma_cookie_t cookie; + + group_start = sw_desc->group_head; + slot_cnt = group_start->slot_cnt; + slots_per_op = group_start->slots_per_op; + + spin_lock_bh(&chan->lock); + + cookie = ppc460ex_desc_assign_cookie(chan, sw_desc); + + if (unlikely(list_empty(&chan->chain))) { + /* first peer */ + list_splice_init(&sw_desc->group_list, &chan->chain); + chan_first_cdb[chan->device->id] = group_start; + } else { + /* isn't first peer, bind CDBs to chain */ + old_chain_tail = list_entry(chan->chain.prev, + ppc460ex_desc_t, chain_node); + list_splice_init(&sw_desc->group_list, + &old_chain_tail->chain_node); + /* fix up the hardware chain */ + ppc460ex_desc_set_link(chan, old_chain_tail, group_start); + } + + /* increment the pending count by the number of operations */ + chan->pending += slot_cnt / slots_per_op; + ppc460ex_adma_check_threshold(chan); + spin_unlock_bh(&chan->lock); + + dev_dbg(chan->device->common.dev, + "ppc460ex adma%d: %s cookie: %d slot: %d tx %p\n", + chan->device->id,__FUNCTION__, + sw_desc->async_tx.cookie, sw_desc->idx, sw_desc); + return cookie; +} + +/** + * ppc460ex_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation + */ +static struct dma_async_tx_descriptor *ppc460ex_adma_prep_dma_interrupt( + struct dma_chan *chan, unsigned long flags) +{ + ppc460ex_ch_t *ppc460ex_chan = to_ppc460ex_adma_chan(chan); + ppc460ex_desc_t *sw_desc, *group_start; + int slot_cnt, slots_per_op; + + dev_dbg(ppc460ex_chan->device->common.dev, + "ppc460ex adma%d: %s\n", ppc460ex_chan->device->id, + __FUNCTION__); + + spin_lock_bh(&ppc460ex_chan->lock); + slot_cnt = slots_per_op = 1; + sw_desc = ppc460ex_adma_alloc_slots(ppc460ex_chan, slot_cnt, + slots_per_op); + if (sw_desc) { + group_start = sw_desc->group_head; + ppc460ex_desc_init_interrupt(group_start, ppc460ex_chan); + group_start->unmap_len = 0; + sw_desc->async_tx.flags = flags; + } + spin_unlock_bh(&ppc460ex_chan->lock); + + return sw_desc ? &sw_desc->async_tx : NULL; +} + +/** + * ppc460ex_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation + */ +static struct dma_async_tx_descriptor *ppc460ex_adma_prep_dma_memcpy( + struct dma_chan *chan, dma_addr_t dma_dest, + dma_addr_t dma_src, size_t len, unsigned long flags) +{ + ppc460ex_ch_t *ppc460ex_chan = to_ppc460ex_adma_chan(chan); + ppc460ex_desc_t *sw_desc, *group_start; + int slot_cnt, slots_per_op; + if (unlikely(!len)) + return NULL; + BUG_ON(unlikely(len > PPC460EX_ADMA_DMA_MAX_BYTE_COUNT)); + + spin_lock_bh(&ppc460ex_chan->lock); + + dev_dbg(ppc460ex_chan->device->common.dev, + "ppc460ex adma%d: %s len: %u int_en %d \n", + ppc460ex_chan->device->id, __FUNCTION__, len, + flags & DMA_PREP_INTERRUPT ? 1 : 0); + + slot_cnt = slots_per_op = 1; + sw_desc = ppc460ex_adma_alloc_slots(ppc460ex_chan, slot_cnt, + slots_per_op); + if (sw_desc) { + group_start = sw_desc->group_head; + ppc460ex_desc_init_memcpy(group_start, flags); + ppc460ex_adma_set_dest(group_start, dma_dest, 0); + ppc460ex_adma_memcpy_xor_set_src(group_start, dma_src, 0); + ppc460ex_desc_set_byte_count(group_start, ppc460ex_chan, len); + sw_desc->unmap_len = len; + sw_desc->async_tx.flags = flags; + if(mfdcr(0x60) == 0xfee8) { + printk("Byte Count = 0x%x\n",len); + printk("src= 0x%x\n",dma_src); + printk("Dest = 0x%x\n",dma_dest); + } + } + spin_unlock_bh(&ppc460ex_chan->lock); + return sw_desc ? &sw_desc->async_tx : NULL; +} + +/** + * ppc460ex_adma_prep_dma_memset - prepare CDB for a MEMSET operation + */ +static struct dma_async_tx_descriptor *ppc460ex_adma_prep_dma_memset( + struct dma_chan *chan, dma_addr_t dma_dest, int value, + size_t len, unsigned long flags) +{ + ppc460ex_ch_t *ppc460ex_chan = to_ppc460ex_adma_chan(chan); + ppc460ex_desc_t *sw_desc, *group_start; + int slot_cnt, slots_per_op; + if (unlikely(!len)) + return NULL; + BUG_ON(unlikely(len > PPC460EX_ADMA_DMA_MAX_BYTE_COUNT)); + + spin_lock_bh(&ppc460ex_chan->lock); + + dev_dbg(ppc460ex_chan->device->common.dev, + "ppc460ex adma%d: %s cal: %u len: %u int_en %d\n", + ppc460ex_chan->device->id, __FUNCTION__, value, len, + flags & DMA_PREP_INTERRUPT ? 1 : 0); + + slot_cnt = slots_per_op = 1; + sw_desc = ppc460ex_adma_alloc_slots(ppc460ex_chan, slot_cnt, + slots_per_op); + if (sw_desc) { + group_start = sw_desc->group_head; + ppc460ex_desc_init_memset(group_start, value, flags); + ppc460ex_adma_set_dest(group_start, dma_dest, 0); + ppc460ex_desc_set_byte_count(group_start, ppc460ex_chan, len); + sw_desc->unmap_len = len; + sw_desc->async_tx.flags = flags; + } + spin_unlock_bh(&ppc460ex_chan->lock); + + return sw_desc ? &sw_desc->async_tx : NULL; +} + + +static inline void ppc460ex_desc_set_xor_src_cnt (ppc460ex_desc_t *desc, + int src_cnt); +static void ppc460ex_init_rxor_cursor (ppc460ex_rxor_cursor_t *cursor); + +/** + * ppc460ex_adma_init_dma2rxor_slot - + */ +static void ppc460ex_adma_init_dma2rxor_slot (ppc460ex_desc_t *desc, + dma_addr_t *src, int src_cnt) +{ + int i; + /* initialize CDB */ + for (i=0; i<src_cnt; i++) { + ppc460ex_adma_dma2rxor_prep_src(desc, + &desc->rxor_cursor, + i, desc->src_cnt, + (u32)src[i]); + } +} +#if 1 +static inline ppc460ex_desc_t *ppc460ex_dma_prep_pq( + ppc460ex_ch_t *ppc460ex_chan, + dma_addr_t *dst, unsigned int dst_cnt, + dma_addr_t *src, unsigned int src_cnt, unsigned char *scf, + size_t len, unsigned long flags) +{ + int slot_cnt; + ppc460ex_desc_t *sw_desc = NULL, *iter; + unsigned long op = 0; + unsigned char mult = 1; + + /* select operations WXOR/RXOR depending on the + * source addresses of operators and the number + * of destinations (RXOR support only Q-parity calculations) + */ + set_bit(PPC460EX_DESC_WXOR, &op); + if (!test_and_set_bit(PPC460EX_RXOR_RUN, &ppc460ex_rxor_state)) { + /* no active RXOR; + * do RXOR if: + * - destination os only one, + * - there are more than 1 source, + * - len is aligned on 512-byte boundary, + * - source addresses fit to one of 4 possible regions. + */ + if (dst_cnt == 1 && src_cnt > 1 && + !(len & ~MQ0_CF2H_RXOR_BS_MASK) && + (src[0] + len) == src[1]) { + /* may do RXOR R1 R2 */ + set_bit(PPC460EX_DESC_RXOR, &op); + if (src_cnt != 2) { + /* may try to enhance region of RXOR */ + if ((src[1] + len) == src[2]) { + /* do RXOR R1 R2 R3 */ + set_bit(PPC460EX_DESC_RXOR123, + &op); + } else if ((src[1] + len * 2) == src[2]) { + /* do RXOR R1 R2 R4 */ + set_bit(PPC460EX_DESC_RXOR124, &op); + } else if ((src[1] + len * 3) == src[2]) { + /* do RXOR R1 R2 R5 */ + set_bit(PPC460EX_DESC_RXOR125, + &op); + } else { + /* do RXOR R1 R2 */ + set_bit(PPC460EX_DESC_RXOR12, + &op); + } + } else { + /* do RXOR R1 R2 */ + set_bit(PPC460EX_DESC_RXOR12, &op); + } + } + + if (!test_bit(PPC460EX_DESC_RXOR, &op)) { + /* can not do this operation with RXOR */ + clear_bit(PPC460EX_RXOR_RUN, + &ppc460ex_rxor_state); + } else { + /* can do; set block size right now */ + ppc460ex_desc_set_rxor_block_size(len); + } + } + + /* Number of necessary slots depends on operation type selected */ + if (!test_bit(PPC460EX_DESC_RXOR, &op)) { + /* This is a WXOR only chain. Need descriptors for each + * source to GF-XOR them with WXOR, and need descriptors + * for each destination to zero them with WXOR + */ + slot_cnt = src_cnt; + + if (flags & DMA_PREP_ZERO_P) { + slot_cnt++; + set_bit(PPC460EX_ZERO_P, &op); + } + if (flags & DMA_PREP_ZERO_Q) { + slot_cnt++; + set_bit(PPC460EX_ZERO_Q, &op); + } + } else { + /* Need 1/2 descriptor for RXOR operation, and + * need (src_cnt - (2 or 3)) for WXOR of sources + * remained (if any) + */ + slot_cnt = dst_cnt; + + if (flags & DMA_PREP_ZERO_P) + set_bit(PPC460EX_ZERO_P, &op); + if (flags & DMA_PREP_ZERO_Q) + set_bit(PPC460EX_ZERO_Q, &op); + + if (test_bit(PPC460EX_DESC_RXOR12, &op)) + slot_cnt += src_cnt - 2; + else + slot_cnt += src_cnt - 3; + + /* Thus we have either RXOR only chain or + * mixed RXOR/WXOR + */ + if (slot_cnt == dst_cnt) { + /* RXOR only chain */ + clear_bit(PPC460EX_DESC_WXOR, &op); + } + } + + spin_lock_bh(&ppc460ex_chan->lock); + /* for both RXOR/WXOR each descriptor occupies one slot */ + sw_desc = ppc460ex_adma_alloc_slots(ppc460ex_chan, slot_cnt, 1); + if (sw_desc) { + ppc460ex_desc_init_pq(sw_desc, dst_cnt, src_cnt, + flags, op); + + /* setup dst/src/mult */ + ppc460ex_adma_pqxor_set_dest(sw_desc, + dst, flags); + while(src_cnt--) { + ppc460ex_adma_pqxor_set_src(sw_desc, + src[src_cnt], src_cnt); + if ((flags & DMA_PREP_HAVE_Q ) && !scf) { + mult = scf[src_cnt]; + ppc460ex_adma_pqxor_set_src_mult(sw_desc, + scf[src_cnt], src_cnt, dst_cnt -1 ); + } + } + + /* Setup byte count foreach slot just allocated */ + sw_desc->async_tx.flags = flags; + list_for_each_entry(iter, &sw_desc->group_list, + chain_node) { + if(mfdcr(0x60) == 0xfee8) { + printk("Byte Count = 0x%x\n",len); + printk("src[0]= 0x%x\n",src[0]); + printk("src[1]= 0x%x\n",src[1]); + printk("src[2]= 0x%x\n",src[2]); + printk("Dest = 0x%x\n",dst); + } + ppc460ex_desc_set_byte_count(iter, + ppc460ex_chan, len); + iter->unmap_len = len; + } + } + spin_unlock_bh(&ppc460ex_chan->lock); + + return sw_desc; +} + +#endif +static inline ppc460ex_desc_t *ppc460ex_dma_prep_xor( + ppc460ex_ch_t *ppc460ex_chan, + dma_addr_t *dst, unsigned int dst_cnt, + dma_addr_t *src, unsigned int src_cnt, unsigned char *scf, + size_t len, unsigned long flags) +{ + int slot_cnt; + ppc460ex_desc_t *sw_desc = NULL, *iter; + unsigned long op = 0; + + /* select operations WXOR/RXOR depending on the + * source addresses of operators and the number + * of destinations (RXOR support only Q-parity calculations) + */ + set_bit(PPC460EX_DESC_WXOR, &op); + if (!test_and_set_bit(PPC460EX_RXOR_RUN, &ppc460ex_rxor_state)) { + /* no active RXOR; + * do RXOR if: + * - destination os only one, + * - there are more than 1 source, + * - len is aligned on 512-byte boundary, + * - source addresses fit to one of 4 possible regions. + */ + if (dst_cnt == 2 && src_cnt > 1 && + !(len & ~MQ0_CF2H_RXOR_BS_MASK) && + (src[0] + len) == src[1]) { + /* may do RXOR R1 R2 */ + set_bit(PPC460EX_DESC_RXOR, &op); + if (src_cnt != 2) { + /* may try to enhance region of RXOR */ + if ((src[1] + len) == src[2]) { + /* do RXOR R1 R2 R3 */ + set_bit(PPC460EX_DESC_RXOR123, + &op); + } else if ((src[1] + len * 2) == src[2]) { + /* do RXOR R1 R2 R4 */ + set_bit(PPC460EX_DESC_RXOR124, &op); + } else if ((src[1] + len * 3) == src[2]) { + /* do RXOR R1 R2 R5 */ + set_bit(PPC460EX_DESC_RXOR125, + &op); + } else { + /* do RXOR R1 R2 */ + set_bit(PPC460EX_DESC_RXOR12, + &op); + } + } else { + /* do RXOR R1 R2 */ + set_bit(PPC460EX_DESC_RXOR12, &op); + } + } + + if (!test_bit(PPC460EX_DESC_RXOR, &op)) { + /* can not do this operation with RXOR */ + clear_bit(PPC460EX_RXOR_RUN, + &ppc460ex_rxor_state); + } else { + /* can do; set block size right now */ + ppc460ex_desc_set_rxor_block_size(len); + } + } + + /* Number of necessary slots depends on operation type selected */ + if (!test_bit(PPC460EX_DESC_RXOR, &op)) { + /* This is a WXOR only chain. Need descriptors for each + * source to GF-XOR them with WXOR, and need descriptors + * for each destination to zero them with WXOR + */ + slot_cnt = src_cnt; + + if (flags & DMA_PREP_ZERO_P) { + slot_cnt++; + set_bit(PPC460EX_ZERO_P, &op); + } + } else { + /* Need 1/2 descriptor for RXOR operation, and + * need (src_cnt - (2 or 3)) for WXOR of sources + * remained (if any) + */ + slot_cnt = dst_cnt; + + if (flags & DMA_PREP_ZERO_P) + set_bit(PPC460EX_ZERO_P, &op); + + if (test_bit(PPC460EX_DESC_RXOR12, &op)) + slot_cnt += src_cnt - 2; + else + slot_cnt += src_cnt - 3; + + /* Thus we have either RXOR only chain or + * mixed RXOR/WXOR + */ + if (slot_cnt == dst_cnt) { + /* RXOR only chain */ + clear_bit(PPC460EX_DESC_WXOR, &op); + } + } + + spin_lock_bh(&ppc460ex_chan->lock); + /* for both RXOR/WXOR each descriptor occupies one slot */ + sw_desc = ppc460ex_adma_alloc_slots(ppc460ex_chan, slot_cnt, 1); + if (sw_desc) { + ppc460ex_desc_init_xor(sw_desc, dst_cnt, src_cnt, + flags, op); + + /* setup dst/src/mult */ + ppc460ex_adma_xor_set_dest(sw_desc, + dst, flags); + while(src_cnt--) { + ppc460ex_adma_xor_set_src(sw_desc, + src[src_cnt], src_cnt); + } + + /* Setup byte count foreach slot just allocated */ + sw_desc->async_tx.flags = flags; + list_for_each_entry(iter, &sw_desc->group_list, + chain_node) { + if(mfdcr(0x60) == 0xfee8) { + printk("Byte Count = 0x%x\n",len); + printk("src[0]= 0x%x\n",src[0]); + printk("src[1]= 0x%x\n",src[1]); + printk("src[2]= 0x%x\n",src[2]); + printk("Dest = 0x%x\n",dst); + } + ppc460ex_desc_set_byte_count(iter, + ppc460ex_chan, len); + iter->unmap_len = len; + } + } + spin_unlock_bh(&ppc460ex_chan->lock); + + return sw_desc; +} +static inline ppc460ex_desc_t *ppc460ex_dma01_prep_xor ( + ppc460ex_ch_t *ppc460ex_chan, + dma_addr_t dst, dma_addr_t *src, unsigned int src_cnt, + size_t len, unsigned long flags) +{ + int slot_cnt; + ppc460ex_desc_t *sw_desc = NULL, *iter; + unsigned long op = 0; + unsigned int dst_cnt = 1; /*Marri */ + /* select operations WXOR/RXOR depending on the + * source addresses of operators and the number + * of destinations (RXOR support only Q-parity calculations) + */ + set_bit(PPC460EX_DESC_WXOR, &op); + if (!test_and_set_bit(PPC460EX_RXOR_RUN, &ppc460ex_rxor_state)) { + /* no active RXOR; + * do RXOR if: + * - destination os only one, + * - there are more than 1 source, + * - len is aligned on 512-byte boundary, + * - source addresses fit to one of 4 possible regions. + */ + if (dst_cnt == 3 && src_cnt > 1 && /* Marri dstcnt == 3 never comes here */ + !(len & ~MQ0_CF2H_RXOR_BS_MASK) && + (src[0] - len) == src[1]) { /* Marri */ + /* may do RXOR R1 R2 */ + set_bit(PPC460EX_DESC_RXOR, &op); + if (src_cnt != 2) { + /* may try to enhance region of RXOR */ + if ((src[1] - len) == src[2]) { + /* do RXOR R1 R2 R3 */ + set_bit(PPC460EX_DESC_RXOR123, + &op); + } else if ((src[1] - len * 2) == src[2]) { + /* do RXOR R1 R2 R4 */ + set_bit(PPC460EX_DESC_RXOR124, &op); + } else if ((src[1] - len * 3) == src[2]) { + /* do RXOR R1 R2 R5 */ + set_bit(PPC460EX_DESC_RXOR125, + &op); + } else { + /* do RXOR R1 R2 */ + set_bit(PPC460EX_DESC_RXOR12, + &op); + } + } else { + /* do RXOR R1 R2 */ + set_bit(PPC460EX_DESC_RXOR12, &op); + } + } + + if (!test_bit(PPC460EX_DESC_RXOR, &op)) { + /* can not do this operation with RXOR */ + clear_bit(PPC460EX_RXOR_RUN, + &ppc460ex_rxor_state); + } else { + /* can do; set block size right now */ + ppc460ex_desc_set_rxor_block_size(len); + } + } + + /* Number of necessary slots depends on operation type selected */ + if (!test_bit(PPC460EX_DESC_RXOR, &op)) { + /* This is a WXOR only chain. Need descriptors for each + * source to GF-XOR them with WXOR, and need descriptors + * for each destination to zero them with WXOR + */ + slot_cnt = src_cnt; + +#if 1 + if (flags & DMA_PREP_ZERO_P) { + slot_cnt += dst_cnt; + set_bit(PPC460EX_ZERO_P, &op); + } +#endif /* RAID-6 stuff*/ + } else { + /* Need 1 descriptor for RXOR operation, and + * need (src_cnt - (2 or 3)) for WXOR of sources + * remained (if any) + * Thus we have 1 CDB for RXOR, let the set_dst + * function think that this is just a zeroing descriptor + * and skip it when walking through the chain. + * So set PPC460EX_ZERO_P. + */ + set_bit(PPC460EX_ZERO_P, &op); + + if (test_bit(PPC460EX_DESC_RXOR12, &op)) { + slot_cnt = src_cnt - 1; + } else { + slot_cnt = src_cnt - 2; + } + + /* Thus we have either RXOR only chain or + * mixed RXOR/WXOR + */ + if (slot_cnt == 1) { + /* RXOR only chain */ + clear_bit(PPC460EX_DESC_WXOR, &op); + } + } + + spin_lock_bh(&ppc460ex_chan->lock); + /* for both RXOR/WXOR each descriptor occupies one slot */ + sw_desc = ppc460ex_adma_alloc_slots(ppc460ex_chan, slot_cnt, 1); + if (sw_desc) { + ppc460ex_desc_init_dma01_xor(sw_desc, dst_cnt, src_cnt, + flags, op); + + /* setup dst/src/mult */ + while(dst_cnt--) + ppc460ex_adma_dma01_xor_set_dest(sw_desc, + dst, dst_cnt); + //dst[dst_cnt], dst_cnt); /*marri */ + while(src_cnt--) { + ppc460ex_adma_dma01_xor_set_src(sw_desc, + src[src_cnt], src_cnt); + ppc460ex_adma_dma01_xor_set_src_mult(sw_desc, + 1, src_cnt);/* Marri forcing RAID-5*/ + /*scf[src_cnt], src_cnt);*/ + } + + /* Setup byte count foreach slot just allocated */ + sw_desc->async_tx.flags = flags; + list_for_each_entry(iter, &sw_desc->group_list, + chain_node) { + if(mfdcr(0x60) == 0xfee8) { + printk("Byte Count = 0x%x\n",len); + printk("src[0]= 0x%x\n",src[0]); + printk("src[1]= 0x%x\n",src[1]); + printk("src[2]= 0x%x\n",src[2]); + printk("Dest = 0x%x\n",dst); + } + ppc460ex_desc_set_byte_count(iter, + ppc460ex_chan, len); + iter->unmap_len = len; + } + } + + spin_unlock_bh(&ppc460ex_chan->lock); + + return sw_desc; +} +#if 1 +/** + * ppc460ex_adma_prep_dma_pq- prepare CDB (group) for a GF-XOR operation + */ +static struct dma_async_tx_descriptor *ppc460ex_adma_prep_dma_pq( + struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, + unsigned int src_cnt, unsigned char *scf, + size_t len, unsigned long flags) +{ + ppc460ex_ch_t *ppc460ex_chan = to_ppc460ex_adma_chan(chan); + ppc460ex_desc_t *sw_desc = NULL; + int dst_cnt = 0; + + BUG_ON(!len); + BUG_ON(unlikely(len > PPC460EX_ADMA_XOR_MAX_BYTE_COUNT)); + BUG_ON(!src_cnt); + + if (flags & DMA_PREP_HAVE_P) { + BUG_ON(!dst[0]); + dst_cnt++; + } else + BUG_ON(flags & DMA_PREP_ZERO_P); + if (flags & DMA_PREP_HAVE_Q) { + BUG_ON(!dst[1]); + dst_cnt++; + } else + BUG_ON(flags & DMA_PREP_ZERO_Q); + BUG_ON(!dst_cnt); + + dev_dbg(ppc460ex_chan->device->common.dev, + "ppc460ex adma%d: %s src_cnt: %d len: %u int_en: %d\n", + ppc460ex_chan->device->id, __FUNCTION__, src_cnt, len, + flags & DMA_PREP_INTERRUPT ? 1 : 0); + + switch (ppc460ex_chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + sw_desc = ppc460ex_dma_prep_pq(ppc460ex_chan, + dst, dst_cnt, src, src_cnt, scf, + len, flags); + break; + + } + + return sw_desc ? &sw_desc->async_tx : NULL; +} +#endif +/** + * ppc460ex_adma_prep_dma_mq_xor - prepare CDB (group) for a GF-XOR operation + */ +static struct dma_async_tx_descriptor *ppc460ex_adma_prep_dma_mq_xor( + struct dma_chan *chan, dma_addr_t dst, + dma_addr_t *src, unsigned int src_cnt, + size_t len, unsigned long flags) +{ + ppc460ex_ch_t *ppc460ex_chan = to_ppc460ex_adma_chan(chan); + ppc460ex_desc_t *sw_desc = NULL; + int dst_cnt = 1; + + BUG_ON(!len); + BUG_ON(unlikely(len > PPC460EX_ADMA_XOR_MAX_BYTE_COUNT)); + BUG_ON(!src_cnt ); + +// printk("<%s> line %d\n",__FUNCTION__,__LINE__); + dev_dbg(ppc460ex_chan->device->common.dev, + "ppc460ex adma%d: %s src_cnt: %d len: %u int_en: %d\n", + ppc460ex_chan->device->id, __FUNCTION__, src_cnt, len, + flags & DMA_PREP_INTERRUPT ? 1 : 0); + + switch (ppc460ex_chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: +#if 0 + sw_desc = ppc460ex_dma01_prep_xor (ppc460ex_chan, + dst, src, src_cnt, + len, flags); +#else + sw_desc = ppc460ex_dma_prep_xor(ppc460ex_chan, + &dst, dst_cnt, src, src_cnt, 0, + len, flags); +#endif + break; + + } + + return sw_desc ? &sw_desc->async_tx : NULL; +} + +/** + * ppc460ex_adma_prep_dma_pqzero_sum - prepare CDB group for + * a PQ_VAL operation + */ +static struct dma_async_tx_descriptor *ppc460ex_adma_prep_dma_pqzero_sum( + struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, + unsigned char *scf, size_t len, + u32 *pqres, unsigned long flags) +{ + ppc460ex_ch_t *ppc460ex_chan = to_ppc460ex_adma_chan(chan); + ppc460ex_desc_t *sw_desc, *iter; + dma_addr_t pdest, qdest; + int slot_cnt, slots_per_op, idst, dst_cnt; + + if (flags & DMA_PREP_HAVE_P) + pdest = src[src_cnt]; + else + pdest = 0; + if (flags & DMA_PREP_HAVE_Q) + qdest = src[src_cnt+1]; + else + qdest = 0; + + BUG_ON(src_cnt < 3 ); + + /* Always use WXOR for P/Q calculations (two destinations). + * Need two extra slots to verify results are zero. Since src_cnt + * is the size of the src[] buffer (which includes destination + * pointers at the first and/or second positions) then the number + * of actual sources should be reduced by DMA_DEST_MAX_NUM (2). + */ + idst = dst_cnt = (pdest && qdest) ? 2 : 1; + + slot_cnt = src_cnt + dst_cnt; + slots_per_op = 1; + + spin_lock_bh(&ppc460ex_chan->lock); + sw_desc = ppc460ex_adma_alloc_slots(ppc460ex_chan, slot_cnt, + slots_per_op); + if (sw_desc) { + ppc460ex_desc_init_pqzero_sum(sw_desc, dst_cnt, src_cnt); + + /* Setup byte count foreach slot just allocated */ + sw_desc->async_tx.flags = flags; + list_for_each_entry(iter, &sw_desc->group_list, chain_node) { + ppc460ex_desc_set_byte_count(iter, ppc460ex_chan, + len); + iter->unmap_len = len; + } + + /* Setup destinations for P/Q ops */ + ppc460ex_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest); + + /* Setup sources and mults for P/Q ops */ + while (src_cnt--) { + ppc460ex_adma_pqzero_sum_set_src (sw_desc, + src[src_cnt], src_cnt); + /* Setup mults for Q-check only; in case of P - + * keep the default 0 (==1) + */ + if (qdest) + ppc460ex_adma_pqzero_sum_set_src_mult (sw_desc, + scf[src_cnt], src_cnt,dst_cnt - 1 ); + } + + /* Setup zero QWORDs into DCHECK CDBs */ + idst = dst_cnt; + list_for_each_entry_reverse(iter, &sw_desc->group_list, + chain_node) { + /* + * The last CDB corresponds to P-parity check + * (if any), the one before last CDB corresponds + * Q-parity check + */ + if (idst == DMA_DEST_MAX_NUM) { + if (idst == dst_cnt) { + set_bit(PPC460EX_DESC_QCHECK, + &iter->flags); + } else { + set_bit(PPC460EX_DESC_PCHECK, + &iter->flags); + } + } else { + if (qdest) { + set_bit(PPC460EX_DESC_QCHECK, + &iter->flags); + } else { + set_bit(PPC460EX_DESC_PCHECK, + &iter->flags); + } + } + iter->xor_check_result = pqres; + /* + * set it to zero, if check fail then result will + * be updated + */ + *iter->xor_check_result = 0; + ppc460ex_desc_set_dcheck(iter, ppc460ex_chan, + ppc460ex_qword); + if (!(--dst_cnt)) + break; + } + } + spin_unlock_bh(&ppc460ex_chan->lock); + return sw_desc ? &sw_desc->async_tx : NULL; +} +/** + * ppc460ex_adma_prep_dma_mq_zero_sum - prepare CDB group for + * a PQ_VAL operation + */ +static struct dma_async_tx_descriptor *ppc460ex_adma_prep_dma_mq_zero_sum( + struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, + size_t len, u32 *presult, unsigned long flags) +{ + ppc460ex_ch_t *ppc460ex_chan = to_ppc460ex_adma_chan(chan); + ppc460ex_desc_t *sw_desc, *iter; + int slot_cnt, slots_per_op, idst, dst_cnt; + + BUG_ON(src_cnt < 3 || !src[0]); + + /* Always use WXOR for P/Q calculations (two destinations). + * Need two extra slots to verify results are zero. Since src_cnt + * is the size of the src[] buffer (which includes destination + * pointers at the first and/or second positions) then the number + * of actual sources should be reduced by DMA_DEST_MAX_NUM (2). + */ + idst = dst_cnt = 1; + slot_cnt = src_cnt ; + src_cnt -= dst_cnt; + slots_per_op = 1; + + spin_lock_bh(&ppc460ex_chan->lock); + sw_desc = ppc460ex_adma_alloc_slots(ppc460ex_chan, slot_cnt, + slots_per_op); + if (sw_desc) { + ppc460ex_desc_init_pqzero_sum(sw_desc, dst_cnt, src_cnt); + + /* Setup byte count foreach slot just allocated */ + sw_desc->async_tx.flags = flags; + list_for_each_entry(iter, &sw_desc->group_list, chain_node) { + ppc460ex_desc_set_byte_count(iter, ppc460ex_chan, + len); + iter->unmap_len = len; + } + + /* Setup destinations for P/Q ops */ + + ppc460ex_adma_mq_zero_sum_set_dest(sw_desc, src[0]); + + /* Setup sources and mults for P/Q ops */ + src = &src[dst_cnt]; + while (src_cnt-- ) { + ppc460ex_adma_pqzero_sum_set_src (sw_desc, + src[src_cnt ], src_cnt); + } + + /* Setup zero QWORDs into DCHECK CDBs */ + idst = dst_cnt; + list_for_each_entry_reverse(iter, &sw_desc->group_list, + chain_node) { + /* + * The last CDB corresponds to P-parity check + * (if any), the one before last CDB corresponds + * Q-parity check + */ + iter->xor_check_result = presult; + /* + * set it to zero, if check fail then result will + * be updated + */ + *iter->xor_check_result = 0; + ppc460ex_desc_set_dcheck(iter, ppc460ex_chan, + ppc460ex_qword); + if (!(--dst_cnt)) + break; + } + } + spin_unlock_bh(&ppc460ex_chan->lock); + return sw_desc ? &sw_desc->async_tx : NULL; +} + +static void ppc460ex_adma_pq_zero_op(ppc460ex_desc_t *iter, + ppc460ex_ch_t *chan, dma_addr_t addr) +{ + /* To clear destinations update the descriptor + * (P or Q depending on index) as follows: + * addr is destination (0 corresponds to SG2): + */ + ppc460ex_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0); + + /* ... and the addr is source: */ + ppc460ex_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr); + + /* addr is always SG2 then the mult is always DST1 */ + //ppc460ex_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, + // DMA_CDB_SG_DST1, 1); +} +/** + * ppc460ex_adma_set_dest - set destination address into descriptor + */ +static inline void ppc460ex_adma_set_dest(ppc460ex_desc_t *sw_desc, + dma_addr_t addr, int index) +{ + ppc460ex_ch_t *chan = to_ppc460ex_adma_chan(sw_desc->async_tx.chan); + BUG_ON(index >= sw_desc->dst_cnt); + + switch (chan->device->id) { + case PPC460EX_DMA1_ID: + /* to do: support transfers lengths > + * PPC460EX_ADMA_DMA/XOR_MAX_BYTE_COUNT + */ + ppc460ex_desc_set_dest_addr(sw_desc->group_head, + // chan, 0x8, addr, index); // Enabling HB bus + chan, 0, addr, index); + break; + case PPC460EX_XOR_ID: + sw_desc = ppc460ex_get_group_entry(sw_desc, index); + ppc460ex_desc_set_dest_addr(sw_desc, + chan, 0, addr, index); + break; + } +} + + +static void ppc460ex_adma_dma2rxor_set_dest ( + ppc460ex_desc_t *sw_desc, + dma_addr_t addr, int index) +{ + ppc460ex_ch_t *chan = to_ppc460ex_adma_chan(sw_desc->async_tx.chan); + ppc460ex_desc_t *iter; + int i; + + switch (chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + BUG(); + break; + case PPC460EX_XOR_ID: + iter = ppc460ex_get_group_entry(sw_desc, + sw_desc->descs_per_op*index); + for (i=0;i<sw_desc->descs_per_op;i++) { + ppc460ex_desc_set_dest_addr(iter, + chan, 0, addr, index); + if (i) ppc460ex_wxor_set_base (iter); + iter = list_entry (iter->chain_node.next, + ppc460ex_desc_t, chain_node); + } + break; + } +} + +/** + * ppc460ex_adma_pq_xor_set_dest - set destination address into descriptor + * for the PQXOR operation + */ +static void ppc460ex_adma_pqxor_set_dest(ppc460ex_desc_t *sw_desc, + dma_addr_t *addrs, unsigned long flags) +{ + ppc460ex_desc_t *iter; + ppc460ex_ch_t *chan = to_ppc460ex_adma_chan(sw_desc->async_tx.chan); + dma_addr_t paddr, qaddr; + dma_addr_t addr = 0, ppath, qpath; + int index = 0, i; + + if (flags & DMA_PREP_HAVE_P) + paddr = addrs[0]; + else + paddr = 0; + + if (flags & DMA_PREP_HAVE_Q) + qaddr = addrs[1]; + else + qaddr = 0; + + if (!paddr || !qaddr) + addr = paddr ? paddr : qaddr; + + switch (chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + /* walk through the WXOR source list and set P/Q-destinations + * for each slot: + */ + if (!test_bit(PPC460EX_DESC_RXOR, &sw_desc->flags)) { + /* This is WXOR-only chain; may have 1/2 zero descs */ + if (test_bit(PPC460EX_ZERO_P, &sw_desc->flags)) + index++; + if (test_bit(PPC460EX_ZERO_Q, &sw_desc->flags)) + index++; + + iter = ppc460ex_get_group_entry(sw_desc, index); + if (addr) { + /* one destination */ + list_for_each_entry_from(iter, + &sw_desc->group_list, chain_node) + ppc460ex_desc_set_dest_addr(iter, chan, + DMA_CUED_XOR_BASE, addr, 0); + } else { + /* two destinations */ + list_for_each_entry_from(iter, + &sw_desc->group_list, chain_node) { + ppc460ex_desc_set_dest_addr(iter, chan, + DMA_CUED_XOR_BASE, paddr, 0); + ppc460ex_desc_set_dest_addr(iter, chan, + DMA_CUED_XOR_BASE, qaddr, 1); + } + } + + if (index) { + /* To clear destinations update the descriptor + * (1st,2nd, or both depending on flags) + */ + index = 0; + if (test_bit(PPC460EX_ZERO_P, + &sw_desc->flags)) { + iter = ppc460ex_get_group_entry( + sw_desc, index++); + ppc460ex_adma_pq_zero_op(iter, chan, + paddr); + } + + if (test_bit(PPC460EX_ZERO_Q, + &sw_desc->flags)) { + iter = ppc460ex_get_group_entry( + sw_desc, index++); + ppc460ex_adma_pq_zero_op(iter, chan, + qaddr); + } + + return; + } + } else { + /* This is RXOR-only or RXOR/WXOR mixed chain */ + + /* If we want to include destination into calculations, + * then make dest addresses cued with mult=1 (XOR). + */ + ppath = test_bit(PPC460EX_ZERO_P, &sw_desc->flags) ? + DMA_CUED_XOR_HB : + DMA_CUED_XOR_BASE | + (1 << DMA_CUED_MULT1_OFF); + qpath = test_bit(PPC460EX_ZERO_Q, &sw_desc->flags) ? + DMA_CUED_XOR_HB : + DMA_CUED_XOR_BASE | + (1 << DMA_CUED_MULT1_OFF); + + /* Setup destination(s) in RXOR slot(s) */ + iter = ppc460ex_get_group_entry (sw_desc, index++); + ppc460ex_desc_set_dest_addr(iter, chan, + paddr ? ppath : qpath, + paddr ? paddr : qaddr, 0); + if (!addr) { + /* two destinations */ + iter = ppc460ex_get_group_entry (sw_desc, + index++); + ppc460ex_desc_set_dest_addr(iter, chan, + qpath, qaddr, 0); + } + + if (test_bit(PPC460EX_DESC_WXOR, &sw_desc->flags)) { + /* Setup destination(s) in remaining WXOR + * slots + */ + iter = ppc460ex_get_group_entry(sw_desc, + index); + if (addr) { + /* one destination */ + list_for_each_entry_from(iter, + &sw_desc->group_list, + chain_node) + ppc460ex_desc_set_dest_addr( + iter, chan, + DMA_CUED_XOR_BASE, + addr, 0); + + } else { + /* two destinations */ + list_for_each_entry_from(iter, + &sw_desc->group_list, + chain_node) { + ppc460ex_desc_set_dest_addr( + iter, chan, + DMA_CUED_XOR_BASE, + paddr, 0); + ppc460ex_desc_set_dest_addr( + iter, chan, + DMA_CUED_XOR_BASE, + qaddr, 1); + } + } + } + + } + break; + + case PPC460EX_XOR_ID: + /* DMA2 descriptors have only 1 destination, so there are + * two chains - one for each dest. + * If we want to include destination into calculations, + * then make dest addresses cued with mult=1 (XOR). + */ + ppath = test_bit(PPC460EX_ZERO_P, &sw_desc->flags) ? + DMA_CUED_XOR_HB : + DMA_CUED_XOR_BASE | + (1 << DMA_CUED_MULT1_OFF); + + qpath = test_bit(PPC460EX_ZERO_Q, &sw_desc->flags) ? + DMA_CUED_XOR_HB : + DMA_CUED_XOR_BASE | + (1 << DMA_CUED_MULT1_OFF); + + iter = ppc460ex_get_group_entry (sw_desc, 0); + for (i=0; i<sw_desc->descs_per_op; i++) { + ppc460ex_desc_set_dest_addr(iter, chan, + paddr ? ppath : qpath, + paddr ? paddr : qaddr, 0); + iter = list_entry (iter->chain_node.next, + ppc460ex_desc_t, chain_node); + } + + if (!addr) { + /* Two destinations; setup Q here */ + iter = ppc460ex_get_group_entry (sw_desc, + sw_desc->descs_per_op); + for (i=0; i<sw_desc->descs_per_op; i++) { + ppc460ex_desc_set_dest_addr(iter, + chan, qpath, qaddr, 0); + iter = list_entry (iter->chain_node.next, + ppc460ex_desc_t, chain_node); + } + } + + break; + } +} +void ppc460ex_adma_xor_set_dest(ppc460ex_desc_t *sw_desc, + dma_addr_t *addrs, unsigned long flags) +{ + ppc460ex_desc_t *iter; + ppc460ex_ch_t *chan = to_ppc460ex_adma_chan(sw_desc->async_tx.chan); + dma_addr_t paddr, qaddr; + dma_addr_t addr = 0, ppath, qpath; + int index = 0; + + paddr = addrs[0]; + + + + switch (chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + /* walk through the WXOR source list and set P/Q-destinations + * for each slot: + */ + if (!test_bit(PPC460EX_DESC_RXOR, &sw_desc->flags)) { + /* This is WXOR-only chain; may have 1/2 zero descs */ + if (test_bit(PPC460EX_ZERO_P, &sw_desc->flags)) + index++; + + iter = ppc460ex_get_group_entry(sw_desc, index); + if (paddr) { + /* one destination */ + list_for_each_entry_from(iter, + &sw_desc->group_list, chain_node) + ppc460ex_desc_set_dest_addr(iter, chan, + DMA_CUED_XOR_BASE, paddr, 0); + } else { + BUG(); + /* two destinations */ + list_for_each_entry_from(iter, + &sw_desc->group_list, chain_node) { + ppc460ex_desc_set_dest_addr(iter, chan, + DMA_CUED_XOR_BASE, paddr, 0); + ppc460ex_desc_set_dest_addr(iter, chan, + DMA_CUED_XOR_BASE, qaddr, 1); + } + } + + if (index) { + /* To clear destinations update the descriptor + * (1st,2nd, or both depending on flags) + */ + index = 0; + if (test_bit(PPC460EX_ZERO_P, + &sw_desc->flags)) { + iter = ppc460ex_get_group_entry( + sw_desc, index++); + ppc460ex_adma_pq_zero_op(iter, chan, + paddr); + } + + return; + } + } else { + /* This is RXOR-only or RXOR/WXOR mixed chain */ + + /* If we want to include destination into calculations, + * then make dest addresses cued with mult=1 (XOR). + */ + ppath = test_bit(PPC460EX_ZERO_P, &sw_desc->flags) ? + DMA_CUED_XOR_HB : + DMA_CUED_XOR_BASE | + (1 << DMA_CUED_MULT1_OFF); + + /* Setup destination(s) in RXOR slot(s) */ + iter = ppc460ex_get_group_entry (sw_desc, index++); + ppc460ex_desc_set_dest_addr(iter, chan, + paddr ? ppath : qpath, + paddr ? paddr : qaddr, 0); + if (!addr) { + /* two destinations */ + iter = ppc460ex_get_group_entry (sw_desc, + index++); + ppc460ex_desc_set_dest_addr(iter, chan, + qpath, qaddr, 0); + } + + if (test_bit(PPC460EX_DESC_WXOR, &sw_desc->flags)) { + /* Setup destination(s) in remaining WXOR + * slots + */ + iter = ppc460ex_get_group_entry(sw_desc, + index); + if (addr) { + /* one destination */ + list_for_each_entry_from(iter, + &sw_desc->group_list, + chain_node) + ppc460ex_desc_set_dest_addr( + iter, chan, + DMA_CUED_XOR_BASE, + addr, 0); + + } else { + /* two destinations */ + list_for_each_entry_from(iter, + &sw_desc->group_list, + chain_node) { + ppc460ex_desc_set_dest_addr( + iter, chan, + DMA_CUED_XOR_BASE, + paddr, 0); + ppc460ex_desc_set_dest_addr( + iter, chan, + DMA_CUED_XOR_BASE, + qaddr, 1); + } + } + } + + } + break; + + } +} +/** + * ppc460ex_adma_dma01_xor_set_dest - set destination address into descriptor + * for the PQXOR operation + */ +static void ppc460ex_adma_dma01_xor_set_dest(ppc460ex_desc_t *sw_desc, + dma_addr_t addr, int index) +{ + ppc460ex_desc_t *iter; + ppc460ex_ch_t *chan = to_ppc460ex_adma_chan(sw_desc->async_tx.chan); + + BUG_ON(index >= sw_desc->dst_cnt); + BUG_ON(test_bit(PPC460EX_DESC_RXOR, &sw_desc->flags) && index); + + switch (chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + /* walk through the WXOR source list and set P/Q-destinations + * for each slot: + */ + if (test_bit(PPC460EX_DESC_WXOR, &sw_desc->flags)) { + /* If this is RXOR/WXOR chain then dst_cnt == 1 + * and first WXOR descriptor is the second in RXOR/WXOR + * chain + */ + //if (!test_bit(PPC460EX_ZERO_P, &sw_desc->flags)) { + if (!test_bit(PPC460EX_ZERO_P, &sw_desc->flags)) { + iter = ppc460ex_get_group_entry(sw_desc, 0); + } else { + iter = ppc460ex_get_group_entry(sw_desc, + sw_desc->dst_cnt); + } + list_for_each_entry_from(iter, &sw_desc->group_list, + chain_node) { + ppc460ex_desc_set_dest_addr(iter, chan, + DMA_CUED_XOR_BASE, addr, index); + } + if (!test_bit(PPC460EX_DESC_RXOR, &sw_desc->flags) && + test_bit(PPC460EX_ZERO_P, &sw_desc->flags)) { + /* In a WXOR-only case we probably has had + * a reasonable data at P/Q addresses, so + * the first operation in chain will be + * zeroing P/Q dest: + * WXOR (Q, 1*Q) -> 0. + * + * To do this (clear) update the descriptor + * (P or Q depending on index) as follows: + * addr is destination (0 corresponds to SG2): + */ + iter = ppc460ex_get_group_entry (sw_desc, + index); + ppc460ex_desc_set_dest_addr(iter, chan, + DMA_CUED_XOR_BASE, addr, 0); + /* ... and the addr is source: */ + ppc460ex_desc_set_src_addr(iter, chan, 0, + DMA_CUED_XOR_HB, addr); + /* addr is always SG2 then the mult is always + DST1 */ + ppc460ex_desc_set_src_mult(iter, chan, + DMA_CUED_MULT1_OFF, DMA_CDB_SG_DST1, 1); + } + } + + if (test_bit(PPC460EX_DESC_RXOR, &sw_desc->flags)) { + /* + * setup Q-destination for RXOR slot ( + * it shall be a HB address) + */ + iter = ppc460ex_get_group_entry (sw_desc, index); + ppc460ex_desc_set_dest_addr(iter, chan, + DMA_CUED_XOR_HB, addr, 0); + } + break; + case PPC460EX_XOR_ID: + iter = ppc460ex_get_group_entry (sw_desc, index); + ppc460ex_desc_set_dest_addr(iter, chan, 0, addr, 0); + break; + } +} + +/** + * ppc460ex_adma_pq_zero_sum_set_dest - set destination address into descriptor + * for the PQ_VAL operation + */ +static void ppc460ex_adma_mq_zero_sum_set_dest ( + ppc460ex_desc_t *sw_desc, + dma_addr_t addr) +{ + ppc460ex_desc_t *iter, *end; + ppc460ex_ch_t *chan = to_ppc460ex_adma_chan(sw_desc->async_tx.chan); + + + /* walk through the WXOR source list and set P/Q-destinations + * for each slot + */ + end = ppc460ex_get_group_entry(sw_desc, sw_desc->src_cnt); + list_for_each_entry(iter, &sw_desc->group_list, chain_node) { + if (unlikely(iter == end)) + break; + ppc460ex_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, + addr, 0); + } + /* The descriptors remain are DATACHECK. These have no need in + * destination. Actually, these destination are used there + * as a sources for check operation. So, set addr ass source. + */ + end = ppc460ex_get_group_entry(sw_desc, sw_desc->src_cnt ); + BUG_ON(!end); + ppc460ex_desc_set_src_addr(end, chan, 0, 0, addr); +} +static void ppc460ex_adma_pqzero_sum_set_dest ( + ppc460ex_desc_t *sw_desc, + dma_addr_t paddr, dma_addr_t qaddr) +{ + ppc460ex_desc_t *iter, *end; + ppc460ex_ch_t *chan = to_ppc460ex_adma_chan(sw_desc->async_tx.chan); + dma_addr_t addr = 0; + + + /* walk through the WXOR source list and set P/Q-destinations + * for each slot + */ + end = ppc460ex_get_group_entry(sw_desc, sw_desc->src_cnt); + if(paddr && qaddr) { + list_for_each_entry(iter, &sw_desc->group_list, chain_node) { + if (unlikely(iter == end)) + break; + ppc460ex_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, + paddr, 0); + ppc460ex_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, + qaddr, 1); + } + } else { + /* one destination */ + addr = paddr ? paddr : qaddr; + list_for_each_entry(iter, &sw_desc->group_list, chain_node) { + if (unlikely(iter == end)) + break; + ppc460ex_desc_set_dest_addr(iter, chan, + DMA_CUED_XOR_BASE, addr, 0); + } + } + /* The descriptors remain are DATACHECK. These have no need in + * destination. Actually, these destination are used there + * as a sources for check operation. So, set addr ass source. + */ + end = ppc460ex_get_group_entry(sw_desc, sw_desc->src_cnt ); + ppc460ex_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr); + if (!addr) { + end = ppc460ex_get_group_entry(sw_desc, sw_desc->src_cnt + 1); + ppc460ex_desc_set_src_addr(end, chan, 0, 0, qaddr); + } +} + +/** + * ppc460ex_desc_set_xor_src_cnt (ppc460ex_desc_t *desc, int src_cnt) + */ +static inline void ppc460ex_desc_set_xor_src_cnt (ppc460ex_desc_t *desc, + int src_cnt) +{ + xor_cb_t *hw_desc = desc->hw_desc; + hw_desc->cbc &= ~XOR_CDCR_OAC_MSK; + hw_desc->cbc |= src_cnt; +} + +/** + * ppc460ex_adma_pqxor_set_src - set source address into descriptor + */ +static void ppc460ex_adma_pqxor_set_src( + ppc460ex_desc_t *sw_desc, + dma_addr_t addr, + int index) +{ + ppc460ex_ch_t *chan = to_ppc460ex_adma_chan(sw_desc->async_tx.chan); + dma_addr_t haddr = 0; + ppc460ex_desc_t *iter; + + switch (chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain + */ + if (test_bit(PPC460EX_DESC_RXOR, &sw_desc->flags)) { + /* RXOR-only or RXOR/WXOR operation */ + int iskip = test_bit(PPC460EX_DESC_RXOR12, + &sw_desc->flags) ? 2 : 3; + + if (index == 0) { + /* 1st slot (RXOR) */ + /* setup sources region (R1-2-3, R1-2-4, + or R1-2-5)*/ + if (test_bit(PPC460EX_DESC_RXOR12, + &sw_desc->flags)) + haddr = DMA_RXOR12 << + DMA_CUED_REGION_OFF; + else if (test_bit(PPC460EX_DESC_RXOR123, + &sw_desc->flags)) + haddr = DMA_RXOR123 << + DMA_CUED_REGION_OFF; + else if (test_bit(PPC460EX_DESC_RXOR124, + &sw_desc->flags)) + haddr = DMA_RXOR124 << + DMA_CUED_REGION_OFF; + else if (test_bit(PPC460EX_DESC_RXOR125, + &sw_desc->flags)) + haddr = DMA_RXOR125 << + DMA_CUED_REGION_OFF; + else + BUG(); + haddr |= DMA_CUED_XOR_BASE; + sw_desc = sw_desc->group_head; + } else if (index < iskip) { + /* 1st slot (RXOR) + * shall actually set source address only once + * instead of first <iskip> + */ + sw_desc = NULL; + } else { + /* second and next slots (WXOR); + * skip first slot with RXOR + */ + haddr = DMA_CUED_XOR_HB; + sw_desc = ppc460ex_get_group_entry(sw_desc, + index - iskip + 1); + } + } else { + /* WXOR-only operation; + * skip first slots with destinations + */ + haddr = DMA_CUED_XOR_HB; + if (!test_bit(PPC460EX_ZERO_P, &sw_desc->flags)) + sw_desc = ppc460ex_get_group_entry(sw_desc, + index); + else + sw_desc = ppc460ex_get_group_entry(sw_desc, + sw_desc->dst_cnt + index); + } + + if (likely(sw_desc)) + ppc460ex_desc_set_src_addr(sw_desc, chan, index, haddr, + addr); + break; + case PPC460EX_XOR_ID: + /* DMA2 may do Biskup + */ + iter = sw_desc->group_head; + if (iter->dst_cnt == 2) { + /* both P & Q calculations required; set Q src here */ + ppc460ex_adma_dma2rxor_set_src(iter, index, addr); + /* this is for P. Actually sw_desc already points + * to the second CDB though. + */ + iter = ppc460ex_get_group_entry(sw_desc, + sw_desc->descs_per_op); + } + ppc460ex_adma_dma2rxor_set_src(iter, index, addr); + break; + } +} +void ppc460ex_adma_xor_set_src( + ppc460ex_desc_t *sw_desc, + dma_addr_t addr, + int index) +{ + ppc460ex_ch_t *chan = to_ppc460ex_adma_chan(sw_desc->async_tx.chan); + dma_addr_t haddr = 0; + + switch (chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain + */ + if (test_bit(PPC460EX_DESC_RXOR, &sw_desc->flags)) { + /* RXOR-only or RXOR/WXOR operation */ + int iskip = test_bit(PPC460EX_DESC_RXOR12, + &sw_desc->flags) ? 2 : 3; + + if (index == 0) { + /* 1st slot (RXOR) */ + /* setup sources region (R1-2-3, R1-2-4, + or R1-2-5)*/ + if (test_bit(PPC460EX_DESC_RXOR12, + &sw_desc->flags)) + haddr = DMA_RXOR12 << + DMA_CUED_REGION_OFF; + else if (test_bit(PPC460EX_DESC_RXOR123, + &sw_desc->flags)) + haddr = DMA_RXOR123 << + DMA_CUED_REGION_OFF; + else if (test_bit(PPC460EX_DESC_RXOR124, + &sw_desc->flags)) + haddr = DMA_RXOR124 << + DMA_CUED_REGION_OFF; + else if (test_bit(PPC460EX_DESC_RXOR125, + &sw_desc->flags)) + haddr = DMA_RXOR125 << + DMA_CUED_REGION_OFF; + else + BUG(); + haddr |= DMA_CUED_XOR_BASE; + sw_desc = sw_desc->group_head; + } else if (index < iskip) { + /* 1st slot (RXOR) + * shall actually set source address only once + * instead of first <iskip> + */ + sw_desc = NULL; + } else { + /* second and next slots (WXOR); + * skip first slot with RXOR + */ + haddr = DMA_CUED_XOR_HB; + sw_desc = ppc460ex_get_group_entry(sw_desc, + index - iskip + 1); + } + } else { + /* WXOR-only operation; + * skip first slots with destinations + */ + haddr = DMA_CUED_XOR_HB; + if (!test_bit(PPC460EX_ZERO_P, &sw_desc->flags)) + sw_desc = ppc460ex_get_group_entry(sw_desc, + index); + else + sw_desc = ppc460ex_get_group_entry(sw_desc, + sw_desc->dst_cnt + index); + } + + if (likely(sw_desc)) + ppc460ex_desc_set_src_addr(sw_desc, chan, index, haddr, + addr); + break; + } +} +/** + * ppc460ex_adma_dma01_xor_set_src - set source address into descriptor + */ +static void ppc460ex_adma_dma01_xor_set_src( + ppc460ex_desc_t *sw_desc, + dma_addr_t addr, + int index) +{ + ppc460ex_ch_t *chan = to_ppc460ex_adma_chan(sw_desc->async_tx.chan); + dma_addr_t haddr = 0; + ppc460ex_desc_t *iter; + + switch (chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain + */ + if (test_bit(PPC460EX_DESC_RXOR, &sw_desc->flags)) { + /* RXOR-only or RXOR/WXOR operation */ + int iskip = test_bit(PPC460EX_DESC_RXOR12, + &sw_desc->flags) ? 2 : 3; + + if (index == 0) { + /* 1st slot (RXOR) */ + /* setup sources region (R1-2-3, R1-2-4, + or R1-2-5)*/ + if (test_bit(PPC460EX_DESC_RXOR12, + &sw_desc->flags)) + haddr = DMA_RXOR12 << + DMA_CUED_REGION_OFF; + else if (test_bit(PPC460EX_DESC_RXOR123, + &sw_desc->flags)) + haddr = DMA_RXOR123 << + DMA_CUED_REGION_OFF; + else if (test_bit(PPC460EX_DESC_RXOR124, + &sw_desc->flags)) + haddr = DMA_RXOR124 << + DMA_CUED_REGION_OFF; + else if (test_bit(PPC460EX_DESC_RXOR125, + &sw_desc->flags)) + haddr = DMA_RXOR125 << + DMA_CUED_REGION_OFF; + else + BUG(); + haddr |= DMA_CUED_XOR_BASE; + sw_desc = sw_desc->group_head; + } else if (index < iskip) { + /* 1st slot (RXOR) + * shall actually set source address only once + * instead of first <iskip> + */ + sw_desc = NULL; + } else { + /* second and next slots (WXOR); + * skip first slot with RXOR + */ + haddr = DMA_CUED_XOR_HB; + sw_desc = ppc460ex_get_group_entry(sw_desc, + index - iskip + 1); + } + } else { + /* WXOR-only operation; + * skip first slots with destinations + */ + haddr = DMA_CUED_XOR_HB; + if (!test_bit(PPC460EX_ZERO_P, &sw_desc->flags)) { + sw_desc = ppc460ex_get_group_entry(sw_desc, + index); + } else { + sw_desc = ppc460ex_get_group_entry(sw_desc, + sw_desc->dst_cnt + index); + } + } + + if (likely(sw_desc)) { + ppc460ex_desc_set_src_addr(sw_desc, chan, index, haddr, + addr); + } + break; + case PPC460EX_XOR_ID: + /* DMA2 may do Biskup + */ + iter = sw_desc->group_head; + if (iter->dst_cnt == 2) { + /* both P & Q calculations required; set Q src here */ + ppc460ex_adma_dma2rxor_set_src(iter, index, addr); + /* this is for P. Actually sw_desc already points + * to the second CDB though. + */ + iter = ppc460ex_get_group_entry(sw_desc, + sw_desc->descs_per_op); + } + ppc460ex_adma_dma2rxor_set_src(iter, index, addr); + break; + } +} + +/** + * ppc460ex_adma_pqzero_sum_set_src - set source address into descriptor + */ +static void ppc460ex_adma_pqzero_sum_set_src( + ppc460ex_desc_t *sw_desc, + dma_addr_t addr, + int index) +{ + ppc460ex_ch_t *chan = to_ppc460ex_adma_chan(sw_desc->async_tx.chan); + dma_addr_t haddr = DMA_CUED_XOR_HB; + + sw_desc = ppc460ex_get_group_entry(sw_desc, index); + + if (likely(sw_desc)) + ppc460ex_desc_set_src_addr(sw_desc, chan, index, haddr, addr); +} + +/** + * ppc460ex_adma_memcpy_xor_set_src - set source address into descriptor + */ +static inline void ppc460ex_adma_memcpy_xor_set_src( + ppc460ex_desc_t *sw_desc, + dma_addr_t addr, + int index) +{ + ppc460ex_ch_t *chan = to_ppc460ex_adma_chan(sw_desc->async_tx.chan); + + sw_desc = sw_desc->group_head; + + if (likely(sw_desc)) + //ppc460ex_desc_set_src_addr(sw_desc, chan, index, 0x8, addr); // Enabling HB bus + ppc460ex_desc_set_src_addr(sw_desc, chan, index, 0, addr); +} + +/** + * ppc460ex_adma_dma2rxor_inc_addr - + */ +static void ppc460ex_adma_dma2rxor_inc_addr (ppc460ex_desc_t *desc, + ppc460ex_rxor_cursor_t *cursor, int index, int src_cnt) +{ + cursor->addr_count++; + if (index == src_cnt-1) { + ppc460ex_desc_set_xor_src_cnt (desc, + cursor->addr_count); + if (cursor->desc_count) { + ppc460ex_wxor_set_base (desc); + } + } else if (cursor->addr_count == XOR_MAX_OPS) { + ppc460ex_desc_set_xor_src_cnt (desc, + cursor->addr_count); + if (cursor->desc_count) { + ppc460ex_wxor_set_base (desc); + } + cursor->addr_count = 0; + cursor->desc_count++; + } +} + +/** + * ppc460ex_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB + */ +static int ppc460ex_adma_dma2rxor_prep_src (ppc460ex_desc_t *hdesc, + ppc460ex_rxor_cursor_t *cursor, int index, + int src_cnt, u32 addr) +{ + int rval = 0; + u32 sign; + ppc460ex_desc_t *desc = hdesc; + int i; + + for (i=0;i<cursor->desc_count;i++) { + desc = list_entry (hdesc->chain_node.next, ppc460ex_desc_t, + chain_node); + } + + switch (cursor->state) { + case 0: + if (addr == cursor->addrl + cursor->len ) { + /* direct RXOR */ + cursor->state = 1; + cursor->xor_count++; + if (index == src_cnt-1) { + ppc460ex_rxor_set_region (desc, + cursor->addr_count, + DMA_RXOR12 << + DMA_CUED_REGION_OFF); + ppc460ex_adma_dma2rxor_inc_addr ( + desc, cursor, index, src_cnt); + } + } else if (cursor->addrl == addr + cursor->len) { + /* reverse RXOR */ + cursor->state = 1; + cursor->xor_count++; + set_bit (cursor->addr_count, + &desc->reverse_flags[0]); + if (index == src_cnt-1) { + ppc460ex_rxor_set_region (desc, + cursor->addr_count, + DMA_RXOR12 << + DMA_CUED_REGION_OFF); + ppc460ex_adma_dma2rxor_inc_addr ( + desc, cursor, index, src_cnt); + } + } else { + printk (KERN_ERR "Cannot build " + "DMA2 RXOR command block.\n"); + BUG (); + } + break; + case 1: + sign = test_bit (cursor->addr_count, + desc->reverse_flags) + ? -1 : 1; + if (index == src_cnt-2 || (sign == -1 + && addr != cursor->addrl - 2*cursor->len)) { + cursor->state = 0; + cursor->xor_count = 1; + cursor->addrl = addr; + ppc460ex_rxor_set_region (desc, + cursor->addr_count, + DMA_RXOR12 << DMA_CUED_REGION_OFF); + ppc460ex_adma_dma2rxor_inc_addr ( + desc, cursor, index, src_cnt); + } else if (addr == cursor->addrl + 2*sign*cursor->len) { + cursor->state = 2; + cursor->xor_count = 0; + ppc460ex_rxor_set_region (desc, + cursor->addr_count, + DMA_RXOR123 << DMA_CUED_REGION_OFF); + if (index == src_cnt-1) { + ppc460ex_adma_dma2rxor_inc_addr ( + desc, cursor, index, src_cnt); + } + } else if (addr == cursor->addrl + 3*cursor->len) { + cursor->state = 2; + cursor->xor_count = 0; + ppc460ex_rxor_set_region (desc, + cursor->addr_count, + DMA_RXOR124 << DMA_CUED_REGION_OFF); + if (index == src_cnt-1) { + ppc460ex_adma_dma2rxor_inc_addr ( + desc, cursor, index, src_cnt); + } + } else if (addr == cursor->addrl + 4*cursor->len) { + cursor->state = 2; + cursor->xor_count = 0; + ppc460ex_rxor_set_region (desc, + cursor->addr_count, + DMA_RXOR125 << DMA_CUED_REGION_OFF); + if (index == src_cnt-1) { + ppc460ex_adma_dma2rxor_inc_addr ( + desc, cursor, index, src_cnt); + } + } else { + cursor->state = 0; + cursor->xor_count = 1; + cursor->addrl = addr; + ppc460ex_rxor_set_region (desc, + cursor->addr_count, + DMA_RXOR12 << DMA_CUED_REGION_OFF); + ppc460ex_adma_dma2rxor_inc_addr ( + desc, cursor, index, src_cnt); + } + break; + case 2: + cursor->state = 0; + cursor->addrl = addr; + cursor->xor_count++; + if (index) { + ppc460ex_adma_dma2rxor_inc_addr ( + desc, cursor, index, src_cnt); + } + break; + } + + return rval; +} + +/** + * ppc460ex_adma_dma2rxor_set_src - set RXOR source address; it's assumed that + * ppc460ex_adma_dma2rxor_prep_src() has already done prior this call + */ +static void ppc460ex_adma_dma2rxor_set_src (ppc460ex_desc_t *desc, + int index, dma_addr_t addr) +{ + xor_cb_t *xcb = desc->hw_desc; + int k = 0, op = 0, lop = 0; + + /* get the RXOR operand which corresponds to index addr */ + while (op <= index) { + lop = op; + if (k == XOR_MAX_OPS) { + k = 0; + desc = list_entry (desc->chain_node.next, + ppc460ex_desc_t, chain_node); + xcb = desc->hw_desc; + + } + if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) == + (DMA_RXOR12 << DMA_CUED_REGION_OFF)) + op += 2; + else + op += 3; + } + + if (test_bit(/*PPC460EX_DESC_RXOR_REV*/k-1, desc->reverse_flags)) { + /* reverse operand order; put last op in RXOR group */ + if (index == op - 1) + ppc460ex_rxor_set_src(desc, k - 1, addr); + } else { + /* direct operand order; put first op in RXOR group */ + if (index == lop) + ppc460ex_rxor_set_src(desc, k - 1, addr); + } +} + +/** + * ppc460ex_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that + * ppc460ex_adma_dma2rxor_prep_src() has already done prior this call + */ +static void ppc460ex_adma_dma2rxor_set_mult (ppc460ex_desc_t *desc, + int index, u8 mult) +{ + xor_cb_t *xcb = desc->hw_desc; + int k = 0, op = 0, lop = 0; + + /* get the RXOR operand which corresponds to index mult */ + while (op <= index) { + lop = op; + if (k == XOR_MAX_OPS) { + k = 0; + desc = list_entry (desc->chain_node.next, + ppc460ex_desc_t, chain_node); + xcb = desc->hw_desc; + + } + if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) == + (DMA_RXOR12 << DMA_CUED_REGION_OFF)) + op += 2; + else + op += 3; + } + + if (test_bit(/*PPC460EX_DESC_RXOR_REV*/k-1, desc->reverse_flags)) { + /* reverse order */ + ppc460ex_rxor_set_mult(desc, k - 1, op - index - 1, mult); + } else { + /* direct order */ + ppc460ex_rxor_set_mult(desc, k - 1, index - lop, mult); + } +} + +/** + * ppc460ex_init_rxor_cursor - + */ +static void ppc460ex_init_rxor_cursor (ppc460ex_rxor_cursor_t *cursor) +{ + memset (cursor, 0, sizeof (ppc460ex_rxor_cursor_t)); + cursor->state = 2; +} + +/** + * ppc460ex_adma_pqxor_set_src_mult - set multiplication coefficient into + * descriptor for the PQXOR operation + */ +static void ppc460ex_adma_pqxor_set_src_mult ( + ppc460ex_desc_t *sw_desc, + unsigned char mult, int index,int dst_pos) +{ + ppc460ex_ch_t *chan = to_ppc460ex_adma_chan(sw_desc->async_tx.chan); + u32 mult_idx, mult_dst; + ppc460ex_desc_t *iter=NULL, *iter1=NULL; + + switch (chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + if (test_bit(PPC460EX_DESC_RXOR, &sw_desc->flags)) { + int region = test_bit(PPC460EX_DESC_RXOR12, + &sw_desc->flags) ? 2 : 3; + + if (index < region) { + /* RXOR multipliers */ + + iter = ppc460ex_get_group_entry(sw_desc, + sw_desc->dst_cnt - 1); + if (sw_desc->dst_cnt == 2) + iter1 = ppc460ex_get_group_entry(sw_desc, 0); + mult_idx = DMA_CUED_MULT1_OFF + (index << 3); + mult_dst = DMA_CDB_SG_SRC; + } else { + /* WXOR multiplier */ + iter = ppc460ex_get_group_entry(sw_desc, + index - region + 1); + mult_idx = DMA_CUED_MULT1_OFF; + mult_dst = dst_pos ? DMA_CDB_SG_DST2 : + DMA_CDB_SG_DST1; + } + } else { + int znum = 0; + + /* WXOR-only; + * skip first slots with destinations (if ZERO_DST has + * place) + */ + if (test_bit(PPC460EX_ZERO_P, &sw_desc->flags)) + znum++; + if (test_bit(PPC460EX_ZERO_Q, &sw_desc->flags)) + znum++; + iter = ppc460ex_get_group_entry(sw_desc, index + znum); + mult_idx = DMA_CUED_MULT1_OFF; + mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1; + } + + if (likely(sw_desc)) + ppc460ex_desc_set_src_mult(iter, chan, + mult_idx, mult_dst, mult); + break; + case PPC460EX_XOR_ID: + iter = sw_desc->group_head; + if (iter->dst_cnt == 2) { + /* both P & Q calculations required; set Q mult here */ + ppc460ex_adma_dma2rxor_set_mult(iter, index, mult); + /* this is for P. Actually sw_desc already points + * to the second CDB though. + */ + mult = 1; + iter = ppc460ex_get_group_entry(sw_desc, + sw_desc->descs_per_op); + } + ppc460ex_adma_dma2rxor_set_mult(iter, index, mult); + break; + } +} +void ppc460ex_adma_xor_set_src_mult ( + ppc460ex_desc_t *sw_desc, + unsigned char mult, int index,int dst_pos) +{ + ppc460ex_ch_t *chan = to_ppc460ex_adma_chan(sw_desc->async_tx.chan); + u32 mult_idx, mult_dst; + ppc460ex_desc_t *iter=NULL, *iter1=NULL; + + switch (chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + if (test_bit(PPC460EX_DESC_RXOR, &sw_desc->flags)) { + int region = test_bit(PPC460EX_DESC_RXOR12, + &sw_desc->flags) ? 2 : 3; + + if (index < region) { + /* RXOR multipliers */ + + iter = ppc460ex_get_group_entry(sw_desc, + sw_desc->dst_cnt - 1); + if (sw_desc->dst_cnt == 2) + iter1 = ppc460ex_get_group_entry(sw_desc, 0); + mult_idx = DMA_CUED_MULT1_OFF + (index << 3); + mult_dst = DMA_CDB_SG_SRC; + } else { + /* WXOR multiplier */ + iter = ppc460ex_get_group_entry(sw_desc, + index - region + 1); + mult_idx = DMA_CUED_MULT1_OFF; + mult_dst = dst_pos ? DMA_CDB_SG_DST2 : + DMA_CDB_SG_DST1; + } + } else { + int znum = 0; + + /* WXOR-only; + * skip first slots with destinations (if ZERO_DST has + * place) + */ + if (test_bit(PPC460EX_ZERO_P, &sw_desc->flags)) + znum++; + if (test_bit(PPC460EX_ZERO_Q, &sw_desc->flags)) + znum++; + iter = ppc460ex_get_group_entry(sw_desc, index + znum); + mult_idx = DMA_CUED_MULT1_OFF; + mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1; + } + + if (likely(sw_desc)) + ppc460ex_desc_set_src_mult(iter, chan, + mult_idx, mult_dst, mult); + break; + } +} +/** + * ppc460ex_adma_pqxor_set_src_mult - set multiplication coefficient into + * descriptor for the PQXOR operation + */ +static void ppc460ex_adma_dma01_xor_set_src_mult ( + ppc460ex_desc_t *sw_desc, + unsigned char mult, int index) +{ + ppc460ex_ch_t *chan = to_ppc460ex_adma_chan(sw_desc->async_tx.chan); + u32 mult_idx, mult_dst; + + switch (chan->device->id) { + case PPC460EX_DMA0_ID: + case PPC460EX_DMA1_ID: + if (test_bit(PPC460EX_DESC_RXOR, &sw_desc->flags)) { + int region = test_bit(PPC460EX_DESC_RXOR12, + &sw_desc->flags) ? 2 : 3; + + if (index < region) { + /* RXOR multipliers */ + sw_desc = ppc460ex_get_group_entry(sw_desc, 0); + mult_idx = DMA_CUED_MULT1_OFF + (index << 3); + mult_dst = DMA_CDB_SG_SRC; + } else { + /* WXOR multiplier */ + sw_desc = ppc460ex_get_group_entry(sw_desc, + index - region + 1); + mult_idx = DMA_CUED_MULT1_OFF; + mult_dst = DMA_CDB_SG_DST1; + } + } else { + /* WXOR-only; + * skip first slots with destinations (if ZERO_DST has + * place) + */ + if (!test_bit(PPC460EX_ZERO_P, &sw_desc->flags)) { + sw_desc = ppc460ex_get_group_entry(sw_desc, + index); + } else { + sw_desc = ppc460ex_get_group_entry(sw_desc, + sw_desc->dst_cnt + index); + } + mult_idx = DMA_CUED_MULT1_OFF; + mult_dst = DMA_CDB_SG_DST1; + } + + if (likely(sw_desc)) { + ppc460ex_desc_set_src_mult(sw_desc, chan, + mult_idx, mult_dst, mult); + } + break; + } +} + +/** + * ppc460ex_adma_pqzero_sum_set_src_mult - set multiplication coefficient + * into descriptor for the PQ_VAL operation + */ +static void ppc460ex_adma_pqzero_sum_set_src_mult ( + ppc460ex_desc_t *sw_desc, + unsigned char mult, int index, int dst_pos) +{ + ppc460ex_ch_t *chan = to_ppc460ex_adma_chan(sw_desc->async_tx.chan); + u32 mult_idx, mult_dst; + + /* set mult for sources only */ + BUG_ON(index >= sw_desc->src_cnt); + + /* get pointed slot */ + sw_desc = ppc460ex_get_group_entry(sw_desc, index); + + mult_idx = DMA_CUED_MULT1_OFF; + mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1; + + if (likely(sw_desc)) + ppc460ex_desc_set_src_mult(sw_desc, chan, mult_idx, mult_dst, + mult); +} +#if 0 +/** + * ppc460ex_adma_dependency_added - schedule clean-up + */ +static void ppc460ex_adma_dependency_added(struct dma_chan *chan) +{ + ppc460ex_ch_t *ppc460ex_chan = to_ppc460ex_adma_chan(chan); + tasklet_schedule(&ppc460ex_chan->irq_tasklet); +} +#endif + +/** + * ppc460ex_adma_free_chan_resources - free the resources allocated + */ +static void ppc460ex_adma_free_chan_resources(struct dma_chan *chan) +{ + ppc460ex_ch_t *ppc460ex_chan = to_ppc460ex_adma_chan(chan); + ppc460ex_desc_t *iter, *_iter; + int in_use_descs = 0; + + ppc460ex_adma_slot_cleanup(ppc460ex_chan); + + spin_lock_bh(&ppc460ex_chan->lock); + list_for_each_entry_safe(iter, _iter, &ppc460ex_chan->chain, + chain_node) { + in_use_descs++; + list_del(&iter->chain_node); + } + list_for_each_entry_safe_reverse(iter, _iter, + &ppc460ex_chan->all_slots, slot_node) { + list_del(&iter->slot_node); + kfree(iter); + ppc460ex_chan->slots_allocated--; + } + ppc460ex_chan->last_used = NULL; + + dev_dbg(ppc460ex_chan->device->common.dev, + "ppc460ex adma%d %s slots_allocated %d\n", + ppc460ex_chan->device->id, + __FUNCTION__, ppc460ex_chan->slots_allocated); + spin_unlock_bh(&ppc460ex_chan->lock); + + /* one is ok since we left it on there on purpose */ + if (in_use_descs > 1) + printk(KERN_ERR "GT: Freeing %d in use descriptors!\n", + in_use_descs - 1); +} + +/** + * ppc460ex_adma_is_complete - poll the status of an ADMA transaction + * @chan: ADMA channel handle + * @cookie: ADMA transaction identifier + */ +static enum dma_status ppc460ex_adma_is_complete(struct dma_chan *chan, + dma_cookie_t cookie, dma_cookie_t *done, dma_cookie_t *used) +{ + ppc460ex_ch_t *ppc460ex_chan = to_ppc460ex_adma_chan(chan); + dma_cookie_t last_used; + dma_cookie_t last_complete; + enum dma_status ret; + + //printk( "--------------- %s: %i-------------------------\n",__FUNCTION__,__LINE__); + last_used = chan->cookie; + last_complete = ppc460ex_chan->completed_cookie; + + if (done) + *done= last_complete; + if (used) + *used = last_used; + + ret = dma_async_is_complete(cookie, last_complete, last_used); + if (ret == DMA_SUCCESS) + return ret; + + ppc460ex_adma_slot_cleanup(ppc460ex_chan); + + last_used = chan->cookie; + last_complete = ppc460ex_chan->completed_cookie; + + if (done) + *done= last_complete; + if (used) + *used = last_used; + + return dma_async_is_complete(cookie, last_complete, last_used); +} + +/** + * ppc460ex_adma_eot_handler - end of transfer interrupt handler + */ +static irqreturn_t ppc460ex_adma_eot_handler(int irq, void *data) +{ + ppc460ex_ch_t *chan = data; + + dev_dbg(chan->device->common.dev, + "ppc460ex adma%d: %s\n", chan->device->id, __FUNCTION__); + + tasklet_schedule(&chan->irq_tasklet); + ppc460ex_adma_device_clear_eot_status(chan); + + return IRQ_HANDLED; +} + +/** + * ppc460ex_adma_err_handler - DMA error interrupt handler; + * do the same things as a eot handler + */ +static irqreturn_t ppc460ex_adma_err_handler(int irq, void *data) +{ + ppc460ex_ch_t *chan = data; + dev_dbg(chan->device->common.dev, + "ppc460ex adma%d: %s\n", chan->device->id, __FUNCTION__); + tasklet_schedule(&chan->irq_tasklet); + ppc460ex_adma_device_clear_eot_status(chan); + + return IRQ_HANDLED; +} + +static void ppc460ex_test_rad6_callback (void *unused) +{ + complete(&ppc460ex_r6_test_comp); +} +/** + * ppc460ex_test_callback - called when test operation has been done + */ +static void ppc460ex_test_callback (void *unused) +{ + complete(&ppc460ex_r5_test_comp); +} + +/** + * ppc460ex_adma_issue_pending - flush all pending descriptors to h/w + */ +static void ppc460ex_adma_issue_pending(struct dma_chan *chan) +{ + ppc460ex_ch_t *ppc460ex_chan = to_ppc460ex_adma_chan(chan); +#if 0 + dev_dbg(ppc460ex_chan->device->common.dev, + "ppc460ex adma%d: %s %d \n", ppc460ex_chan->device->id, + __FUNCTION__, ppc460ex_chan->pending); +#endif + + if (ppc460ex_chan->pending) { + dev_dbg(ppc460ex_chan->device->common.dev, + "ppc460ex adma%d: %s %d \n", ppc460ex_chan->device->id, + __FUNCTION__, ppc460ex_chan->pending); + ppc460ex_chan->pending = 0; + ppc460ex_chan_append(ppc460ex_chan); + } +} + +/** + * ppc460ex_adma_remove - remove the asynch device + */ +static int __devexit ppc460ex_adma_remove(struct platform_device *dev) +{ + ppc460ex_dev_t *device = platform_get_drvdata(dev); + struct dma_chan *chan, *_chan; + struct ppc_dma_chan_ref *ref, *_ref; + ppc460ex_ch_t *ppc460ex_chan; + int i; + ppc460ex_aplat_t *plat_data = dev->dev.platform_data; + + dma_async_device_unregister(&device->common); + + for (i = 0; i < 3; i++) { + u32 irq; + irq = platform_get_irq(dev, i); + free_irq(irq, device); + } + + if ( (ppc460ex_chan) && (ppc460ex_chan->device->desc_memory == ADMA_DESC_MEM_OCM)) + ocm_free(device->dma_desc_pool_virt); + else + dma_free_coherent(&dev->dev, plat_data->pool_size, + device->dma_desc_pool_virt, device->dma_desc_pool); + + + do { + struct resource *res; + res = platform_get_resource(dev, IORESOURCE_MEM, 0); + release_mem_region(res->start, res->end - res->start); + } while (0); + + list_for_each_entry_safe(chan, _chan, &device->common.channels, + device_node) { + ppc460ex_chan = to_ppc460ex_adma_chan(chan); + list_del(&chan->device_node); + kfree(ppc460ex_chan); + } + + list_for_each_entry_safe(ref, _ref, &ppc_adma_chan_list, node) { + list_del(&ref->node); + kfree(ref); + } + + kfree(device); + + return 0; +} + +/** + * ppc460ex_adma_probe - probe the asynch device + */ +static int __devinit ppc460ex_adma_probe(struct of_device *ofdev, + const struct of_device_id *match) +{ + struct resource *res; + int ret=0, irq; + ppc460ex_dev_t *adev; + ppc460ex_ch_t *chan; + ppc460ex_aplat_t *plat_data; + struct ppc_dma_chan_ref *ref; + const char *str_prop; + + printk("Improved ADMA - 08312009\n"); + plat_data = &ppc460ex_dma_1_data; + if ((adev = kzalloc(sizeof(*adev), GFP_KERNEL)) == NULL) { + ret = -ENOMEM; + goto err_adev_alloc; + } + adev->res[0].start = ppc460ex_dma_1_channel.resource[0].start; + adev->id = ppc460ex_dma_1_channel.id; + printk("adev->res[0].start=0x%x\n",adev->res[0].start); + + printk( " adev->id = 0x%x ppc460ex_dma_1_channel.resource[0].start=0x%x \n", + adev->id,ppc460ex_dma_1_channel.resource[0].start); + + /* allocate coherent memory for hardware descriptors + * note: writecombine gives slightly better performance, but + * requires that we explicitly drain the write buffer + */ + str_prop = of_get_property(ofdev->node, "descriptor-memory", NULL); + if (str_prop && (!strcmp(str_prop,"ocm") || !strcmp(str_prop,"OCM"))) { + printk(KERN_INFO + " descriptor-memory = %s\n", str_prop); + adev->dma_desc_pool_virt = ocm_alloc(&adev->dma_desc_pool, DMA1_FIFO_SIZE << 2, 4, + OCM_NON_CACHED, "ADMA_descriptors"); + adev->desc_memory = ADMA_DESC_MEM_OCM; + } else { + + if ((adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev, + DMA1_FIFO_SIZE << 2, &adev->dma_desc_pool, GFP_KERNEL)) == NULL) { + ret = -ENOMEM; + goto err_dma_alloc; + } + adev->desc_memory = 0; + } + if (adev->dma_desc_pool_virt == NULL) { + ret = -ENOMEM; + goto err_dma_alloc; + } + dev_dbg(&ofdev->dev, "%s: allocted descriptor pool virt %p phys %p\n", + __FUNCTION__, adev->dma_desc_pool_virt, + (void *) adev->dma_desc_pool); + + adev->id = PPC460EX_DMA1_ID; + /* create the DMA capability MASK . This used to come from resources structure*/ + dma_cap_set(DMA_MEMCPY, adev->common.cap_mask); + dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask); + dma_cap_set(DMA_MEMSET, adev->common.cap_mask); + dma_cap_set(DMA_PQ, adev->common.cap_mask); + //dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask); + dma_cap_set(DMA_XOR, adev->common.cap_mask);/* Marri RAID-5 */ + dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask); + adev->odev = ofdev; + dev_set_drvdata(&(ofdev->dev), adev); + + INIT_LIST_HEAD(&adev->common.channels); + + /* set base routines */ + adev->common.device_alloc_chan_resources = + ppc460ex_adma_alloc_chan_resources; + adev->common.device_free_chan_resources = + ppc460ex_adma_free_chan_resources; + adev->common.device_is_tx_complete = ppc460ex_adma_is_complete; + adev->common.device_issue_pending = ppc460ex_adma_issue_pending; + adev->common.dev = &ofdev->dev; + + /* set prep routines based on capability */ +#if 1 + if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) { + adev->common.device_prep_dma_memcpy = + ppc460ex_adma_prep_dma_memcpy; + } +#endif + if (dma_has_cap(DMA_MEMSET, adev->common.cap_mask)) { + adev->common.device_prep_dma_memset = + ppc460ex_adma_prep_dma_memset; + } +#if 1 + if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) { + adev->common.max_xor = XOR_MAX_OPS; + adev->common.device_prep_dma_xor = ppc460ex_adma_prep_dma_mq_xor; + } +#endif +#if 1 + if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) { + adev->common.max_xor = XOR_MAX_OPS; + adev->common.device_prep_dma_xor_val = ppc460ex_adma_prep_dma_mq_zero_sum; + } +#endif + if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) { + switch (adev->id) { + case PPC460EX_DMA1_ID: + adev->common.max_pq = DMA1_FIFO_SIZE / + sizeof(dma_cdb_t); + break; + } + adev->common.device_prep_dma_pq = + ppc460ex_adma_prep_dma_pq; + + } + if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) { + switch (adev->id) { + case PPC460EX_DMA1_ID: + adev->common.max_pq = DMA1_FIFO_SIZE / + sizeof(dma_cdb_t); + break; + } + adev->common.device_prep_dma_pq_val = + ppc460ex_adma_prep_dma_pqzero_sum; + } + + if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) { + adev->common.device_prep_dma_interrupt = + ppc460ex_adma_prep_dma_interrupt; + } + + /* create a channel */ + if ((chan = kzalloc(sizeof(*chan), GFP_KERNEL)) == NULL) { + ret = -ENOMEM; + goto err_chan_alloc; + } + + tasklet_init(&chan->irq_tasklet, ppc460ex_adma_tasklet, + (unsigned long)chan); + irq = irq_of_parse_and_map(ofdev->node, 0); + printk("<%s> irq=0x%x\n",__FUNCTION__, irq); + if (irq >= 0) { + ret = request_irq(irq, ppc460ex_adma_eot_handler, + IRQF_DISABLED, "adma-compl", chan); + if (ret) { + printk("Failed to request IRQ %d\n",irq); + ret = -EIO; + goto err_irq; + } + + irq = irq_of_parse_and_map(ofdev->node, 2); + printk("<%s> irq=0x%x\n",__FUNCTION__, irq); + if (irq >= 0) { + ret = request_irq(irq, ppc460ex_adma_err_handler, + IRQF_DISABLED, "adma-err", chan); + if (ret) { + printk("Failed to request IRQ %d\n",irq); + ret = -EIO; + goto err_irq; + } + } + } else + ret = -ENXIO; + + chan->device = adev; + + /* pass the platform data */ + chan->device->odev->dev.platform_data = &ppc460ex_dma_1_data; + spin_lock_init(&chan->lock); +#if 0 + init_timer(&chan->cleanup_watchdog); + chan->cleanup_watchdog.data = (unsigned long) chan; + chan->cleanup_watchdog.function = ppc460ex_adma_tasklet; +#endif + INIT_LIST_HEAD(&chan->chain); + INIT_LIST_HEAD(&chan->all_slots); + chan->common.device = &adev->common; + list_add_tail(&chan->common.device_node, &adev->common.channels); + + dev_dbg(&ofdev->dev, "AMCC(R) PPC460 ADMA Engine found [%d]: " + "( %s%s%s%s%s%s%s%s)\n", + adev->id, + dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq_xor " : "", + dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_zero_sum " : + "", + dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "", + dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_zero_sum " : + "", + dma_has_cap(DMA_MEMSET, adev->common.cap_mask) ? "memset " : "", + dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "", + dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "int " : ""); + + dma_async_device_register(&adev->common); + ref = kmalloc(sizeof(*ref), GFP_KERNEL); + printk("<%s> ret=0x%x\n", __FUNCTION__,ret); + if (ref) { + ref->chan = &chan->common; + INIT_LIST_HEAD(&ref->node); + list_add_tail(&ref->node, &ppc_adma_chan_list); + } else + printk(KERN_WARNING "%s: failed to allocate channel reference!\n", + __FUNCTION__); + goto out; + +err_irq: + free_irq(irq,&adev->id); +err_chan_alloc: + kfree(chan); +err_dma_alloc: + if ( chan->device->desc_memory == ADMA_DESC_MEM_OCM) + ocm_free(adev->dma_desc_pool_virt ); + else + dma_free_coherent(&ofdev->dev,DMA1_FIFO_SIZE << 2, + adev->dma_desc_pool_virt, adev->dma_desc_pool); +err_adev_alloc: + kfree(adev); + release_mem_region(res->start, res->end - res->start); +out: + return ret; +} + +/** + * ppc460ex_chan_start_null_xor - initiate the first XOR operation (DMA engines + * use FIFOs (as opposite to chains used in XOR) so this is a XOR + * gtcific operation) + */ +static void ppc460ex_chan_start_null_xor(ppc460ex_ch_t *chan) +{ + ppc460ex_desc_t *sw_desc, *group_start; + dma_cookie_t cookie; + int slot_cnt, slots_per_op; + + dev_dbg(chan->device->common.dev, + "ppc460ex adma%d: %s\n", chan->device->id, __FUNCTION__); + + spin_lock_bh(&chan->lock); + slot_cnt = ppc460ex_chan_xor_slot_count(0, 2, &slots_per_op); + sw_desc = ppc460ex_adma_alloc_slots(chan, slot_cnt, slots_per_op); + if (sw_desc) { + group_start = sw_desc->group_head; + list_splice_init(&sw_desc->group_list, &chan->chain); + async_tx_ack(&sw_desc->async_tx); + ppc460ex_desc_init_null_xor(group_start); + + cookie = chan->common.cookie; + cookie++; + if (cookie <= 1) + cookie = 2; + + /* initialize the completed cookie to be less than + * the most recently used cookie + */ + chan->completed_cookie = cookie - 1; + chan->common.cookie = sw_desc->async_tx.cookie = cookie; + + /* channel should not be busy */ + BUG_ON(ppc460ex_chan_is_busy(chan)); + + /* set the descriptor address */ + ppc460ex_chan_set_first_xor_descriptor(chan, sw_desc); + + /* run the descriptor */ + ppc460ex_chan_run(chan); + } else + printk(KERN_ERR "ppc460ex adma%d" + " failed to allocate null descriptor\n", + chan->device->id); + spin_unlock_bh(&chan->lock); +} + +/** + * ppc460ex_test_raid6 - test are RAID-6 capabilities enabled successfully. + * For this we just perform one WXOR operation with the same source + * and destination addresses, the GF-multiplier is 1; so if RAID-6 + o/of_platform_driver_unregister(&ppc460ex_adma_driver); + * capabilities are enabled then we'll get src/dst filled with zero. + */ +static int ppc460ex_test_raid6 (ppc460ex_ch_t *chan) +{ + ppc460ex_desc_t *sw_desc, *iter; + struct page *pg; + char *a; + dma_addr_t dma_addr, addrs[2];; + unsigned long op = 0; + int rval = 0; + + if (!ppc460ex_r6_tchan) + return -1; + /*FIXME*/ + + set_bit(PPC460EX_DESC_WXOR, &op); + + pg = alloc_page(GFP_KERNEL); + if (!pg) + return -ENOMEM; + + spin_lock_bh(&chan->lock); + sw_desc = ppc460ex_adma_alloc_slots(chan, 1, 1); + if (sw_desc) { + /* 1 src, 1 dsr, int_ena, WXOR */ + ppc460ex_desc_init_pq(sw_desc, 1, 1, 1, op); + list_for_each_entry(iter, &sw_desc->group_list, chain_node) { + ppc460ex_desc_set_byte_count(iter, chan, PAGE_SIZE); + iter->unmap_len = PAGE_SIZE; + } + } else { + rval = -EFAULT; + spin_unlock_bh(&chan->lock); + goto exit; + } + spin_unlock_bh(&chan->lock); + + /* Fill the test page with ones */ + memset(page_address(pg), 0xFF, PAGE_SIZE); +#if 0 + int i = 0; + char *pg_addr = page_address(pg); + //for(i=0;i < PAGE_SIZE; i+=64) + for(i=0;i < 1000; i+=64) + printk("addr = 0x%x data = 0x%x\n",pg_addr + i,*(pg_addr+i)); +#endif + dma_addr = dma_map_page(&chan->device->odev->dev, pg, 0, PAGE_SIZE, + DMA_BIDIRECTIONAL); + + /* Setup adresses */ + ppc460ex_adma_pqxor_set_src(sw_desc, dma_addr, 0); + ppc460ex_adma_pqxor_set_src_mult(sw_desc, 1, 0,0); + addrs[0] = dma_addr; + addrs[1] = 0; + ppc460ex_adma_pqxor_set_dest(sw_desc, addrs, DMA_PREP_HAVE_P); + + async_tx_ack(&sw_desc->async_tx); + sw_desc->async_tx.callback = ppc460ex_test_rad6_callback; + sw_desc->async_tx.callback_param = NULL; + + init_completion(&ppc460ex_r6_test_comp); + + ppc460ex_adma_tx_submit(&sw_desc->async_tx); + ppc460ex_adma_issue_pending(&chan->common); + + wait_for_completion(&ppc460ex_r6_test_comp); + + /* Now check is the test page zeroed */ + a = page_address(pg); +#if 0 + i = 0; + for(i=0;i < PAGE_SIZE; i+=64) + printk("addr = 0x%x data = 0x%x\n",a + i,*(a+i)); +#endif + if ((*(u32*)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4)==0) { + /* page is zero - RAID-6 enabled */ + rval = 0; + } else { + /* RAID-6 was not enabled */ + rval = -EINVAL; + } + //printk(__LINE__,__FUNCTION__); +exit: + __free_page(pg); + return rval; +} +/** + * ppc460ex_test_raid5 - test are RAID-5 capabilities enabled successfully. + * For this we just perform one WXOR operation with the same source + * and destination addresses, the GF-multiplier is 1; so if RAID-5 + o/of_platform_driver_unregister(&ppc460ex_adma_driver); + * capabilities are enabled then we'll get src/dst filled with zero. + */ +static int ppc460ex_test_raid5 (ppc460ex_ch_t *chan) +{ + ppc460ex_desc_t *sw_desc, *iter; + struct page *pg; + char *a; + dma_addr_t dma_addr; + unsigned long op = 0; + int rval = 0; + + if (!ppc460ex_r5_tchan) + return -1; + /*FIXME*/ + + set_bit(PPC460EX_DESC_WXOR, &op); + + pg = alloc_page(GFP_KERNEL); + if (!pg) + return -ENOMEM; + + spin_lock_bh(&chan->lock); + sw_desc = ppc460ex_adma_alloc_slots(chan, 1, 1); + if (sw_desc) { + /* 1 src, 1 dsr, int_ena, WXOR */ + //ppc460ex_desc_init_pqxor(sw_desc, 1, 1, 1, op); + ppc460ex_desc_init_dma01_xor(sw_desc, 1, 1, 1, op); + list_for_each_entry(iter, &sw_desc->group_list, chain_node) { + ppc460ex_desc_set_byte_count(iter, chan, PAGE_SIZE); + iter->unmap_len = PAGE_SIZE; + } + } else { + rval = -EFAULT; + spin_unlock_bh(&chan->lock); + goto exit; + } + spin_unlock_bh(&chan->lock); + + /* Fill the test page with ones */ + memset(page_address(pg), 0xFF, PAGE_SIZE); +#if 0 + int i = 0; + char *pg_addr = page_address(pg); + for(i=0;i < PAGE_SIZE; i+=64) + printk("addr = 0x%x data = 0x%x\n",pg_addr + i,*(pg_addr+i)); +#endif + //dma_addr = dma_map_page(&chan->device->common, pg, 0, PAGE_SIZE, + dma_addr = dma_map_page(&chan->device->odev->dev, pg, 0, PAGE_SIZE, + DMA_BIDIRECTIONAL); + + /* Setup adresses */ + ppc460ex_adma_dma01_xor_set_src(sw_desc, dma_addr, 0); + ppc460ex_adma_dma01_xor_set_src_mult(sw_desc, 1, 0); + ppc460ex_adma_dma01_xor_set_dest(sw_desc, dma_addr, 0); + + async_tx_ack(&sw_desc->async_tx); + sw_desc->async_tx.callback = ppc460ex_test_callback; + sw_desc->async_tx.callback_param = NULL; + + init_completion(&ppc460ex_r5_test_comp); + + ppc460ex_adma_tx_submit(&sw_desc->async_tx); + ppc460ex_adma_issue_pending(&chan->common); + + wait_for_completion(&ppc460ex_r5_test_comp); + + /*Make sure cache is flushed to memory*/ + dma_addr = dma_map_page(&chan->device->odev->dev, pg, 0, PAGE_SIZE, + DMA_BIDIRECTIONAL); + /* Now check is the test page zeroed */ + a = page_address(pg); +#if 0 + i = 0; + for(i=0;i < PAGE_SIZE; i+=64) + printk("addr = 0x%x data = 0x%x\n",a + i,*(a+i)); +#endif + if ((*(u32*)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4)==0) { + /* page is zero - RAID-5 enabled */ + rval = 0; + } else { + /* RAID-5 was not enabled */ + rval = -EINVAL; + } + pr_dma(__LINE__,__FUNCTION__); +exit: + __free_page(pg); + return rval; +} +#if 1 +static struct of_device_id adma_match[] = +{ + { + .compatible = "amcc,adma", + }, + {}, +}; +static struct of_platform_driver ppc460ex_adma_driver = { + .name = "adma", + .match_table = adma_match, + + .probe = ppc460ex_adma_probe, + .remove = ppc460ex_adma_remove, +}; +#else +static struct platform_driver ppc460ex_adma_driver= { + .probe = ppc460ex_adma_probe, + .remove = ppc460ex_adma_remove, + .driver = { + .owner = "marri", + .name = "PPC460EX-ADMA", + }, +}; +#endif + +/** + * /proc interface + */ +static int ppc460ex_poly_read (char *page, char **start, off_t off, + int count, int *eof, void *data) +{ + char *p = page; + u32 reg; + +#ifdef CONFIG_440SP + /* 440SP has fixed polynomial */ + reg = 0x4d; +#else + reg = mfdcr(DCRN_MQ0_CFBHL); + reg >>= MQ0_CFBHL_POLY; + reg &= 0xFF; +#endif + + p += sprintf (p, "PPC460EX RAID-5 driver uses 0x1%02x polynomial.\n", + reg); + + return p - page; +} + +static int ppc460ex_poly_write (struct file *file, const char __user *buffer, + unsigned long count, void *data) +{ + /* e.g., 0x14D or 0x11d */ + char tmp[6]; + unsigned long val, rval; + +#ifdef CONFIG_440SP + /* 440SP use default 0x14D polynomial only */ + return -EINVAL; +#endif + + if (!count || count > 6) + return -EINVAL; + + if (copy_from_user(tmp, buffer, count)) + return -EFAULT; + + tmp[count] = 0; + val = simple_strtoul(tmp, NULL, 16); + + if (val & ~0x1FF) + return -EINVAL; + + val &= 0xFF; + rval = mfdcr(DCRN_MQ0_CFBHL); + rval &= ~(0xFF << MQ0_CFBHL_POLY); + rval |= val << MQ0_CFBHL_POLY; + mtdcr(DCRN_MQ0_CFBHL, rval); + + return count; +} + +static int ppc460ex_r6ena_read (char *page, char **start, off_t off, + int count, int *eof, void *data) +{ + char *p = page; + + p += sprintf(p, "%s\n", + ppc460ex_r6_enabled ? + "PPC460Ex RAID-6 capabilities are ENABLED.\n" : + "PPC460Ex RAID-6 capabilities are DISABLED.\n"); + + return p - page; +} + +static int ppc460ex_r6ena_write (struct file *file, const char __user *buffer, + unsigned long count, void *data) +{ + /* e.g. 0xffffffff */ + char tmp[11]; + unsigned long val; + + if (!count || count > 11) + return -EINVAL; + + if (!ppc460ex_r6_tchan) + return -EFAULT; + + if (copy_from_user(tmp, buffer, count)) + return -EFAULT; + + /* Write a key */ + val = simple_strtoul(tmp, NULL, 16); + mtdcr(DCRN_MQ0_XORBA, val); + isync(); + + /* Verify does it really work now */ + if (ppc460ex_test_raid6(ppc460ex_r6_tchan) == 0) { + /* PPC440SP(e) RAID-6 has been activated successfully */; + printk(KERN_INFO "PPC460Ex RAID-6 has been activated " + "successfully\n"); + ppc460ex_r6_enabled = 0; + ppc460ex_r5_enabled = 0; + } else { + /* PPC440SP(e) RAID-6 hasn't been activated! Error key ? */; + printk(KERN_INFO "PPC460Ex RAID-6 hasn't been activated!" + " Error key ?\n"); + ppc460ex_r6_enabled = 0; + } + + return count; +} +static int ppc460ex_r5ena_read (char *page, char **start, off_t off, + int count, int *eof, void *data) +{ + char *p = page; + + p += sprintf(p, "%s\n", + ppc460ex_r5_enabled ? + "PPC460Ex RAID-r5 capabilities are ENABLED.\n" : + "PPC460Ex RAID-r5 capabilities are DISABLED.\n"); + + return p - page; +} + +static int ppc460ex_r5ena_write (struct file *file, const char __user *buffer, + unsigned long count, void *data) +{ + /* e.g. 0xffffffff */ + char tmp[11]; + unsigned long val; + + if (!count /*|| count > 11*/) + return -EINVAL; + + if (!ppc460ex_r5_tchan) + return -EFAULT; + + if (copy_from_user(tmp, buffer, count)) + return -EFAULT; + + /* Write a key */ + val = simple_strtoul(tmp, NULL, 16); + mtdcr(DCRN_MQ0_XORBA, val); + isync(); + + /* Verify does it really work now */ + if (ppc460ex_test_raid5(ppc460ex_r5_tchan) == 0) { + /* PPC440SP(e) RAID-6 has been activated successfully */; + printk(KERN_INFO "PPC460Ex RAID-5 has been activated " + "successfully\n"); + ppc460ex_r5_enabled = 1; + ppc460ex_r6_enabled = 0; + } else { + /* PPC440SP(e) RAID-6 hasn't been activated! Error key ? */; + printk(KERN_INFO "PPC460Ex RAID-5 hasn't been activated!" + " Error key ?\n"); + ppc460ex_r5_enabled = 0; + } + + return count; +} + +static int __init ppc460ex_adma_init (void) +{ + int rval; + struct proc_dir_entry *p; + + ppc460ex_configure_raid_devices(); + rval = of_register_platform_driver(&ppc460ex_adma_driver); + //rval = platform_driver_register(&ppc460ex_adma_driver); + + if (rval == 0) { + /* Create /proc entries */ + ppc460ex_proot = proc_mkdir(PPC460EX_R5_PROC_ROOT, NULL); + if (!ppc460ex_proot) { + printk(KERN_ERR "%s: failed to create %s proc " + "directory\n",__FUNCTION__,PPC460EX_R5_PROC_ROOT); + /* User will not be able to enable h/w RAID-6 */ + return rval; + } + + /* GF polynome to use */ + p = create_proc_entry("poly", 0, ppc460ex_proot); + if (p) { + p->read_proc = ppc460ex_poly_read; + p->write_proc = ppc460ex_poly_write; + } + + /* RAID-6 h/w enable entry */ + p = create_proc_entry("enable", 0, ppc460ex_proot); + if (p) { + p->read_proc = ppc460ex_r5ena_read; + p->write_proc = ppc460ex_r5ena_write; + } + /* Create /proc entries */ + ppc460ex_pqroot = proc_mkdir(PPC460EX_R6_PROC_ROOT, NULL); + if (!ppc460ex_pqroot) { + printk(KERN_ERR "%s: failed to create %s proc " + "directory\n",__FUNCTION__,PPC460EX_R6_PROC_ROOT); + /* User will not be able to enable h/w RAID-6 */ + return rval; + } + + /* GF polynome to use */ + p = create_proc_entry("poly", 0, ppc460ex_pqroot); + if (p) { + p->read_proc = ppc460ex_poly_read; + p->write_proc = ppc460ex_poly_write; + } + + /* RAID-6 h/w enable entry */ + p = create_proc_entry("enable", 0, ppc460ex_pqroot); + if (p) { + p->read_proc = ppc460ex_r6ena_read; + p->write_proc = ppc460ex_r6ena_write; + } + } + return rval; +} + +#if 0 +static void __exit ppc460ex_adma_exit (void) +{ + of_unregister_platform_driver(&ppc460ex_adma_driver); + return; +} +module_exit(ppc460ex_adma_exit); +#endif + +module_init(ppc460ex_adma_init); + +MODULE_AUTHOR("Tirumala Marri<tmarri@amcc.com>"); +MODULE_DESCRIPTION("PPC460EX ADMA Engine Driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/dma/ppc460ex-plbadma.c b/drivers/dma/ppc460ex-plbadma.c new file mode 100644 index 00000000000..44467211cba --- /dev/null +++ b/drivers/dma/ppc460ex-plbadma.c @@ -0,0 +1,2009 @@ +/* + * Copyright(c) 2006 DENX Engineering. All rights reserved. + * + * Author: Tirumala Marr <tmarri@amcc.com> + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the Free + * Software Foundation; either version 2 of the License, or (at your option) + * any later version. + * + * This program is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., 59 + * Temple Place - Suite 330, Boston, MA 02111-1307, USA. + * + * The full GNU General Public License is included in this distribution in the + * file called COPYING. + */ + +/* + * This driver supports the asynchrounous DMA copy and RAID engines available + * on the AMCC PPC460ex Processors. + * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x) + * ADMA driver written by D.Williams. + */ + +#include <linux/init.h> +#include <linux/module.h> +#include <linux/async_tx.h> +#include <linux/delay.h> +#include <linux/dma-mapping.h> +#include <linux/spinlock.h> +#include <linux/interrupt.h> +#include <linux/platform_device.h> +#include <linux/uaccess.h> +#include <linux/of_platform.h> +#include <linux/proc_fs.h> +#include <asm/dcr.h> +#include <asm/dcr-regs.h> +#include <asm/ppc460ex_plb_adma.h> +#include <asm/ppc460ex_xor.h> +#define PPC44x_SRAM_ADDR 0x00000000400048000ULL +//#define PPC44x_SRAM_SIZE 0x10000 /* 64 Kb*/ +#define PPC44x_SRAM_SIZE 0x8000 /* 32 Kb*/ +//#define CONFIG_ADMA_SRAM 1 + +/* The list of channels exported by ppc460ex ADMA */ +struct list_head +ppc_adma_p_chan_list = LIST_HEAD_INIT(ppc_adma_p_chan_list); + +/* This flag is set when want to refetch the xor chain in the interrupt + * handler + */ +static u32 do_xor_refetch = 0; + +/* Pointers to last submitted to DMA0, DMA1 CDBs */ +static ppc460ex_p_desc_t *chan_last_sub[4]; +static ppc460ex_p_desc_t *chan_first_cdb[4]; + +/* Pointer to last linked and submitted xor CB */ +static ppc460ex_p_desc_t *xor_last_linked = NULL; +static ppc460ex_p_desc_t *xor_last_submit = NULL; + + +/* Since RXOR operations use the common register (MQ0_CF2H) for setting-up + * the block size in transactions, then we do not allow to activate more than + * only one RXOR transactions simultaneously. So use this var to store + * the information about is RXOR currently active (PPC460EX_RXOR_RUN bit is + * set) or not (PPC460EX_RXOR_RUN is clear). + */ + +/* /proc interface is used here to enable the h/w RAID-6 capabilities + */ +static struct proc_dir_entry *ppc460ex_proot; + +/* These are used in enable & check routines + */ +static u32 ppc460ex_r6_enabled; +static u32 ppc460ex_r5_enabled; +static ppc460ex_p_ch_t *ppc460ex_r6_tchan; +static ppc460ex_p_ch_t *ppc460ex_dma_tchan; +static struct completion ppc460ex_r6_test_comp; +static struct completion ppc460ex_r5_test_comp; + +#if 1 +static inline void pr_dma(int x, char *str) +{ + if(mfdcr(0x60)) { + printk("<%s> Line:%d\n",str,x); + } +} +#else +static inline void pr_dma(int x, char *str) +{ +} +#endif +static phys_addr_t fixup_bigphys_addr(phys_addr_t addr, phys_addr_t size) +{ + phys_addr_t page_4gb = 0; + + return (page_4gb | addr); +} + + +/****************************************************************************** + * Command (Descriptor) Blocks low-level routines + ******************************************************************************/ +/** + * ppc460ex_desc_init_interrupt - initialize the descriptor for INTERRUPT + * pseudo operation + */ +static inline void ppc460ex_desc_init_interrupt (ppc460ex_p_desc_t *desc, + ppc460ex_p_ch_t *chan) +{ + u32 base = 0; + dma_cdb_t *hw_desc; + + + hw_desc = desc->hw_desc; + + + memset (desc->hw_desc, 0, sizeof(dma_cdb_t)); + switch (chan->chan_id) { + case PPC460EX_PDMA0_ID: + base = DCR_DMA0_BASE; + break; + case PPC460EX_PDMA1_ID: + base = DCR_DMA1_BASE; + break; + case PPC460EX_PDMA2_ID: + base = DCR_DMA2_BASE; + break; + case PPC460EX_PDMA3_ID: + base = DCR_DMA3_BASE; + break; + default: + printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id, + __FUNCTION__); + BUG(); + break; + } + hw_desc->ctrl = mfdcr(base + DCR_DMA2P40_CTC0); + set_bit(PPC460EX_DESC_INT, &desc->flags); + set_bit(DMA_CIE_ENABLE,hw_desc->ctrl); +} + +/** + * ppc460ex_desc_init_memcpy - initialize the descriptor for MEMCPY operation + */ +static inline void ppc460ex_desc_init_memcpy(ppc460ex_p_desc_t *desc, + unsigned long flags) +{ + + memset (desc->hw_desc, 0, sizeof(dma_cdb_t)); + desc->hw_next = NULL; + desc->src_cnt = 1; + desc->dst_cnt = 1; + + if (flags & DMA_PREP_INTERRUPT) + set_bit(PPC460EX_DESC_INT, &desc->flags); + else + clear_bit(PPC460EX_DESC_INT, &desc->flags); + +} + +/** + * ppc460ex_desc_init_memset - initialize the descriptor for MEMSET operation + */ +static inline void ppc460ex_desc_init_memset(ppc460ex_p_desc_t *desc, int value, + unsigned long flags) +{ + dma_cdb_t *hw_desc = desc->hw_desc; + + memset (desc->hw_desc, 0, sizeof(dma_cdb_t)); + desc->hw_next = NULL; + desc->src_cnt = 1; + desc->dst_cnt = 1; + + if (flags & DMA_PREP_INTERRUPT) + set_bit(PPC460EX_DESC_INT, &desc->flags); + else + clear_bit(PPC460EX_DESC_INT, &desc->flags); + +} + +/** + * ppc460ex_desc_set_src_addr - set source address into the descriptor + */ +static inline void ppc460ex_desc_set_src_addr( ppc460ex_p_desc_t *desc, + ppc460ex_p_ch_t *chan, + dma_addr_t addrh, dma_addr_t addrl) +{ + dma_cdb_t *dma_hw_desc; + phys_addr_t addr64, tmplow, tmphi; + u32 base = 0; + + dma_hw_desc = desc->hw_desc; + switch (chan->chan_id) { + case PPC460EX_PDMA0_ID: + base = DCR_DMA0_BASE; + break; + case PPC460EX_PDMA1_ID: + base = DCR_DMA1_BASE; + break; + case PPC460EX_PDMA2_ID: + base = DCR_DMA2_BASE; + break; + case PPC460EX_PDMA3_ID: + base = DCR_DMA3_BASE; + break; + default: + BUG(); + } + if (!addrh) { + addr64 = fixup_bigphys_addr(addrl, sizeof(phys_addr_t)); + tmphi = (addr64 >> 32); + tmplow = (addr64 & 0xFFFFFFFF); + } else { + tmphi = addrh; + tmplow = addrl; + } + dma_hw_desc->src_hi = tmphi; + dma_hw_desc->src_lo = tmplow; +} + + +/** + * ppc460ex_desc_set_dest_addr - set destination address into the descriptor + */ +static inline void ppc460ex_desc_set_dest_addr(ppc460ex_p_desc_t *desc, + ppc460ex_p_ch_t *chan, + dma_addr_t addrh, dma_addr_t addrl) +{ + dma_cdb_t *dma_hw_desc; + phys_addr_t addr64, tmphi, tmplow; + + dma_hw_desc = desc->hw_desc; + switch (chan->chan_id) { + case PPC460EX_PDMA0_ID: + case PPC460EX_PDMA1_ID: + case PPC460EX_PDMA2_ID: + case PPC460EX_PDMA3_ID: + break; + default : + BUG(); + } + + if (!addrh) { + addr64 = fixup_bigphys_addr(addrl, sizeof(phys_addr_t)); + tmphi = (addr64 >> 32); + tmplow = (addr64 & 0xFFFFFFFF); + } else { + tmphi = addrh; + tmplow = addrl; + } + dma_hw_desc->dest_hi = tmphi; + dma_hw_desc->dest_lo = tmplow; +} + +/** + * ppc460ex_desc_set_byte_count - set number of data bytes involved + * into the operation + */ +static inline void ppc460ex_desc_set_byte_count(ppc460ex_p_desc_t *desc, + ppc460ex_p_ch_t *chan, u32 byte_count) +{ + dma_cdb_t *dma_hw_desc; + u32 base = 0; + u32 count = 0; + u32 error = 0; + + dma_hw_desc = desc->hw_desc; + switch (chan->chan_id) { + case PPC460EX_PDMA0_ID: + base = DCR_DMA0_BASE; + break; + case PPC460EX_PDMA1_ID: + base = DCR_DMA1_BASE; + break; + case PPC460EX_PDMA2_ID: + base = DCR_DMA2_BASE; + break; + case PPC460EX_PDMA3_ID: + base = DCR_DMA3_BASE; + break; + } + switch (chan->pwidth) { + case PW_8: + break; + case PW_16: + if (count & 0x1) + error = 1; + break; + case PW_32: + if (count & 0x3) + error = 1; + break; + case PW_64: + if (count & 0x7) + error = 1; + break; + + case PW_128: + if (count & 0xf) + error = 1; + break; + default: + printk("set_dma_count: invalid bus width: 0x%x\n", + chan->pwidth); + return; + } + if (error) + printk + ("Warning: set_dma_count count 0x%x bus width %d\n", + count, chan->pwidth); + + count = count >> chan->shift; + dma_hw_desc->cnt = count; + + +} + +/** + * ppc460ex_desc_set_link - set the address of descriptor following this + * descriptor in chain + */ +static inline void ppc460ex_desc_set_link(ppc460ex_p_ch_t *chan, + ppc460ex_p_desc_t *prev_desc, ppc460ex_p_desc_t *next_desc) +{ + unsigned long flags; + ppc460ex_p_desc_t *tail = next_desc; + + if (unlikely(!prev_desc || !next_desc || + (prev_desc->hw_next && prev_desc->hw_next != next_desc))) { + /* If previous next is overwritten something is wrong. + * though we may refetch from append to initiate list + * processing; in this case - it's ok. + */ + printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; " + "prev->hw_next=0x%p\n", __FUNCTION__, prev_desc, + next_desc, prev_desc ? prev_desc->hw_next : 0); + BUG(); + } + + local_irq_save(flags); + + /* do s/w chaining both for DMA and XOR descriptors */ + prev_desc->hw_next = next_desc; + + switch (chan->chan_id) { + case PPC460EX_PDMA0_ID: + case PPC460EX_PDMA1_ID: + case PPC460EX_PDMA2_ID: + case PPC460EX_PDMA3_ID: + break; + default: + BUG(); + } + + local_irq_restore(flags); +} + +/** + * ppc460ex_desc_get_src_addr - extract the source address from the descriptor + */ +static inline u32 ppc460ex_desc_get_src_addr(ppc460ex_p_desc_t *desc, + ppc460ex_p_ch_t *chan, int src_idx) +{ + dma_cdb_t *dma_hw_desc; + u32 base; + + dma_hw_desc = desc->hw_desc; + + switch (chan->chan_id) { + case PPC460EX_PDMA0_ID: + base = DCR_DMA0_BASE; + break; + case PPC460EX_PDMA1_ID: + base = DCR_DMA1_BASE; + break; + case PPC460EX_PDMA2_ID: + base = DCR_DMA2_BASE; + break; + case PPC460EX_PDMA3_ID: + base = DCR_DMA3_BASE; + break; + default: + return 0; + } + /* May have 0, 1, 2, or 3 sources */ + return (dma_hw_desc->src_lo); +} + +/** + * ppc460ex_desc_get_dest_addr - extract the destination address from the + * descriptor + */ +static inline u32 ppc460ex_desc_get_dest_addr(ppc460ex_p_desc_t *desc, + ppc460ex_p_ch_t *chan, int idx) +{ + dma_cdb_t *dma_hw_desc; + u32 base; + + dma_hw_desc = desc->hw_desc; + + switch (chan->chan_id) { + case PPC460EX_PDMA0_ID: + base = DCR_DMA0_BASE; + break; + case PPC460EX_PDMA1_ID: + base = DCR_DMA1_BASE; + break; + case PPC460EX_PDMA2_ID: + base = DCR_DMA2_BASE; + break; + case PPC460EX_PDMA3_ID: + base = DCR_DMA3_BASE; + break; + default: + return 0; + } + + /* May have 0, 1, 2, or 3 sources */ + return (dma_hw_desc->dest_lo); +} + +/** + * ppc460ex_desc_get_byte_count - extract the byte count from the descriptor + */ +static inline u32 ppc460ex_desc_get_byte_count(ppc460ex_p_desc_t *desc, + ppc460ex_p_ch_t *chan) +{ + dma_cdb_t *dma_hw_desc; + u32 base; + + dma_hw_desc = desc->hw_desc; + + switch (chan->chan_id) { + case PPC460EX_PDMA0_ID: + base = DCR_DMA0_BASE; + break; + case PPC460EX_PDMA1_ID: + base = DCR_DMA1_BASE; + break; + case PPC460EX_PDMA2_ID: + base = DCR_DMA2_BASE; + break; + case PPC460EX_PDMA3_ID: + base = DCR_DMA3_BASE; + break; + default: + return 0; + } + /* May have 0, 1, 2, or 3 sources */ + return (dma_hw_desc->cnt); +} + + +/** + * ppc460ex_desc_get_link - get the address of the descriptor that + * follows this one + */ +static inline u32 ppc460ex_desc_get_link(ppc460ex_p_desc_t *desc, + ppc460ex_p_ch_t *chan) +{ + if (!desc->hw_next) + return 0; + + return desc->hw_next->phys; +} + +/** + * ppc460ex_desc_is_aligned - check alignment + */ +static inline int ppc460ex_desc_is_aligned(ppc460ex_p_desc_t *desc, + int num_slots) +{ + return (desc->idx & (num_slots - 1)) ? 0 : 1; +} + + + +/****************************************************************************** + * ADMA channel low-level routines + ******************************************************************************/ + +static inline u32 ppc460ex_chan_get_current_descriptor(ppc460ex_p_ch_t *chan); +static inline void ppc460ex_chan_append(ppc460ex_p_ch_t *chan); + +/* + * ppc460ex_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine + */ +static inline void ppc460ex_adma_device_clear_eot_status (ppc460ex_p_ch_t *chan) +{ + u8 *p = chan->dma_desc_pool_virt; + dma_cdb_t *cdb; + u32 rv ; + u32 base; + + switch (chan->chan_id) { + case PPC460EX_PDMA0_ID: + base = DCR_DMA0_BASE; + break; + case PPC460EX_PDMA1_ID: + base = DCR_DMA1_BASE; + break; + case PPC460EX_PDMA2_ID: + base = DCR_DMA2_BASE; + break; + case PPC460EX_PDMA3_ID: + base = DCR_DMA3_BASE; + break; + + rv = mfdcr(base + DCR_DMA2P40_CR0) & ((DMA_CH0_ERR >> chan->chan_id)); + if (rv) { + printk("DMA%d err status: 0x%x\n", chan->device->id, + rv); + /* write back to clear */ + mtdcr(base + DCR_DMA2P40_CR0, rv); + } + break; + default: + break; + } + +} + +/* + * ppc460ex_chan_is_busy - get the channel status + */ + +static inline int ppc460ex_chan_is_busy(ppc460ex_p_ch_t *chan) +{ + int busy = 0; + u32 base = 0; + + switch (chan->chan_id) { + case PPC460EX_PDMA0_ID: + base = DCR_DMA0_BASE; + break; + case PPC460EX_PDMA1_ID: + base = DCR_DMA1_BASE; + break; + case PPC460EX_PDMA2_ID: + base = DCR_DMA2_BASE; + break; + case PPC460EX_PDMA3_ID: + base = DCR_DMA3_BASE; + break; + default: + BUG(); + } + if(mfdcr((DCR_DMA2P40_SR) & 0x00000800)) + busy = 1; + else + busy = 0; + + return busy; +} + +/** + * ppc460ex_dma_put_desc - put DMA0,1 descriptor to FIFO + */ +static inline void ppc460ex_dma_put_desc(ppc460ex_p_ch_t *chan, + ppc460ex_p_desc_t *desc) +{ + unsigned int control; + u32 sg_cmd; + u32 sg_hi; + u32 sg_lo; + u32 base = 0; + + sg_lo = desc->phys; + + control |= (chan->mode | DMA_CE_ENABLE); + control |= DMA_BEN; + switch (chan->chan_id) { + case PPC460EX_PDMA0_ID: + base = DCR_DMA0_BASE; + break; + case PPC460EX_PDMA1_ID: + base = DCR_DMA1_BASE; + break; + case PPC460EX_PDMA2_ID: + base = DCR_DMA2_BASE; + break; + case PPC460EX_PDMA3_ID: + base = DCR_DMA3_BASE; + break; + default: + BUG(); + } + chan->in_use = 1; + sg_cmd = mfdcr(DCR_DMA2P40_SGC); + sg_cmd = sg_cmd | SSG_ENABLE(chan->chan_id); + sg_cmd = sg_cmd & 0xF0FFFFFF; + mtdcr(base + DCR_DMA2P40_SGL0, sg_lo); +#ifdef PPC4xx_DMA_64BIT + mtdcr(base + DCR_DMA2P40_SGH0, sg_hi); +#endif + mtdcr(DCR_DMA2P40_SGC,sg_cmd); +} + +/** + * ppc460ex_chan_append - update the h/w chain in the channel + */ +static inline void ppc460ex_chan_append(ppc460ex_p_ch_t *chan) +{ + ppc460ex_p_desc_t *iter; + u32 cur_desc; + unsigned long flags; + + switch (chan->chan_id) { + case PPC460EX_PDMA0_ID: + case PPC460EX_PDMA1_ID: + case PPC460EX_PDMA2_ID: + case PPC460EX_PDMA3_ID: + cur_desc = ppc460ex_chan_get_current_descriptor(chan); + + if (likely(cur_desc)) { + iter = chan_last_sub[chan->device->id]; + BUG_ON(!iter); + } else { + /* first peer */ + iter = chan_first_cdb[chan->device->id]; + BUG_ON(!iter); + ppc460ex_dma_put_desc(chan, iter); + chan->hw_chain_inited = 1; + } + + /* is there something new to append */ + if (!iter->hw_next) + return; + + /* flush descriptors from the s/w queue to fifo */ + list_for_each_entry_continue(iter, &chan->chain, chain_node) { + ppc460ex_dma_put_desc(chan, iter); + if (!iter->hw_next) + break; + } + break; + default: + BUG(); + } +} + +/** + * ppc460ex_chan_get_current_descriptor - get the currently executed descriptor + */ +static inline u32 ppc460ex_chan_get_current_descriptor(ppc460ex_p_ch_t *chan) +{ + u32 base; + + + if (unlikely(!chan->hw_chain_inited)) + /* h/w descriptor chain is not initialized yet */ + return 0; + + switch (chan->chan_id) { + case PPC460EX_PDMA0_ID: + base = DCR_DMA0_BASE; + break; + case PPC460EX_PDMA1_ID: + base = DCR_DMA1_BASE; + break; + case PPC460EX_PDMA2_ID: + base = DCR_DMA2_BASE; + break; + case PPC460EX_PDMA3_ID: + base = DCR_DMA3_BASE; + break; + default: + BUG(); + } + + return (mfdcr(base + DCR_DMA2P40_SGH0)); +} + + +/****************************************************************************** + * ADMA device level + ******************************************************************************/ + +static void ppc460ex_chan_start_null_xor(ppc460ex_p_ch_t *chan); +static int ppc460ex_adma_alloc_chan_resources(struct dma_chan *chan); +static dma_cookie_t ppc460ex_adma_tx_submit( + struct dma_async_tx_descriptor *tx); + +static void ppc460ex_adma_set_dest( + ppc460ex_p_desc_t *tx, + dma_addr_t addr, int index); + + + +/** + * ppc460ex_adma_device_estimate - estimate the efficiency of processing + * the operation given on this channel. It's assumed that 'chan' is + * capable to process 'cap' type of operation. + * @chan: channel to use + * @cap: type of transaction + * @src_lst: array of source pointers + * @src_cnt: number of source operands + * @src_sz: size of each source operand + */ +int ppc460ex_adma_p_estimate (struct dma_chan *chan, + enum dma_transaction_type cap, struct page **src_lst, + int src_cnt, size_t src_sz) +{ + int ef = 1; + + if (cap == DMA_PQ || cap == DMA_PQ_ZERO_SUM) { + /* If RAID-6 capabilities were not activated don't try + * to use them + */ + if (unlikely(!ppc460ex_r6_enabled)) + return -1; + } + /* channel idleness increases the priority */ + if (likely(ef) && + !ppc460ex_chan_is_busy(to_ppc460ex_adma_chan(chan))) + ef++; + + return ef; +} + +/** + * ppc460ex_get_group_entry - get group entry with index idx + * @tdesc: is the last allocated slot in the group. + */ +static inline ppc460ex_p_desc_t * +ppc460ex_get_group_entry ( ppc460ex_p_desc_t *tdesc, u32 entry_idx) +{ + ppc460ex_p_desc_t *iter = tdesc->group_head; + int i = 0; + + if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) { + printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n", + __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt); + BUG(); + } + list_for_each_entry(iter, &tdesc->group_list, chain_node) { + if (i++ == entry_idx) + break; + } + return iter; +} + +/** + * ppc460ex_adma_free_slots - flags descriptor slots for reuse + * @slot: Slot to free + * Caller must hold &ppc460ex_chan->lock while calling this function + */ +static void ppc460ex_adma_free_slots(ppc460ex_p_desc_t *slot, + ppc460ex_p_ch_t *chan) +{ + int stride = slot->slots_per_op; + + while (stride--) { + /*async_tx_clear_ack(&slot->async_tx);*/ /* Don't need to clear. It is hack*/ + slot->slots_per_op = 0; + slot = list_entry(slot->slot_node.next, + ppc460ex_p_desc_t, + slot_node); + } +} + +static void +ppc460ex_adma_unmap(ppc460ex_p_ch_t *chan, ppc460ex_p_desc_t *desc) +{ + u32 src_cnt, dst_cnt; + dma_addr_t addr; + /* + * get the number of sources & destination + * included in this descriptor and unmap + * them all + */ + src_cnt = 1; + dst_cnt = 1; + + /* unmap destinations */ + if (!(desc->async_tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) { + while (dst_cnt--) { + addr = ppc460ex_desc_get_dest_addr( + desc, chan, dst_cnt); + dma_unmap_page(&chan->device->odev->dev, + addr, desc->unmap_len, + DMA_FROM_DEVICE); + } + } + + /* unmap sources */ + if (!(desc->async_tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) { + while (src_cnt--) { + addr = ppc460ex_desc_get_src_addr( + desc, chan, src_cnt); + dma_unmap_page(&chan->device->odev->dev, + addr, desc->unmap_len, + DMA_TO_DEVICE); + } + } + +} +/** + * ppc460ex_adma_run_tx_complete_actions - call functions to be called + * upon complete + */ +static dma_cookie_t ppc460ex_adma_run_tx_complete_actions( + ppc460ex_p_desc_t *desc, + ppc460ex_p_ch_t *chan, + dma_cookie_t cookie) +{ + int i; + enum dma_data_direction dir; + + BUG_ON(desc->async_tx.cookie < 0); + if (desc->async_tx.cookie > 0) { + cookie = desc->async_tx.cookie; + desc->async_tx.cookie = 0; + + /* call the callback (must not sleep or submit new + * operations to this channel) + */ + if (desc->async_tx.callback) + desc->async_tx.callback( + desc->async_tx.callback_param); + + /* unmap dma addresses + * (unmap_single vs unmap_page?) + * + * actually, ppc's dma_unmap_page() functions are empty, so + * the following code is just for the sake of completeness + */ + if (chan && chan->needs_unmap && desc->group_head && + desc->unmap_len) { + ppc460ex_p_desc_t *unmap = desc->group_head; + /* assume 1 slot per op always */ + u32 slot_count = unmap->slot_cnt; + + /* Run through the group list and unmap addresses */ + for (i = 0; i < slot_count; i++) { + BUG_ON(!unmap); + ppc460ex_adma_unmap(chan, unmap); + unmap = unmap->hw_next; + } + desc->group_head = NULL; + } + } + + /* run dependent operations */ + dma_run_dependencies(&desc->async_tx); + + return cookie; +} + +/** + * ppc460ex_adma_clean_slot - clean up CDB slot (if ack is set) + */ +static int ppc460ex_adma_clean_slot(ppc460ex_p_desc_t *desc, + ppc460ex_p_ch_t *chan) +{ + /* the client is allowed to attach dependent operations + * until 'ack' is set + */ + if (!async_tx_test_ack(&desc->async_tx)) + return 0; + + /* leave the last descriptor in the chain + * so we can append to it + */ + if (list_is_last(&desc->chain_node, &chan->chain) || + desc->phys == ppc460ex_chan_get_current_descriptor(chan)) + return 1; + + dev_dbg(chan->device->common.dev, "\tfree slot %x: %d stride: %d\n", + desc->phys, desc->idx, desc->slots_per_op); + + list_del(&desc->chain_node); + ppc460ex_adma_free_slots(desc, chan); + return 0; +} + +/** + * #define DEBUG 1__ppc460ex_adma_slot_cleanup - this is the common clean-up routine + * which runs through the channel CDBs list until reach the descriptor + * currently processed. When routine determines that all CDBs of group + * are completed then corresponding callbacks (if any) are called and slots + * are freed. + */ +static void __ppc460ex_adma_slot_cleanup(ppc460ex_p_ch_t *chan) +{ + ppc460ex_p_desc_t *iter, *_iter, *group_start = NULL; + dma_cookie_t cookie = 0; + u32 current_desc = ppc460ex_chan_get_current_descriptor(chan); + int busy = ppc460ex_chan_is_busy(chan); + int seen_current = 0, slot_cnt = 0, slots_per_op = 0; + + dev_dbg(chan->device->common.dev, "ppc460ex adma%d: %s\n", + chan->device->id, __FUNCTION__); + + if (!current_desc) { + /* There were no transactions yet, so + * nothing to clean + */ + return; + } + + /* free completed slots from the chain starting with + * the oldest descriptor + */ + list_for_each_entry_safe(iter, _iter, &chan->chain, + chain_node) { + dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d " + "busy: %d this_desc: %#x next_desc: %#x cur: %#x ack: %d\n", + iter->async_tx.cookie, iter->idx, busy, iter->phys, + ppc460ex_desc_get_link(iter, chan), current_desc, + async_tx_test_ack(&iter->async_tx)); + prefetch(_iter); + prefetch(&_iter->async_tx); + + /* do not advance past the current descriptor loaded into the + * hardware channel,subsequent descriptors are either in process + * or have not been submitted + */ + if (seen_current) + break; + + /* stop the search if we reach the current descriptor and the + * channel is busy, or if it appears that the current descriptor + * needs to be re-read (i.e. has been appended to) + */ + if (iter->phys == current_desc) { + BUG_ON(seen_current++); + if (busy || ppc460ex_desc_get_link(iter, chan)) { + /* not all descriptors of the group have + * been completed; exit. + */ + break; + } + } + + /* detect the start of a group transaction */ + if (!slot_cnt && !slots_per_op) { + slot_cnt = iter->slot_cnt; + slots_per_op = iter->slots_per_op; + if (slot_cnt <= slots_per_op) { + slot_cnt = 0; + slots_per_op = 0; + } + } + + if (slot_cnt) { + if (!group_start) + group_start = iter; + slot_cnt -= slots_per_op; + } + + /* all the members of a group are complete */ + if (slots_per_op != 0 && slot_cnt == 0) { + ppc460ex_p_desc_t *grp_iter, *_grp_iter; + int end_of_chain = 0; + + /* clean up the group */ + slot_cnt = group_start->slot_cnt; + grp_iter = group_start; + list_for_each_entry_safe_from(grp_iter, _grp_iter, + &chan->chain, chain_node) { + + cookie = ppc460ex_adma_run_tx_complete_actions( + grp_iter, chan, cookie); + + slot_cnt -= slots_per_op; + end_of_chain = ppc460ex_adma_clean_slot( + grp_iter, chan); + if (end_of_chain && slot_cnt) { + /* Should wait for ZeroSum complete */ + if (cookie > 0) + chan->completed_cookie = cookie; + return; + } + + if (slot_cnt == 0 || end_of_chain) + break; + } + + /* the group should be complete at this point */ + BUG_ON(slot_cnt); + + slots_per_op = 0; + group_start = NULL; + if (end_of_chain) + break; + else + continue; + } else if (slots_per_op) /* wait for group completion */ + continue; + + cookie = ppc460ex_adma_run_tx_complete_actions(iter, chan, + cookie); + + if (ppc460ex_adma_clean_slot(iter, chan)) + break; + } + + BUG_ON(!seen_current); + + if (cookie > 0) { + chan->completed_cookie = cookie; + pr_debug("\tcompleted cookie %d\n", cookie); + } + +} + +/** + * ppc460ex_adma_tasklet - clean up watch-dog initiator + */ +static void ppc460ex_adma_tasklet (unsigned long data) +{ + ppc460ex_p_ch_t *chan = (ppc460ex_p_ch_t *) data; + __ppc460ex_adma_slot_cleanup(chan); +} + +/** + * ppc460ex_adma_slot_cleanup - clean up scheduled initiator + */ +static void ppc460ex_adma_slot_cleanup (ppc460ex_p_ch_t *chan) +{ + spin_lock_bh(&chan->lock); + __ppc460ex_adma_slot_cleanup(chan); + spin_unlock_bh(&chan->lock); +} + +/** + * ppc460ex_adma_alloc_slots - allocate free slots (if any) + */ +static ppc460ex_p_desc_t *ppc460ex_adma_alloc_slots( + ppc460ex_p_ch_t *chan, int num_slots, + int slots_per_op) +{ + ppc460ex_p_desc_t *iter = NULL, *_iter, *alloc_start = NULL; + struct list_head chain = LIST_HEAD_INIT(chain); + int slots_found, retry = 0; + + + BUG_ON(!num_slots || !slots_per_op); + /* start search from the last allocated descrtiptor + * if a contiguous allocation can not be found start searching + * from the beginning of the list + */ +retry: + slots_found = 0; + if (retry == 0) + iter = chan->last_used; + else + iter = list_entry(&chan->all_slots, ppc460ex_p_desc_t, + slot_node); + prefetch(iter); + list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots, + slot_node) { + prefetch(_iter); + prefetch(&_iter->async_tx); + if (iter->slots_per_op) { + slots_found = 0; + continue; + } + + /* start the allocation if the slot is correctly aligned */ + if (!slots_found++) + alloc_start = iter; + if (slots_found == num_slots) { + ppc460ex_p_desc_t *alloc_tail = NULL; + ppc460ex_p_desc_t *last_used = NULL; + iter = alloc_start; + while (num_slots) { + int i; + + /* pre-ack all but the last descriptor */ + if (num_slots != slots_per_op) { + async_tx_ack(&iter->async_tx); + } +#if 0 + else + /* Don't need to clear. It is hack*/ + async_tx_clear_ack(&iter->async_tx); +#endif + + list_add_tail(&iter->chain_node, &chain); + alloc_tail = iter; + iter->async_tx.cookie = 0; + iter->hw_next = NULL; + iter->flags = 0; + iter->slot_cnt = num_slots; + for (i = 0; i < slots_per_op; i++) { + iter->slots_per_op = slots_per_op - i; + last_used = iter; + iter = list_entry(iter->slot_node.next, + ppc460ex_p_desc_t, + slot_node); + } + num_slots -= slots_per_op; + } + alloc_tail->group_head = alloc_start; + alloc_tail->async_tx.cookie = -EBUSY; + list_splice(&chain, &alloc_tail->group_list); + chan->last_used = last_used; + return alloc_tail; + } + } + if (!retry++) + goto retry; + static empty_slot_cnt; + if(!(empty_slot_cnt%100)) + printk(KERN_INFO"No empty slots trying to free some\n"); + empty_slot_cnt++; + /* try to free some slots if the allocation fails */ + tasklet_schedule(&chan->irq_tasklet); + return NULL; +} + +/** + * ppc460ex_adma_alloc_chan_resources - allocate pools for CDB slots + */ +static int ppc460ex_adma_alloc_chan_resources(struct dma_chan *chan) +{ + ppc460ex_p_ch_t *ppc460ex_chan = to_ppc460ex_adma_chan(chan); + ppc460ex_p_desc_t *slot = NULL; + char *hw_desc; + int i, db_sz; + int init = ppc460ex_chan->slots_allocated ? 0 : 1; + int pool_size = DMA_FIFO_SIZE * DMA_CDB_SIZE; + + chan->chan_id = ppc460ex_chan->device->id; + + /* Allocate descriptor slots */ + i = ppc460ex_chan->slots_allocated; + db_sz = sizeof (dma_cdb_t); + + for (; i < (pool_size/db_sz); i++) { + slot = kzalloc(sizeof(ppc460ex_p_desc_t), GFP_KERNEL); + if (!slot) { + printk(KERN_INFO "GT ADMA Channel only initialized" + " %d descriptor slots", i--); + break; + } + + hw_desc = (char *) ppc460ex_chan->dma_desc_pool_virt; + slot->hw_desc = (void *) &hw_desc[i * db_sz]; + dma_async_tx_descriptor_init(&slot->async_tx, chan); + slot->async_tx.tx_submit = ppc460ex_adma_tx_submit; + INIT_LIST_HEAD(&slot->chain_node); + INIT_LIST_HEAD(&slot->slot_node); + INIT_LIST_HEAD(&slot->group_list); + hw_desc = (char *) ppc460ex_chan->dma_desc_pool; + slot->phys = (dma_addr_t) &hw_desc[i * db_sz]; + slot->idx = i; + spin_lock_bh(&ppc460ex_chan->lock); + ppc460ex_chan->slots_allocated++; + list_add_tail(&slot->slot_node, &ppc460ex_chan->all_slots); + spin_unlock_bh(&ppc460ex_chan->lock); + } + + if (i && !ppc460ex_chan->last_used) { + ppc460ex_chan->last_used = + list_entry(ppc460ex_chan->all_slots.next, + ppc460ex_p_desc_t, + slot_node); + } + + dev_dbg(ppc460ex_chan->device->common.dev, + "ppc460ex adma%d: allocated %d descriptor slots\n", + ppc460ex_chan->device->id, i); + + /* initialize the channel and the chain with a null operation */ + if (init) { + switch (ppc460ex_chan->chan_id) + { + case PPC460EX_PDMA0_ID: + case PPC460EX_PDMA1_ID: + ppc460ex_chan->hw_chain_inited = 0; + /* Use WXOR for self-testing */ + if (!ppc460ex_dma_tchan) + ppc460ex_dma_tchan = ppc460ex_chan; + if (!ppc460ex_r6_tchan) + ppc460ex_r6_tchan = ppc460ex_chan; + break; + default: + BUG(); + } + ppc460ex_chan->needs_unmap = 1; + } + + return (i > 0) ? i : -ENOMEM; +} + +/** + * ppc460ex_desc_assign_cookie - assign a cookie + */ +static dma_cookie_t ppc460ex_desc_assign_cookie(ppc460ex_p_ch_t *chan, + ppc460ex_p_desc_t *desc) +{ + dma_cookie_t cookie = chan->common.cookie; + cookie++; + if (cookie < 0) + cookie = 1; + chan->common.cookie = desc->async_tx.cookie = cookie; + return cookie; +} + + +/** + * ppc460ex_adma_check_threshold - append CDBs to h/w chain if threshold + * has been achieved + */ +static void ppc460ex_adma_check_threshold(ppc460ex_p_ch_t *chan) +{ + dev_dbg(chan->device->common.dev, "ppc460ex adma%d: pending: %d\n", + chan->device->id, chan->pending); + + if (chan->pending >= PPC460EX_ADMA_THRESHOLD) { + chan->pending = 0; + ppc460ex_chan_append(chan); + } +} + +/** + * ppc460ex_adma_tx_submit - submit new descriptor group to the channel + * (it's not necessary that descriptors will be submitted to the h/w + * chains too right now) + */ +static dma_cookie_t ppc460ex_adma_tx_submit(struct dma_async_tx_descriptor *tx) +{ + ppc460ex_p_desc_t *sw_desc = tx_to_ppc460ex_adma_slot(tx); + ppc460ex_p_ch_t *chan = to_ppc460ex_adma_chan(tx->chan); + ppc460ex_p_desc_t *group_start, *old_chain_tail; + int slot_cnt; + int slots_per_op; + dma_cookie_t cookie; + + group_start = sw_desc->group_head; + slot_cnt = group_start->slot_cnt; + slots_per_op = group_start->slots_per_op; + + spin_lock_bh(&chan->lock); + + cookie = ppc460ex_desc_assign_cookie(chan, sw_desc); + + if (unlikely(list_empty(&chan->chain))) { + /* first peer */ + list_splice_init(&sw_desc->group_list, &chan->chain); + chan_first_cdb[chan->device->id] = group_start; + } else { + /* isn't first peer, bind CDBs to chain */ + old_chain_tail = list_entry(chan->chain.prev, + ppc460ex_p_desc_t, chain_node); + list_splice_init(&sw_desc->group_list, + &old_chain_tail->chain_node); + /* fix up the hardware chain */ + ppc460ex_desc_set_link(chan, old_chain_tail, group_start); + } + + /* increment the pending count by the number of operations */ + chan->pending += slot_cnt / slots_per_op; + ppc460ex_adma_check_threshold(chan); + spin_unlock_bh(&chan->lock); + + dev_dbg(chan->device->common.dev, + "ppc460ex adma%d: %s cookie: %d slot: %d tx %p\n", + chan->device->id,__FUNCTION__, + sw_desc->async_tx.cookie, sw_desc->idx, sw_desc); + return cookie; +} + +/** + * ppc460ex_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation + */ +static struct dma_async_tx_descriptor *ppc460ex_adma_prep_dma_interrupt( + struct dma_chan *chan, unsigned long flags) +{ + ppc460ex_p_ch_t *ppc460ex_chan = to_ppc460ex_adma_chan(chan); + ppc460ex_p_desc_t *sw_desc, *group_start; + int slot_cnt, slots_per_op; + + dev_dbg(ppc460ex_chan->device->common.dev, + "ppc460ex adma%d: %s\n", ppc460ex_chan->device->id, + __FUNCTION__); + + spin_lock_bh(&ppc460ex_chan->lock); + slot_cnt = slots_per_op = 1; + sw_desc = ppc460ex_adma_alloc_slots(ppc460ex_chan, slot_cnt, + slots_per_op); + if (sw_desc) { + group_start = sw_desc->group_head; + ppc460ex_desc_init_interrupt(group_start, ppc460ex_chan); + group_start->unmap_len = 0; + sw_desc->async_tx.flags = flags; + } + spin_unlock_bh(&ppc460ex_chan->lock); + + return sw_desc ? &sw_desc->async_tx : NULL; +} + +/** + * ppc460ex_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation + */ +static struct dma_async_tx_descriptor *ppc460ex_adma_prep_dma_memcpy( + struct dma_chan *chan, dma_addr_t dma_dest, + dma_addr_t dma_src, size_t len, unsigned long flags) +{ + ppc460ex_p_ch_t *ppc460ex_chan = to_ppc460ex_adma_chan(chan); + ppc460ex_p_desc_t *sw_desc, *group_start; + int slot_cnt, slots_per_op; + if (unlikely(!len)) + return NULL; + BUG_ON(unlikely(len > PPC460EX_ADMA_DMA_MAX_BYTE_COUNT)); + + spin_lock_bh(&ppc460ex_chan->lock); + + dev_dbg(ppc460ex_chan->device->common.dev, + "ppc460ex adma%d: %s len: %u int_en %d \n", + ppc460ex_chan->device->id, __FUNCTION__, len, + flags & DMA_PREP_INTERRUPT ? 1 : 0); + + slot_cnt = slots_per_op = 1; + sw_desc = ppc460ex_adma_alloc_slots(ppc460ex_chan, slot_cnt, + slots_per_op); + if (sw_desc) { + group_start = sw_desc->group_head; + prefetch(group_start); + ppc460ex_desc_init_memcpy(group_start, flags); + ppc460ex_desc_set_dest_addr(sw_desc->group_head, chan, dma_dest, 0); + ppc460ex_desc_set_src_addr(sw_desc->group_head, chan, dma_src, 0); + ppc460ex_desc_set_byte_count(group_start, ppc460ex_chan, len); + sw_desc->unmap_len = len; + sw_desc->async_tx.flags = flags; + if(mfdcr(0x60) == 0xfee8) { + printk("Byte Count = 0x%x\n",len); + printk("src= 0x%x\n",dma_src); + printk("Dest = 0x%x\n",dma_dest); + } + } + spin_unlock_bh(&ppc460ex_chan->lock); + return sw_desc ? &sw_desc->async_tx : NULL; +} + +/** + * ppc460ex_adma_prep_dma_memset - prepare CDB for a MEMSET operation + */ +static struct dma_async_tx_descriptor *ppc460ex_adma_prep_dma_memset( + struct dma_chan *chan, dma_addr_t dma_dest, int value, + size_t len, unsigned long flags) +{ + ppc460ex_p_ch_t *ppc460ex_chan = to_ppc460ex_adma_chan(chan); + ppc460ex_p_desc_t *sw_desc, *group_start; + int slot_cnt, slots_per_op; + if (unlikely(!len)) + return NULL; + BUG_ON(unlikely(len > PPC460EX_ADMA_DMA_MAX_BYTE_COUNT)); + + spin_lock_bh(&ppc460ex_chan->lock); + + dev_dbg(ppc460ex_chan->device->common.dev, + "ppc460ex adma%d: %s cal: %u len: %u int_en %d\n", + ppc460ex_chan->device->id, __FUNCTION__, value, len, + flags & DMA_PREP_INTERRUPT ? 1 : 0); + + slot_cnt = slots_per_op = 1; + sw_desc = ppc460ex_adma_alloc_slots(ppc460ex_chan, slot_cnt, + slots_per_op); + if (sw_desc) { + group_start = sw_desc->group_head; + ppc460ex_desc_init_memset(group_start, value, flags); + ppc460ex_adma_set_dest(group_start, dma_dest, 0); + ppc460ex_desc_set_byte_count(group_start, ppc460ex_chan, len); + sw_desc->unmap_len = len; + sw_desc->async_tx.flags = flags; + } + spin_unlock_bh(&ppc460ex_chan->lock); + + return sw_desc ? &sw_desc->async_tx : NULL; +} + + +/** + * ppc460ex_adma_set_dest - set destination address into descriptor + */ +static void ppc460ex_adma_set_dest(ppc460ex_p_desc_t *sw_desc, + dma_addr_t addr, int index) +{ + ppc460ex_p_ch_t *chan = to_ppc460ex_adma_chan(sw_desc->async_tx.chan); + BUG_ON(index >= sw_desc->dst_cnt); + + switch (chan->chan_id) { + case PPC460EX_PDMA0_ID: + case PPC460EX_PDMA1_ID: + case PPC460EX_PDMA2_ID: + case PPC460EX_PDMA3_ID: + /* to do: support transfers lengths > + * PPC460EX_ADMA_DMA/XOR_MAX_BYTE_COUNT + */ + ppc460ex_desc_set_dest_addr(sw_desc->group_head, + // chan, 0x8, addr, index); // Enabling HB bus + chan, 0, addr); + break; + default: + BUG(); + } +} + + + + +/** + * ppc460ex_adma_free_chan_resources - free the resources allocated + */ +static void ppc460ex_adma_free_chan_resources(struct dma_chan *chan) +{ + ppc460ex_p_ch_t *ppc460ex_chan = to_ppc460ex_adma_chan(chan); + ppc460ex_p_desc_t *iter, *_iter; + int in_use_descs = 0; + + ppc460ex_adma_slot_cleanup(ppc460ex_chan); + + spin_lock_bh(&ppc460ex_chan->lock); + list_for_each_entry_safe(iter, _iter, &ppc460ex_chan->chain, + chain_node) { + in_use_descs++; + list_del(&iter->chain_node); + } + list_for_each_entry_safe_reverse(iter, _iter, + &ppc460ex_chan->all_slots, slot_node) { + list_del(&iter->slot_node); + kfree(iter); + ppc460ex_chan->slots_allocated--; + } + ppc460ex_chan->last_used = NULL; + + dev_dbg(ppc460ex_chan->device->common.dev, + "ppc460ex adma%d %s slots_allocated %d\n", + ppc460ex_chan->device->id, + __FUNCTION__, ppc460ex_chan->slots_allocated); + spin_unlock_bh(&ppc460ex_chan->lock); + + /* one is ok since we left it on there on purpose */ + if (in_use_descs > 1) + printk(KERN_ERR "GT: Freeing %d in use descriptors!\n", + in_use_descs - 1); +} + +/** + * ppc460ex_adma_is_complete - poll the status of an ADMA transaction + * @chan: ADMA channel handle + * @cookie: ADMA transaction identifier + */ +static enum dma_status ppc460ex_adma_is_complete(struct dma_chan *chan, + dma_cookie_t cookie, dma_cookie_t *done, dma_cookie_t *used) +{ + ppc460ex_p_ch_t *ppc460ex_chan = to_ppc460ex_adma_chan(chan); + dma_cookie_t last_used; + dma_cookie_t last_complete; + enum dma_status ret; + + last_used = chan->cookie; + last_complete = ppc460ex_chan->completed_cookie; + + if (done) + *done= last_complete; + if (used) + *used = last_used; + + ret = dma_async_is_complete(cookie, last_complete, last_used); + if (ret == DMA_SUCCESS) + return ret; + + ppc460ex_adma_slot_cleanup(ppc460ex_chan); + + last_used = chan->cookie; + last_complete = ppc460ex_chan->completed_cookie; + + if (done) + *done= last_complete; + if (used) + *used = last_used; + + return dma_async_is_complete(cookie, last_complete, last_used); +} + +/** + * ppc460ex_adma_eot_handler - end of transfer interrupt handler + */ +static irqreturn_t ppc460ex_adma_eot_handler(int irq, void *data) +{ + ppc460ex_p_ch_t *chan = data; + + dev_dbg(chan->device->common.dev, + "ppc460ex adma%d: %s\n", chan->device->id, __FUNCTION__); + + tasklet_schedule(&chan->irq_tasklet); + ppc460ex_adma_device_clear_eot_status(chan); + + return IRQ_HANDLED; +} + +/** + * ppc460ex_adma_err_handler - DMA error interrupt handler; + * do the same things as a eot handler + */ +static irqreturn_t ppc460ex_adma_err_handler(int irq, void *data) +{ + ppc460ex_p_ch_t *chan = data; + dev_dbg(chan->device->common.dev, + "ppc460ex adma%d: %s\n", chan->device->id, __FUNCTION__); + tasklet_schedule(&chan->irq_tasklet); + ppc460ex_adma_device_clear_eot_status(chan); + + return IRQ_HANDLED; +} + +static void ppc460ex_test_rad6_callback (void *unused) +{ + complete(&ppc460ex_r6_test_comp); +} +/** + * ppc460ex_test_callback - called when test operation has been done + */ +static void ppc460ex_test_callback (void *unused) +{ + complete(&ppc460ex_r5_test_comp); +} + +/** + * ppc460ex_adma_issue_pending - flush all pending descriptors to h/w + */ +static void ppc460ex_adma_issue_pending(struct dma_chan *chan) +{ + ppc460ex_p_ch_t *ppc460ex_chan = to_ppc460ex_adma_chan(chan); + + if (ppc460ex_chan->pending) { + dev_dbg(ppc460ex_chan->device->common.dev, + "ppc460ex adma%d: %s %d \n", ppc460ex_chan->device->id, + __FUNCTION__, ppc460ex_chan->pending); + ppc460ex_chan->pending = 0; + ppc460ex_chan_append(ppc460ex_chan); + } +} + +/** + * ppc460ex_adma_remove - remove the asynch device + */ +static int __devexit ppc460ex_pdma_remove(struct platform_device *dev) +{ + ppc460ex_p_dev_t *device = platform_get_drvdata(dev); + struct dma_chan *chan, *_chan; + struct ppc_dma_chan_ref *ref, *_ref; + ppc460ex_p_ch_t *ppc460ex_chan; + int i; + + dma_async_device_unregister(&device->common); + + for (i = 0; i < 3; i++) { + u32 irq; + irq = platform_get_irq(dev, i); + free_irq(irq, device); + } + + + do { + struct resource *res; + res = platform_get_resource(dev, IORESOURCE_MEM, 0); + release_mem_region(res->start, res->end - res->start); + } while (0); + + list_for_each_entry_safe(chan, _chan, &device->common.channels, + device_node) { + ppc460ex_chan = to_ppc460ex_adma_chan(chan); + list_del(&chan->device_node); + kfree(ppc460ex_chan); + } + + list_for_each_entry_safe(ref, _ref, &ppc_adma_p_chan_list, node) { + list_del(&ref->node); + kfree(ref); + } + + kfree(device); + + return 0; +} +/* + * Per channel probe + */ +int __devinit ppc460ex_dma_per_chan_probe(struct of_device *ofdev, + const struct of_device_id *match) +{ + int ret=0; + ppc460ex_p_dev_t *adev; + ppc460ex_p_ch_t *new_chan; + int err; + + adev = dev_get_drvdata(ofdev->dev.parent); + BUG_ON(!adev); + if ((new_chan = kzalloc(sizeof(*new_chan), GFP_KERNEL)) == NULL) { + printk("ERROR:No Free memory for allocating dma channels\n"); + ret = -ENOMEM; + goto err; + } + err = of_address_to_resource(ofdev->node,0,&new_chan->reg); + if (err) { + printk("ERROR:Can't get %s property reg\n", __FUNCTION__); + goto err; + } + new_chan->device = &ofdev->dev; + new_chan->reg_base = ioremap(new_chan->reg.start, + new_chan->reg.end - new_chan->reg.start + 1); + if ((new_chan->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev, + DMA_FIFO_SIZE << 2, &new_chan->dma_desc_pool, GFP_KERNEL)) == NULL) { + ret = -ENOMEM; + goto err_dma_alloc; + } + new_chan->chan_id = ((new_chan->reg.start - 0x200)& 0xfff) >> 3; + adev->chan[new_chan->chan_id] = new_chan; + + return 0; +err: + return ret; +err_dma_alloc: +err_chan_alloc: + kfree(new_chan); + return ret; +} +static struct of_device_id dma_4chan_match[] = +{ + { + .compatible = "amcc,dma", + }, + {}, +}; +static struct of_device_id dma_per_chan_match[] = { + { + .compatible = "amcc,dma-4channel", + }, + {}, +}; +/** + * ppc460ex_adma_probe - probe the asynch device + */ +//static int __devinit ppc460ex_adma_probe(struct platform_device *pdev) +static int __devinit ppc460ex_pdma_probe(struct of_device *ofdev, + const struct of_device_id *match) +{ + struct resource *res; + int ret=0, irq; + ppc460ex_p_dev_t *adev; + ppc460ex_p_ch_t *chan; + struct ppc_dma_chan_ref *ref; + + + if ((adev = kzalloc(sizeof(*adev), GFP_KERNEL)) == NULL) { + ret = -ENOMEM; + goto err_adev_alloc; + } + adev->dev = &ofdev->dev; + adev->id = PPC460EX_PDMA0_ID; + /* create the DMA capability MASK . This used to come from resources structure*/ + dma_cap_set(DMA_MEMCPY, adev->common.cap_mask); + dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask); + dma_cap_set(DMA_MEMSET, adev->common.cap_mask); + adev->odev = ofdev; + dev_set_drvdata(&(ofdev->dev), adev); + + INIT_LIST_HEAD(&adev->common.channels); + + /* set base routines */ + adev->common.device_alloc_chan_resources = + ppc460ex_adma_alloc_chan_resources; + adev->common.device_free_chan_resources = + ppc460ex_adma_free_chan_resources; + adev->common.device_is_tx_complete = ppc460ex_adma_is_complete; + adev->common.device_issue_pending = ppc460ex_adma_issue_pending; + adev->common.dev = &ofdev->dev; + + /* set prep routines based on capability */ + if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) { + adev->common.device_prep_dma_memcpy = + ppc460ex_adma_prep_dma_memcpy; + } + if (dma_has_cap(DMA_MEMSET, adev->common.cap_mask)) { + adev->common.device_prep_dma_memset = + ppc460ex_adma_prep_dma_memset; + } + + if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) { + adev->common.device_prep_dma_interrupt = + ppc460ex_adma_prep_dma_interrupt; + } + + /* create a channel */ + if ((chan = kzalloc(sizeof(*chan), GFP_KERNEL)) == NULL) { + ret = -ENOMEM; + goto err_chan_alloc; + } + + tasklet_init(&chan->irq_tasklet, ppc460ex_adma_tasklet, + (unsigned long)chan); + irq = irq_of_parse_and_map(ofdev->node, 0); + printk("<%s> irq=0x%x\n",__FUNCTION__, irq); + if (irq >= 0) { + ret = request_irq(irq, ppc460ex_adma_eot_handler, + IRQF_DISABLED, "adma-chan0", chan); + if (ret) { + printk("Failed to request IRQ %d\n",irq); + ret = -EIO; + goto err_irq; + } + + irq = irq_of_parse_and_map(ofdev->node, 1); + printk("<%s> irq=0x%x\n",__FUNCTION__, irq); + if (irq >= 0) { + ret = request_irq(irq, ppc460ex_adma_err_handler, + IRQF_DISABLED, "adma-chan-1", chan); + if (ret) { + printk("Failed to request IRQ %d\n",irq); + ret = -EIO; + goto err_irq; + } + irq = irq_of_parse_and_map(ofdev->node, 2); + printk("<%s> irq=0x%x\n",__FUNCTION__, irq); + if (irq >= 0) { + ret = request_irq(irq, ppc460ex_adma_err_handler, + IRQF_DISABLED, "adma-chan2", chan); + if (ret) { + printk("Failed to request IRQ %d\n",irq); + ret = -EIO; + goto err_irq; + } + irq = irq_of_parse_and_map(ofdev->node, 3); + printk("<%s> irq=0x%x\n",__FUNCTION__, irq); + if (irq >= 0) { + ret = request_irq(irq, ppc460ex_adma_err_handler, + IRQF_DISABLED, "adma-chan3", chan); + if (ret) { + printk("Failed to request IRQ %d\n",irq); + ret = -EIO; + goto err_irq; + } + + + } + + + } + + } + } else + ret = -ENXIO; + + chan->device = adev; + /* pass the platform data */ + spin_lock_init(&chan->lock); +#if 0 + init_timer(&chan->cleanup_watchdog); + chan->cleanup_watchdog.data = (unsigned long) chan; + chan->cleanup_watchdog.function = ppc460ex_adma_tasklet; +#endif + INIT_LIST_HEAD(&chan->chain); + INIT_LIST_HEAD(&chan->all_slots); + chan->common.device = &adev->common; + list_add_tail(&chan->common.device_node, &adev->common.channels); + + dev_dbg(&ofdev->dev, "AMCC(R) PPC440SP(E) ADMA Engine found [%d]: " + "( %s%s%s%s%s%s%s%s%s%s)\n", + adev->id, + dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq_xor " : "", + dma_has_cap(DMA_PQ_UPDATE, adev->common.cap_mask) ? "pq_update " : "", + dma_has_cap(DMA_PQ_ZERO_SUM, adev->common.cap_mask) ? "pq_zero_sum " : + "", + dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "", + dma_has_cap(DMA_DUAL_XOR, adev->common.cap_mask) ? "dual_xor " : "", + dma_has_cap(DMA_ZERO_SUM, adev->common.cap_mask) ? "xor_zero_sum " : + "", + dma_has_cap(DMA_MEMSET, adev->common.cap_mask) ? "memset " : "", + dma_has_cap(DMA_MEMCPY_CRC32C, adev->common.cap_mask) ? "memcpy+crc " + : "", + dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "", + dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "int " : ""); + + of_platform_bus_probe(ofdev->node, dma_per_chan_match,&ofdev->dev); + dma_async_device_register(&adev->common); + ref = kmalloc(sizeof(*ref), GFP_KERNEL); + printk("<%s> ret=0x%x\n", __FUNCTION__,ret); + if (ref) { + ref->chan = &chan->common; + INIT_LIST_HEAD(&ref->node); + list_add_tail(&ref->node, &ppc_adma_p_chan_list); + } else + printk(KERN_WARNING "%s: failed to allocate channel reference!\n", + __FUNCTION__); + goto out; + +err: + ret = ret; +err_irq: + kfree(chan); +err_chan_alloc: +err_dma_alloc: + kfree(adev); +err_adev_alloc: + release_mem_region(res->start, res->end - res->start); +out: + return ret; +} + +/** + * ppc460ex_test_dma - test are RAID-5 capabilities enabled successfully. + * For this we just perform one WXOR operation with the same source + * and destination addresses, the GF-multiplier is 1; so if RAID-5 + o/of_platform_driver_unregister(&ppc460ex_pdma_driver); + * capabilities are enabled then we'll get src/dst filled with zero. + */ +static int ppc460ex_test_dma (ppc460ex_p_ch_t *chan) +{ + ppc460ex_p_desc_t *sw_desc, *iter; + struct page *pg; + char *a; + dma_addr_t dma_addr; + unsigned long op = 0; + int rval = 0; + + if (!ppc460ex_dma_tchan) + return -1; + /*FIXME*/ + + pg = alloc_page(GFP_KERNEL); + if (!pg) + return -ENOMEM; + + spin_lock_bh(&chan->lock); + sw_desc = ppc460ex_adma_alloc_slots(chan, 1, 1); + if (sw_desc) { + /* 1 src, 1 dsr, int_ena */ + ppc460ex_desc_init_memcpy(sw_desc,0); + list_for_each_entry(iter, &sw_desc->group_list, chain_node) { + ppc460ex_desc_set_byte_count(iter, chan, PAGE_SIZE); + iter->unmap_len = PAGE_SIZE; + } + } else { + rval = -EFAULT; + spin_unlock_bh(&chan->lock); + goto exit; + } + spin_unlock_bh(&chan->lock); + + /* Fill the test page with ones */ + memset(page_address(pg), 0xFF, PAGE_SIZE); + int i = 0; + char *pg_addr = page_address(pg); +#if 0 + for(i=0;i < PAGE_SIZE; i+=64) + printk("addr = 0x%x data = 0x%x\n",pg_addr + i,*(pg_addr+i)); +#endif + //dma_addr = dma_map_page(&chan->device->common, pg, 0, PAGE_SIZE, + dma_addr = dma_map_page(&chan->device->odev->dev, pg, 0, PAGE_SIZE, + DMA_BIDIRECTIONAL); + + /* Setup adresses */ + ppc460ex_desc_set_src_addr(sw_desc, chan, dma_addr, 0); + ppc460ex_desc_set_dest_addr(sw_desc, chan, dma_addr, 0); + + async_tx_ack(&sw_desc->async_tx); + sw_desc->async_tx.callback = ppc460ex_test_callback; + sw_desc->async_tx.callback_param = NULL; + + init_completion(&ppc460ex_r5_test_comp); + + ppc460ex_adma_tx_submit(&sw_desc->async_tx); + ppc460ex_adma_issue_pending(&chan->common); + + wait_for_completion(&ppc460ex_r5_test_comp); + + /*Make sure cache is flushed to memory*/ + dma_addr = dma_map_page(&chan->device->odev->dev, pg, 0, PAGE_SIZE, + DMA_BIDIRECTIONAL); + /* Now check is the test page zeroed */ + a = page_address(pg); +#if 0 + i = 0; + for(i=0;i < PAGE_SIZE; i+=64) + printk("addr = 0x%x data = 0x%x\n",a + i,*(a+i)); +#endif + if ((*(u32*)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4)==0) { + /* page is zero - RAID-5 enabled */ + rval = 0; + } else { + /* RAID-5 was not enabled */ + rval = -EINVAL; + } + pr_dma(__LINE__,__FUNCTION__); +exit: + __free_page(pg); + return rval; +} + + +static struct of_platform_driver ppc460ex_pdma_driver = { + .name = "plb_dma", + .match_table = dma_4chan_match, + + .probe = ppc460ex_pdma_probe, + .remove = ppc460ex_pdma_remove, +}; +struct of_platform_driver ppc460ex_dma_per_chan_driver = { + .name = "dma-4channel", + .match_table = dma_per_chan_match, + .probe = ppc460ex_dma_per_chan_probe, +}; + +static int ppc460ex_dma_read (char *page, char **start, off_t off, + int count, int *eof, void *data) +{ + char *p = page; + + p += sprintf(p, "%s\n", + ppc460ex_r5_enabled ? + "PPC460Ex RAID-r5 capabilities are ENABLED.\n" : + "PPC460Ex RAID-r5 capabilities are DISABLED.\n"); + + return p - page; +} + +static int ppc460ex_dma_write (struct file *file, const char __user *buffer, + unsigned long count, void *data) +{ + /* e.g. 0xffffffff */ + char tmp[11]; + unsigned long val; + + if (!count || count > 11) + return -EINVAL; + + if (!ppc460ex_dma_tchan) + return -EFAULT; + + if (copy_from_user(tmp, buffer, count)) + return -EFAULT; + + /* Write a key */ + val = simple_strtoul(tmp, NULL, 16); + if(!strcmp(val,"copy")) + printk("Testing copy feature"); + /* Verify does it really work now */ + if (ppc460ex_test_dma(ppc460ex_dma_tchan) == 0) { + /* PPC440SP(e) RAID-6 has been activated successfully */; + printk(KERN_INFO "PPC460Ex RAID-5 has been activated " + "successfully\n"); + ppc460ex_r5_enabled = 1; + ppc460ex_r6_enabled = 1; + } else { + /* PPC440SP(e) RAID-6 hasn't been activated! Error key ? */; + printk(KERN_INFO "PPC460Ex RAID-5 hasn't been activated!" + " Error key ?\n"); + ppc460ex_r5_enabled = 0; + } + + return count; +} + +static int __init ppc460ex_adma_init (void) +{ + int rval; + struct proc_dir_entry *p; + + rval = of_register_platform_driver(&ppc460ex_pdma_driver); + + if (rval == 0) { + /* Create /proc entries */ + ppc460ex_proot = proc_mkdir(PPC460EX_DMA_PROC_ROOT, NULL); + if (!ppc460ex_proot) { + printk(KERN_ERR "%s: failed to create %s proc " + "directory\n",__FUNCTION__,PPC460EX_DMA_PROC_ROOT); + /* User will not be able to enable h/w RAID-6 */ + return rval; + } + + /* RAID-6 h/w enable entry */ + p = create_proc_entry("enable", 0, ppc460ex_proot); + if (p) { + p->read_proc = ppc460ex_dma_read; + p->write_proc = ppc460ex_dma_write; + } + } + return rval; +} + +#if 0 +static void __exit ppc460ex_adma_exit (void) +{ + of_unregister_platform_driver(&ppc460ex_pdma_driver); + return; +} +module_exit(ppc460ex_adma_exit); +#endif + +module_init(ppc460ex_adma_init); + +MODULE_AUTHOR("Tirumala Marri<tmarri@amcc.com>"); +MODULE_DESCRIPTION("PPC460EX ADMA Engine Driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/dma/ppc460ex_4chan_dma.c b/drivers/dma/ppc460ex_4chan_dma.c new file mode 100755 index 00000000000..cb2888d5213 --- /dev/null +++ b/drivers/dma/ppc460ex_4chan_dma.c @@ -0,0 +1,1103 @@ +/* + * Copyright(c) 2008 Applied Micro Circuits Corporation(AMCC). All rights reserved. + * + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the Free + * Software Foundation; either version 2 of the License, or (at your option) + * any later version. + * + * This program is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., 59 + * Temple Place - Suite 330, Boston, MA 02111-1307, USA. + * + * The full GNU General Public License is included in this distribution in the + * file called COPYING. + */ + + +#include <linux/init.h> +#include <linux/module.h> +#include <linux/async_tx.h> +#include <linux/delay.h> +#include <linux/dma-mapping.h> +#include <linux/spinlock.h> +#include <linux/interrupt.h> +#include <linux/platform_device.h> +#include <linux/of_platform.h> +#include <linux/uaccess.h> +#include <linux/proc_fs.h> +#include <asm/dcr-regs.h> +#include <asm/dcr.h> +#include "ppc460ex_4chan_dma.h" + + + +#ifdef DEBUG_TEST +#define dma_pr printk +#else +#define dma_pr +#endif +#define TEST_SIZE 12 + + +ppc460ex_plb_dma_dev_t *adev; + + + +int ppc460ex_get_dma_channel(void) +{ + int i; + unsigned int status = 0; + status = mfdcr(DCR_DMA2P40_SR); + + for(i=0; i<MAX_PPC460EX_DMA_CHANNELS; i++) { + if ((status & (1 >> (20+i))) == 0) + return i; + } + return -ENODEV; +} + + +int ppc460ex_get_dma_status(void) +{ + return (mfdcr(DCR_DMA2P40_SR)); + +} + + +int ppc460ex_set_src_addr(int ch_id, phys_addr_t src_addr) +{ + + if (ch_id >= MAX_PPC460EX_DMA_CHANNELS) { + printk("%s: bad channel %d\n", __FUNCTION__, ch_id); + return DMA_STATUS_BAD_CHANNEL; + } + + +#ifdef PPC4xx_DMA_64BIT + mtdcr(DCR_DMA2P40_SAH0 + ch_id*8, src_addr >> 32); +#endif + mtdcr(DCR_DMA2P40_SAL0 + ch_id*8, (u32)src_addr); + + return DMA_STATUS_GOOD; +} + +int ppc460ex_set_dst_addr(int ch_id, phys_addr_t dst_addr) +{ + + if (ch_id >= MAX_PPC460EX_DMA_CHANNELS) { + printk(KERN_ERR "%s: bad channel %d\n", __FUNCTION__, ch_id); + return DMA_STATUS_BAD_CHANNEL; + } + +#ifdef PPC4xx_DMA_64BIT + mtdcr(DCR_DMA2P40_DAH0 + ch_id*8, dst_addr >> 32); +#endif + mtdcr(DCR_DMA2P40_DAL0 + ch_id*8, (u32)dst_addr); + + return DMA_STATUS_GOOD; +} + + + +/* + * Sets the dma mode for single DMA transfers only. + * For scatter/gather transfers, the mode is passed to the + * alloc_dma_handle() function as one of the parameters. + * + * The mode is simply saved and used later. This allows + * the driver to call set_dma_mode() and set_dma_addr() in + * any order. + * + * Valid mode values are: + * + * DMA_MODE_READ peripheral to memory + * DMA_MODE_WRITE memory to peripheral + * DMA_MODE_MM memory to memory + * DMA_MODE_MM_DEVATSRC device-paced memory to memory, device at src + * DMA_MODE_MM_DEVATDST device-paced memory to memory, device at dst + */ +int ppc460ex_set_dma_mode(ppc460ex_plb_dma_dev_t *adev, unsigned int ch_id, unsigned int mode) +{ + + ppc460ex_plb_dma_ch_t *dma_chan = adev->chan[ch_id]; + + if (ch_id >= MAX_PPC460EX_DMA_CHANNELS) { + printk("%s: bad channel %d\n", __FUNCTION__, dma_chan->chan_id); + return DMA_STATUS_BAD_CHANNEL; + } + + dma_chan->mode = mode; + return DMA_STATUS_GOOD; +} + + + + +/* + * Sets the DMA Count register. Note that 'count' is in bytes. + * However, the DMA Count register counts the number of "transfers", + * where each transfer is equal to the bus width. Thus, count + * MUST be a multiple of the bus width. + */ +void ppc460ex_set_dma_count(ppc460ex_plb_dma_dev_t *adev, unsigned int ch_id, unsigned int count) +{ + ppc460ex_plb_dma_ch_t *dma_chan = adev->chan[ch_id]; + +//#ifdef DEBUG_4xxDMA + + { + int error = 0; + switch (dma_chan->pwidth) { + case PW_8: + break; + case PW_16: + if (count & 0x1) + error = 1; + break; + case PW_32: + if (count & 0x3) + error = 1; + break; + case PW_64: + if (count & 0x7) + error = 1; + break; + + case PW_128: + if (count & 0xf) + error = 1; + break; + default: + printk("set_dma_count: invalid bus width: 0x%x\n", + dma_chan->pwidth); + return; + } + if (error) + printk + ("Warning: set_dma_count count 0x%x bus width %d\n", + count, dma_chan->pwidth); + } +//#endif + count = count >> dma_chan->shift; + //count = 10; + mtdcr(DCR_DMA2P40_CTC0 + (ch_id * 0x8), count); + +} + + + + +/* + * Enables the channel interrupt. + * + * If performing a scatter/gatter transfer, this function + * MUST be called before calling alloc_dma_handle() and building + * the sgl list. Otherwise, interrupts will not be enabled, if + * they were previously disabled. + */ +int ppc460ex_enable_dma_interrupt(ppc460ex_plb_dma_dev_t *adev, unsigned int ch_id) +{ + unsigned int control; + ppc460ex_plb_dma_ch_t *dma_chan = adev->chan[ch_id]; + + if (ch_id >= MAX_PPC460EX_DMA_CHANNELS) { + printk(KERN_ERR "%s: bad channel %d\n", __FUNCTION__, ch_id); + return DMA_STATUS_BAD_CHANNEL; + } + + dma_chan->int_enable = 1; + + + control = mfdcr(DCR_DMA2P40_CR0); + control |= DMA_CIE_ENABLE; /* Channel Interrupt Enable */ + mtdcr(DCR_DMA2P40_CR0, control); + + + +#if 1 + control = mfdcr(DCR_DMA2P40_CTC0); + control |= DMA_CTC_TCIE | DMA_CTC_ETIE| DMA_CTC_EIE; + mtdcr(DCR_DMA2P40_CTC0, control); + +#endif + + + return DMA_STATUS_GOOD; + +} + + +/* + * Disables the channel interrupt. + * + * If performing a scatter/gatter transfer, this function + * MUST be called before calling alloc_dma_handle() and building + * the sgl list. Otherwise, interrupts will not be disabled, if + * they were previously enabled. + */ +int ppc460ex_disable_dma_interrupt(ppc460ex_plb_dma_dev_t *adev, unsigned int ch_id) +{ + unsigned int control; + ppc460ex_plb_dma_ch_t *dma_chan = adev->chan[ch_id]; + + if (ch_id >= MAX_PPC460EX_DMA_CHANNELS) { + printk(KERN_ERR "%s: bad channel %d\n", __FUNCTION__, ch_id); + return DMA_STATUS_BAD_CHANNEL; + } + dma_chan->int_enable = 0; + control = mfdcr(DCR_DMA2P40_CR0 + (ch_id * 0x8)); + control &= ~DMA_CIE_ENABLE; /* Channel Interrupt Enable */ + mtdcr(DCR_DMA2P40_CR0 + (ch_id * 0x8), control); + + return DMA_STATUS_GOOD; +} + + +/* + * This function returns the channel configuration. + */ +int ppc460ex_get_channel_config(ppc460ex_plb_dma_dev_t *adev, unsigned int ch_id, + ppc460ex_plb_dma_ch_t *p_dma_ch) +{ + unsigned int polarity; + unsigned int control; + ppc460ex_plb_dma_ch_t *dma_chan = adev->chan[ch_id]; + + if (ch_id >= MAX_PPC460EX_DMA_CHANNELS) { + printk(KERN_ERR "%s: bad channel %d\n", __FUNCTION__, ch_id); + return DMA_STATUS_BAD_CHANNEL; + } + + memcpy(p_dma_ch, dma_chan, sizeof(ppc460ex_plb_dma_ch_t)); + + polarity = mfdcr(DCR_DMA2P40_POL); + + p_dma_ch->polarity = polarity & GET_DMA_POLARITY(ch_id); + control = mfdcr(DCR_DMA2P40_CR0 + (ch_id * 0x8)); + + p_dma_ch->cp = GET_DMA_PRIORITY(control); + p_dma_ch->pwidth = GET_DMA_PW(control); + p_dma_ch->psc = GET_DMA_PSC(control); + p_dma_ch->pwc = GET_DMA_PWC(control); + p_dma_ch->phc = GET_DMA_PHC(control); + p_dma_ch->ce = GET_DMA_CE_ENABLE(control); + p_dma_ch->int_enable = GET_DMA_CIE_ENABLE(control); + p_dma_ch->shift = GET_DMA_PW(control); + p_dma_ch->pf = GET_DMA_PREFETCH(control); + + return DMA_STATUS_GOOD; + +} + +/* + * Sets the priority for the DMA channel dmanr. + * Since this is setup by the hardware init function, this function + * can be used to dynamically change the priority of a channel. + * + * Acceptable priorities: + * + * PRIORITY_LOW + * PRIORITY_MID_LOW + * PRIORITY_MID_HIGH + * PRIORITY_HIGH + * + */ +int ppc460ex_set_channel_priority(ppc460ex_plb_dma_dev_t *adev, unsigned int ch_id, + unsigned int priority) +{ + unsigned int control; + + if (ch_id >= MAX_PPC460EX_DMA_CHANNELS) { + printk(KERN_ERR "%s: bad channel %d\n", __FUNCTION__, ch_id); + return DMA_STATUS_BAD_CHANNEL; + } + + if ((priority != PRIORITY_LOW) && + (priority != PRIORITY_MID_LOW) && + (priority != PRIORITY_MID_HIGH) && (priority != PRIORITY_HIGH)) { + printk("%s:bad priority: 0x%x\n", __FUNCTION__, priority); + } + + control = mfdcr(DCR_DMA2P40_CR0 + (ch_id * 0x8)); + control |= SET_DMA_PRIORITY(priority); + mtdcr(DCR_DMA2P40_CR0 + (ch_id * 0x8), control); + + return DMA_STATUS_GOOD; +} + +/* + * Returns the width of the peripheral attached to this channel. This assumes + * that someone who knows the hardware configuration, boot code or some other + * init code, already set the width. + * + * The return value is one of: + * PW_8 + * PW_16 + * PW_32 + * PW_64 + * + * The function returns 0 on error. + */ +unsigned int ppc460ex_get_peripheral_width(ppc460ex_plb_dma_dev_t *adev, unsigned int ch_id) +{ + unsigned int control; + + if (ch_id >= MAX_PPC460EX_DMA_CHANNELS) { + printk(KERN_ERR "%s: bad channel %d\n", __FUNCTION__, ch_id); + return DMA_STATUS_BAD_CHANNEL; + } + control = mfdcr(DCR_DMA2P40_CR0 + (ch_id * 0x8)); + return (GET_DMA_PW(control)); +} + +/* + * Enables the burst on the channel (BTEN bit in the control/count register) + * Note: + * For scatter/gather dma, this function MUST be called before the + * ppc4xx_alloc_dma_handle() func as the chan count register is copied into the + * sgl list and used as each sgl element is added. + */ +int ppc460ex_enable_burst(ppc460ex_plb_dma_dev_t *adev, unsigned int ch_id) +{ + unsigned int ctc; + if (ch_id >= MAX_PPC460EX_DMA_CHANNELS) { + printk(KERN_ERR "%s: bad channel %d\n", __FUNCTION__, ch_id); + return DMA_STATUS_BAD_CHANNEL; + } + + ctc = mfdcr(DCR_DMA2P40_CTC0 + (ch_id * 0x8)) | DMA_CTC_BTEN; + mtdcr(DCR_DMA2P40_CTC0 + (ch_id * 0x8), ctc); + return DMA_STATUS_GOOD; +} + + +/* + * Disables the burst on the channel (BTEN bit in the control/count register) + * Note: + * For scatter/gather dma, this function MUST be called before the + * ppc4xx_alloc_dma_handle() func as the chan count register is copied into the + * sgl list and used as each sgl element is added. + */ +int ppc460ex_disable_burst(ppc460ex_plb_dma_dev_t *adev, unsigned int ch_id) +{ + unsigned int ctc; + if (ch_id >= MAX_PPC460EX_DMA_CHANNELS) { + printk(KERN_ERR "%s: bad channel %d\n", __FUNCTION__, ch_id); + return DMA_STATUS_BAD_CHANNEL; + } + + ctc = mfdcr(DCR_DMA2P40_CTC0 + (ch_id * 0x8)) &~ DMA_CTC_BTEN; + mtdcr(DCR_DMA2P40_CTC0 + (ch_id * 0x8), ctc); + return DMA_STATUS_GOOD; +} + + +/* + * Sets the burst size (number of peripheral widths) for the channel + * (BSIZ bits in the control/count register)) + * must be one of: + * DMA_CTC_BSIZ_2 + * DMA_CTC_BSIZ_4 + * DMA_CTC_BSIZ_8 + * DMA_CTC_BSIZ_16 + * Note: + * For scatter/gather dma, this function MUST be called before the + * ppc4xx_alloc_dma_handle() func as the chan count register is copied into the + * sgl list and used as each sgl element is added. + */ +int ppc460ex_set_burst_size(ppc460ex_plb_dma_dev_t *adev, unsigned int ch_id, + unsigned int bsize) +{ + unsigned int ctc; + if (ch_id >= MAX_PPC460EX_DMA_CHANNELS) { + printk(KERN_ERR "%s: bad channel %d\n", __FUNCTION__, ch_id); + return DMA_STATUS_BAD_CHANNEL; + } + + ctc = mfdcr(DCR_DMA2P40_CTC0 + (ch_id * 0x8)) &~ DMA_CTC_BSIZ_MSK; + ctc |= (bsize & DMA_CTC_BSIZ_MSK); + mtdcr(DCR_DMA2P40_CTC0 + (ch_id * 0x8), ctc); + return DMA_STATUS_GOOD; +} + +/* + * Returns the number of bytes left to be transferred. + * After a DMA transfer, this should return zero. + * Reading this while a DMA transfer is still in progress will return + * unpredictable results. + */ +int ppc460ex_get_dma_residue(ppc460ex_plb_dma_dev_t *adev, unsigned int ch_id) +{ + unsigned int count; + ppc460ex_plb_dma_ch_t *dma_chan = adev->chan[ch_id]; + + if (ch_id >= MAX_PPC460EX_DMA_CHANNELS) { + printk(KERN_ERR "%s: bad channel %d\n", __FUNCTION__, ch_id); + return DMA_STATUS_BAD_CHANNEL; + } + + count = mfdcr(DCR_DMA2P40_CTC0 + (ch_id * 0x8)); + count &= DMA_CTC_TC_MASK ; + + return (count << dma_chan->shift); + +} + + +/* + * Configures a DMA channel, including the peripheral bus width, if a + * peripheral is attached to the channel, the polarity of the DMAReq and + * DMAAck signals, etc. This information should really be setup by the boot + * code, since most likely the configuration won't change dynamically. + * If the kernel has to call this function, it's recommended that it's + * called from platform specific init code. The driver should not need to + * call this function. + */ +int ppc460ex_init_dma_channel(ppc460ex_plb_dma_dev_t *adev, unsigned int ch_id, + ppc460ex_plb_dma_ch_t *p_init) +{ + unsigned int polarity; + uint32_t control = 0; + ppc460ex_plb_dma_ch_t *dma_chan = adev->chan[ch_id]; + + + DMA_MODE_READ = (unsigned long) DMA_TD; /* Peripheral to Memory */ + DMA_MODE_WRITE = 0; /* Memory to Peripheral */ + + if (!p_init) { + printk("%s: NULL p_init\n", __FUNCTION__); + return DMA_STATUS_NULL_POINTER; + } + + if (ch_id >= MAX_PPC460EX_DMA_CHANNELS) { + printk(KERN_ERR "%s: bad channel %d\n", __FUNCTION__, ch_id); + return DMA_STATUS_BAD_CHANNEL; + } +#if DCR_DMA2P40_POL > 0 + polarity = mfdcr(DCR_DMA2P40_POL); +#else + polarity = 0; +#endif + + p_init->int_enable = 0; + p_init->buffer_enable = 1; + p_init->etd_output = 1; + p_init->tce_enable = 1; + p_init->pl = 0; + p_init->dai = 1; + p_init->sai = 1; + /* Duc Dang: make channel priority to 2, original is 3 */ + p_init->cp = 2; + p_init->pwidth = PW_8; + p_init->psc = 0; + p_init->pwc = 0; + p_init->phc = 0; + p_init->pf = 1; + + + /* Setup the control register based on the values passed to + * us in p_init. Then, over-write the control register with this + * new value. + */ +#if 0 + control |= SET_DMA_CONTROL; +#endif + control = SET_DMA_CONTROL; + /* clear all polarity signals and then "or" in new signal levels */ + +//PMB - Workaround + //control = 0x81A2CD80; + //control = 0x81A00180; + + + polarity &= ~GET_DMA_POLARITY(ch_id); + polarity |= p_init->polarity; + +#if DCR_DMA2P40_POL > 0 + mtdcr(DCR_DMA2P40_POL, polarity); +#endif + mtdcr(DCR_DMA2P40_CR0 + (ch_id * 0x8), control); + + /* save these values in our dma channel structure */ + //memcpy(dma_chan, p_init, sizeof(ppc460ex_plb_dma_ch_t)); + /* + * The peripheral width values written in the control register are: + * PW_8 0 + * PW_16 1 + * PW_32 2 + * PW_64 3 + * PW_128 4 + * + * Since the DMA count register takes the number of "transfers", + * we need to divide the count sent to us in certain + * functions by the appropriate number. It so happens that our + * right shift value is equal to the peripheral width value. + */ + dma_chan->shift = p_init->pwidth; + dma_chan->sai = p_init->sai; + dma_chan->dai = p_init->dai; + dma_chan->tce_enable = p_init->tce_enable; + dma_chan->mode = DMA_MODE_MM; + /* + * Save the control word for easy access. + */ + dma_chan->control = control; + mtdcr(DCR_DMA2P40_SR, 0xffffffff); + + + return DMA_STATUS_GOOD; +} + + +int ppc460ex_enable_dma(ppc460ex_plb_dma_dev_t *adev, unsigned int ch_id) +{ + unsigned int control; + ppc460ex_plb_dma_ch_t *dma_chan = adev->chan[ch_id]; + unsigned int status_bits[] = { DMA_CS0 | DMA_TS0 | DMA_CH0_ERR, + DMA_CS1 | DMA_TS1 | DMA_CH1_ERR}; + + if (dma_chan->in_use) { + printk("%s:enable_dma: channel %d in use\n", __FUNCTION__, ch_id); + return DMA_STATUS_CHANNEL_NOTFREE; + } + + if (ch_id >= MAX_PPC460EX_DMA_CHANNELS) { + printk(KERN_ERR "%s: bad channel %d\n", __FUNCTION__, ch_id); + return DMA_STATUS_BAD_CHANNEL; + } + +#if 0 + if (dma_chan->mode == DMA_MODE_READ) { + /* peripheral to memory */ + ppc460ex_set_src_addr(ch_id, 0); + ppc460ex_set_dst_addr(ch_id, dma_chan->addr); + } else if (dma_chan->mode == DMA_MODE_WRITE) { + /* memory to peripheral */ + ppc460ex_set_src_addr(ch_id, dma_chan->addr); + ppc460ex_set_dst_addr(ch_id, 0); + } +#endif + /* for other xfer modes, the addresses are already set */ + control = mfdcr(DCR_DMA2P40_CR0 + (ch_id * 0x8)); + control &= ~(DMA_TM_MASK | DMA_TD); /* clear all mode bits */ + if (dma_chan->mode == DMA_MODE_MM) { + /* software initiated memory to memory */ + control |= DMA_ETD_OUTPUT | DMA_TCE_ENABLE; + control |= DMA_MODE_MM; + if (dma_chan->dai) { + control |= DMA_DAI; + } + if (dma_chan->sai) { + control |= DMA_SAI; + } + } + + mtdcr(DCR_DMA2P40_CR0 + (ch_id * 0x8), control); + /* + * Clear the CS, TS, RI bits for the channel from DMASR. This + * has been observed to happen correctly only after the mode and + * ETD/DCE bits in DMACRx are set above. Must do this before + * enabling the channel. + */ + mtdcr(DCR_DMA2P40_SR, status_bits[ch_id]); + /* + * For device-paced transfers, Terminal Count Enable apparently + * must be on, and this must be turned on after the mode, etc. + * bits are cleared above (at least on Redwood-6). + */ + + if ((dma_chan->mode == DMA_MODE_MM_DEVATDST) || + (dma_chan->mode == DMA_MODE_MM_DEVATSRC)) + control |= DMA_TCE_ENABLE; + + /* + * Now enable the channel. + */ + + control |= (dma_chan->mode | DMA_CE_ENABLE); + control |= DMA_BEN; + //control = 0xc4effec0; + + mtdcr(DCR_DMA2P40_CR0 + (ch_id * 0x8), control); + dma_chan->in_use = 1; + return 0; + +} + + +void +ppc460ex_disable_dma(ppc460ex_plb_dma_dev_t *adev, unsigned int ch_id) +{ + unsigned int control; + ppc460ex_plb_dma_ch_t *dma_chan = adev->chan[ch_id]; + + if (!dma_chan->in_use) { + printk("disable_dma: channel %d not in use\n", ch_id); + return; + } + + if (ch_id >= MAX_PPC460EX_DMA_CHANNELS) { + printk("disable_dma: bad channel: %d\n", ch_id); + return; + } + + control = mfdcr(DCR_DMA2P40_CR0 + (ch_id * 0x8)); + control &= ~DMA_CE_ENABLE; + mtdcr(DCR_DMA2P40_CR0 + (ch_id * 0x8), control); + + dma_chan->in_use = 0; +} + + + + +/* + * Clears the channel status bits + */ +int ppc460ex_clear_dma_status(unsigned int ch_id) +{ + if (ch_id >= MAX_PPC460EX_DMA_CHANNELS) { + printk("KERN_ERR %s: bad channel %d\n", __FUNCTION__, ch_id); + return DMA_STATUS_BAD_CHANNEL; + } + + mtdcr(DCR_DMA2P40_SR, ((u32)DMA_CH0_ERR | (u32)DMA_CS0 | (u32)DMA_TS0) >> ch_id); + return DMA_STATUS_GOOD; + +} + + +/** + * ppc460ex_dma_eot_handler - end of transfer interrupt handler + */ +irqreturn_t ppc460ex_4chan_dma_eot_handler(int irq, void *data) +{ + unsigned int data_read = 0; + unsigned int try_cnt = 0; + + //printk("transfer complete\n"); + data_read = mfdcr(DCR_DMA2P40_SR); + //printk("%s: status 0x%08x\n", __FUNCTION__, data_read); + + do{ + //while bit 3 TC done is 0 + data_read = mfdcr(DCR_DMA2P40_SR); + if (data_read & 0x00800000 ) {printk("test FAIL\n"); } //see if error bit is set + }while(((data_read & 0x80000000) != 0x80000000) && ++try_cnt <= 10);// TC is now 0 + + data_read = mfdcr(DCR_DMA2P40_SR); + while (data_read & 0x00000800){ //while channel is busy + data_read = mfdcr(DCR_DMA2P40_SR); + printk("%s: status for busy 0x%08x\n", __FUNCTION__, data_read); + } + mtdcr(DCR_DMA2P40_SR, 0xffffffff); + + + + return IRQ_HANDLED; +} + + + +static struct of_device_id dma_per_chan_match[] = { + { + .compatible = "amcc,dma-4channel", + }, + {}, +}; + + + + +#if 0 +/*** test code ***/ +static int ppc460ex_dma_memcpy_self_test(ppc460ex_plb_dma_dev_t *device, unsigned int dma_ch_id) +{ + ppc460ex_plb_dma_ch_t p_init; + int res = 0, i; + unsigned int control; + phys_addr_t *src; + phys_addr_t *dest; + + phys_addr_t *gap; + + phys_addr_t dma_dest, dma_src; + + src = kzalloc(TEST_SIZE, GFP_KERNEL); + if (!src) + return -ENOMEM; + gap = kzalloc(200, GFP_KERNEL); + if (!gap) + return -ENOMEM; + + + + dest = kzalloc(TEST_SIZE, GFP_KERNEL); + if (!dest) { + kfree(src); + return -ENOMEM; + } + + printk("src = 0x%08x\n", (unsigned int)src); + printk("gap = 0x%08x\n", (unsigned int)gap); + printk("dest = 0x%08x\n", (unsigned int)dest); + + /* Fill in src buffer */ + for (i = 0; i < TEST_SIZE; i++) + ((u8*)src)[i] = (u8)i; + + printk("dump src\n"); + DMA_HEXDUMP(src, TEST_SIZE); + DMA_HEXDUMP(dest, TEST_SIZE); +#if 1 + dma_src = dma_map_single(p_init.device->dev, src, TEST_SIZE, + DMA_TO_DEVICE); + dma_dest = dma_map_single(p_init.device->dev, dest, TEST_SIZE, + DMA_FROM_DEVICE); +#endif + printk("%s:channel = %d chan 0x%08x\n", __FUNCTION__, device->chan[dma_ch_id]->chan_id, + (unsigned int)(device->chan)); + + p_init.polarity = 0; + p_init.pwidth = PW_32; + p_init.in_use = 0; + p_init.sai = 1; + p_init.dai = 1; + res = ppc460ex_init_dma_channel(device, dma_ch_id, &p_init); + + if (res) { + printk("%32s: init_dma_channel return %d\n", + __FUNCTION__, res); + } + ppc460ex_clear_dma_status(dma_ch_id); + + ppc460ex_set_src_addr(dma_ch_id, dma_src); + ppc460ex_set_dst_addr(dma_ch_id, dma_dest); + + ppc460ex_set_dma_mode(device, dma_ch_id, DMA_MODE_MM); + ppc460ex_set_dma_count(device, dma_ch_id, TEST_SIZE); + + res = ppc460ex_enable_dma_interrupt(device, dma_ch_id); + if (res) { + printk("%32s: en/disable_dma_interrupt\n", + __FUNCTION__); + } + + + if (dma_ch_id == 0) + control = mfdcr(DCR_DMA2P40_CR0); + else if (dma_ch_id == 1) + control = mfdcr(DCR_DMA2P40_CR1); + + + control &= ~(SET_DMA_BEN(1)); + control &= ~(SET_DMA_PSC(3)); + control &= ~(SET_DMA_PWC(0x3f)); + control &= ~(SET_DMA_PHC(0x7)); + control &= ~(SET_DMA_PL(1)); + + + + if (dma_ch_id == 0) + mtdcr(DCR_DMA2P40_CR0, control); + else if (dma_ch_id == 1) + mtdcr(DCR_DMA2P40_CR1, control); + + + ppc460ex_enable_dma(device, dma_ch_id); + + + if (memcmp(src, dest, TEST_SIZE)) { + printk("Self-test copy failed compare, disabling\n"); + res = -ENODEV; + goto out; + } + + + return 0; + + out: kfree(src); + kfree(dest); + return res; + +} + + + +static int test1(void) +{ + void *src, *dest; + void *src1, *dest1; + int i; + unsigned int chan; + + src = kzalloc(TEST_SIZE, GFP_KERNEL); + if (!src) + return -ENOMEM; + + dest = kzalloc(TEST_SIZE, GFP_KERNEL); + if (!dest) { + kfree(src); + return -ENOMEM; + } + + src1 = kzalloc(TEST_SIZE, GFP_KERNEL); + if (!src1) + return -ENOMEM; + + dest1 = kzalloc(TEST_SIZE, GFP_KERNEL); + if (!dest1) { + kfree(src1); + return -ENOMEM; + } + + /* Fill in src buffer */ + for (i = 0; i < TEST_SIZE; i++) + ((u8*)src)[i] = (u8)i; + + /* Fill in src buffer */ + for (i = 0; i < TEST_SIZE; i++) + ((u8*)src1)[i] = (u8)0xaa; + +#ifdef DEBUG_TEST + DMA_HEXDUMP(src, TEST_SIZE); + DMA_HEXDUMP(dest, TEST_SIZE); + DMA_HEXDUMP(src1, TEST_SIZE); + DMA_HEXDUMP(dest1, TEST_SIZE); +#endif + chan = ppc460ex_get_dma_channel(); + +#ifdef ENABLE_SGL + test_sgdma_memcpy(src, dest, src1, dest1, TEST_SIZE, chan); +#endif + test_dma_memcpy(src, dest, TEST_SIZE, chan); + + + out: kfree(src); + kfree(dest); + kfree(src1); + kfree(dest1); + + return 0; + +} +#endif + + + +/******************************************************************************* + * Module Initialization Routine + ******************************************************************************* + */ +int __devinit ppc460ex_dma_per_chan_probe(struct of_device *ofdev, + const struct of_device_id *match) +{ + int ret=0; + //ppc460ex_plb_dma_dev_t *adev; + ppc460ex_plb_dma_ch_t *new_chan; + int err; + + + + adev = dev_get_drvdata(ofdev->dev.parent); + BUG_ON(!adev); + /* create a device */ + if ((new_chan = kzalloc(sizeof(*new_chan), GFP_KERNEL)) == NULL) { + printk("ERROR:No Free memory for allocating dma channels\n"); + ret = -ENOMEM; + goto err; + } + + err = of_address_to_resource(ofdev->node,0,&new_chan->reg); + if (err) { + printk("ERROR:Can't get %s property reg\n", __FUNCTION__); + goto err; + } + new_chan->device = adev; + new_chan->reg_base = ioremap(new_chan->reg.start,new_chan->reg.end - new_chan->reg.start + 1); +#if 1 + printk("PPC460ex PLB DMA engine @0x%02X_%08X size %d\n", + (u32)(new_chan->reg.start >> 32), + (u32)new_chan->reg.start, + (u32)(new_chan->reg.end - new_chan->reg.start + 1)); +#endif + + switch(new_chan->reg.start) { + case 0x100: + new_chan->chan_id = 0; + break; + case 0x108: + new_chan->chan_id = 1; + break; + case 0x110: + new_chan->chan_id = 2; + break; + case 0x118: + new_chan->chan_id = 3; + break; + } + new_chan->chan_id = ((new_chan->reg.start - 0x100)& 0xfff) >> 3; + printk("new_chan->chan_id 0x%x\n",new_chan->chan_id); + adev->chan[new_chan->chan_id] = new_chan; + printk("new_chan->chan->chan_id 0x%x\n",adev->chan[new_chan->chan_id]->chan_id); + //adev->chan[new_chan->chan_id]->reg_base = new_chan->reg_base; + + return 0; + + err: + return ret; + +} + +int __devinit ppc460ex_dma_4chan_probe(struct of_device *ofdev, + const struct of_device_id *match) +{ + int ret=0, irq = 0; + //ppc460ex_plb_dma_dev_t *adev; + ppc460ex_plb_dma_ch_t *chan = NULL; + + + /* create a device */ + if ((adev = kzalloc(sizeof(*adev), GFP_KERNEL)) == NULL) { + ret = -ENOMEM; + goto err_adev_alloc; + } + adev->dev = &ofdev->dev; +#if !defined(CONFIG_APM82181) + err = of_address_to_resource(ofdev->node,0,&adev->reg); + if(err) { + printk(KERN_ERR"Can't get %s property 'reg'\n",ofdev->node->full_name); + } +#endif + printk(KERN_INFO"Probing AMCC DMA driver\n"); +#if !defined(CONFIG_APM82181) + adev->reg_base = ioremap(adev->reg.start, adev->reg.end - adev->reg.start + 1); +#endif + +#if 1 + irq = of_irq_to_resource(ofdev->node, 0, NULL); + if (irq >= 0) { + ret = request_irq(irq, ppc460ex_4chan_dma_eot_handler, + IRQF_DISABLED, "Peripheral DMA0/1", chan); + if (ret) { + ret = -EIO; + goto err_irq; + } + //irq = platform_get_irq(adev, 0); + /* only DMA engines have a separate err IRQ + * so it's Ok if irq < 0 in XOR case + */ + } else + ret = -ENXIO; + +#if !defined(CONFIG_APM82181) + printk("PPC4xx PLB DMA engine @0x%02X_%08X size %d IRQ %d \n", + (u32)(adev->reg.start >> 32), + (u32)adev->reg.start, + (u32)(adev->reg.end - adev->reg.start + 1), + irq); +#else + printk("PPC4xx PLB DMA engine IRQ %d\n", irq); +#endif +#endif + dev_set_drvdata(&(ofdev->dev),adev); + of_platform_bus_probe(ofdev->node,dma_per_chan_match,&ofdev->dev); + + + //ppc460ex_dma_memcpy_self_test(adev, 0); + //test1(); + + + return 0; + + +err_adev_alloc: + //release_mem_region(adev->reg.start, adev->reg.end - adev->reg.start); +err_irq: + kfree(chan); + + return ret; +} + + +static struct of_device_id dma_4chan_match[] = { + { + .compatible = "amcc,dma", + }, + {}, +}; + +struct of_platform_driver ppc460ex_dma_4chan_driver = { + .name = "plb_dma", + .match_table = dma_4chan_match, + .probe = ppc460ex_dma_4chan_probe, +}; + +struct of_platform_driver ppc460ex_dma_per_chan_driver = { + .name = "dma-4channel", + .match_table = dma_per_chan_match, + .probe = ppc460ex_dma_per_chan_probe, +}; + + +static int __init mod_init (void) +{ + printk("%s:%d\n", __FUNCTION__, __LINE__); + return of_register_platform_driver(&ppc460ex_dma_4chan_driver); + printk("here 2\n"); +} + +static void __exit mod_exit(void) +{ + of_unregister_platform_driver(&ppc460ex_dma_4chan_driver); +} + +static int __init ppc460ex_dma_per_chan_init (void) +{ + printk("%s:%d\n", __FUNCTION__, __LINE__); + return of_register_platform_driver(&ppc460ex_dma_per_chan_driver); + printk("here 3\n"); +} + +static void __exit ppc460ex_dma_per_chan_exit(void) +{ + of_unregister_platform_driver(&ppc460ex_dma_per_chan_driver); +} + +subsys_initcall(ppc460ex_dma_per_chan_init); +subsys_initcall(mod_init); + +//module_exit(mod_exit); + +//module_exit(ppc460ex_dma_per_chan_exit); + +MODULE_DESCRIPTION("AMCC PPC460EX 4 channel Engine Driver"); +MODULE_LICENSE("GPL"); + +EXPORT_SYMBOL_GPL(ppc460ex_get_dma_status); +EXPORT_SYMBOL_GPL(ppc460ex_set_src_addr); +EXPORT_SYMBOL_GPL(ppc460ex_set_dst_addr); +EXPORT_SYMBOL_GPL(ppc460ex_set_dma_mode); +EXPORT_SYMBOL_GPL(ppc460ex_set_dma_count); +EXPORT_SYMBOL_GPL(ppc460ex_enable_dma_interrupt); +EXPORT_SYMBOL_GPL(ppc460ex_init_dma_channel); +EXPORT_SYMBOL_GPL(ppc460ex_enable_dma); +EXPORT_SYMBOL_GPL(ppc460ex_disable_dma); +EXPORT_SYMBOL_GPL(ppc460ex_clear_dma_status); +EXPORT_SYMBOL_GPL(ppc460ex_get_dma_residue); +EXPORT_SYMBOL_GPL(ppc460ex_disable_dma_interrupt); +EXPORT_SYMBOL_GPL(ppc460ex_get_channel_config); +EXPORT_SYMBOL_GPL(ppc460ex_set_channel_priority); +EXPORT_SYMBOL_GPL(ppc460ex_get_peripheral_width); +EXPORT_SYMBOL_GPL(ppc460ex_enable_burst); +EXPORT_SYMBOL_GPL(ppc460ex_disable_burst); +EXPORT_SYMBOL_GPL(ppc460ex_set_burst_size); + +/************************************************************************/ diff --git a/drivers/dma/ppc460ex_4chan_dma.h b/drivers/dma/ppc460ex_4chan_dma.h new file mode 100755 index 00000000000..c9448f34de4 --- /dev/null +++ b/drivers/dma/ppc460ex_4chan_dma.h @@ -0,0 +1,531 @@ + + +#include <linux/types.h> + + + + +#define DMA_HEXDUMP(b, l) \ + print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET, \ + 16, 1, (b), (l), false); + + +#define MAX_PPC460EX_DMA_CHANNELS 4 + + +#define DCR_DMA0_BASE 0x200 +#define DCR_DMA1_BASE 0x208 +#define DCR_DMA2_BASE 0x210 +#define DCR_DMA3_BASE 0x218 +#define DCR_DMASR_BASE 0x220 + + + + + + +/* DMA Registers */ +#define DCR_DMA2P40_CR0 (DCR_DMA0_BASE + 0x0) /* DMA Channel Control 0 */ +#define DCR_DMA2P40_CTC0 (DCR_DMA0_BASE + 0x1) /* DMA Count 0 */ +#define DCR_DMA2P40_SAH0 (DCR_DMA0_BASE + 0x2) /* DMA Src Addr High 0 */ +#define DCR_DMA2P40_SAL0 (DCR_DMA0_BASE + 0x3) /* DMA Src Addr Low 0 */ +#define DCR_DMA2P40_DAH0 (DCR_DMA0_BASE + 0x4) /* DMA Dest Addr High 0 */ +#define DCR_DMA2P40_DAL0 (DCR_DMA0_BASE + 0x5) /* DMA Dest Addr Low 0 */ +#define DCR_DMA2P40_SGH0 (DCR_DMA0_BASE + 0x6) /* DMA SG Desc Addr High 0 */ +#define DCR_DMA2P40_SGL0 (DCR_DMA0_BASE + 0x7) /* DMA SG Desc Addr Low 0 */ + +#define DCR_DMA2P40_CR1 (DCR_DMA1_BASE + 0x0) /* DMA Channel Control 1 */ +#define DCR_DMA2P40_CTC1 (DCR_DMA1_BASE + 0x1) /* DMA Count 1 */ +#define DCR_DMA2P40_SAH1 (DCR_DMA1_BASE + 0x2) /* DMA Src Addr High 1 */ +#define DCR_DMA2P40_SAL1 (DCR_DMA1_BASE + 0x3) /* DMA Src Addr Low 1 */ +#define DCR_DMA2P40_DAH1 (DCR_DMA1_BASE + 0x4) /* DMA Dest Addr High 1 */ +#define DCR_DMA2P40_DAL1 (DCR_DMA1_BASE + 0x5) /* DMA Dest Addr Low 1 */ +#define DCR_DMA2P40_SGH1 (DCR_DMA1_BASE + 0x6) /* DMA SG Desc Addr High 1 */ +#define DCR_DMA2P40_SGL1 (DCR_DMA1_BASE + 0x7) /* DMA SG Desc Addr Low 1 */ + +#define DCR_DMA2P40_CR2 (DCR_DMA2_BASE + 0x0) /* DMA Channel Control 2 */ +#define DCR_DMA2P40_CTC2 (DCR_DMA2_BASE + 0x1) /* DMA Count 2 */ +#define DCR_DMA2P40_SAH2 (DCR_DMA2_BASE + 0x2) /* DMA Src Addr High 2 */ +#define DCR_DMA2P40_SAL2 (DCR_DMA2_BASE + 0x3) /* DMA Src Addr Low 2 */ +#define DCR_DMA2P40_DAH2 (DCR_DMA2_BASE + 0x4) /* DMA Dest Addr High 2 */ +#define DCR_DMA2P40_DAL2 (DCR_DMA2_BASE + 0x5) /* DMA Dest Addr Low 2 */ +#define DCR_DMA2P40_SGH2 (DCR_DMA2_BASE + 0x6) /* DMA SG Desc Addr High 2 */ +#define DCR_DMA2P40_SGL2 (DCR_DMA2_BASE + 0x7) /* DMA SG Desc Addr Low 2 */ + +#define DCR_DMA2P40_CR3 (DCR_DMA3_BASE + 0x0) /* DMA Channel Control 3 */ +#define DCR_DMA2P40_CTC3 (DCR_DMA3_BASE + 0x1) /* DMA Count 3 */ +#define DCR_DMA2P40_SAH3 (DCR_DMA3_BASE + 0x2) /* DMA Src Addr High 3 */ +#define DCR_DMA2P40_SAL3 (DCR_DMA3_BASE + 0x3) /* DMA Src Addr Low 3 */ +#define DCR_DMA2P40_DAH3 (DCR_DMA3_BASE + 0x4) /* DMA Dest Addr High 3 */ +#define DCR_DMA2P40_DAL3 (DCR_DMA3_BASE + 0x5) /* DMA Dest Addr Low 3 */ +#define DCR_DMA2P40_SGH3 (DCR_DMA3_BASE + 0x6) /* DMA SG Desc Addr High 3 */ +#define DCR_DMA2P40_SGL3 (DCR_DMA3_BASE + 0x7) /* DMA SG Desc Addr Low 3 */ + +#define DCR_DMA2P40_SR (DCR_DMASR_BASE + 0x0) /* DMA Status Register */ +#define DCR_DMA2P40_SGC (DCR_DMASR_BASE + 0x3) /* DMA Scatter/Gather Command */ +#define DCR_DMA2P40_SLP (DCR_DMASR_BASE + 0x5) /* DMA Sleep Register */ +#define DCR_DMA2P40_POL (DCR_DMASR_BASE + 0x6) /* DMA Polarity Register */ + + + +/* + * Function return status codes + * These values are used to indicate whether or not the function + * call was successful, or a bad/invalid parameter was passed. + */ +#define DMA_STATUS_GOOD 0 +#define DMA_STATUS_BAD_CHANNEL 1 +#define DMA_STATUS_BAD_HANDLE 2 +#define DMA_STATUS_BAD_MODE 3 +#define DMA_STATUS_NULL_POINTER 4 +#define DMA_STATUS_OUT_OF_MEMORY 5 +#define DMA_STATUS_SGL_LIST_EMPTY 6 +#define DMA_STATUS_GENERAL_ERROR 7 +#define DMA_STATUS_CHANNEL_NOTFREE 8 + +#define DMA_CHANNEL_BUSY 0x80000000 + +/* + * These indicate status as returned from the DMA Status Register. + */ +#define DMA_STATUS_NO_ERROR 0 +#define DMA_STATUS_CS 1 /* Count Status */ +#define DMA_STATUS_TS 2 /* Transfer Status */ +#define DMA_STATUS_DMA_ERROR 3 /* DMA Error Occurred */ +#define DMA_STATUS_DMA_BUSY 4 /* The channel is busy */ + +/* + * DMA Channel Control Registers + */ +#ifdef CONFIG_44x +#define PPC4xx_DMA_64BIT +#define DMA_CR_OFFSET 1 +#else +#define DMA_CR_OFFSET 0 +#endif + +#define DMA_CE_ENABLE (1<<31) /* DMA Channel Enable */ +#define SET_DMA_CE_ENABLE(x) (((x)&0x1)<<31) +#define GET_DMA_CE_ENABLE(x) (((x)&DMA_CE_ENABLE)>>31) + +#define DMA_CIE_ENABLE (1<<30) /* DMA Channel Interrupt Enable */ +#define SET_DMA_CIE_ENABLE(x) (((x)&0x1)<<30) +#define GET_DMA_CIE_ENABLE(x) (((x)&DMA_CIE_ENABLE)>>30) + +#define DMA_TD (1<<29) +#define SET_DMA_TD(x) (((x)&0x1)<<29) +#define GET_DMA_TD(x) (((x)&DMA_TD)>>29) + +#define DMA_PL (1<<28) /* Peripheral Location */ +#define SET_DMA_PL(x) (((x)&0x1)<<28) +#define GET_DMA_PL(x) (((x)&DMA_PL)>>28) + +#define EXTERNAL_PERIPHERAL 0 +#define INTERNAL_PERIPHERAL 1 + +#define SET_DMA_PW(x) (((x)&0x7)<<(26-DMA_CR_OFFSET)) /* Peripheral Width */ +#define DMA_PW_MASK SET_DMA_PW(7) +#define PW_8 0 +#define PW_16 1 +#define PW_32 2 +#define PW_64 3 +#define PW_128 4 + + +#define GET_DMA_PW(x) (((x)&DMA_PW_MASK)>>(26-DMA_CR_OFFSET)) + +#define DMA_DAI (1<<(25-DMA_CR_OFFSET)) /* Destination Address Increment */ +#define SET_DMA_DAI(x) (((x)&0x1)<<(25-DMA_CR_OFFSET)) + +#define DMA_SAI (1<<(24-DMA_CR_OFFSET)) /* Source Address Increment */ +#define SET_DMA_SAI(x) (((x)&0x1)<<(24-DMA_CR_OFFSET)) + +#define DMA_BEN (1<<(23-DMA_CR_OFFSET)) /* Buffer Enable */ +#define SET_DMA_BEN(x) (((x)&0x1)<<(23-DMA_CR_OFFSET)) + +#define SET_DMA_TM(x) (((x)&0x3)<<(21-DMA_CR_OFFSET)) /* Transfer Mode */ +#define DMA_TM_MASK SET_DMA_TM(3) +#define TM_PERIPHERAL 0 /* Peripheral */ +#define TM_RESERVED 1 /* Reserved */ +#define TM_S_MM 2 /* Memory to Memory */ +#define TM_D_MM 3 /* Device Paced Memory to Memory */ +#define GET_DMA_TM(x) (((x)&DMA_TM_MASK)>>(21-DMA_CR_OFFSET)) + +#define SET_DMA_PSC(x) (((x)&0x3)<<(19-DMA_CR_OFFSET)) /* Peripheral Setup Cycles */ +#define DMA_PSC_MASK SET_DMA_PSC(3) +#define GET_DMA_PSC(x) (((x)&DMA_PSC_MASK)>>(19-DMA_CR_OFFSET)) + +#define SET_DMA_PWC(x) (((x)&0x3F)<<(13-DMA_CR_OFFSET)) /* Peripheral Wait Cycles */ +#define DMA_PWC_MASK SET_DMA_PWC(0x3F) +#define GET_DMA_PWC(x) (((x)&DMA_PWC_MASK)>>(13-DMA_CR_OFFSET)) + +#define SET_DMA_PHC(x) (((x)&0x7)<<(10-DMA_CR_OFFSET)) /* Peripheral Hold Cycles */ +#define DMA_PHC_MASK SET_DMA_PHC(0x7) +#define GET_DMA_PHC(x) (((x)&DMA_PHC_MASK)>>(10-DMA_CR_OFFSET)) + +#define DMA_ETD_OUTPUT (1<<(9-DMA_CR_OFFSET)) /* EOT pin is a TC output */ +#define SET_DMA_ETD(x) (((x)&0x1)<<(9-DMA_CR_OFFSET)) + +#define DMA_TCE_ENABLE (1<<(8-DMA_CR_OFFSET)) +#define SET_DMA_TCE(x) (((x)&0x1)<<(8-DMA_CR_OFFSET)) + +#define DMA_DEC (1<<(2)) /* Address Decrement */ +#define SET_DMA_DEC(x) (((x)&0x1)<<2) +#define GET_DMA_DEC(x) (((x)&DMA_DEC)>>2) + + +/* + * Transfer Modes + * These modes are defined in a way that makes it possible to + * simply "or" in the value in the control register. + */ + +#define DMA_MODE_MM (SET_DMA_TM(TM_S_MM)) /* memory to memory */ + + /* Device-paced memory to memory, */ + /* device is at source address */ +#define DMA_MODE_MM_DEVATSRC (DMA_TD | SET_DMA_TM(TM_D_MM)) + + /* Device-paced memory to memory, */ + /* device is at destination address */ +#define DMA_MODE_MM_DEVATDST (SET_DMA_TM(TM_D_MM)) + +#define SGL_LIST_SIZE 16384 +#define DMA_PPC4xx_SIZE SGL_LIST_SIZE + +#define SET_DMA_PRIORITY(x) (((x)&0x3)<<(6-DMA_CR_OFFSET)) /* DMA Channel Priority */ +#define DMA_PRIORITY_MASK SET_DMA_PRIORITY(3) +#define PRIORITY_LOW 0 +#define PRIORITY_MID_LOW 1 +#define PRIORITY_MID_HIGH 2 +#define PRIORITY_HIGH 3 +#define GET_DMA_PRIORITY(x) (((x)&DMA_PRIORITY_MASK)>>(6-DMA_CR_OFFSET)) + + +#define SET_DMA_PREFETCH(x) (((x)&0x3)<<(4-DMA_CR_OFFSET)) /* Memory Read Prefetch */ +#define DMA_PREFETCH_MASK SET_DMA_PREFETCH(3) +#define PREFETCH_1 0 /* Prefetch 1 Double Word */ +#define PREFETCH_2 1 +#define PREFETCH_4 2 +#define GET_DMA_PREFETCH(x) (((x)&DMA_PREFETCH_MASK)>>(4-DMA_CR_OFFSET)) + +#define DMA_PCE (1<<(3-DMA_CR_OFFSET)) /* Parity Check Enable */ +#define SET_DMA_PCE(x) (((x)&0x1)<<(3-DMA_CR_OFFSET)) +#define GET_DMA_PCE(x) (((x)&DMA_PCE)>>(3-DMA_CR_OFFSET)) + +/* + * DMA Polarity Configuration Register + */ +#define DMAReq_ActiveLow(chan) (1<<(31-(chan*3))) +#define DMAAck_ActiveLow(chan) (1<<(30-(chan*3))) +#define EOT_ActiveLow(chan) (1<<(29-(chan*3))) /* End of Transfer */ + +/* + * DMA Sleep Mode Register + */ +#define SLEEP_MODE_ENABLE (1<<21) + +/* + * DMA Status Register + */ +#define DMA_CS0 (1<<31) /* Terminal Count has been reached */ +#define DMA_CS1 (1<<30) +#define DMA_CS2 (1<<29) +#define DMA_CS3 (1<<28) + +#define DMA_TS0 (1<<27) /* End of Transfer has been requested */ +#define DMA_TS1 (1<<26) +#define DMA_TS2 (1<<25) +#define DMA_TS3 (1<<24) + +#define DMA_CH0_ERR (1<<23) /* DMA Chanel 0 Error */ +#define DMA_CH1_ERR (1<<22) +#define DMA_CH2_ERR (1<<21) +#define DMA_CH3_ERR (1<<20) + +#define DMA_IN_DMA_REQ0 (1<<19) /* Internal DMA Request is pending */ +#define DMA_IN_DMA_REQ1 (1<<18) +#define DMA_IN_DMA_REQ2 (1<<17) +#define DMA_IN_DMA_REQ3 (1<<16) + +#define DMA_EXT_DMA_REQ0 (1<<15) /* External DMA Request is pending */ +#define DMA_EXT_DMA_REQ1 (1<<14) +#define DMA_EXT_DMA_REQ2 (1<<13) +#define DMA_EXT_DMA_REQ3 (1<<12) + +#define DMA_CH0_BUSY (1<<11) /* DMA Channel 0 Busy */ +#define DMA_CH1_BUSY (1<<10) +#define DMA_CH2_BUSY (1<<9) +#define DMA_CH3_BUSY (1<<8) + +#define DMA_SG0 (1<<7) /* DMA Channel 0 Scatter/Gather in progress */ +#define DMA_SG1 (1<<6) +#define DMA_SG2 (1<<5) +#define DMA_SG3 (1<<4) + +/* DMA Channel Count Register */ +#define DMA_CTC_TCIE (1<<29) /* Terminal Count Interrupt Enable */ +#define DMA_CTC_ETIE (1<<28) /* EOT Interupt Enable */ +#define DMA_CTC_EIE (1<<27) /* Error Interrupt Enable */ +#define DMA_CTC_BTEN (1<<23) /* Burst Enable/Disable bit */ +#define DMA_CTC_BSIZ_MSK (3<<21) /* Mask of the Burst size bits */ +#define DMA_CTC_BSIZ_2 (0) +#define DMA_CTC_BSIZ_4 (1<<21) +#define DMA_CTC_BSIZ_8 (2<<21) +#define DMA_CTC_BSIZ_16 (3<<21) +#define DMA_CTC_TC_MASK 0xFFFFF + +/* + * DMA SG Command Register + */ +#define SSG_ENABLE(chan) (1<<(31-chan)) /* Start Scatter Gather */ +#define SSG_MASK_ENABLE(chan) (1<<(15-chan)) /* Enable writing to SSG0 bit */ + + +/* + * DMA Scatter/Gather Descriptor Bit fields + */ +#define SG_LINK (1<<31) /* Link */ +#define SG_TCI_ENABLE (1<<29) /* Enable Terminal Count Interrupt */ +#define SG_ETI_ENABLE (1<<28) /* Enable End of Transfer Interrupt */ +#define SG_ERI_ENABLE (1<<27) /* Enable Error Interrupt */ +#define SG_COUNT_MASK 0xFFFF /* Count Field */ + +#define SET_DMA_CONTROL \ + (SET_DMA_CIE_ENABLE(p_init->int_enable) | /* interrupt enable */ \ + SET_DMA_BEN(p_init->buffer_enable) | /* buffer enable */\ + SET_DMA_ETD(p_init->etd_output) | /* end of transfer pin */ \ + SET_DMA_TCE(p_init->tce_enable) | /* terminal count enable */ \ + SET_DMA_PL(p_init->pl) | /* peripheral location */ \ + SET_DMA_DAI(p_init->dai) | /* dest addr increment */ \ + SET_DMA_SAI(p_init->sai) | /* src addr increment */ \ + SET_DMA_PRIORITY(p_init->cp) | /* channel priority */ \ + SET_DMA_PW(p_init->pwidth) | /* peripheral/bus width */ \ + SET_DMA_PSC(p_init->psc) | /* peripheral setup cycles */ \ + SET_DMA_PWC(p_init->pwc) | /* peripheral wait cycles */ \ + SET_DMA_PHC(p_init->phc) | /* peripheral hold cycles */ \ + SET_DMA_PREFETCH(p_init->pf) /* read prefetch */) + +#define GET_DMA_POLARITY(chan) (DMAReq_ActiveLow(chan) | DMAAck_ActiveLow(chan) | EOT_ActiveLow(chan)) + + +/** + * struct ppc460ex_dma_device - internal representation of an DMA device + * @pdev: Platform device + * @id: HW DMA Device selector + * @dma_desc_pool: base of DMA descriptor region (DMA address) + * @dma_desc_pool_virt: base of DMA descriptor region (CPU address) + * @common: embedded struct dma_device + */ +typedef struct ppc460ex_plb_dma_device { + //struct platform_device *pdev; + void __iomem *reg_base; + struct device *dev; + struct resource reg; /* Resource for register */ + int id; + struct ppc460ex_plb_dma_chan *chan[MAX_PPC460EX_DMA_CHANNELS]; + wait_queue_head_t queue; +} ppc460ex_plb_dma_dev_t; + +typedef uint32_t sgl_handle_t; +/** + * struct ppc460ex_dma_chan - internal representation of an ADMA channel + * @lock: serializes enqueue/dequeue operations to the slot pool + * @device: parent device + * @chain: device chain view of the descriptors + * @common: common dmaengine channel object members + * @all_slots: complete domain of slots usable by the channel + * @reg: Resource for register + * @pending: allows batching of hardware operations + * @completed_cookie: identifier for the most recently completed operation + * @slots_allocated: records the actual size of the descriptor slot pool + * @hw_chain_inited: h/w descriptor chain initialization flag + * @irq_tasklet: bottom half where ppc460ex_adma_slot_cleanup runs + * @needs_unmap: if buffers should not be unmapped upon final processing + */ +typedef struct ppc460ex_plb_dma_chan { + void __iomem *reg_base; + struct ppc460ex_plb_dma_device *device; + struct timer_list cleanup_watchdog; + struct resource reg; /* Resource for register */ + unsigned int chan_id; + struct tasklet_struct irq_tasklet; + sgl_handle_t *phandle; + unsigned short in_use; /* set when channel is being used, clr when + * available. + */ + /* + * Valid polarity settings: + * DMAReq_ActiveLow(n) + * DMAAck_ActiveLow(n) + * EOT_ActiveLow(n) + * + * n is 0 to max dma chans + */ + unsigned int polarity; + + char buffer_enable; /* Boolean: buffer enable */ + char tce_enable; /* Boolean: terminal count enable */ + char etd_output; /* Boolean: eot pin is a tc output */ + char pce; /* Boolean: parity check enable */ + + /* + * Peripheral location: + * INTERNAL_PERIPHERAL (UART0 on the 405GP) + * EXTERNAL_PERIPHERAL + */ + char pl; /* internal/external peripheral */ + + /* + * Valid pwidth settings: + * PW_8 + * PW_16 + * PW_32 + * PW_64 + */ + unsigned int pwidth; + + char dai; /* Boolean: dst address increment */ + char sai; /* Boolean: src address increment */ + + /* + * Valid psc settings: 0-3 + */ + unsigned int psc; /* Peripheral Setup Cycles */ + + /* + * Valid pwc settings: + * 0-63 + */ + unsigned int pwc; /* Peripheral Wait Cycles */ + + /* + * Valid phc settings: + * 0-7 + */ + unsigned int phc; /* Peripheral Hold Cycles */ + + /* + * Valid cp (channel priority) settings: + * PRIORITY_LOW + * PRIORITY_MID_LOW + * PRIORITY_MID_HIGH + * PRIORITY_HIGH + */ + unsigned int cp; /* channel priority */ + + /* + * Valid pf (memory read prefetch) settings: + * + * PREFETCH_1 + * PREFETCH_2 + * PREFETCH_4 + */ + unsigned int pf; /* memory read prefetch */ + + /* + * Boolean: channel interrupt enable + * NOTE: for sgl transfers, only the last descriptor will be setup to + * interrupt. + */ + char int_enable; + + char shift; /* easy access to byte_count shift, based on */ + /* the width of the channel */ + + uint32_t control; /* channel control word */ + + /* These variabled are used ONLY in single dma transfers */ + unsigned int mode; /* transfer mode */ + phys_addr_t addr; + char ce; /* channel enable */ + char int_on_final_sg;/* for scatter/gather - only interrupt on last sg */ + +} ppc460ex_plb_dma_ch_t; + +/* + * PPC44x DMA implementations have a slightly different + * descriptor layout. Probably moved about due to the + * change to 64-bit addresses and link pointer. I don't + * know why they didn't just leave control_count after + * the dst_addr. + */ +#ifdef PPC4xx_DMA_64BIT +typedef struct { + uint32_t control; + uint32_t control_count; + phys_addr_t src_addr; + phys_addr_t dst_addr; + phys_addr_t next; +} ppc_sgl_t; +#else +typedef struct { + uint32_t control; + phys_addr_t src_addr; + phys_addr_t dst_addr; + uint32_t control_count; + uint32_t next; +} ppc_sgl_t; +#endif + + + +typedef struct { + unsigned int ch_id; + uint32_t control; /* channel ctrl word; loaded from each descrptr */ + uint32_t sgl_control; /* LK, TCI, ETI, and ERI bits in sgl descriptor */ + dma_addr_t dma_addr; /* dma (physical) address of this list */ + dma_addr_t dummy; /*Dummy variable to allow quad word alignment*/ + ppc_sgl_t *phead; + dma_addr_t phead_dma; + ppc_sgl_t *ptail; + dma_addr_t ptail_dma; +} sgl_list_info_t; + +typedef struct { + phys_addr_t *src_addr; + phys_addr_t *dst_addr; + phys_addr_t dma_src_addr; + phys_addr_t dma_dst_addr; +} pci_alloc_desc_t; + +#define PPC460EX_DMA_SGXFR_COMPLETE(id) (!((1 << (11-id)) & mfdcr(DCR_DMA2P40_SR))) +#define PPC460EX_DMA_CHAN_BUSY(id) ( (1 << (11-id)) & mfdcr(DCR_DMA2P40_SR) ) +#define DMA_STATUS(id) (mfdcr(DCR_DMA2P40_SR)) +#define CLEAR_DMA_STATUS(id) (mtdcr(DCR_DMA2P40_SR, 0xFFFFFFFF)) +#define PPC460EX_DMA_SGSTAT_FREE(id) (!((1 << (7-id)) & mfdcr(DCR_DMA2P40_SR)) ) +#define PPC460EX_DMA_TC_REACHED(id) ( (1 << (31-id)) & mfdcr(DCR_DMA2P40_SR) ) +#define PPC460EX_DMA_CHAN_XFR_COMPLETE(id) ( (!PPC460EX_DMA_CHAN_BUSY(id)) && (PPC460EX_DMA_TC_REACHED(id)) ) +#define PPC460EX_DMA_CHAN_SGXFR_COMPLETE(id) ( (!PPC460EX_DMA_CHAN_BUSY(id)) && PPC460EX_DMA_SGSTAT_FREE(id) ) +#define PPC460EX_DMA_SG_IN_PROGRESS(id) ( (1 << (7-id)) | (1 << (11-id)) ) +#define PPC460EX_DMA_SG_OP_COMPLETE(id) ( (PPC460EX_DMA_SG_IN_PROGRESS(id) & DMA_STATUS(id) ) == 0) + +extern ppc460ex_plb_dma_dev_t *adev; +int ppc460ex_init_dma_channel(ppc460ex_plb_dma_dev_t *adev, + unsigned int ch_id, + ppc460ex_plb_dma_ch_t *p_init); + +int ppc460ex_set_src_addr(int ch_id, phys_addr_t src_addr); + +int ppc460ex_set_dst_addr(int ch_id, phys_addr_t dst_addr); + +int ppc460ex_set_dma_mode(ppc460ex_plb_dma_dev_t *adev, unsigned int ch_id, unsigned int mode); + +void ppc460ex_set_dma_count(ppc460ex_plb_dma_dev_t *adev, unsigned int ch_id, unsigned int count); + +int ppc460ex_enable_dma_interrupt(ppc460ex_plb_dma_dev_t *adev, unsigned int ch_id); + +int ppc460ex_enable_dma(ppc460ex_plb_dma_dev_t *adev, unsigned int ch_id); + +int ppc460ex_get_dma_channel(void); + +void ppc460ex_disable_dma(ppc460ex_plb_dma_dev_t *adev, unsigned int ch_id); + +int ppc460ex_clear_dma_status(unsigned int ch_id); + +#if 0 +extern int test_dma_memcpy(void *src, void *dst, unsigned int length, unsigned int dma_ch); + +extern int test_sgdma_memcpy(void *src, void *dst, void *src1, void *dst1, + unsigned int length, unsigned int dma_ch); +#endif diff --git a/drivers/dma/ppc460ex_4chan_sgdma.c b/drivers/dma/ppc460ex_4chan_sgdma.c new file mode 100755 index 00000000000..fb26dd76ce7 --- /dev/null +++ b/drivers/dma/ppc460ex_4chan_sgdma.c @@ -0,0 +1,1003 @@ +/* + * Copyright(c) 2008 Applied Micro Circuits Corporation(AMCC). All rights reserved. + * + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the Free + * Software Foundation; either version 2 of the License, or (at your option) + * any later version. + * + * This program is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., 59 + * Temple Place - Suite 330, Boston, MA 02111-1307, USA. + * + * The full GNU General Public License is included in this distribution in the + * file called COPYING. + */ + + +#include <linux/init.h> +#include <linux/module.h> +#include <linux/async_tx.h> +#include <linux/delay.h> +#include <linux/dma-mapping.h> +#include <linux/spinlock.h> +#include <linux/interrupt.h> +#include <linux/platform_device.h> +#include <linux/of_platform.h> +#include <linux/uaccess.h> +#include <linux/proc_fs.h> +#include <asm/dcr-regs.h> +#include <asm/dcr.h> +#include <linux/delay.h> +#include <asm/cacheflush.h> +#include "ppc460ex_4chan_dma.h" +#include <asm/page.h> +#include <asm/time.h> +#include <linux/pipe_fs_i.h> +#include <linux/splice.h> + +#define SGDMA_MAX_POLL_COUNT 100000000 +#define SGDMA_POLL_DELAY 5 + +static phys_addr_t splice_src_dma_addrs[PIPE_BUFFERS]; +static dma_addr_t splice_dst_dma_addrs[PIPE_BUFFERS]; + +//#define DEBUG_SPLICE_DMA 1 +//#define SPLICE_DMA_COHERENT 1 +//#define DEBUG_SPLICE_DMA_TIMECAL 1 + +extern int ppc460ex_disable_dma_interrupt(ppc460ex_plb_dma_dev_t *adev, unsigned int ch_id); +extern int ppc460ex_disable_burst(ppc460ex_plb_dma_dev_t *adev, unsigned int ch_id); +extern int ppc460ex_enable_burst(ppc460ex_plb_dma_dev_t *adev, unsigned int ch_id); +void *dma_mem_page = NULL; + + + + + +#define dma_pr(x) printk(KERN_DEBUG,x) + + +int ppc460ex_set_sg_addr(int ch_id, phys_addr_t sg_addr) +{ + if (unlikely(ch_id >= MAX_PPC460EX_DMA_CHANNELS)) { + printk("%s: bad channel %d\n", __FUNCTION__, ch_id); + return DMA_STATUS_BAD_CHANNEL; + } + +#ifdef PPC4xx_DMA_64BIT + mtdcr(DCR_DMA2P40_SGH0 + ch_id*8, sg_addr >> 32); +#endif + mtdcr(DCR_DMA2P40_SGL0 + ch_id*8, (u32)sg_addr); + + return 0; +} + +static int +poll_for_sgdma_done(int chan) +{ + int i; + volatile int status = 0; +#ifdef DEBUG_SPLICE_DMA_TIMECAL + u64 time1=0, time2=0, timediff=0; +#endif + +#ifdef DEBUG_SPLICE_DMA_TIMECAL + time1 = get_tbl() | (get_tbu() << 32); +#endif + for(i = 0; i < SGDMA_MAX_POLL_COUNT; i++) { +#ifdef DEBUG_SPLICE_DMA + if(i%16 == 0) + printk("%s:%s:%d - waiting %d\n", __FILE__, __FUNCTION__, __LINE__, i); +#endif + status = PPC460EX_DMA_CHAN_SGXFR_COMPLETE(chan); + if(status) { +#ifdef DEBUG_SPLICE_DMA + printk("%s:%s:%d - Breaking\n", __FILE__, __FUNCTION__, __LINE__); +#endif + break; + } + +#ifdef DEBUG_SPLICE_DMA + printk("status = %d dma_status = 0x%08x\n", status, DMA_STATUS(chan)); +#endif + //udelay(SGDMA_POLL_DELAY); + } +#ifdef DEBUG_SPLICE_DMA_TIMECAL + time2 = get_tbl() | (get_tbu() << 32); +#endif + +#ifdef DEBUG_SPLICE_DMA_TIMECAL + printk("%s:%s:%d time taken for transfer is %llu\n", + __FILE__, __FUNCTION__, __LINE__, time2-time1); +#endif + if(unlikely(i >= SGDMA_MAX_POLL_COUNT)) { + printk("%s:%s:%d - timeout\n", + __FILE__, __FUNCTION__, __LINE__); + return -ETIME; + } + + return 0; +} + +static int +get_transfer_width(u64 align) +{ + if(!(align & 0xF)) + return 128; + + if(!(align & 0x7)) + return 64; + + if(!(align & 0x3)) + return 32; + + if(!(align & 0x1)) + return 16; + + return 8; +} + + +/* + * Add a new sgl descriptor to the end of a scatter/gather list + * which was created by alloc_dma_handle(). + * + * For a memory to memory transfer, both dma addresses must be + * valid. For a peripheral to memory transfer, one of the addresses + * must be set to NULL, depending on the direction of the transfer: + * memory to peripheral: set dst_addr to NULL, + * peripheral to memory: set src_addr to NULL. + */ +int ppc460ex_add_dma_sgl(ppc460ex_plb_dma_dev_t *adev, + sgl_handle_t handle, + phys_addr_t src_addr, + phys_addr_t dst_addr, + unsigned int count) +{ + sgl_list_info_t *psgl = (sgl_list_info_t *)handle; + ppc460ex_plb_dma_ch_t *p_dma_ch; + u64 align; + int tr_width = 8; /* initial value 8 bits */ +#ifdef DEBUG_SPLICE_DMA + printk("%s:%s:%d - Filling in dma sgl list\n", __func__, __FILE__, __LINE__); +#endif + + if (unlikely(!handle)) { + printk("%s: null handle\n", __FUNCTION__); + return DMA_STATUS_BAD_HANDLE; + } + if (unlikely(psgl->ch_id >= MAX_PPC460EX_DMA_CHANNELS)) { + printk("%s: bad channel %d\n", __FUNCTION__, psgl->ch_id); + return DMA_STATUS_BAD_CHANNEL; + } + + p_dma_ch = adev->chan[psgl->ch_id]; + align = src_addr | dst_addr | count; + + tr_width = get_transfer_width(align); + switch(tr_width) { + case 128: + p_dma_ch->pwidth = PW_128; + break; + case 64: + p_dma_ch->pwidth = PW_64; + break; + case 32: + p_dma_ch->pwidth = PW_32; + break; + case 16: + p_dma_ch->pwidth = PW_16; + break; + default: + p_dma_ch->pwidth = PW_8; + break; + } + + { + int error = 0; + u64 aligned = + src_addr | dst_addr | count; + switch (p_dma_ch->pwidth) { + case PW_8: + break; + case PW_16: + if (aligned & 0x1) + error = 1; + break; + case PW_32: + if (aligned & 0x3) + error = 1; + break; + case PW_64: + if (aligned & 0x7) + error = 1; + break; + case PW_128: + if (aligned & 0xf) + error = 1; + break; + default: + printk("%s:set_dma_count: invalid bus width: 0x%x\n", __FUNCTION__, + p_dma_ch->pwidth); + return DMA_STATUS_GENERAL_ERROR; + } + if (unlikely(error)) + printk + ("Warning: set_dma_count count 0x%x bus width %d aligned= 0x%llx\n", + count, p_dma_ch->pwidth, aligned); + } + + p_dma_ch->shift = p_dma_ch->pwidth; + + + if (unlikely((unsigned) (psgl->ptail + 1) >= ((unsigned) psgl + SGL_LIST_SIZE))) { + printk("sgl handle out of memory \n"); + return DMA_STATUS_OUT_OF_MEMORY; + } + + if (!psgl->ptail) { + psgl->phead = (ppc_sgl_t *) + ((((unsigned) psgl + sizeof (sgl_list_info_t))) ); + psgl->phead_dma = (psgl->dma_addr + sizeof(sgl_list_info_t)) ; + psgl->ptail = psgl->phead; + psgl->ptail_dma = psgl->phead_dma; + } + else { + if(p_dma_ch->int_on_final_sg) { + /* mask out all dma interrupts, except error, on tail + before adding new tail. */ + psgl->ptail->control_count &= + ~(SG_TCI_ENABLE | SG_ETI_ENABLE); + } + psgl->ptail->next = psgl->ptail_dma + sizeof(ppc_sgl_t); + psgl->ptail++; + psgl->ptail_dma += sizeof(ppc_sgl_t); + } + psgl->ptail->control = psgl->control | SET_DMA_PW(p_dma_ch->pwidth); +#if !defined(CONFIG_APM82181) + /* Move to Highband segment to expect higher performance */ + psgl->ptail->src_addr = src_addr | (0x8ULL << 32); + psgl->ptail->dst_addr = dst_addr | (0x8ULL << 32); +#else /* APM821x1 */ + psgl->ptail->src_addr = src_addr; + psgl->ptail->dst_addr = dst_addr; +#endif +#ifdef DEBUG_SPLICE_DMA + psgl->ptail->control_count = (count >> p_dma_ch->shift); + // | psgl->sgl_control; +#endif + psgl->ptail->control_count = (count >> p_dma_ch->shift) | psgl->sgl_control; + + psgl->ptail->next = (uint32_t) NULL; + +#ifdef DEBUG_SPLICE_DMA + printk("count=%d control=0x%08x p_dma_ch->pwidth=%d bits=0x%08x\n", + count, psgl->ptail->control, p_dma_ch->pwidth, SET_DMA_PW(p_dma_ch->pwidth)); + printk("src_addr=0x%llx\n", psgl->ptail->src_addr); + printk("dst_addr=0x%llx\n", psgl->ptail->dst_addr); + printk("control_count=0x%08x\n", psgl->ptail->control_count); + printk("sgl_control=0x%08x\n", psgl->sgl_control); +#endif + + return DMA_STATUS_GOOD; + +} + + +/* + * Enable (start) the DMA described by the sgl handle. + */ +int ppc460ex_enable_dma_sgl(ppc460ex_plb_dma_dev_t *adev, sgl_handle_t handle) +{ + sgl_list_info_t *psgl = (sgl_list_info_t *)handle; + ppc460ex_plb_dma_ch_t *p_dma_ch; + uint32_t sg_command; + + + if (unlikely(!handle)) { + printk("%s: null handle\n", __FUNCTION__); + return DMA_STATUS_BAD_HANDLE; + } + if (unlikely(psgl->ch_id >= MAX_PPC460EX_DMA_CHANNELS)) { + printk("%s: bad channel %d\n", __FUNCTION__, psgl->ch_id); + return DMA_STATUS_BAD_CHANNEL; + } + + p_dma_ch = adev->chan[psgl->ch_id]; + psgl->ptail->control_count &= ~SG_LINK; /* make this the last dscrptr */ + sg_command = mfdcr(DCR_DMA2P40_SGC); + ppc460ex_set_sg_addr(psgl->ch_id, psgl->phead_dma); + sg_command |= SSG_ENABLE(psgl->ch_id); +//PMB - work around for PLB + sg_command &= 0xF0FFFFFF; + mtdcr(DCR_DMA2P40_SGC, sg_command); /* start transfer */ + + return 0; +} + +/* + * Halt an active scatter/gather DMA operation. + */ +int ppc460ex_disable_dma_sgl(ppc460ex_plb_dma_dev_t *adev, sgl_handle_t handle) +{ + sgl_list_info_t *psgl = (sgl_list_info_t *) handle; + uint32_t sg_command; + + if (unlikely(!handle)) { + printk("%s: null handle\n", __FUNCTION__); + return DMA_STATUS_BAD_HANDLE; + } + if (unlikely(psgl->ch_id >= MAX_PPC460EX_DMA_CHANNELS)) { + printk("%s: bad channel %d\n", __FUNCTION__, psgl->ch_id); + return DMA_STATUS_BAD_CHANNEL; + } + sg_command = mfdcr(DCR_DMA2P40_SGC); + sg_command &= ~SSG_ENABLE(psgl->ch_id); + mtdcr(DCR_DMA2P40_SGC, sg_command); /* stop transfer */ + return 0; +} + + +/* + * Returns number of bytes left to be transferred from the entire sgl list. + * *src_addr and *dst_addr get set to the source/destination address of + * the sgl descriptor where the DMA stopped. + * + * An sgl transfer must NOT be active when this function is called. + */ +int ppc460ex_get_dma_sgl_residue(ppc460ex_plb_dma_dev_t *adev, sgl_handle_t handle, phys_addr_t * src_addr, + phys_addr_t * dst_addr) +{ + sgl_list_info_t *psgl = (sgl_list_info_t *) handle; + ppc460ex_plb_dma_ch_t *p_dma_ch; + ppc_sgl_t *pnext, *sgl_addr; + uint32_t count_left; + + if (unlikely(!handle)) { + printk("%s: null handle\n", __FUNCTION__); + return DMA_STATUS_BAD_HANDLE; + } + if (unlikely(psgl->ch_id >= MAX_PPC460EX_DMA_CHANNELS)) { + printk("%s: bad channel %d\n", __FUNCTION__, psgl->ch_id); + return DMA_STATUS_BAD_CHANNEL; + } + + sgl_addr = (ppc_sgl_t *) __va(mfdcr(DCR_DMA2P40_SGL0 + (psgl->ch_id * 0x8))); + count_left = mfdcr(DCR_DMA2P40_CTC0 + (psgl->ch_id * 0x8)) & SG_COUNT_MASK; + if (unlikely(!sgl_addr)) { + printk("%s: sgl addr register is null\n", __FUNCTION__); + goto error; + } + pnext = psgl->phead; + while (pnext && + ((unsigned) pnext < ((unsigned) psgl + SGL_LIST_SIZE) && + (pnext != sgl_addr)) + ) { + pnext++; + } + if (pnext == sgl_addr) { /* found the sgl descriptor */ + + *src_addr = pnext->src_addr; + *dst_addr = pnext->dst_addr; + + /* + * Now search the remaining descriptors and add their count. + * We already have the remaining count from this descriptor in + * count_left. + */ + pnext++; + + while ((pnext != psgl->ptail) && + ((unsigned) pnext < ((unsigned) psgl + SGL_LIST_SIZE)) + ) { + count_left += pnext->control_count & SG_COUNT_MASK; + } + if (unlikely(pnext != psgl->ptail)) { /* should never happen */ + printk + ("%s:error (1) psgl->ptail 0x%x handle 0x%x\n", __FUNCTION__, + (unsigned int) psgl->ptail, (unsigned int) handle); + goto error; + } + /* success */ + p_dma_ch = adev->chan[psgl->ch_id]; + return (count_left << p_dma_ch->shift); /* count in bytes */ + + } else { + /* this shouldn't happen */ + printk + ("get_dma_sgl_residue, unable to match current address 0x%x, handle 0x%x\n", + (unsigned int) sgl_addr, (unsigned int) handle); + + } + + error: + src_addr = NULL; + dst_addr = NULL; + return 0; + +} + +/* + * Returns the address(es) of the buffer(s) contained in the head element of + * the scatter/gather list. The element is removed from the scatter/gather + * list and the next element becomes the head. + * + * This function should only be called when the DMA is not active. + */ +int ppc460ex_delete_dma_sgl_element(sgl_handle_t handle, phys_addr_t * src_dma_addr, + phys_addr_t * dst_dma_addr) +{ + sgl_list_info_t *psgl = (sgl_list_info_t *) handle; + + if (unlikely(!handle)) { + printk("%s: null handle\n", __FUNCTION__); + return DMA_STATUS_BAD_HANDLE; + } + if (unlikely(psgl->ch_id >= MAX_PPC460EX_DMA_CHANNELS)) { + printk("%s: bad channel %d\n", __FUNCTION__, psgl->ch_id); + return DMA_STATUS_BAD_CHANNEL; + } + + if (unlikely(!psgl->phead)) { + printk("%s: sgl list empty\n", __FUNCTION__); + src_dma_addr = NULL; + dst_dma_addr = NULL; + return DMA_STATUS_SGL_LIST_EMPTY; + } + + *src_dma_addr = (phys_addr_t) psgl->phead->src_addr; + *dst_dma_addr = (phys_addr_t) psgl->phead->dst_addr; + + if (psgl->phead == psgl->ptail) { + /* last descriptor on the list */ + psgl->phead = NULL; + psgl->ptail = NULL; + } else { + psgl->phead++; + psgl->phead_dma += sizeof(ppc_sgl_t); + } + + return DMA_STATUS_GOOD; + +} + + +/* + * Create a scatter/gather list handle. This is simply a structure which + * describes a scatter/gather list. + * + * A handle is returned in "handle" which the driver should save in order to + * be able to access this list later. A chunk of memory will be allocated + * to be used by the API for internal management purposes, including managing + * the sg list and allocating memory for the sgl descriptors. One page should + * be more than enough for that purpose. Perhaps it's a bit wasteful to use + * a whole page for a single sg list, but most likely there will be only one + * sg list per channel. + * + * Interrupt notes: + * Each sgl descriptor has a copy of the DMA control word which the DMA engine + * loads in the control register. The control word has a "global" interrupt + * enable bit for that channel. Interrupts are further qualified by a few bits + * in the sgl descriptor count register. In order to setup an sgl, we have to + * know ahead of time whether or not interrupts will be enabled at the completion + * of the transfers. Thus, enable_dma_interrupt()/disable_dma_interrupt() MUST + * be called before calling alloc_dma_handle(). If the interrupt mode will never + * change after powerup, then enable_dma_interrupt()/disable_dma_interrupt() + * do not have to be called -- interrupts will be enabled or disabled based + * on how the channel was configured after powerup by the hw_init_dma_channel() + * function. Each sgl descriptor will be setup to interrupt if an error occurs; + * however, only the last descriptor will be setup to interrupt. Thus, an + * interrupt will occur (if interrupts are enabled) only after the complete + * sgl transfer is done. + */ +int ppc460ex_alloc_dma_handle(ppc460ex_plb_dma_dev_t *adev, sgl_handle_t *phandle, + unsigned int mode, unsigned int ch_id) +{ + sgl_list_info_t *psgl=NULL; + static dma_addr_t dma_addr; + ppc460ex_plb_dma_ch_t *p_dma_ch = adev->chan[ch_id]; + uint32_t sg_command; +#if 0 + void *ret; +#endif + if (unlikely(ch_id >= MAX_PPC460EX_DMA_CHANNELS)) { + printk("%s: bad channel %d\n", __FUNCTION__, p_dma_ch->chan_id); + return DMA_STATUS_BAD_CHANNEL; + } + if (unlikely(!phandle)) { + printk("%s: null handle pointer\n", __FUNCTION__); + return DMA_STATUS_NULL_POINTER; + } +#if 0 + /* Get a page of memory, which is zeroed out by consistent_alloc() */ + ret = dma_alloc_coherent(NULL, DMA_PPC4xx_SIZE, &dma_addr, GFP_KERNEL); + if (ret != NULL) { + memset(ret, 0, DMA_PPC4xx_SIZE); + psgl = (sgl_list_info_t *) ret; + } +#else + + if(!dma_mem_page) { + dma_mem_page = dma_alloc_coherent(adev->dev, DMA_PPC4xx_SIZE, &dma_addr, GFP_KERNEL); + if (unlikely(!dma_mem_page)){ + printk("dma_alloc_coherent failed\n"); + return -1; + } + } + + psgl = (sgl_list_info_t *) dma_mem_page; +#endif + + + if (unlikely(psgl == NULL)) { + *phandle = (sgl_handle_t) NULL; + return DMA_STATUS_OUT_OF_MEMORY; + } + + + psgl->dma_addr = dma_addr; + psgl->ch_id = ch_id; + /* + * Modify and save the control word. These words will be + * written to each sgl descriptor. The DMA engine then + * loads this control word into the control register + * every time it reads a new descriptor. + */ + psgl->control = p_dma_ch->control; + /* Clear all mode bits */ + psgl->control &= ~(DMA_TM_MASK | DMA_TD); + /* Save control word and mode */ + psgl->control |= (mode | DMA_CE_ENABLE); + /* In MM mode, we must set ETD/TCE */ + if (mode == DMA_MODE_MM) { /* PMB - Workaround */ + psgl->control |= DMA_ETD_OUTPUT | DMA_TCE_ENABLE; + psgl->control &= 0xFFFCFFFF; + psgl->control |= 0x00020000; + } + + if (p_dma_ch->int_enable) { + /* Enable channel interrupt */ + psgl->control |= DMA_CIE_ENABLE; + } else { + psgl->control &= ~DMA_CIE_ENABLE; + } + psgl->control &= ~DMA_CIE_ENABLE; + sg_command = mfdcr(DCR_DMA2P40_SGC); + sg_command |= SSG_MASK_ENABLE(ch_id); + + + /*Enable SGL control access */ + mtdcr(DCR_DMA2P40_SGC, sg_command); + psgl->sgl_control = SG_ERI_ENABLE | SG_LINK; + + + p_dma_ch->int_enable=0; + if (p_dma_ch->int_enable) { + if (p_dma_ch->tce_enable) + psgl->sgl_control |= SG_TCI_ENABLE | SG_ETI_ENABLE; + else + psgl->sgl_control |= SG_ETI_ENABLE | SG_TCI_ENABLE; + } + + *phandle = (sgl_handle_t) psgl; + return DMA_STATUS_GOOD; + +} + +/* + * Destroy a scatter/gather list handle that was created by alloc_dma_handle(). + * The list must be empty (contain no elements). + */ +void +ppc460ex_free_dma_handle(sgl_handle_t handle) +{ + sgl_list_info_t *psgl = (sgl_list_info_t *) handle; + + if (!handle) { + printk("%s: got NULL\n", __FUNCTION__); + return; + } else if (psgl->phead) { + printk("%s: list not empty\n", __FUNCTION__); + return; + } else if (!psgl->dma_addr) { /* should never happen */ + printk("%s: no dma address\n", __FUNCTION__); + return; + } + + //dma_free_coherent(NULL, DMA_PPC4xx_SIZE, (void *) psgl, 0); +} + +#if 0 + +int test_sgdma_memcpy(void *src, void *dst, void *src1, void *dst1, unsigned int length, unsigned int dma_ch_id) +{ + ppc460ex_plb_dma_dev_t *device; + ppc460ex_plb_dma_ch_t p_init; + phys_addr_t dma_dest, dma_src; + phys_addr_t dma_dest1, dma_src1; + int res = 0; + ppc460ex_plb_dma_ch_t *new_chan; + unsigned int control; + u32 status = 0; + u32 value = 0; + sgl_handle_t handle_p; + + /* create a device */ + if ((device = kzalloc(sizeof(*device), GFP_KERNEL)) == NULL) { + res = -ENOMEM; + } + + if ((new_chan = kzalloc(sizeof(ppc460ex_plb_dma_ch_t), GFP_KERNEL)) == NULL) { + printk("ERROR:No Free memory for allocating dma channels\n"); + res = -ENOMEM; + } + + dma_src = dma_map_single(p_init.device->dev, src, length, + DMA_TO_DEVICE); + dma_dest = dma_map_single(p_init.device->dev, dst, length, + DMA_FROM_DEVICE); + + dma_src1 = dma_map_single(p_init.device->dev, src1, length, + DMA_TO_DEVICE); + dma_dest1 = dma_map_single(p_init.device->dev, dst1, length, + DMA_FROM_DEVICE); + + memset(new_chan, 0 , sizeof(ppc460ex_plb_dma_ch_t)); + device->chan[dma_ch_id] = new_chan; + + + memset((char *)&p_init, sizeof(p_init), 0); + p_init.polarity = 0; + p_init.pwidth = PW_32; + p_init.in_use = 0; + p_init.sai = 1; + p_init.dai = 1; + p_init.tce_enable = 1; + //printk("%s:channel id = %d\n", __FUNCTION__, dma_ch_id); + + res = ppc460ex_init_dma_channel(device, dma_ch_id, &p_init); + + + ppc460ex_set_dma_count(device, dma_ch_id, length); + + res = ppc460ex_enable_dma_interrupt(device, dma_ch_id); + if (res) { + printk("%32s: en/disable_dma_interrupt\n", + __FUNCTION__); + } + + res = ppc460ex_alloc_dma_handle(device, &handle_p, DMA_MODE_MM, dma_ch_id); + + ppc460ex_add_dma_sgl(device, handle_p, dma_src, dma_dest, length); + ppc460ex_add_dma_sgl(device, handle_p, dma_src1, dma_dest1, length); + + ppc460ex_enable_dma_sgl(device, handle_p); + + + /*do { + value = mfdcr(DCR_DMA2P40_SR); + }while ((value & 0x80000000) != 0x80000000);*/ + +#if DEBUG_TEST + printk("%s:out:dump src \n", __FUNCTION__); + DMA_HEXDUMP(src, length); + printk("%s:out:dump dst\n", __FUNCTION__); + DMA_HEXDUMP(dst, length); + printk("%s:out:dump src1 \n", __FUNCTION__); + DMA_HEXDUMP(src1, length); + printk("%s:out:dump dst1\n", __FUNCTION__); + DMA_HEXDUMP(dst1, length); +#endif + + if (memcmp(src, dst, length) || memcmp(src1, dst1, length)) { + printk("Self-test copy failed compare, disabling\n"); + res = -ENODEV; + goto out; + } + + return 0; + out: + + return res; + +} +#endif + +#ifdef SPLICE_DMA_COHERENT +int +ppc460ex_sgdma_pipebufs_memcpy(struct pipe_inode_info *pipe, void *dest, dma_addr_t dma_dest, unsigned int length) +#else +int +ppc460ex_sgdma_pipebufs_memcpy(struct pipe_inode_info *pipe, void *dest, unsigned int length) +#endif +{ + sgl_list_info_t *psgl; + ppc460ex_plb_dma_dev_t *device; + ppc460ex_plb_dma_ch_t p_init; +#ifndef SPLICE_DMA_COHERENT + dma_addr_t dma_dest; +#endif + //dma_addr_t dma_addrs[32]; + phys_addr_t dma_src; + ppc460ex_plb_dma_ch_t *new_chan; + sgl_handle_t handle_p; + int dma_ch_id; + void *src; + int nrbufs = pipe->nrbufs; + int res = 0; + int len = 0; +#ifdef DEBUG_SPLICE_DMA + char *s_vaddr = NULL, *d_vaddr = NULL; + char strbuf[256]; + int firstbuf=0; +#endif + int curbuf = pipe->curbuf; /* stash away pipe->curbuf */ + +#ifdef DEBUG_SPLICE_DMA + printk("%s:%s:%d - dest = %p, length = %d len = %d\n", + __FILE__, __FUNCTION__, __LINE__, dest, length, len); +#endif + + if(unlikely(!nrbufs)) + return -EFAULT; + + /* create a device */ + if(unlikely ((device = kzalloc(sizeof(*device), GFP_KERNEL)) == NULL)) { + res = -ENOMEM; + } + + if(unlikely ((new_chan = kzalloc(sizeof(ppc460ex_plb_dma_ch_t), GFP_KERNEL)) == NULL)) { + printk("ERROR:No Free memory for allocating dma channels\n"); + res = -ENOMEM; + } + + memset(new_chan, 0 , sizeof(ppc460ex_plb_dma_ch_t)); + dma_ch_id = ppc460ex_get_dma_channel(); + if(unlikely(dma_ch_id == -ENODEV)) + return dma_ch_id; + + device->chan[dma_ch_id] = new_chan; + memset((char *)&p_init, 0, sizeof(ppc460ex_plb_dma_ch_t)); + p_init.polarity = 0; + p_init.pwidth = PW_8; + p_init.in_use = 0; + p_init.sai = 1; + p_init.dai = 1; + p_init.tce_enable = 1; + + + res = ppc460ex_init_dma_channel(device, dma_ch_id, &p_init); + if(unlikely(res != DMA_STATUS_GOOD)) + goto out; + + init_waitqueue_head(&device->queue); + + /* ppc460ex_disable_dma_interrupt(device, dma_ch_id); + ppc460ex_disable_burst(device, dma_ch_id); */ + res = ppc460ex_alloc_dma_handle(device, &handle_p, DMA_MODE_MM, dma_ch_id); + if(unlikely(res != DMA_STATUS_GOOD)) + goto out; + + +#ifdef DEBUG_SPLICE_DMA + printk("%s:%s:%d - nrbufs = %d pipe->curbuf = %d\n", + __FILE__, __FUNCTION__, __LINE__, nrbufs, pipe->curbuf); +#endif + for(;;) { + if(nrbufs) { + struct pipe_buffer *buf = pipe->bufs + curbuf; +#ifdef DEBUG_SPLICE_DMA + printk("%s:%s:%d - buf[%d] buf->len=%d length=%d len=%d\n", + __FILE__, __FUNCTION__, __LINE__, curbuf, buf->len, length, len); +#endif + if(len < length) { + + if(!buf->len) + continue; + + src = page_address(buf->page); + dma_src = dma_map_single(p_init.device->dev, src + buf->offset, buf->len, DMA_TO_DEVICE); +#ifndef SPLICE_DMA_COHERENT + dma_dest = dma_map_single(p_init.device->dev, dest + len, buf->len, DMA_FROM_DEVICE); +#endif + +#ifdef DEBUG_SPLICE_DMA + printk("maping %d src: %p, dest: %p, buf->len=%d dma_dest = 0x%08x\n", + curbuf, src + buf->offset, dest+len, buf->len, dma_dest); + printk("ADDING BUF NUMBER %d\n\n\n\n", curbuf); +#endif + ppc460ex_add_dma_sgl(device, handle_p, dma_src, dma_dest, buf->len); + len += buf->len; + curbuf = (curbuf + 1) & (PIPE_BUFFERS - 1); + --nrbufs; + } + else /* all pipe buf elements mapped to sgl */ + break; + } + else + break; + } + + + __dma_sync(dest, length, DMA_FROM_DEVICE); + ppc460ex_enable_dma_sgl(device, handle_p); + +#if 0 + res = wait_event_interruptible(device->queue, PPC460EX_DMA_CHAN_SGXFR_COMPLETE(dma_ch_id)); +#else + res = poll_for_sgdma_done(dma_ch_id); +#endif + + if(unlikely(res)) { + printk("%s:%s:%d - Timeout while waiting for SG Xfr to complete\n", + __FILE__, __FUNCTION__, __LINE__); + printk("dma_status = 0x%08x\n", DMA_STATUS(dma_ch_id)); + } + + /* Check the error status bits */ + printk("DCR_DMA2P40_SR=0x%x\n",mfdcr(DCR_DMA2P40_SR)); + if(unlikely(mfdcr(DCR_DMA2P40_SR) & (1 << (23 + dma_ch_id)))) { + printk(KERN_ERR"Error happened in the channel %d\n",dma_ch_id); + printk("DCR_DMA2P40_SR=0x%x\n",mfdcr(DCR_DMA2P40_SR)); + } + + mtdcr(DCR_DMA2P40_SR, 0xFFFFFFFF); + + +#ifdef DEBUG_SPLICE_DMA + printk("%s:%s:%d - dma status = 0x%08x\n", __FILE__, __FUNCTION__, __LINE__, DMA_STATUS(dma_ch_id)); +#endif + + + /* Hack */ + psgl = (sgl_list_info_t *) handle_p; + psgl->phead = NULL; + ppc460ex_free_dma_handle(handle_p); + handle_p = 0; + +#ifdef DEBUG_SPLICE_DMA + printk("%s:%s:%d - returning res = %d\n", __FILE__, __FUNCTION__, __LINE__, res); + + struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; + memset(strbuf, 0, 256); + s_vaddr = page_address(buf->page); + memcpy(strbuf, s_vaddr+buf->offset, 255); + *(strbuf+255) = '\0'; + printk("%s:%s:%d - source strbuf is %s\n", __FILE__, __FUNCTION__, __LINE__, strbuf); + + d_vaddr = dest; + memset(strbuf, 0, 256); + memcpy(strbuf, d_vaddr, 255); + *(strbuf+255) = '\0'; + printk("%s:%s:%d - dest strbuf is %s\n", __FILE__, __FUNCTION__, __LINE__, strbuf); +#endif + +out: + + return res; +} + +int splice_dma_memcpy(struct splice_dma_desc *sd_p, unsigned int len) +{ + sgl_list_info_t *psgl; + //static ppc460ex_plb_dma_dev_t *device; + ppc460ex_plb_dma_ch_t p_init; + dma_addr_t dma_dest; + phys_addr_t dma_src; + ppc460ex_plb_dma_ch_t *new_chan; + unsigned int size = 0; + sgl_handle_t handle_p; + int dma_ch_id; + void *src=NULL, *dst=NULL; + int res = 0; + int i = 0; + int dma_xfr_size=0; + dma_ch_id = ppc460ex_get_dma_channel(); + +#ifdef DEBUG_SPLICE_DMA + printk("%s:%s:%d - sd_p->n_elems=%d, len = %d \n", + __FILE__, __FUNCTION__, __LINE__, sd_p->n_elems, len); +#endif + + if(unlikely(!sd_p->n_elems)) + return -EFAULT; + new_chan = adev->chan[dma_ch_id]; + p_init.polarity = 0; + p_init.pwidth = PW_8; + p_init.in_use = 0; + p_init.sai = 1; + p_init.dai = 1; + p_init.tce_enable = 1; + + + res = ppc460ex_init_dma_channel(adev, dma_ch_id, &p_init); + if(unlikely(res != DMA_STATUS_GOOD)) + goto out; + + init_waitqueue_head(&adev->queue); + + ppc460ex_enable_burst(adev, dma_ch_id); + res = ppc460ex_alloc_dma_handle(adev, &handle_p, DMA_MODE_MM, dma_ch_id); + if(unlikely(res != DMA_STATUS_GOOD)) + goto out; + + for(i=0; i<sd_p->n_elems; i++) { + src = (void *)(sd_p->src_addrs[i]); + dst = (void *)(sd_p->dst_addrs[i]); + size = sd_p->xfr_size[i]; +#ifdef DEBUG_SPLICE_DMA + printk(KERN_DEBUG "index=%d src=0x%08x dst=0x%08x size=%d\n", i, src, dst, size);; +#endif + dma_src = dma_map_single(adev->dev, src, size, DMA_TO_DEVICE); + dma_dest = dma_map_single(adev->dev, dst, size, DMA_FROM_DEVICE); + ppc460ex_add_dma_sgl(adev, handle_p, dma_src, dma_dest, size); + dma_xfr_size += size; + } + +#ifdef DEBUG_SPLICE_DMA + printk(KERN_DEBUG "%s:%s:%d - dma_xfr_size=%d\n", __FILE__, __FUNCTION__, __LINE__, dma_xfr_size); +#endif + + dst = (void *)(sd_p->dst_addrs[0]); + + ppc460ex_enable_dma_sgl(adev, handle_p); + +#if 0 + res = wait_event_interruptible(device->queue, PPC460EX_DMA_CHAN_SGXFR_COMPLETE(dma_ch_id)); +#else + res = poll_for_sgdma_done(dma_ch_id); +#endif + + if(unlikely(res)) { + printk("%s:%s:%d - Timeout while waiting for SG Xfr to complete\n", + __FILE__, __FUNCTION__, __LINE__); + printk("dma_status = 0x%08x\n", DMA_STATUS(dma_ch_id)); + } + + /* Check the error status bits */ + if(unlikely(mfdcr(DCR_DMA2P40_SR) & (1 << (23 + dma_ch_id)))) { + printk(KERN_ERR"Error happened in the channel %d\n",dma_ch_id); + printk("DCR_DMA2P40_SR=0x%x\n",mfdcr(DCR_DMA2P40_SR)); + } + mtdcr(DCR_DMA2P40_SR, 0xFFFFFFFF); + + + +#ifdef DEBUG_SPLICE_DMA + printk("%s:%s:%d - dma status = 0x%08x\n", __FILE__, __FUNCTION__, __LINE__, DMA_STATUS(dma_ch_id)); +#endif + + for(i=0; i<sd_p->n_elems; i++) { + dma_unmap_single(adev->dev, splice_src_dma_addrs[i], size, DMA_TO_DEVICE); + dma_unmap_single(adev->dev, splice_dst_dma_addrs[i], size, DMA_FROM_DEVICE); + } + + /* Hack to clean up dma handle without memset */ + psgl = (sgl_list_info_t *) handle_p; + psgl->phead = NULL; + psgl->ptail = NULL; + ppc460ex_free_dma_handle(handle_p); + handle_p = 0; + +out: + return res; +} + + + +EXPORT_SYMBOL(ppc460ex_alloc_dma_handle); +EXPORT_SYMBOL(ppc460ex_free_dma_handle); +EXPORT_SYMBOL(ppc460ex_add_dma_sgl); +EXPORT_SYMBOL(ppc460ex_delete_dma_sgl_element); +EXPORT_SYMBOL(ppc460ex_enable_dma_sgl); +EXPORT_SYMBOL(ppc460ex_disable_dma_sgl); +EXPORT_SYMBOL(ppc460ex_get_dma_sgl_residue); +EXPORT_SYMBOL(ppc460ex_sgdma_pipebufs_memcpy); +EXPORT_SYMBOL(splice_dma_memcpy); diff --git a/drivers/input/misc/Makefile b/drivers/input/misc/Makefile index a8b84854fb7..2907edec103 100644 --- a/drivers/input/misc/Makefile +++ b/drivers/input/misc/Makefile @@ -3,7 +3,7 @@ # # Each configuration option enables a list of files. - +obj-y += a3g_button.o obj-$(CONFIG_INPUT_APANEL) += apanel.o obj-$(CONFIG_INPUT_ATI_REMOTE) += ati_remote.o obj-$(CONFIG_INPUT_ATI_REMOTE2) += ati_remote2.o diff --git a/drivers/input/misc/a3g_button.c b/drivers/input/misc/a3g_button.c new file mode 100644 index 00000000000..978ed41af9a --- /dev/null +++ b/drivers/input/misc/a3g_button.c @@ -0,0 +1,643 @@ +/* + * Button driver to support Apollo 3G board + */ + +#include <linux/kernel.h> +#include <linux/platform_device.h> +#include <linux/completion.h> +#include <linux/leds.h> +#include <linux/delay.h> +#include <asm/io.h> +#include <linux/of.h> +#include <linux/of_platform.h> +#include <linux/ioport.h> +#include <linux/spinlock.h> +#include <linux/types.h> + +#include <linux/suspend.h> +#include <linux/kthread.h> +#include <linux/sched.h> +#include <linux/wait.h> +#include <linux/signal.h> +#include <linux/freezer.h> +#include <linux/ioport.h> + +#include <linux/netlink.h> +#include <linux/module.h> +#include <linux/init.h> +#include <linux/input.h> +#include <linux/major.h> +#include <linux/device.h> +#include <linux/slab.h> +#include <linux/poll.h> + + +extern void __iomem *led_port; + +#define DRV_NAME "a3g-button" + +#define EV_PRESSED 1 +#define EV_RELEASED 0 +#define RESET_BTN 0 /* reset button */ + +#define _3G_BTN_BIT 0x04 +#define POL_RATE_MSECS 200 +#define MAX_EV_LEN (sizeof(struct input_event)) + +int btn_ev_flag = 0; +struct task_struct * btn_threadptr; + +struct input_event btn_event; + +static struct resource a3g_res = { + .name = "cs2", + .start = 0x4e0100000ULL, + .end = 0x4e0100300ULL, + /*.flags = IORESOURCE_IO,*/ + .flags = IORESOURCE_MEM, + }; + + +static void __iomem *button_port = NULL; + + +struct btndev_hw_data { + int abs_event; + unsigned long buttons; +}; + +struct btndev { + int exist; + int open; + int minor; + struct input_handle handle; + wait_queue_head_t wait; + struct list_head client_list; + spinlock_t client_lock; /* protects client_list */ + struct mutex mutex; + struct device dev; + + struct list_head mixdev_node; + int mixdev_open; + + struct btndev_hw_data packet; + unsigned int pkt_count; +}; + +struct btndev * btndev_ptr; + +#define BTNDEV_MINOR_BASE 31 +#define BTNDEV_MINORS 31 +#define BTNDEV_ZERO 0 + + +struct btndev_motion { + unsigned long buttons; +}; + +#define PACKET_QUEUE_LEN 16 +struct btndev_client { + struct fasync_struct *fasync; + struct btndev *btndev; + struct list_head node; + + struct btndev_motion packets[PACKET_QUEUE_LEN]; + unsigned int head, tail; + spinlock_t packet_lock; + + signed char ps2[6]; + unsigned char ready, buffer, bufsiz; + unsigned char imexseq, impsseq; + unsigned long last_buttons; +}; + + + +struct btndev *btndev_table[BTNDEV_MINORS]; +static DEFINE_MUTEX(btndev_table_mutex); + +static const struct input_device_id btndev_ids[] = { + { + .flags = INPUT_DEVICE_ID_MATCH_EVBIT | + INPUT_DEVICE_ID_MATCH_KEYBIT | + INPUT_DEVICE_ID_MATCH_RELBIT, + .evbit = { BIT_MASK(EV_KEY) | BIT_MASK(EV_REL) }, + }, + {}, +}; + +MODULE_DEVICE_TABLE(input, btndev_ids); +static void btndev_remove_chrdev(struct btndev *btndev) { + mutex_lock(&btndev_table_mutex); + btndev_table[btndev->minor] = NULL; + mutex_unlock(&btndev_table_mutex); +} + + +/*********************************************************/ +static void btndev_mark_dead(struct btndev *btndev) { + mutex_lock(&btndev->mutex); + btndev->exist = 0; + mutex_unlock(&btndev->mutex); +} + +/*********************************************************/ +static void btndev_cleanup(struct btndev *btndev) +{ + struct input_handle *handle = &btndev->handle; + + btndev_mark_dead(btndev); + btndev_remove_chrdev(btndev); + + if (btndev->open) + input_close_device(handle); +} + +/**********************************************************/ +static void btndev_free(struct device * dev) { + struct btndev * btndevptr = container_of( dev, struct btndev, dev); + input_put_device( btndevptr->handle.dev); + kfree(btndevptr); +} +/**********************************************************/ +static int btndev_install_chrdev(struct btndev *btndev) { + btndev_table[btndev->minor] = btndev; + return 0; +} + +/**********************************************************/ +static struct btndev *btndev_create(struct input_dev *dev, + struct input_handler *handler, + int minor) +{ + struct btndev *btndev; + int error; + btndev = kzalloc(sizeof(struct btndev), GFP_KERNEL); + if (!btndev) { + error = -ENOMEM; + goto err_out; + } + + + INIT_LIST_HEAD(&btndev->client_list); + INIT_LIST_HEAD(&btndev->mixdev_node); + spin_lock_init(&btndev->client_lock); + mutex_init(&btndev->mutex); + lockdep_set_subclass(&btndev->mutex, 0); + init_waitqueue_head(&btndev->wait); + + dev_set_name(&btndev->dev, "event%d", minor); + + btndev->minor = minor; + btndev->exist = 1; + btndev->handle.dev = input_get_device(dev); + btndev->handle.name = dev_name(&btndev->dev); + btndev->handle.handler = handler; + btndev->handle.private = btndev; + + btndev->dev.class = &input_class; + if (dev) + btndev->dev.parent = &dev->dev; + btndev->dev.devt = MKDEV(INPUT_MAJOR, BTNDEV_MINOR_BASE + minor); + btndev->dev.release = btndev_free; + device_initialize(&btndev->dev); + + error = input_register_handle(&(btndev->handle)); + if (error) { + goto err_free_btndev; + } + + error = btndev_install_chrdev(btndev); + if (error) + goto err_unregister_handle; + + error = device_add(&btndev->dev); + if (error) + goto err_cleanup_btndev; + + return btndev; + + err_cleanup_btndev: + btndev_cleanup(btndev); + err_unregister_handle: + input_unregister_handle(&btndev->handle); + err_free_btndev: + put_device(&btndev->dev); + err_out: + return ERR_PTR(error); + +} + + +/**********************************************************/ +static void btndev_destroy(struct btndev *btndev) { + device_del(&btndev->dev); + btndev_cleanup(btndev); + input_unregister_handle(&btndev->handle); + put_device(&btndev->dev); +} + + +/**********************************************************/ +static void btndev_event(struct input_handle *handle, + unsigned int type, unsigned int code, int value) { + switch( type ) { + + case EV_KEY: + break; + case EV_REL: + break; + default: + break; + } +} + + +static int btndev_open_device(struct btndev *btndev) { + int retval; + + retval = mutex_lock_interruptible(&btndev->mutex); + if (retval) + return retval; + + if (!btndev->exist) + retval = -ENODEV; + else if (!btndev->open++) { + retval = input_open_device(&btndev->handle); + if (retval) + btndev->open--; + } + + mutex_unlock(&btndev->mutex); + return retval; +} + + +/**********************************************************/ +static void btndev_attach_client(struct btndev *btndev, struct btndev_client *client) { + spin_lock(&btndev->client_lock); + list_add_tail_rcu(&client->node, &btndev->client_list); + spin_unlock(&btndev->client_lock); + synchronize_rcu(); +} + +/**********************************************************/ +static void btndev_detach_client(struct btndev *btndev, + struct btndev_client *client) +{ + spin_lock(&btndev->client_lock); + list_del_rcu(&client->node); + spin_unlock(&btndev->client_lock); + synchronize_rcu(); +} + +static int btndev_release(struct inode *inode, struct file *file) { + return 0; +} + +/**********************************************************/ +static int btndev_open(struct inode *inode, struct file *file) +{ + struct btndev_client *client; + struct btndev *btndev; + int error; + int i; + + i = iminor(inode) - BTNDEV_MINOR_BASE; + + if (i >= BTNDEV_MINORS) { + printk(KERN_ERR "*** error btndev_open()\n"); + return -ENODEV; + } + + error = mutex_lock_interruptible(&btndev_table_mutex); + if (error) { + return error; + } + btndev = btndev_table[i]; + if (btndev) + get_device(&btndev->dev); + mutex_unlock(&btndev_table_mutex); + + if (!btndev) { + return -ENODEV; + } + + client = kzalloc(sizeof(struct btndev_client), GFP_KERNEL); + if (!client) { + error = -ENOMEM; + goto err_put_btndev; + } + + spin_lock_init(&client->packet_lock); + client->btndev = btndev; + btndev_attach_client(btndev, client); + + error = btndev_open_device(btndev); + if (error) + goto err_free_client; + + file->private_data = client; + return 0; + + err_free_client: + btndev_detach_client(btndev, client); + kfree(client); + err_put_btndev: + put_device(&btndev->dev); + return error; +} + +static ssize_t btndev_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos) { + return 0; +} + +static int btndev_fasync(int fd, struct file *file, int on) { + struct btndev_client *client = file->private_data; + + return fasync_helper(fd, file, on, &client->fasync); +} + +static ssize_t btndev_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos) { + struct btndev_client *client = file->private_data; + struct btndev *btndev = client->btndev; + signed char data[MAX_EV_LEN]; + int retval = 0; +/* + if (!client->ready && !client->buffer && btndev->exist && + (file->f_flags & O_NONBLOCK) && !btn_ev_flag) { +*/ + if (file->f_flags & O_NONBLOCK) { + /* + * This read is from VFT, copy data to user buffer anyway. + * + */ + spin_lock_irq(&client->packet_lock); + if (count > MAX_EV_LEN) + count = MAX_EV_LEN; + memcpy(data, (char*)&btn_event, count); + /* client->buffer -= count; */ + spin_unlock_irq(&client->packet_lock); + if (copy_to_user(buffer, data, count)) + return -EFAULT; + + return -EAGAIN; + } + retval = wait_event_interruptible(btndev->wait, + !btndev->exist || + client->ready || + btn_ev_flag ); + if( btn_ev_flag ) { + btn_ev_flag = 0; + } + if (retval) + return retval; + if (!btndev->exist) + return -ENODEV; + spin_lock_irq(&client->packet_lock); + if (count > MAX_EV_LEN) + count = MAX_EV_LEN; + memcpy(data, (char*)&btn_event, count); + client->buffer -= count; + spin_unlock_irq(&client->packet_lock); + if (copy_to_user(buffer, data, count)) + return -EFAULT; + + return MAX_EV_LEN; +} + + +static unsigned int btndev_poll(struct file *file, poll_table *wait) { + + return 0; +} + + + +static int btndev_connect( struct input_handler *handler, + struct input_dev *dev, + const struct input_device_id *id){ + + return 0; + } + + +static void btndev_disconnect(struct input_handle *handle) { + +} + + +static const struct file_operations btndev_fops = { + .owner = THIS_MODULE, + .read = btndev_read, + .write = btndev_write, + .poll = btndev_poll, + .open = btndev_open, + .release = btndev_release, + .fasync = btndev_fasync, +}; + + +static struct input_handler btndev_handler = { + .event = btndev_event, + .connect = btndev_connect, + .disconnect = btndev_disconnect, + .fops = &btndev_fops, + .minor = BTNDEV_MINOR_BASE, + .name = "btndev", + .id_table = btndev_ids, +}; + + + + + + +/**************************************************/ +u8 enable_cs2( void ){ + u8 val, reg; + + reg = readb(led_port); + val = (reg | 0x02); + writeb(val, led_port); + return reg; +} + +/**************************************************/ +void disable_cs2( u8 val ){ + val &= ~0x02; + writeb(val, led_port); +} + +/**************************************************/ +static int is_button_pressed(void) { + u8 saved, val = EV_REL; + + if( led_port ) { + saved = enable_cs2(); + val = readb(button_port); + disable_cs2( saved ); + } + return ((val & _3G_BTN_BIT) == _3G_BTN_BIT) ? EV_REL : EV_KEY ; +} + + +/**************************************************/ + +static struct input_dev * input_dev; + +static int button_dev_init(struct platform_device *parent_pdev) +{ + int error; + + + input_dev = input_allocate_device(); + if( !input_dev ) { + printk(KERN_ERR "*** a3g-button: unable to allocate input_dev\n"); + return -ENOMEM; + } + + input_dev->name = "rst_button"; + input_dev->phys = "a3g/input0"; + input_dev->id.bustype = BUS_HOST; + input_set_capability( input_dev, EV_MSC, MSC_SCAN); + __set_bit( EV_KEY, input_dev->evbit); + __set_bit( EV_REL, input_dev->relbit); + error = input_register_device(input_dev); + + if( error ) { + input_free_device( input_dev ); + printk(KERN_ERR "*** a3g-button: error input_register_device()\n"); + return error; + } + + error = input_register_handler( &btndev_handler); + if( error ) { + printk(KERN_ERR "*** a3g-button: error input_register_handler()\n"); + input_free_device( input_dev ); + /*btndev_destroy(btndev_ptr);*/ + return error; + } + + btndev_ptr = btndev_create( input_dev , &btndev_handler, BTNDEV_ZERO); + if( IS_ERR(btndev_ptr) ) { + input_free_device( input_dev ); + printk(KERN_ERR "*** a3g-button: error btndev_create()\n"); + return PTR_ERR( btndev_ptr ); + } + + return 0; +} + + + +static int btn_thread( void * data ) { + + struct task_struct * tsk = current; + struct sched_param param = { .sched_priority = 1}; + int btn_last_state, btn_cur_state; + btn_cur_state = btn_last_state = EV_REL; + + + sched_setscheduler(tsk, SCHED_FIFO, ¶m); + set_freezable(); + + if( button_port ) { + btn_last_state = is_button_pressed(); + } + while( !kthread_should_stop() ) { + + if( button_port ) { + msleep(POL_RATE_MSECS); + if( button_port ) { + btn_cur_state = is_button_pressed(); + } + if( btn_last_state != btn_cur_state ){ +/* + printk( KERN_INFO "state changed from %d to %d\n", + btn_last_state, btn_cur_state); +*/ + btn_last_state = btn_cur_state; + do_gettimeofday(&btn_event.time); + btn_event.type = RESET_BTN; + btn_event.code = btn_cur_state; + btn_event.value = btn_cur_state; + btn_ev_flag = 1; /* wake up event read */ + if( btndev_ptr ) { + wake_up_interruptible(&(btndev_ptr->wait)); + } + + } + } + } + + return 0; +} + + +/**************************************************/ +static int __init a3g_button_init(void) { + + resource_size_t res_size; + struct resource *phys_res = &a3g_res; + int retval; + + res_size = resource_size(phys_res); + + if( !request_mem_region(phys_res->start, res_size, phys_res->name) ) { + printk(KERN_DEBUG "**** error request_mem_region()\n"); + return -1; + } + + button_port = ioremap(phys_res->start, res_size); + if (button_port == NULL) { + release_mem_region(phys_res->start, res_size); + printk(KERN_DEBUG "*** Error ioremap()"); + return -1; + } + + + retval = button_dev_init(NULL); + if( retval != 0 ) { + printk( KERN_ERR "*** failed button_dev_init() %d\n", retval); + iounmap(button_port); + button_port = NULL; + release_mem_region(a3g_res.start, (a3g_res.end - a3g_res.start + 1)); + return -1; + } + + btn_threadptr = kthread_run( btn_thread, NULL, "btn_t"); + + retval = (btn_threadptr == NULL) ? -1 : 0; + + return retval; + + /* return platform_driver_register( &a3g_button_driver ); */ +} + +/**************************************************/ +static void __exit a3g_button_exit(void) { + /*platform_driver_unregister( &a3g_button_driver);*/ + if( button_port ) { + iounmap(button_port); + button_port = NULL; + release_mem_region(a3g_res.start, (a3g_res.end - a3g_res.start + 1)); + } + + btndev_destroy( btndev_ptr ); + if( btn_threadptr ) { + kthread_stop(btn_threadptr); + btn_threadptr = NULL; + } + + input_unregister_handler( &btndev_handler); + input_unregister_device(input_dev); +} + +module_init( a3g_button_init ); +module_exit( a3g_button_exit ); + +MODULE_AUTHOR("Hai Le"); +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("Support for reset button on Apollo3G board"); +MODULE_ALIAS("platform:" DRV_NAME); diff --git a/drivers/leds/Makefile b/drivers/leds/Makefile index 46d72704d60..6b2691c49d2 100644 --- a/drivers/leds/Makefile +++ b/drivers/leds/Makefile @@ -30,6 +30,10 @@ obj-$(CONFIG_LEDS_WM831X_STATUS) += leds-wm831x-status.o obj-$(CONFIG_LEDS_WM8350) += leds-wm8350.o obj-$(CONFIG_LEDS_PWM) += leds-pwm.o + +obj-y += led-class-3g.o +obj-y += leds-apollo3g.o + # LED SPI Drivers obj-$(CONFIG_LEDS_DAC124S085) += leds-dac124s085.o diff --git a/drivers/leds/led-class-3g.c b/drivers/leds/led-class-3g.c new file mode 100644 index 00000000000..c0c1c11cbdb --- /dev/null +++ b/drivers/leds/led-class-3g.c @@ -0,0 +1,281 @@ +/* + * LED Class Core + * + * Copyright (C) 2005 John Lenz <lenz@cs.wisc.edu> + * Copyright (C) 2005-2007 Richard Purdie <rpurdie@openedhand.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ + +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/list.h> +#include <linux/spinlock.h> +#include <linux/device.h> +#include <linux/sysdev.h> +#include <linux/timer.h> +#include <linux/err.h> +#include <linux/ctype.h> +#include <linux/leds.h> +#include "leds.h" + +static struct class *leds_class; + +static void led_update_color(struct led_classdev *led_cdev) +{ + if (led_cdev->color_get) + led_cdev->color = led_cdev->color_get(led_cdev); +} + +static ssize_t led_color_store(struct device *dev, + struct device_attribute *attr, const char *buf, size_t size) +{ + struct led_classdev *led_cdev = dev_get_drvdata(dev); + unsigned long state = 9; + + switch (buf[0]) { + case 'r': /* red */ + state = 1; + break; + case 'g': /* green */ + state = 2; + break; + case 'b': /* blue */ + state = 3; + break; + case 'y': /* yellow */ + state = 4; + break; + case 'w': /* white */ + state = 5; + break; + case 'o': /* off */ + state = 0; + break; + default: + break; + } + + led_set_color(led_cdev, state); + + return (ssize_t)size; +} + +static ssize_t led_color_show(struct device *dev, + struct device_attribute *attr, char *buf) { + + struct led_classdev *led_cdev = dev_get_drvdata(dev); + char * readbuf[] = {"off", "red", "green", "blue", "yellow", "white"} ; + /* no lock needed for this */ + led_update_color(led_cdev); + + return sprintf(buf, "%s\n", readbuf[led_cdev->color]); +} + +static ssize_t led_blink_show(struct device *dev, struct device_attribute *attr, + char *buf) { + char *blinkStr = "no"; + struct led_classdev *led_cdev = dev_get_drvdata(dev); + + if( led_cdev->blink == 0 ){ + blinkStr = "no"; + } + else if (led_cdev->blink == 1 ){ + blinkStr = "yes"; + } + return sprintf(buf, "%s\n", blinkStr); +} + +static ssize_t led_blink_store(struct device *dev, + struct device_attribute *attr, const char *buf, size_t size) { + int val = 0; + struct led_classdev * led_cdev = dev_get_drvdata(dev); + + if( buf[0] == 'y' ) { + val = 1; + } + else if( buf[0] == 'n' ) { + val = 0; + } + else if( buf[0] == 'f' ) { + val = 2; + } + led_set_blink( led_cdev, val ); + + return (ssize_t)size; +} + +static ssize_t led_max_brightness_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct led_classdev *led_cdev = dev_get_drvdata(dev); + + return sprintf(buf, "%u\n", led_cdev->max_brightness); +} + +/*static DEVICE_ATTR(brightness, 0644, led_brightness_show, led_brightness_store);*/ +static DEVICE_ATTR(color, 0644, led_color_show, led_color_store); +static DEVICE_ATTR(blink, 0644, led_blink_show, led_blink_store); +static DEVICE_ATTR(max_brightness, 0444, led_max_brightness_show, NULL); +#ifdef CONFIG_LEDS_TRIGGERS +static DEVICE_ATTR(trigger, 0644, led_trigger_show, led_trigger_store); +#endif + +/** + * led_classdev_suspend - suspend an led_classdev. + * @led_cdev: the led_classdev to suspend. + */ +void led_classdev_suspend(struct led_classdev *led_cdev) +{ + led_cdev->flags |= LED_SUSPENDED; + led_cdev->color_set(led_cdev, 0); +} +EXPORT_SYMBOL_GPL(led_classdev_suspend); + +/** + * led_classdev_resume - resume an led_classdev. + * @led_cdev: the led_classdev to resume. + */ +void led_classdev_resume(struct led_classdev *led_cdev) +{ + led_cdev->color_set(led_cdev, led_cdev->color); + led_cdev->flags &= ~LED_SUSPENDED; +} +EXPORT_SYMBOL_GPL(led_classdev_resume); + +static int led_suspend(struct device *dev, pm_message_t state) +{ + struct led_classdev *led_cdev = dev_get_drvdata(dev); + + if (led_cdev->flags & LED_CORE_SUSPENDRESUME) + led_classdev_suspend(led_cdev); + + return 0; +} + +static int led_resume(struct device *dev) +{ + struct led_classdev *led_cdev = dev_get_drvdata(dev); + + if (led_cdev->flags & LED_CORE_SUSPENDRESUME) + led_classdev_resume(led_cdev); + + return 0; +} + +/** + * led_classdev_register - register a new object of led_classdev class. + * @parent: The device to register. + * @led_cdev: the led_classdev structure for this device. + */ +int led_classdev_register(struct device *parent, struct led_classdev *led_cdev) +{ + int rc; + + led_cdev->dev = device_create(leds_class, parent, 0, led_cdev, + "%s", led_cdev->name); + if (IS_ERR(led_cdev->dev)) + return PTR_ERR(led_cdev->dev); + + /* register the attributes */ + rc = device_create_file(led_cdev->dev, &dev_attr_color); + if (rc) + goto err_out; + + rc = device_create_file(led_cdev->dev, &dev_attr_blink); + if (rc) + goto err_out; + +#ifdef CONFIG_LEDS_TRIGGERS + init_rwsem(&led_cdev->trigger_lock); +#endif + /* add to the list of leds */ + down_write(&leds_list_lock); + list_add_tail(&led_cdev->node, &leds_list); + up_write(&leds_list_lock); + + if (!led_cdev->max_brightness) + led_cdev->max_brightness = LED_FULL; + + rc = device_create_file(led_cdev->dev, &dev_attr_max_brightness); + if (rc) + goto err_out_attr_max; + + led_update_color(led_cdev); + +#ifdef CONFIG_LEDS_TRIGGERS + rc = device_create_file(led_cdev->dev, &dev_attr_trigger); + if (rc) + goto err_out_led_list; + + led_trigger_set_default(led_cdev); +#endif + + printk(KERN_INFO "Registered led device: %s\n", + led_cdev->name); + + return 0; + +#ifdef CONFIG_LEDS_TRIGGERS +err_out_led_list: + device_remove_file(led_cdev->dev, &dev_attr_max_brightness); +#endif +err_out_attr_max: + device_remove_file(led_cdev->dev, &dev_attr_color); + list_del(&led_cdev->node); +err_out: + device_unregister(led_cdev->dev); + return rc; +} +EXPORT_SYMBOL_GPL(led_classdev_register); + +/** + * led_classdev_unregister - unregisters a object of led_properties class. + * @led_cdev: the led device to unregister + * + * Unregisters a previously registered via led_classdev_register object. + */ +void led_classdev_unregister(struct led_classdev *led_cdev) +{ + device_remove_file(led_cdev->dev, &dev_attr_max_brightness); + device_remove_file(led_cdev->dev, &dev_attr_color); +#ifdef CONFIG_LEDS_TRIGGERS + device_remove_file(led_cdev->dev, &dev_attr_trigger); + down_write(&led_cdev->trigger_lock); + if (led_cdev->trigger) + led_trigger_set(led_cdev, NULL); + up_write(&led_cdev->trigger_lock); +#endif + + device_unregister(led_cdev->dev); + + down_write(&leds_list_lock); + list_del(&led_cdev->node); + up_write(&leds_list_lock); +} +EXPORT_SYMBOL_GPL(led_classdev_unregister); + +static int __init leds_init(void) +{ + leds_class = class_create(THIS_MODULE, "leds"); + if (IS_ERR(leds_class)) + return PTR_ERR(leds_class); + leds_class->suspend = led_suspend; + leds_class->resume = led_resume; + return 0; +} + +static void __exit leds_exit(void) +{ + class_destroy(leds_class); +} + +subsys_initcall(leds_init); +module_exit(leds_exit); + +MODULE_AUTHOR("John Lenz, Richard Purdie"); +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("LED Class Interface"); diff --git a/drivers/leds/led-class.c b/drivers/leds/led-class.c index f2cc13d7681..b1e6be1ea63 100644 --- a/drivers/leds/led-class.c +++ b/drivers/leds/led-class.c @@ -30,17 +30,6 @@ static void led_update_brightness(struct led_classdev *led_cdev) led_cdev->brightness = led_cdev->brightness_get(led_cdev); } -static ssize_t led_brightness_show(struct device *dev, - struct device_attribute *attr, char *buf) -{ - struct led_classdev *led_cdev = dev_get_drvdata(dev); - - /* no lock needed for this */ - led_update_brightness(led_cdev); - - return sprintf(buf, "%u\n", led_cdev->brightness); -} - static ssize_t led_brightness_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { @@ -52,18 +41,29 @@ static ssize_t led_brightness_store(struct device *dev, if (*after && isspace(*after)) count++; - if (count == size) { ret = count; if (state == LED_OFF) led_trigger_remove(led_cdev); + led_set_brightness(led_cdev, state); } return ret; } +static ssize_t led_brightness_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct led_classdev *led_cdev = dev_get_drvdata(dev); + + /* no lock needed for this */ + led_update_brightness(led_cdev); + + return sprintf(buf, "%u\n", led_cdev->brightness); +} + static ssize_t led_max_brightness_show(struct device *dev, struct device_attribute *attr, char *buf) { diff --git a/drivers/leds/leds-apollo3g.c b/drivers/leds/leds-apollo3g.c new file mode 100644 index 00000000000..6e796dc7c24 --- /dev/null +++ b/drivers/leds/leds-apollo3g.c @@ -0,0 +1,365 @@ +/* + * LED Platform driver for Apollo3G board. + * + * © 2010 Western Digital Technologies, Inc. All rights reserved. + * + * + */ + +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/platform_device.h> +#include <linux/completion.h> +#include <linux/leds.h> +#include <linux/delay.h> +#include <asm/io.h> +#include <linux/of.h> +#include <linux/of_platform.h> +#include <linux/ioport.h> +#include <linux/spinlock.h> +#include <linux/types.h> + +#include <linux/suspend.h> +#include <linux/kthread.h> +#include <linux/sched.h> +#include <linux/wait.h> +#include <linux/signal.h> +#include <linux/freezer.h> + + + +#define _3G_BIT_LED_RED 0x10 +#define _3G_BIT_LED_GREEN 0x20 +#define _3G_BIT_LED_BLUE 0x40 +#define _3G_BIT_LED_YELLOW (_3G_BIT_LED_GREEN | _3G_BIT_LED_RED) +#define _3G_BIT_LED_ALL 0x70 +#define _3G_BIT_LED_OFF 0x00 + +#define _3G_LED_OFF 0 +#define _3G_LED_RED 1 +#define _3G_LED_GREEN 2 +#define _3G_LED_BLUE 3 +#define _3G_LED_YELLOW 4 +#define _3G_LED_ALL 5 +#define _3G_LED_WHITE 5 /* save as _ALL */ + +#define _BLINK_YES 1 +#define _BLINK_NO 0 + +#define HDD_BLINK_RATE 250 + +static DEFINE_SPINLOCK(led_lock); +struct task_struct * threadptr; + +wait_queue_head_t ts_wait; +int blink_flag = 0; + + +void __iomem *led_port = NULL; + +typedef struct led_state_s { + int cur_color; + int cur_action; +} led_state_t; + +led_state_t led_state = { .cur_color = _3G_LED_YELLOW, + .cur_action = _BLINK_NO + }; + +EXPORT_SYMBOL(led_port); + +/****************************************************/ +/* read value from 3g led_port */ + u8 read_3gled( void ) { + return readb(led_port); +} + +/****************************************************/ +/* read-modify-write 3g led port */ +u8 write_3gled( u8 mask ,u8 value ) { + u8 regval; + + regval = read_3gled(); + regval &= ~mask; + regval |= (value & mask); + writeb( regval, led_port); + return regval; +} + +/****************************************************/ +/* return 3g led color */ +static enum led_brightness a3g_led_get( struct led_classdev * led_cdev ) { + unsigned char readval; + + readval = readb(led_port); + if( (readval & _3G_BIT_LED_ALL) == _3G_BIT_LED_RED ) { + readval = _3G_LED_RED; + } + else if( (readval & _3G_BIT_LED_ALL) == _3G_BIT_LED_GREEN ) { + readval = _3G_LED_GREEN; + } + else if( (readval & _3G_BIT_LED_ALL) == _3G_BIT_LED_BLUE ) { + readval = _3G_LED_BLUE; + } + else if( (readval & _3G_BIT_LED_ALL) == _3G_BIT_LED_YELLOW ) { + readval = _3G_LED_YELLOW; + } + else if( (readval & _3G_BIT_LED_ALL) == _3G_BIT_LED_ALL ) { + readval = _3G_LED_ALL; + } + else if( (readval & _3G_BIT_LED_ALL) == _3G_BIT_LED_OFF ) { + readval = _3G_LED_OFF; + } + + return readval; +} + +/****************************************************/ +/* set 3g led color */ +static void a3g_led_set(struct led_classdev *led_cdev, enum led_brightness value) { + + unsigned long flags; + + spin_lock_irqsave(&led_lock, flags); + + switch (value) { + case _3G_LED_RED: + write_3gled( _3G_BIT_LED_ALL, _3G_BIT_LED_RED); + break; + case _3G_LED_GREEN: + write_3gled( _3G_BIT_LED_ALL, _3G_BIT_LED_GREEN); + break; + case _3G_LED_BLUE: + write_3gled( _3G_BIT_LED_ALL, _3G_BIT_LED_BLUE); + break; + case _3G_LED_OFF: + write_3gled( _3G_BIT_LED_ALL, _3G_BIT_LED_OFF); + break; + case _3G_LED_ALL: + write_3gled( _3G_BIT_LED_ALL, _3G_BIT_LED_ALL); + break; + case _3G_LED_YELLOW: + write_3gled(_3G_BIT_LED_ALL, _3G_BIT_LED_YELLOW); + break; + default: + break; /* should never be here */ + } + led_state.cur_color = value; + + spin_unlock_irqrestore(&led_lock, flags); + +} + +/****************************************************/ +/* set 3g led blinking */ +static int a3g_led_blink(struct led_classdev *led_cdev, int value) { + + /* + * if forced blink, don't set blink_flag + */ + if( blink_flag == 2 ) { + return 0; + } + + /*spin_lock_irqsave(&led_lock, flags);*/ + /* user wants to blink led */ + if( value == 1 ) { + wake_up(&ts_wait); + blink_flag = 1; + + } + else if( value == 0) { + blink_flag = 0; + } + else if( value == 2 ) { + wake_up(&ts_wait); + blink_flag = 2; + } + /* spin_unlock_irqrestore(&led_lock, flags);*/ + + return 0; +} + +/****************************************************/ +/* + * flag = blink or not + * color = blinking color + */ +void signal_hdd_led(int flag, int color) { + + /* + * if forced blinking was set, keep it blinking forever + */ + if( blink_flag == 2 ) { + return; + } + + if( flag && /* blink or not */ + (led_state.cur_color == _3G_LED_GREEN) +#if 0 + (led_state.cur_color != _3G_LED_WHITE) && /* don't touch fw update led */ + (led_state.cur_color != _3G_LED_RED) && /* don't touch system error led */ + !((led_state.cur_color == _3G_LED_BLUE) && (led_state.cur_action == _BLINK_YES)) && /* leave identity alone */ + (color != _3G_LED_RED) +#endif + ) { + if( color == _3G_LED_RED ) { + a3g_led_set( NULL, _3G_LED_RED); + } + blink_flag = 1; + wake_up(&ts_wait); + } + else { + blink_flag = 0; + } +} + +static struct led_classdev a3g_led_dev = { + .name = "a3g_led", + .color_set = a3g_led_set, + .color_get = a3g_led_get, + .blink_set_3g = a3g_led_blink, +}; + +/****************************************************/ +static int __init a3g_led_probe(struct platform_device *pdev ) { + + /* Not used */ + return 0; +} + +/****************************************************/ +static int __devexit a3g_led_remove(struct platform_device *pdev){ + + led_classdev_unregister(&a3g_led_dev); + if( led_port ){ + iounmap(led_port); + led_port = NULL; + } + return 0; +} +static struct platform_driver a3g_led_driver = { + .probe = a3g_led_probe, + .remove = __devexit_p(a3g_led_remove), + .driver = { + .name = "a3g-leds", + .owner = THIS_MODULE, + }, +}; + +#if 0 +struct platform_device { + const char * name; + int id; + struct device dev; + u32 num_resources; + struct resource * resource; + + struct platform_device_id *id_entry; + + /* arch specific additions */ + struct pdev_archdata archdata; +}; +#endif + +static struct resource a3g_res = { + .name = "cs1", + .start = 0x4e0000000ULL, + .end = 0x4e0000300ULL, + /*.flags = IORESOURCE_IO,*/ + .flags = IORESOURCE_MEM, + }; + + +/****************************************************/ +static int a3g_led_blink_thread( void * data ) { + unsigned char readval, color; + + struct task_struct * tsk = current; + struct sched_param param = { .sched_priority = 1}; + + init_waitqueue_head(&ts_wait); + + sched_setscheduler(tsk, SCHED_FIFO, ¶m); + set_freezable(); + + while( !kthread_should_stop() ) { + + led_state.cur_action = _BLINK_NO; + /* always set current color before blinking */ + a3g_led_set( NULL, led_state.cur_color); + wait_event_freezable_timeout(ts_wait, blink_flag || kthread_should_stop(), MAX_SCHEDULE_TIMEOUT); + if( led_port ) { + readval = readb(led_port); + color = readval & _3G_BIT_LED_ALL; + write_3gled( _3G_BIT_LED_ALL, _3G_BIT_LED_OFF); + msleep(HDD_BLINK_RATE); + write_3gled( _3G_BIT_LED_ALL, color); + msleep(HDD_BLINK_RATE); + led_state.cur_action = _BLINK_YES; + } + } + + return 0; +} + + +/****************************************************/ +static int __init a3g_led_init(void) { + + resource_size_t res_size; + struct resource *phys_res = &a3g_res; + int retval; + + res_size = resource_size(phys_res); + + if( !request_mem_region(phys_res->start, res_size, phys_res->name) ) { + printk(KERN_DEBUG "**** error request_mem_region()\n"); + return -1; + } + + led_port = ioremap(phys_res->start, res_size); + if (led_port == NULL) { + release_mem_region(phys_res->start, res_size); + printk(KERN_DEBUG "*** Error ioremap()"); + return -1; + } + else { + retval = led_classdev_register(NULL, &a3g_led_dev); + if (retval) { + led_classdev_unregister(&a3g_led_dev); + iounmap(led_port); + led_port = NULL; + release_mem_region(phys_res->start, res_size); + return -1; + } + + threadptr = kthread_run( a3g_led_blink_thread, NULL, "a3gblink_t"); + + + return platform_driver_register(&a3g_led_driver); + } +} + +/****************************************************/ +static void __exit a3g_led_exit(void) { + + platform_driver_unregister(&a3g_led_driver); + if( led_port ){ + led_classdev_unregister(&a3g_led_dev); + iounmap(led_port); + led_port = NULL; + if( threadptr ){ + kthread_stop(threadptr); + } + release_mem_region(a3g_res.start, (a3g_res.end - a3g_res.start + 1)); + } +} + + +module_init(a3g_led_init); +module_exit(a3g_led_exit); + +MODULE_AUTHOR("Hai Le <hai.le@wdc.com>"); +MODULE_DESCRIPTION("Apollo3G LED driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/leds/leds-gpio.c b/drivers/leds/leds-gpio.c index 0823e2622e8..33927c2a0d6 100644 --- a/drivers/leds/leds-gpio.c +++ b/drivers/leds/leds-gpio.c @@ -18,6 +18,9 @@ #include <asm/gpio.h> + +#define CONFIG_LEDS_GPIO_PLATFORM + struct gpio_led_data { struct led_classdev cdev; unsigned gpio; @@ -141,6 +144,7 @@ static int __devinit gpio_led_probe(struct platform_device *pdev) struct gpio_led_data *leds_data; int i, ret = 0; +printk(KERN_INFO ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 1\n"); if (!pdata) return -EBUSY; diff --git a/drivers/leds/leds.h b/drivers/leds/leds.h index 2dd8ecbfdc3..f4b75500b60 100644 --- a/drivers/leds/leds.h +++ b/drivers/leds/leds.h @@ -17,6 +17,25 @@ #include <linux/rwsem.h> #include <linux/leds.h> +static inline void led_set_color(struct led_classdev *led_cdev, + enum led_brightness value) +{ + led_cdev->color = value; + if (!(led_cdev->flags & LED_SUSPENDED)) + led_cdev->color_set(led_cdev, value); +} + +static inline int led_get_color(struct led_classdev *led_cdev) +{ + return led_cdev->color; +} +static inline void led_set_blink(struct led_classdev *led_cdev, + enum led_brightness value) +{ + led_cdev->blink = value; + led_cdev->blink_set_3g(led_cdev, value); +} + static inline void led_set_brightness(struct led_classdev *led_cdev, enum led_brightness value) { diff --git a/drivers/md/Kconfig b/drivers/md/Kconfig index 2158377a135..bb72359d8dc 100644 --- a/drivers/md/Kconfig +++ b/drivers/md/Kconfig @@ -165,6 +165,19 @@ config MULTICORE_RAID456 If unsure, say N. +config MD_RAID_SKIP_BIO_COPY + bool "Skip intermediate bio->cache copy" + depends on MD_RAID456 + default n + ---help--- + Skip intermediate data copying between the bio requested to write and + the disk cache in <sh> if the full-stripe write operation is on the + way. This might improve the performance of write operations in some + dedicated cases but generally eliminating disk cache slows the + performance down. + + If unsure, say N. + config MD_RAID6_PQ tristate diff --git a/drivers/md/Makefile b/drivers/md/Makefile index e355e7f6a53..7d424aa10fa 100644 --- a/drivers/md/Makefile +++ b/drivers/md/Makefile @@ -11,8 +11,8 @@ dm-mirror-y += dm-raid1.o dm-log-userspace-y \ += dm-log-userspace-base.o dm-log-userspace-transfer.o md-mod-y += md.o bitmap.o -raid456-y += raid5.o -raid6_pq-y += raid6algos.o raid6recov.o raid6tables.o \ +raid456-y += raid5.o +raid6_pq-y += raid6algos.o raid6recov.o raid6tables.o \ raid6int1.o raid6int2.o raid6int4.o \ raid6int8.o raid6int16.o raid6int32.o \ raid6altivec1.o raid6altivec2.o raid6altivec4.o \ diff --git a/drivers/md/md.c b/drivers/md/md.c index 08f7471d015..1297c9db0cf 100644 --- a/drivers/md/md.c +++ b/drivers/md/md.c @@ -217,12 +217,12 @@ static int md_make_request(struct request_queue *q, struct bio *bio) return 0; } rcu_read_lock(); - if (mddev->suspended) { + if (mddev->suspended || mddev->barrier) { DEFINE_WAIT(__wait); for (;;) { prepare_to_wait(&mddev->sb_wait, &__wait, TASK_UNINTERRUPTIBLE); - if (!mddev->suspended) + if (!mddev->suspended && !mddev->barrier) break; rcu_read_unlock(); schedule(); @@ -264,11 +264,117 @@ static void mddev_resume(mddev_t *mddev) int mddev_congested(mddev_t *mddev, int bits) { + if (mddev->barrier) + return 1; return mddev->suspended; } EXPORT_SYMBOL(mddev_congested); +/* + * Generic barrier handling for md + */ + +static void md_end_barrier(struct bio *bio, int err) +{ + mdk_rdev_t *rdev = bio->bi_private; + mddev_t *mddev = rdev->mddev; + if (err == -EOPNOTSUPP && mddev->barrier != (void*)1) + set_bit(BIO_EOPNOTSUPP, &mddev->barrier->bi_flags); + + rdev_dec_pending(rdev, mddev); + + if (atomic_dec_and_test(&mddev->flush_pending)) { + if (mddev->barrier == (void*)1) { + mddev->barrier = NULL; + wake_up(&mddev->sb_wait); + } else + schedule_work(&mddev->barrier_work); + } + bio_put(bio); +} + +static void md_submit_barrier(struct work_struct *ws) +{ + mddev_t *mddev = container_of(ws, mddev_t, barrier_work); + struct bio *bio = mddev->barrier; + + atomic_set(&mddev->flush_pending, 1); + if (!test_bit(BIO_EOPNOTSUPP, &bio->bi_flags)) { + mdk_rdev_t *rdev; + + bio->bi_rw &= ~(1<<BIO_RW_BARRIER); + if (mddev->pers->make_request(mddev->queue, bio)) + generic_make_request(bio); + mddev->barrier = (void*)1; + rcu_read_lock(); + list_for_each_entry_rcu(rdev, &mddev->disks, same_set) + if (rdev->raid_disk >= 0 && + !test_bit(Faulty, &rdev->flags)) { + /* Take two references, one is dropped + * when request finishes, one after + * we reclaim rcu_read_lock + */ + struct bio *bi; + atomic_inc(&rdev->nr_pending); + atomic_inc(&rdev->nr_pending); + rcu_read_unlock(); + bi = bio_alloc(GFP_KERNEL, 0); + bi->bi_end_io = md_end_barrier; + bi->bi_private = rdev; + bi->bi_bdev = rdev->bdev; + atomic_inc(&mddev->flush_pending); + submit_bio(WRITE_BARRIER, bi); + rcu_read_lock(); + rdev_dec_pending(rdev, mddev); + } + rcu_read_unlock(); + } else + bio_endio(bio, -EOPNOTSUPP); + if (atomic_dec_and_test(&mddev->flush_pending)) { + mddev->barrier = NULL; + wake_up(&mddev->sb_wait); + } +} + +void md_barrier_request(mddev_t *mddev, struct bio *bio) +{ + mdk_rdev_t *rdev; + + spin_lock_irq(&mddev->write_lock); + wait_event_lock_irq(mddev->sb_wait, + !mddev->barrier, + mddev->write_lock, /*nothing*/); + mddev->barrier = bio; + spin_unlock_irq(&mddev->write_lock); + + atomic_set(&mddev->flush_pending, 1); + INIT_WORK(&mddev->barrier_work, md_submit_barrier); + + + rcu_read_lock(); + list_for_each_entry_rcu(rdev, &mddev->disks, same_set) + if (rdev->raid_disk >= 0 && + !test_bit(Faulty, &rdev->flags)) { + struct bio *bi; + + atomic_inc(&rdev->nr_pending); + atomic_inc(&rdev->nr_pending); + rcu_read_unlock(); + bi = bio_alloc(GFP_KERNEL, 0); + bi->bi_end_io = md_end_barrier; + bi->bi_private = rdev; + bi->bi_bdev = rdev->bdev; + atomic_inc(&mddev->flush_pending); + submit_bio(WRITE_BARRIER, bi); + rcu_read_lock(); + rdev_dec_pending(rdev, mddev); + } + rcu_read_unlock(); + if (atomic_dec_and_test(&mddev->flush_pending)) + schedule_work(&mddev->barrier_work); +} +EXPORT_SYMBOL(md_barrier_request); static inline mddev_t *mddev_get(mddev_t *mddev) { atomic_inc(&mddev->active); @@ -377,6 +483,7 @@ static mddev_t * mddev_find(dev_t unit) atomic_set(&new->openers, 0); atomic_set(&new->active_io, 0); spin_lock_init(&new->write_lock); + atomic_set(&new->flush_pending, 0); init_waitqueue_head(&new->sb_wait); init_waitqueue_head(&new->recovery_wait); new->reshape_position = MaxSector; diff --git a/drivers/md/md.h b/drivers/md/md.h index 87430fea287..abe8ba3ab01 100644 --- a/drivers/md/md.h +++ b/drivers/md/md.h @@ -292,6 +292,17 @@ struct mddev_s struct mutex bitmap_mutex; struct list_head all_mddevs; + + /* Generic barrier handling. + * If there is a pending barrier request, all other + * writes are blocked while the devices are flushed. + * The last to finish a flush schedules a worker to + * submit the barrier request (without the barrier flag), + * then submit more flush requests. + */ + struct bio *barrier; + atomic_t flush_pending; + struct work_struct barrier_work; }; @@ -430,8 +441,9 @@ extern void md_write_start(mddev_t *mddev, struct bio *bi); extern void md_write_end(mddev_t *mddev); extern void md_done_sync(mddev_t *mddev, int blocks, int ok); extern void md_error(mddev_t *mddev, mdk_rdev_t *rdev); - extern int mddev_congested(mddev_t *mddev, int bits); +extern void md_barrier_request(mddev_t *mddev, struct bio *bio); + extern void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev, sector_t sector, int size, struct page *page); extern void md_super_wait(mddev_t *mddev); diff --git a/drivers/md/multipath.c b/drivers/md/multipath.c index ee7646f974a..cbc0a99f379 100644 --- a/drivers/md/multipath.c +++ b/drivers/md/multipath.c @@ -145,7 +145,7 @@ static int multipath_make_request (struct request_queue *q, struct bio * bio) int cpu; if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) { - bio_endio(bio, -EOPNOTSUPP); + md_barrier_request(mddev, bio); return 0; } diff --git a/drivers/md/raid0.c b/drivers/md/raid0.c index d3a4ce06015..122d07af5b5 100644 --- a/drivers/md/raid0.c +++ b/drivers/md/raid0.c @@ -453,7 +453,7 @@ static int raid0_make_request(struct request_queue *q, struct bio *bio) int cpu; if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) { - bio_endio(bio, -EOPNOTSUPP); + md_barrier_request(mddev, bio); return 0; } diff --git a/drivers/md/raid10.c b/drivers/md/raid10.c index c2cb7b87b44..2fbf867f8b3 100644 --- a/drivers/md/raid10.c +++ b/drivers/md/raid10.c @@ -804,7 +804,7 @@ static int make_request(struct request_queue *q, struct bio * bio) mdk_rdev_t *blocked_rdev; if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) { - bio_endio(bio, -EOPNOTSUPP); + md_barrier_request(mddev, bio); return 0; } diff --git a/drivers/md/raid5.c b/drivers/md/raid5.c index 431b9b26ca5..0d403ca12ae 100644 --- a/drivers/md/raid5.c +++ b/drivers/md/raid5.c @@ -639,7 +639,8 @@ static void mark_target_uptodate(struct stripe_head *sh, int target) return; tgt = &sh->dev[target]; - set_bit(R5_UPTODATE, &tgt->flags); + if(!tgt->dpage) + set_bit(R5_UPTODATE, &tgt->flags); BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); clear_bit(R5_Wantcompute, &tgt->flags); } @@ -681,6 +682,7 @@ ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) struct dma_async_tx_descriptor *tx; struct async_submit_ctl submit; int i; + enum async_tx_flags flags = ASYNC_TX_FENCE | ASYNC_TX_XOR_ZERO_DST; pr_debug("%s: stripe %llu block: %d\n", __func__, (unsigned long long)sh->sector, target); @@ -692,7 +694,7 @@ ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) atomic_inc(&sh->count); - init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, + init_async_submit(&submit, flags, NULL, ops_complete_compute, sh, to_addr_conv(sh, percpu)); if (unlikely(count == 1)) tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); @@ -915,6 +917,7 @@ ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu, struct page **xor_srcs = percpu->scribble; int count = 0, pd_idx = sh->pd_idx, i; struct async_submit_ctl submit; + enum async_tx_flags flags = ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST; /* existing parity data subtracted */ struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; @@ -929,7 +932,7 @@ ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu, xor_srcs[count++] = dev->page; } - init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, + init_async_submit(&submit, flags, tx, ops_complete_prexor, sh, to_addr_conv(sh, percpu)); tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); @@ -942,9 +945,80 @@ ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) int disks = sh->disks; int i; +#ifdef CONFIG_MD_RAID_SKIP_BIO_COPY + int pd_idx = sh->pd_idx; + int qd_idx = sh->raid_conf->level == 6 ? + raid6_next_disk(pd_idx, disks) : -1; + int fswrite = 1; +#endif + pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); +#ifdef CONFIG_MD_RAID_SKIP_BIO_COPY + /* initially assume that the operation is a full-stripe write*/ + for (i = disks; i-- ;) { + struct r5dev *dev = &sh->dev[i]; + + if (unlikely(i == pd_idx || i == qd_idx)) + continue; + if (unlikely(!test_bit(R5_Wantdrain, &dev->flags))) + goto do_copy; + if ((test_bit(R5_OVERWRITE, &dev->flags)) && + !r5_next_bio(sh->dev[i].towrite, sh->dev[i].sector)) { + /* now check if there is only one bio_vec within + * the bio covers the sh->dev[i] + */ + struct bio *pbio = sh->dev[i].towrite; + struct bio_vec *bvl; + int found = 0; + int bvec_page = pbio->bi_sector << 9, k; + int dev_page = sh->dev[i].sector << 9; + + /* search for the bio_vec that covers dev[i].page */ + bio_for_each_segment(bvl, pbio, k) { + if (bvec_page == dev_page && + bio_iovec_idx(pbio,k)->bv_len == + STRIPE_SIZE) { + /* found the vector which covers the + * strip fully + */ + found = 1; + break; + } + bvec_page += bio_iovec_idx(pbio,k)->bv_len; + } + if (found) { + /* save the direct pointer to buffer */ + if(dev->dpage) + printk("BIO bugs\n"); + BUG_ON(dev->dpage); + dev->dpage = bio_iovec_idx(pbio,k)->bv_page; + clear_bit(R5_Skipped, &dev->flags); + continue; + } + } +do_copy: + /* come here in two cases: + * - the dev[i] is not covered fully with the bio; + * - there are more than one bios cover the dev[i]. + * in both cases do copy from bio to dev[i].page + */ + pr_debug("%s: do copy because of disk %d\n", __FUNCTION__, i); + do { + /* restore dpages set */ + sh->dev[i].dpage = NULL; + } while (++i != disks); + fswrite = 0; + break; + } + + if (fswrite) { + /* won't add new txs right now, so run ops currently pending */ + async_tx_issue_pending_all(); + } +#endif + for (i = disks; i--; ) { struct r5dev *dev = &sh->dev[i]; struct bio *chosen; @@ -959,6 +1033,13 @@ ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) wbi = dev->written = chosen; spin_unlock(&sh->lock); +#ifdef CONFIG_MD_RAID_SKIP_BIO_COPY + if (fswrite) { + /* just update dev bio vec pointer */ + dev->vec.bv_page = dev->dpage; + continue; + } +#endif while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) { tx = async_copy_data(1, wbi, dev->page, @@ -985,8 +1066,10 @@ static void ops_complete_reconstruct(void *stripe_head_ref) for (i = disks; i--; ) { struct r5dev *dev = &sh->dev[i]; - if (dev->written || i == pd_idx || i == qd_idx) - set_bit(R5_UPTODATE, &dev->flags); + if (dev->dpage) + set_bit(R5_Skipped, &dev->flags); + else if (dev->written || i == pd_idx || i == qd_idx) + set_bit(R5_UPTODATE, &dev->flags); } if (sh->reconstruct_state == reconstruct_state_drain_run) @@ -1026,14 +1109,16 @@ ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, for (i = disks; i--; ) { struct r5dev *dev = &sh->dev[i]; if (dev->written) - xor_srcs[count++] = dev->page; + xor_srcs[count++] = dev->dpage ? + dev->dpage : dev->page; } } else { xor_dest = sh->dev[pd_idx].page; for (i = disks; i--; ) { struct r5dev *dev = &sh->dev[i]; if (i != pd_idx) - xor_srcs[count++] = dev->page; + xor_srcs[count++] = dev->dpage ? + dev->dpage : dev->page; } } @@ -2437,7 +2522,8 @@ static void handle_stripe_clean_event(raid5_conf_t *conf, if (sh->dev[i].written) { dev = &sh->dev[i]; if (!test_bit(R5_LOCKED, &dev->flags) && - test_bit(R5_UPTODATE, &dev->flags)) { + (test_bit(R5_UPTODATE, &dev->flags) || + test_bit(R5_Skipped, &dev->flags))) { /* We can return any write requests */ struct bio *wbi, *wbi2; int bitmap_end = 0; @@ -2445,6 +2531,17 @@ static void handle_stripe_clean_event(raid5_conf_t *conf, spin_lock_irq(&conf->device_lock); wbi = dev->written; dev->written = NULL; + + if (dev->dpage) { + /* with direct writes the raid disk + * cache actually isn't UPTODATE + */ + clear_bit(R5_Skipped, &dev->flags); + clear_bit(R5_OVERWRITE, &dev->flags); + dev->vec.bv_page = dev->page; + dev->dpage = NULL; + } + while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) { wbi2 = r5_next_bio(wbi, dev->sector); @@ -2947,6 +3044,7 @@ static void handle_stripe5(struct stripe_head *sh) struct r5dev *dev; mdk_rdev_t *blocked_rdev = NULL; int prexor; + int dec_preread_active = 0; memset(&s, 0, sizeof(s)); pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d " @@ -3096,12 +3194,8 @@ static void handle_stripe5(struct stripe_head *sh) set_bit(STRIPE_INSYNC, &sh->state); } } - if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { - atomic_dec(&conf->preread_active_stripes); - if (atomic_read(&conf->preread_active_stripes) < - IO_THRESHOLD) - md_wakeup_thread(conf->mddev->thread); - } + if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) + dec_preread_active = 1; } /* Now to consider new write requests and what else, if anything @@ -3208,6 +3302,16 @@ static void handle_stripe5(struct stripe_head *sh) ops_run_io(sh, &s); + if (dec_preread_active) { + /* We delay this until after ops_run_io so that if make_request + * is waiting on a barrier, it won't continue until the writes + * have actually been submitted. + */ + atomic_dec(&conf->preread_active_stripes); + if (atomic_read(&conf->preread_active_stripes) < + IO_THRESHOLD) + md_wakeup_thread(conf->mddev->thread); + } return_io(return_bi); } @@ -3221,6 +3325,7 @@ static void handle_stripe6(struct stripe_head *sh) struct r6_state r6s; struct r5dev *dev, *pdev, *qdev; mdk_rdev_t *blocked_rdev = NULL; + int dec_preread_active = 0; pr_debug("handling stripe %llu, state=%#lx cnt=%d, " "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", @@ -3358,7 +3463,6 @@ static void handle_stripe6(struct stripe_head *sh) * completed */ if (sh->reconstruct_state == reconstruct_state_drain_result) { - int qd_idx = sh->qd_idx; sh->reconstruct_state = reconstruct_state_idle; /* All the 'written' buffers and the parity blocks are ready to @@ -3380,12 +3484,8 @@ static void handle_stripe6(struct stripe_head *sh) set_bit(STRIPE_INSYNC, &sh->state); } } - if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { - atomic_dec(&conf->preread_active_stripes); - if (atomic_read(&conf->preread_active_stripes) < - IO_THRESHOLD) - md_wakeup_thread(conf->mddev->thread); - } + if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) + dec_preread_active = 1; } /* Now to consider new write requests and what else, if anything @@ -3494,6 +3594,18 @@ static void handle_stripe6(struct stripe_head *sh) ops_run_io(sh, &s); + + if (dec_preread_active) { + /* We delay this until after ops_run_io so that if make_request + * is waiting on a barrier, it won't continue until the writes + * have actually been submitted. + */ + atomic_dec(&conf->preread_active_stripes); + if (atomic_read(&conf->preread_active_stripes) < + IO_THRESHOLD) + md_wakeup_thread(conf->mddev->thread); + } + return_io(return_bi); } @@ -3741,7 +3853,7 @@ static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio) { mddev_t *mddev = q->queuedata; raid5_conf_t *conf = mddev->private; - unsigned int dd_idx; + int dd_idx; struct bio* align_bi; mdk_rdev_t *rdev; @@ -3866,7 +3978,13 @@ static int make_request(struct request_queue *q, struct bio * bi) int cpu, remaining; if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) { - bio_endio(bi, -EOPNOTSUPP); + /* Drain all pending writes. We only really need + * to ensure they have been submitted, but this is + * easier. + */ + mddev->pers->quiesce(mddev, 1); + mddev->pers->quiesce(mddev, 0); + md_barrier_request(mddev, bi); return 0; } @@ -3990,6 +4108,9 @@ static int make_request(struct request_queue *q, struct bio * bi) finish_wait(&conf->wait_for_overlap, &w); set_bit(STRIPE_HANDLE, &sh->state); clear_bit(STRIPE_DELAYED, &sh->state); + if (mddev->barrier && + !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) + atomic_inc(&conf->preread_active_stripes); release_stripe(sh); } else { /* cannot get stripe for read-ahead, just give-up */ @@ -4009,6 +4130,14 @@ static int make_request(struct request_queue *q, struct bio * bi) bio_endio(bi, 0); } + + if (mddev->barrier) { + /* We need to wait for the stripes to all be handled. + * So: wait for preread_active_stripes to drop to 0. + */ + wait_event(mddev->thread->wqueue, + atomic_read(&conf->preread_active_stripes) == 0); + } return 0; } @@ -5104,9 +5233,8 @@ static int stop(mddev_t *mddev) mddev->thread = NULL; mddev->queue->backing_dev_info.congested_fn = NULL; blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ - sysfs_remove_group(&mddev->kobj, &raid5_attrs_group); free_conf(conf); - mddev->private = NULL; + mddev->private = &raid5_attrs_group; return 0; } @@ -5863,6 +5991,7 @@ static void raid5_exit(void) module_init(raid5_init); module_exit(raid5_exit); MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); MODULE_ALIAS("md-personality-4"); /* RAID5 */ MODULE_ALIAS("md-raid5"); MODULE_ALIAS("md-raid4"); diff --git a/drivers/md/raid5.h b/drivers/md/raid5.h index dd708359b45..7ffc683d69d 100644 --- a/drivers/md/raid5.h +++ b/drivers/md/raid5.h @@ -233,6 +233,7 @@ struct stripe_head { struct bio req; struct bio_vec vec; struct page *page; + struct page *dpage; struct bio *toread, *read, *towrite, *written; sector_t sector; /* sector of this page */ unsigned long flags; @@ -252,7 +253,7 @@ struct stripe_head_state { /* r6_state - extra state data only relevant to r6 */ struct r6_state { - int p_failed, q_failed, failed_num[2]; + int p_failed, q_failed, qd_idx, failed_num[2]; }; /* Flags */ @@ -275,6 +276,7 @@ struct r6_state { * filling */ #define R5_Wantdrain 13 /* dev->towrite needs to be drained */ +#define R5_Skipped 14 /* SKIP_BIO_COPY completed */ /* * Write method */ @@ -314,6 +316,10 @@ struct r6_state { #define STRIPE_OP_RECONSTRUCT 4 #define STRIPE_OP_CHECK 5 +#define STRIPE_OP_CHECK_PP 6 +#define STRIPE_OP_CHECK_QP 7 + + /* * Plugging: * diff --git a/drivers/message/fusion/mptbase.c b/drivers/message/fusion/mptbase.c index b6992b7b0d9..2d123c5ec1e 100644 --- a/drivers/message/fusion/mptbase.c +++ b/drivers/message/fusion/mptbase.c @@ -1587,10 +1587,10 @@ mpt_mapresources(MPT_ADAPTER *ioc) { u8 __iomem *mem; int ii; - unsigned long mem_phys; - unsigned long port; - u32 msize; - u32 psize; + resource_size_t mem_phys; + resource_size_t port; + resource_size_t msize; + resource_size_t psize; u8 revision; int r = -ENODEV; struct pci_dev *pdev; @@ -1677,8 +1677,8 @@ mpt_mapresources(MPT_ADAPTER *ioc) return -EINVAL; } ioc->memmap = mem; - dinitprintk(ioc, printk(MYIOC_s_INFO_FMT "mem = %p, mem_phys = %lx\n", - ioc->name, mem, mem_phys)); + dinitprintk(ioc, printk(MYIOC_s_INFO_FMT "mem = %p, mem_phys = %llx\n", + ioc->name, mem, (u64)mem_phys)); ioc->mem_phys = mem_phys; ioc->chip = (SYSIF_REGS __iomem *)mem; diff --git a/drivers/message/fusion/mptbase.h b/drivers/message/fusion/mptbase.h index 8dd4d219e43..d313a4dcc08 100644 --- a/drivers/message/fusion/mptbase.h +++ b/drivers/message/fusion/mptbase.h @@ -605,8 +605,8 @@ typedef struct _MPT_ADAPTER SYSIF_REGS __iomem *chip; /* == c8817000 (mmap) */ SYSIF_REGS __iomem *pio_chip; /* Programmed IO (downloadboot) */ u8 bus_type; - u32 mem_phys; /* == f4020000 (mmap) */ - u32 pio_mem_phys; /* Programmed IO (downloadboot) */ + resource_size_t mem_phys; /* == f4020000 (mmap) */ + resource_size_t pio_mem_phys; /* Programmed IO (downloadboot) */ int mem_size; /* mmap memory size */ int number_of_buses; int devices_per_bus; diff --git a/drivers/mtd/chips/cfi_util.c b/drivers/mtd/chips/cfi_util.c index c5a84fda541..c5a84fda541 100755..100644 --- a/drivers/mtd/chips/cfi_util.c +++ b/drivers/mtd/chips/cfi_util.c diff --git a/drivers/mtd/inftlcore.c b/drivers/mtd/inftlcore.c index 8aca5523a33..8aca5523a33 100755..100644 --- a/drivers/mtd/inftlcore.c +++ b/drivers/mtd/inftlcore.c diff --git a/drivers/mtd/maps/physmap_of.c b/drivers/mtd/maps/physmap_of.c index 61e4eb48bb2..efb2d3699e4 100644 --- a/drivers/mtd/maps/physmap_of.c +++ b/drivers/mtd/maps/physmap_of.c @@ -228,7 +228,6 @@ static int __devinit of_flash_probe(struct of_device *dev, " tree\n"); goto err_out; } - dev_dbg(&dev->dev, "of_flash device: %.8llx-%.8llx\n", (unsigned long long)res.start, (unsigned long long)res.end); @@ -347,10 +346,6 @@ err_flash_remove: static struct of_device_id of_flash_match[] = { { - .compatible = "cfi-flash", - .data = (void *)"cfi_probe", - }, - { /* FIXME: JEDEC chips can't be safely and reliably * probed, although the mtd code gets it right in * practice most of the time. We should use the @@ -362,6 +357,10 @@ static struct of_device_id of_flash_match[] = { .data = (void *)"jedec_probe", }, { + .compatible = "cfi-flash", + .data = (void *)"cfi_probe", + }, + { .compatible = "mtd-ram", .data = (void *)"map_ram", }, diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index 2fda0b61524..aa75e66c494 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig @@ -11,6 +11,13 @@ menuconfig MTD_NAND if MTD_NAND +config MTD_NAND_NDFC + tristate "NDFC NanD Flash Controller" + depends on MTD_NAND && 4xx + select MTD_NAND_ECC_SMC + help + NDFC Nand Flash Controllers are integrated in IBM/AMCC's 4xx SoCs + config MTD_NAND_VERIFY_WRITE bool "Verify NAND page writes" help diff --git a/drivers/mtd/nand/ndfc.c b/drivers/mtd/nand/ndfc.c index 40b5658bdbe..568608d638c 100644 --- a/drivers/mtd/nand/ndfc.c +++ b/drivers/mtd/nand/ndfc.c @@ -102,9 +102,16 @@ static int ndfc_calculate_ecc(struct mtd_info *mtd, wmb(); ecc = in_be32(ndfc->ndfcbase + NDFC_ECC); /* The NDFC uses Smart Media (SMC) bytes order */ +#if !defined(CONFIG_APM82181) ecc_code[0] = p[1]; ecc_code[1] = p[2]; ecc_code[2] = p[3]; +#else + /* Change to match with byte order in u-boot */ + ecc_code[0] = p[2]; + ecc_code[1] = p[1]; + ecc_code[2] = p[3]; +#endif return 0; } diff --git a/drivers/net/ibm_newemac/Kconfig b/drivers/net/ibm_newemac/Kconfig index 78a1628c989..a2490452a80 100644 --- a/drivers/net/ibm_newemac/Kconfig +++ b/drivers/net/ibm_newemac/Kconfig @@ -27,6 +27,13 @@ config IBM_NEW_EMAC_RX_COPY_THRESHOLD depends on IBM_NEW_EMAC default "256" +config IBM_EMAC_MAL_QOS_V404 + bool "VLAN QOS support" + depends on IBM_NEW_EMAC && 460SX + select VLAN_8021Q + help + When selected the VLAN QOS support will be enabled. + config IBM_NEW_EMAC_RX_SKB_HEADROOM int "Additional RX skb headroom (bytes)" depends on IBM_NEW_EMAC @@ -39,6 +46,17 @@ config IBM_NEW_EMAC_RX_SKB_HEADROOM If unsure, set to 0. +config IBM_NEW_EMAC_MASK_CEXT + bool "Mask Carrier Extension signals" + depends on IBM_NEW_EMAC && APM82181 + default n + help + During normal idle TX, continously send dummy packets to mask + the Carrier Extension signals. This creates a separate BD + specifically for this purpose. + + If unsure, set to N. + config IBM_NEW_EMAC_DEBUG bool "Debugging" depends on IBM_NEW_EMAC @@ -63,6 +81,33 @@ config IBM_NEW_EMAC_EMAC4 bool default n +config IBM_NEW_EMAC_INTR_COALESCE + bool "Hardware Interrupt coalescing" + depends on IBM_NEW_EMAC && (460EX || 460GT || 405EX || 460SX || APM82181) + default y + help + When selected the Ethernet interrupt coalescing is selected. + +config IBM_NEW_EMAC_TX_COAL_COUNT + int "TX Coalescence frame count (packets)" + depends on IBM_NEW_EMAC_INTR_COALESCE + default "16" + +config IBM_NEW_EMAC_TX_COAL_TIMER + int "TX Coalescence timer (clock ticks)" + depends on IBM_NEW_EMAC_INTR_COALESCE + default "1000000" + +config IBM_NEW_EMAC_RX_COAL_COUNT + int "RX Coalescence frame count (packets)" + depends on IBM_NEW_EMAC_INTR_COALESCE + default "1" + +config IBM_NEW_EMAC_RX_COAL_TIMER + int "RX Coalescence timer (clock ticks)" + depends on IBM_NEW_EMAC_INTR_COALESCE + default "1000000" + config IBM_NEW_EMAC_NO_FLOW_CTRL bool default n @@ -74,3 +119,11 @@ config IBM_NEW_EMAC_MAL_CLR_ICINTSTAT config IBM_NEW_EMAC_MAL_COMMON_ERR bool default n + +config IBM_NEW_EMAC_SYSFS + bool "sysfs support for IBM NEW EMAC" + depends on IBM_NEW_EMAC + default y + help + When selected, IBM NEW EMAC parameters are exported + via /sys interface diff --git a/drivers/net/ibm_newemac/core.c b/drivers/net/ibm_newemac/core.c index 3fae8755979..fb9049bcbce 100644 --- a/drivers/net/ibm_newemac/core.c +++ b/drivers/net/ibm_newemac/core.c @@ -39,6 +39,7 @@ #include <linux/bitops.h> #include <linux/workqueue.h> #include <linux/of.h> +#include <linux/sysctl.h> #include <asm/processor.h> #include <asm/io.h> @@ -46,8 +47,12 @@ #include <asm/uaccess.h> #include <asm/dcr.h> #include <asm/dcr-regs.h> +#include <asm/time.h> #include "core.h" +#define SDR0_PERCLK 0x4201 +#define TX_FIFO_SYNC_USEC 20 + /* * Lack of dma_unmap_???? calls is intentional. @@ -146,18 +151,35 @@ static inline void emac_rx_clk_tx(struct emac_instance *dev) { #ifdef CONFIG_PPC_DCR_NATIVE if (emac_has_feature(dev, EMAC_FTR_440EP_PHY_CLK_FIX)) +#if defined(CONFIG_460SX) + dcri_clrset(SDR0, SDR0_ETH_CFG, + 0, 0x80000000 >> dev->cell_index); +#elif defined(CONFIG_APM82181) + dcri_clrset(SDR0, SDR0_ETH_CFG, + 0, 0x00000100 >> dev->cell_index); +#else dcri_clrset(SDR0, SDR0_MFR, 0, SDR0_MFR_ECS >> dev->cell_index); #endif +#endif } static inline void emac_rx_clk_default(struct emac_instance *dev) { #ifdef CONFIG_PPC_DCR_NATIVE if (emac_has_feature(dev, EMAC_FTR_440EP_PHY_CLK_FIX)) +#if defined(CONFIG_460SX) + dcri_clrset(SDR0, SDR0_ETH_CFG, + 0x80000000 >> dev->cell_index, 0); +#elif defined(CONFIG_APM82181) + dcri_clrset(SDR0, SDR0_ETH_CFG, + 0x00000100 >> dev->cell_index, 0); +#else + dcri_clrset(SDR0, SDR0_MFR, SDR0_MFR_ECS >> dev->cell_index, 0); #endif +#endif } /* PHY polling intervals */ @@ -196,6 +218,7 @@ static const char emac_stats_keys[EMAC_ETHTOOL_STATS_COUNT][ETH_GSTRING_LEN] = { }; static irqreturn_t emac_irq(int irq, void *dev_instance); +static irqreturn_t wol_irq(int irq, void *dev_instance); static void emac_clean_tx_ring(struct emac_instance *dev); static void __emac_set_multicast_list(struct emac_instance *dev); @@ -247,6 +270,59 @@ static void emac_tx_disable(struct emac_instance *dev) } } +#ifdef CONFIG_IBM_NEW_EMAC_MASK_CEXT +static void emac_spin_delay(unsigned long spin_usecs) +{ + u64 tick_start, tick_end; + u64 spin_ticks = spin_usecs*tb_ticks_per_usec; + //printk("spin_ticks = %lld\n", spin_ticks); + + tick_start = get_tb(); + while(1) { + tick_end = get_tb(); + if((tick_end - tick_start) >= spin_ticks) + return; + } +} + +/* some code duplication here to avoid function calls */ +static inline void emac_start_idlemode(struct emac_instance *dev) +{ + u32 perclk; + //printk("ibmnewemac: start_idle\n"); + DBG(dev, "start_idlemode" NL); + + //emac_spin_delay(TX_FIFO_SYNC_USEC); /* Wait for TX FIFO to Sync */ + + /* Disable Ethernet Clock */ + perclk = mfdcri(SDR0, SDR0_PERCLK); + mtdcri(SDR0, SDR0_PERCLK, perclk | 0x88000000); + /* Write0 to set rising clock edge next time*/ + perclk = mfdcri(SDR0, SDR0_PERCLK); + mtdcri(SDR0, SDR0_PERCLK, perclk & 0x7fffffff); + + //perclk = mfdcri(SDR0, SDR0_PERCLK); + //printk("%s:%d - Ethernet TX Clock Disabled perclk=0x%08lx\n", __FUNCTION__, __LINE__, perclk); +} + +static inline void emac_exit_idlemode(struct emac_instance *dev) +{ + u32 perclk; + DBG(dev, "exit_idlemode" NL); + + /* Enable Ethernet Clock */ + perclk = mfdcri(SDR0, SDR0_PERCLK); + mtdcri(SDR0, SDR0_PERCLK, (perclk & 0xF7ffffff) | 0x80000000); + perclk = mfdcri(SDR0, SDR0_PERCLK); + /* Write0 to set rising clock edge next time*/ + mtdcri(SDR0, SDR0_PERCLK, perclk & 0x7fffffff); + + //perclk = mfdcri(SDR0, SDR0_PERCLK); + //printk("%s:%d - Ethernet TX Clock Enabled perclk=0x%08lx\n", __FUNCTION__, __LINE__, perclk); + +} +#endif + static void emac_rx_enable(struct emac_instance *dev) { struct emac_regs __iomem *p = dev->emacp; @@ -348,12 +424,24 @@ static int emac_reset(struct emac_instance *dev) DBG(dev, "reset" NL); if (!dev->reset_failed) { +#ifdef CONFIG_IBM_NEW_EMAC_MASK_CEXT + if (atomic_read(&dev->mask_cext_enable)) + if (atomic_read(&dev->idle_mode)) { + emac_exit_idlemode(dev); + atomic_set(&dev->idle_mode, 0); + } +#endif /* 40x erratum suggests stopping RX channel before reset, * we stop TX as well */ emac_rx_disable(dev); emac_tx_disable(dev); } +#if defined(CONFIG_460SX) + dcri_clrset(SDR0, SDR0_ETH_CFG, + 0, 0x80000000 >> dev->cell_index); + out_be32(&p->mr1, in_be32(&p->mr1) | EMAC_MR1_ILE); +#endif #ifdef CONFIG_PPC_DCR_NATIVE /* Enable internal clock source */ @@ -365,6 +453,11 @@ static int emac_reset(struct emac_instance *dev) out_be32(&p->mr0, EMAC_MR0_SRST); while ((in_be32(&p->mr0) & EMAC_MR0_SRST) && n) --n; +#if defined(CONFIG_460SX) + dcri_clrset(SDR0, 0x4103, + 0x80000000 >> dev->cell_index, 0); + out_be32(&p->mr1, in_be32(&p->mr1) & ~EMAC_MR1_ILE); +#endif #ifdef CONFIG_PPC_DCR_NATIVE /* Enable external clock source */ @@ -383,6 +476,33 @@ static int emac_reset(struct emac_instance *dev) } } +/* spham: backup code +static void emac_hash_mc(struct emac_instance *dev) +{ + struct emac_regs __iomem *p = dev->emacp; + u16 gaht[8] = { 0 }; + struct dev_mc_list *dmi; + + DBG(dev, "hash_mc %d" NL, dev->ndev->mc_count); + + for (dmi = dev->ndev->mc_list; dmi; dmi = dmi->next) { + int bit; + DBG2(dev, "mc %02x:%02x:%02x:%02x:%02x:%02x" NL, + dmi->dmi_addr[0], dmi->dmi_addr[1], dmi->dmi_addr[2], + dmi->dmi_addr[3], dmi->dmi_addr[4], dmi->dmi_addr[5]); + bit = 255 - (ether_crc(ETH_ALEN, dmi->dmi_addr) >> 24); + gaht[bit >> 5] |= 0x80000000 >> (bit & 0x1f); + } + out_be32(&p->gaht1, gaht[0]); + out_be32(&p->gaht2, gaht[1]); + out_be32(&p->gaht3, gaht[2]); + out_be32(&p->gaht4, gaht[3]); + out_be32(&p->gaht5, gaht[4]); + out_be32(&p->gaht6, gaht[5]); + out_be32(&p->gaht7, gaht[6]); + out_be32(&p->gaht8, gaht[7]); +} +*/ static void emac_hash_mc(struct emac_instance *dev) { const int regs = EMAC_XAHT_REGS(dev); @@ -415,7 +535,7 @@ static inline u32 emac_iff2rmr(struct net_device *ndev) struct emac_instance *dev = netdev_priv(ndev); u32 r; - r = EMAC_RMR_SP | EMAC_RMR_SFCS | EMAC_RMR_IAE | EMAC_RMR_BAE; + r = EMAC_RMR_SP | EMAC_RMR_SFCS | EMAC_RMR_IAE | EMAC_RMR_BAE | EMAC_RMR_RFP; if (emac_has_feature(dev, EMAC_FTR_EMAC4)) r |= EMAC4_RMR_BASE; @@ -430,6 +550,18 @@ static inline u32 emac_iff2rmr(struct net_device *ndev) else if (ndev->mc_count > 0) r |= EMAC_RMR_MAE; +#if defined(CONFIG_APM82181) + /* + * When Jumbo Frame is not enabled, MJS field has no effect. + * So setting MJS when Jumbo Frame is disabled should not + * cause any issue. + */ + DBG(dev, "emac_iff2rmr: Current MTU = %d" NL, ndev->mtu); + r &= ~EMAC4_RMR_MJS_MASK; + r |= EMAC4_RMR_MJS(ndev->mtu); + DBG(dev, "emac_iff2rmr: EMAC_RMR = 0x%08x" NL, r); +#endif + return r; } @@ -465,7 +597,7 @@ static u32 __emac_calc_base_mr1(struct emac_instance *dev, int tx_size, int rx_s static u32 __emac4_calc_base_mr1(struct emac_instance *dev, int tx_size, int rx_size) { - u32 ret = EMAC_MR1_VLE | EMAC_MR1_IST | EMAC4_MR1_TR | + u32 ret = EMAC_MR1_VLE | EMAC_MR1_IST | EMAC4_MR1_TR | EMAC_MR1_APP | EMAC4_MR1_OBCI(dev->opb_bus_freq / 1000000); DBG2(dev, "__emac4_calc_base_mr1" NL); @@ -474,6 +606,9 @@ static u32 __emac4_calc_base_mr1(struct emac_instance *dev, int tx_size, int rx_ case 16384: ret |= EMAC4_MR1_TFS_16K; break; + case 8192: + ret |= EMAC4_MR1_TFS_8K; + break; case 4096: ret |= EMAC4_MR1_TFS_4K; break; @@ -489,6 +624,9 @@ static u32 __emac4_calc_base_mr1(struct emac_instance *dev, int tx_size, int rx_ case 16384: ret |= EMAC4_MR1_RFS_16K; break; + case 8192: + ret |= EMAC4_MR1_RFS_8K; + break; case 4096: ret |= EMAC4_MR1_RFS_4K; break; @@ -559,7 +697,11 @@ static int emac_configure(struct emac_instance *dev) /* Check for full duplex */ else if (dev->phy.duplex == DUPLEX_FULL) +#if !defined(CONFIG_IBM_NEW_EMAC_MASK_CEXT) mr1 |= EMAC_MR1_FDE | EMAC_MR1_MWSW_001; +#else + mr1 |= EMAC_MR1_FDE; +#endif /* Adjust fifo sizes, mr1 and timeouts based on link speed */ dev->stop_timeout = STOP_TIMEOUT_10; @@ -626,7 +768,7 @@ static int emac_configure(struct emac_instance *dev) ndev->dev_addr[5]); /* VLAN Tag Protocol ID */ - out_be32(&p->vtpid, 0x8100); + out_be32(&p->vtpid, 0x07ff); /* Receive mode register */ r = emac_iff2rmr(ndev); @@ -984,32 +1126,103 @@ static int emac_resize_rx_ring(struct emac_instance *dev, int new_mtu) dev->rx_desc[i].data_len = 0; dev->rx_desc[i].ctrl = MAL_RX_CTRL_EMPTY | (i == (NUM_RX_BUFF - 1) ? MAL_RX_CTRL_WRAP : 0); +#ifdef CONFIG_IBM_NEW_EMAC_INTR_COALESCE + dev->rx_desc[i].ctrl |= MAL_RX_CTRL_INTR; +#endif } +#if defined(CONFIG_IBM_EMAC_MAL_QOS_V404) + if (dev->rx_vchans) { + int v; + for ( v = 1; v < dev->rx_vchans; v++ ) { + struct emac_instance *vdev = dev->vdev[v]; + if (vdev->rx_sg_skb) { + ++vdev->estats.rx_dropped_resize; + dev_kfree_skb(vdev->rx_sg_skb); + vdev->rx_sg_skb = NULL; + } + + for (i = 0; i < NUM_RX_BUFF; ++i) { + if (vdev->rx_desc[i].ctrl & MAL_RX_CTRL_FIRST) + ++vdev->estats.rx_dropped_resize; + + vdev->rx_desc[i].data_len = 0; + vdev->rx_desc[i].ctrl = MAL_RX_CTRL_EMPTY | + (i == (NUM_RX_BUFF - 1) ? + MAL_RX_CTRL_WRAP : 0); +#ifdef CONFIG_IBM_NEW_EMAC_INTR_COALESCE + vdev->rx_desc[i].ctrl |= MAL_RX_CTRL_INTR; +#endif + } + } + } +#endif + /* Reallocate RX ring only if bigger skb buffers are required */ + DBG(dev, "New rx_skb_size = %d" NL, rx_skb_size); + DBG(dev, "Current rx_skb_size = %d" NL, dev->rx_skb_size); if (rx_skb_size <= dev->rx_skb_size) goto skip; - + DBG(dev, "Alocating new SKB buffers" NL); /* Second pass, allocate new skbs */ for (i = 0; i < NUM_RX_BUFF; ++i) { - struct sk_buff *skb = alloc_skb(rx_skb_size, GFP_ATOMIC); + struct sk_buff *skb; + + /* Try to free mem. before doing new mem. allocation */ + BUG_ON(!dev->rx_skb[i]); + dev_kfree_skb(dev->rx_skb[i]); + + skb = alloc_skb(rx_skb_size, GFP_ATOMIC); if (!skb) { + DBG(dev, "Cannot allocate new SKB entry %d" NL, i); ret = -ENOMEM; goto oom; } - BUG_ON(!dev->rx_skb[i]); - dev_kfree_skb(dev->rx_skb[i]); - - skb_reserve(skb, EMAC_RX_SKB_HEADROOM + 2); + skb_reserve(skb, EMAC_RX_SKB_HEADROOM); dev->rx_desc[i].data_ptr = dma_map_single(&dev->ofdev->dev, skb->data - 2, rx_sync_size, DMA_FROM_DEVICE) + 2; dev->rx_skb[i] = skb; } + +#if defined(CONFIG_IBM_EMAC_MAL_QOS_V404) + if (dev->rx_vchans) { + int v; + for ( v = 1; v < dev->rx_vchans; v++ ) { + struct emac_instance *vdev = dev->vdev[v]; + for (i = 0; i < NUM_RX_BUFF; ++i) { + struct sk_buff *skb = + alloc_skb(rx_skb_size, GFP_ATOMIC); + if (!skb) { + ret = -ENOMEM; + goto oom; + } + + BUG_ON(!vdev->rx_skb[i]); + dev_kfree_skb(vdev->rx_skb[i]); + + skb_reserve(skb, EMAC_RX_SKB_HEADROOM + 2); + vdev->rx_desc[i].data_ptr = + dma_map_single(&dev->ofdev->dev, skb->data - 2, + rx_sync_size,DMA_FROM_DEVICE) + 2; + vdev->rx_skb[i] = skb; + } + } + } +#endif + skip: /* Check if we need to change "Jumbo" bit in MR1 */ - if ((new_mtu > ETH_DATA_LEN) ^ (dev->ndev->mtu > ETH_DATA_LEN)) { +#if defined(CONFIG_APM82181) + /* + * Maui supports setting Max Jumbo Frame size + * so we need to update it here + */ + if ((new_mtu > ETH_DATA_LEN) || (dev->ndev->mtu > ETH_DATA_LEN)) { +#else + if ((new_mtu > ETH_DATA_LEN) ^ (dev->ndev->mtu > ETH_DATA_LEN)) { +#endif /* This is to prevent starting RX channel in emac_rx_enable() */ set_bit(MAL_COMMAC_RX_STOPPED, &dev->commac.flags); @@ -1088,6 +1301,27 @@ static void emac_clean_rx_ring(struct emac_instance *dev) dev_kfree_skb(dev->rx_sg_skb); dev->rx_sg_skb = NULL; } + +#if defined(CONFIG_IBM_EMAC_MAL_QOS_V404) + if (dev->rx_vchans) { + int v; + for ( v = 1; v < dev->rx_vchans; v++ ) { + struct emac_instance *vdev = dev->vdev[v]; + for (i = 0; i < NUM_RX_BUFF; ++i) + if (vdev->rx_skb[i]) { + vdev->rx_desc[i].ctrl = 0; + dev_kfree_skb(vdev->rx_skb[i]); + vdev->rx_skb[i] = NULL; + vdev->rx_desc[i].data_ptr = 0; + } + + if (vdev->rx_sg_skb) { + dev_kfree_skb(vdev->rx_sg_skb); + vdev->rx_sg_skb = NULL; + } + } + } +#endif } static inline int emac_alloc_rx_skb(struct emac_instance *dev, int slot, @@ -1100,13 +1334,16 @@ static inline int emac_alloc_rx_skb(struct emac_instance *dev, int slot, dev->rx_skb[slot] = skb; dev->rx_desc[slot].data_len = 0; - skb_reserve(skb, EMAC_RX_SKB_HEADROOM + 2); + skb_reserve(skb, EMAC_RX_SKB_HEADROOM); dev->rx_desc[slot].data_ptr = dma_map_single(&dev->ofdev->dev, skb->data - 2, dev->rx_sync_size, DMA_FROM_DEVICE) + 2; wmb(); dev->rx_desc[slot].ctrl = MAL_RX_CTRL_EMPTY | (slot == (NUM_RX_BUFF - 1) ? MAL_RX_CTRL_WRAP : 0); +#ifdef CONFIG_IBM_NEW_EMAC_INTR_COALESCE + dev->rx_desc[slot].ctrl |= MAL_RX_CTRL_INTR; +#endif return 0; } @@ -1139,6 +1376,15 @@ static int emac_open(struct net_device *ndev) return err; } + if (dev->wol_irq != NO_IRQ) { + /* Setup WOL IRQ handler */ + err = request_irq(dev->wol_irq, wol_irq, 0, "EMAC WOL", dev); + if (err) { + printk(KERN_ERR "%s: failed to request IRQ %d\n", + ndev->name, dev->wol_irq); + return err; + } + } /* Allocate RX ring */ for (i = 0; i < NUM_RX_BUFF; ++i) if (emac_alloc_rx_skb(dev, i, GFP_KERNEL)) { @@ -1147,6 +1393,25 @@ static int emac_open(struct net_device *ndev) goto oom; } +#if defined(CONFIG_IBM_EMAC_MAL_QOS_V404) + if (dev->rx_vchans) { + int v; + /* alloc skb_buff's for the QOS virtual channels */ + for ( v = 1; v < dev->rx_vchans; v++){ + for (i = 0; i < NUM_RX_BUFF; ++i) { + if (emac_alloc_rx_skb(dev->vdev[v], + i,GFP_KERNEL)){ + printk(KERN_ERR "%s: failed to allocate" + " RX virtual ring\n", + ndev->name); + goto oom; + } + } + dev->vdev[v]->rx_sg_skb = NULL; + dev->vdev[v]->rx_slot = 0; + } + } +#endif dev->tx_cnt = dev->tx_slot = dev->ack_slot = dev->rx_slot = 0; clear_bit(MAL_COMMAC_RX_STOPPED, &dev->commac.flags); dev->rx_sg_skb = NULL; @@ -1193,6 +1458,9 @@ static int emac_open(struct net_device *ndev) oom: emac_clean_rx_ring(dev); free_irq(dev->emac_irq, dev); + if (dev->wol_irq != NO_IRQ) { + free_irq(dev->wol_irq, dev); + } return -ENOMEM; } @@ -1310,6 +1578,8 @@ static int emac_close(struct net_device *ndev) free_irq(dev->emac_irq, dev); netif_carrier_off(ndev); + if (dev->wol_irq != NO_IRQ) + free_irq(dev->wol_irq, dev); return 0; } @@ -1320,7 +1590,10 @@ static inline u16 emac_tx_csum(struct emac_instance *dev, if (emac_has_feature(dev, EMAC_FTR_HAS_TAH) && (skb->ip_summed == CHECKSUM_PARTIAL)) { ++dev->stats.tx_packets_csum; - return EMAC_TX_CTRL_TAH_CSUM; + if (skb_is_gso(skb)) + return EMAC_TX_CTRL_TAH_SSR0; + else + return EMAC_TX_CTRL_TAH_CSUM; } return 0; } @@ -1360,6 +1633,16 @@ static int emac_start_xmit(struct sk_buff *skb, struct net_device *ndev) u16 ctrl = EMAC_TX_CTRL_GFCS | EMAC_TX_CTRL_GP | MAL_TX_CTRL_READY | MAL_TX_CTRL_LAST | emac_tx_csum(dev, skb); +#ifdef CONFIG_IBM_NEW_EMAC_MASK_CEXT + if (atomic_read(&dev->mask_cext_enable)) + if (atomic_read(&dev->idle_mode)) { + emac_exit_idlemode(dev); + atomic_set(&dev->idle_mode, 0); + } +#endif +#ifdef CONFIG_IBM_NEW_EMAC_INTR_COALESCE + ctrl |= MAL_TX_CTRL_INTR; +#endif slot = dev->tx_slot++; if (dev->tx_slot == NUM_TX_BUFF) { @@ -1371,7 +1654,7 @@ static int emac_start_xmit(struct sk_buff *skb, struct net_device *ndev) dev->tx_skb[slot] = skb; dev->tx_desc[slot].data_ptr = dma_map_single(&dev->ofdev->dev, - skb->data, len, + skb->data, EMAC_DMA_ALIGN(len), DMA_TO_DEVICE); dev->tx_desc[slot].data_len = (u16) len; wmb(); @@ -1394,6 +1677,9 @@ static inline int emac_xmit_split(struct emac_instance *dev, int slot, ctrl |= MAL_TX_CTRL_LAST; if (slot == NUM_TX_BUFF - 1) ctrl |= MAL_TX_CTRL_WRAP; +#ifdef CONFIG_IBM_NEW_EMAC_INTR_COALESCE + ctrl |= MAL_TX_CTRL_INTR; +#endif dev->tx_skb[slot] = NULL; dev->tx_desc[slot].data_ptr = pd; @@ -1423,6 +1709,14 @@ static int emac_start_xmit_sg(struct sk_buff *skb, struct net_device *ndev) if (likely(!nr_frags && len <= MAL_MAX_TX_SIZE)) return emac_start_xmit(skb, ndev); +#ifdef CONFIG_IBM_NEW_EMAC_MASK_CEXT + if (atomic_read(&dev->mask_cext_enable)) + if (atomic_read(&dev->idle_mode)) { + emac_exit_idlemode(dev); + atomic_set(&dev->idle_mode, 0); + } +#endif + len -= skb->data_len; /* Note, this is only an *estimation*, we can still run out of empty @@ -1434,13 +1728,16 @@ static int emac_start_xmit_sg(struct sk_buff *skb, struct net_device *ndev) ctrl = EMAC_TX_CTRL_GFCS | EMAC_TX_CTRL_GP | MAL_TX_CTRL_READY | emac_tx_csum(dev, skb); +#ifdef CONFIG_IBM_NEW_EMAC_INTR_COALESCE + ctrl |= MAL_TX_CTRL_INTR; +#endif slot = dev->tx_slot; /* skb data */ dev->tx_skb[slot] = NULL; chunk = min(len, MAL_MAX_TX_SIZE); dev->tx_desc[slot].data_ptr = pd = - dma_map_single(&dev->ofdev->dev, skb->data, len, DMA_TO_DEVICE); + dma_map_single(&dev->ofdev->dev, skb->data, EMAC_DMA_ALIGN(len), DMA_TO_DEVICE); dev->tx_desc[slot].data_len = (u16) chunk; len -= chunk; if (unlikely(len)) @@ -1481,6 +1778,7 @@ static int emac_start_xmit_sg(struct sk_buff *skb, struct net_device *ndev) */ while (slot != dev->tx_slot) { dev->tx_desc[slot].ctrl = 0; + dev->tx_desc[slot].ctrl |= (slot == (NUM_TX_BUFF - 1) ? MAL_TX_CTRL_WRAP : 0); --dev->tx_cnt; if (--slot < 0) slot = NUM_TX_BUFF - 1; @@ -1554,16 +1852,43 @@ static void emac_poll_tx(void *param) if (--dev->tx_cnt) goto again; - } +#ifdef CONFIG_IBM_NEW_EMAC_MASK_CEXT + else { + DBG(dev, "Testing for idle... " NL); + if (atomic_read(&dev->mask_cext_enable)) { + if (!atomic_read(&dev->idle_mode)) { + DBG(dev, "Entering idle mode" NL); + emac_start_idlemode(dev); + atomic_set(&dev->idle_mode, 1); + } else + DBG(dev, "Already In Idle Mode" NL); + + } + } +#endif + } + if (n) { dev->ack_slot = slot; if (netif_queue_stopped(dev->ndev) && dev->tx_cnt < EMAC_TX_WAKEUP_THRESH) netif_wake_queue(dev->ndev); - DBG2(dev, "tx %d pkts" NL, n); } - } + } +#ifdef CONFIG_IBM_NEW_EMAC_MASK_CEXT + else { + DBG(dev, "Testing for idle... " NL); + if (atomic_read(&dev->mask_cext_enable)) { + if (!atomic_read(&dev->idle_mode)) { + DBG(dev, "Entering idle mode" NL); + emac_start_idlemode(dev); + atomic_set(&dev->idle_mode, 1); + } else + DBG(dev, "Already In Idle Mode" NL); + } + } +#endif netif_tx_unlock_bh(dev->ndev); } @@ -1575,13 +1900,17 @@ static inline void emac_recycle_rx_skb(struct emac_instance *dev, int slot, DBG2(dev, "recycle %d %d" NL, slot, len); if (len) - dma_map_single(&dev->ofdev->dev, skb->data - 2, - EMAC_DMA_ALIGN(len + 2), DMA_FROM_DEVICE); + dev->rx_desc[slot].data_ptr = + dma_map_single(&dev->ofdev->dev, skb->data - 2, + EMAC_DMA_ALIGN(len + 2), DMA_FROM_DEVICE) + 2; dev->rx_desc[slot].data_len = 0; wmb(); dev->rx_desc[slot].ctrl = MAL_RX_CTRL_EMPTY | (slot == (NUM_RX_BUFF - 1) ? MAL_RX_CTRL_WRAP : 0); +#ifdef CONFIG_IBM_NEW_EMAC_INTR_COALESCE + dev->rx_desc[slot].ctrl |= MAL_RX_CTRL_INTR; +#endif } static void emac_parse_rx_error(struct emac_instance *dev, u16 ctrl) @@ -1685,11 +2014,11 @@ static int emac_poll_rx(void *param, int budget) if (len && len < EMAC_RX_COPY_THRESH) { struct sk_buff *copy_skb = - alloc_skb(len + EMAC_RX_SKB_HEADROOM + 2, GFP_ATOMIC); + alloc_skb(len + EMAC_RX_SKB_HEADROOM, GFP_ATOMIC); if (unlikely(!copy_skb)) goto oom; - skb_reserve(copy_skb, EMAC_RX_SKB_HEADROOM + 2); + skb_reserve(copy_skb, EMAC_RX_SKB_HEADROOM); cacheable_memcpy(copy_skb->data - 2, skb->data - 2, len + 2); emac_recycle_rx_skb(dev, slot, len); @@ -1865,6 +2194,11 @@ static irqreturn_t emac_irq(int irq, void *dev_instance) return IRQ_HANDLED; } +static irqreturn_t wol_irq(int irq, void *dev_instance) +{ + return IRQ_HANDLED; +} + static struct net_device_stats *emac_stats(struct net_device *ndev) { struct emac_instance *dev = netdev_priv(ndev); @@ -2092,11 +2426,11 @@ static void *emac_dump_regs(struct emac_instance *dev, void *buf) hdr->index = dev->cell_index; if (emac_has_feature(dev, EMAC_FTR_EMAC4)) { hdr->version = EMAC4_ETHTOOL_REGS_VER; - memcpy_fromio(hdr + 1, dev->emacp, EMAC4_ETHTOOL_REGS_SIZE(dev)); + memcpy(hdr + 1, dev->emacp, EMAC4_ETHTOOL_REGS_SIZE(dev)); return ((void *)(hdr + 1) + EMAC4_ETHTOOL_REGS_SIZE(dev)); } else { hdr->version = EMAC_ETHTOOL_REGS_VER; - memcpy_fromio(hdr + 1, dev->emacp, EMAC_ETHTOOL_REGS_SIZE(dev)); + memcpy(hdr + 1, dev->emacp, EMAC_ETHTOOL_REGS_SIZE(dev)); return ((void *)(hdr + 1) + EMAC_ETHTOOL_REGS_SIZE(dev)); } } @@ -2185,6 +2519,52 @@ static void emac_ethtool_get_drvinfo(struct net_device *ndev, info->n_stats = emac_ethtool_get_stats_count(ndev); info->regdump_len = emac_ethtool_get_regs_len(ndev); } +#ifdef CONFIG_IBM_NEW_EMAC_INTR_COALESCE +static int emac_ethtool_get_coalesce(struct net_device *dev, + struct ethtool_coalesce *ec) +{ + struct emac_instance *ei = netdev_priv(dev); + /* clean up */ + memset(ec, 0, sizeof(*ec)); + + /* Update with current status */ + ec->rx_coalesce_usecs = (ei->mal->coales_param[0].rx_time / ei->plb_bus_freq); + ec->rx_max_coalesced_frames = ei->mal->coales_param[0].rx_count; + + ec->tx_coalesce_usecs = (ei->mal->coales_param[0].tx_time / ei->plb_bus_freq); + ec->tx_max_coalesced_frames = ei->mal->coales_param[0].tx_count; + return 0; +} + +static int emac_ethtool_set_coalesce(struct net_device *dev, + struct ethtool_coalesce *ec) +{ + struct emac_instance *ei = netdev_priv(dev); + + ei->mal->coales_param[0].tx_count = (ec->tx_max_coalesced_frames & COAL_FRAME_MASK); + ei->mal->coales_param[1].tx_count = (ec->tx_max_coalesced_frames & COAL_FRAME_MASK); + ei->mal->coales_param[2].tx_count = (ec->tx_max_coalesced_frames & COAL_FRAME_MASK); + ei->mal->coales_param[3].tx_count = (ec->tx_max_coalesced_frames & COAL_FRAME_MASK); + + ei->mal->coales_param[0].rx_count = (ec->rx_max_coalesced_frames & COAL_FRAME_MASK); + ei->mal->coales_param[1].rx_count = (ec->rx_max_coalesced_frames & COAL_FRAME_MASK); + ei->mal->coales_param[2].rx_count = (ec->rx_max_coalesced_frames & COAL_FRAME_MASK); + ei->mal->coales_param[3].rx_count = (ec->rx_max_coalesced_frames & COAL_FRAME_MASK); + + ei->mal->coales_param[0].tx_time = (ec->tx_coalesce_usecs * ei->plb_bus_freq); + ei->mal->coales_param[1].tx_time = (ec->tx_coalesce_usecs * ei->plb_bus_freq); + ei->mal->coales_param[2].tx_time = (ec->tx_coalesce_usecs * ei->plb_bus_freq); + ei->mal->coales_param[3].tx_time = (ec->tx_coalesce_usecs * ei->plb_bus_freq); + + ei->mal->coales_param[0].rx_time = (ec->rx_coalesce_usecs * ei->plb_bus_freq); + ei->mal->coales_param[1].rx_time = (ec->rx_coalesce_usecs * ei->plb_bus_freq); + ei->mal->coales_param[2].rx_time = (ec->rx_coalesce_usecs * ei->plb_bus_freq); + ei->mal->coales_param[3].rx_time = (ec->rx_coalesce_usecs * ei->plb_bus_freq); + + mal_enable_coal(ei->mal); + return 0; +} +#endif static const struct ethtool_ops emac_ethtool_ops = { .get_settings = emac_ethtool_get_settings, @@ -2208,8 +2588,256 @@ static const struct ethtool_ops emac_ethtool_ops = { .get_link = ethtool_op_get_link, .get_tx_csum = ethtool_op_get_tx_csum, .get_sg = ethtool_op_get_sg, +#ifdef CONFIG_IBM_NEW_EMAC_INTR_COALESCE + .get_coalesce = emac_ethtool_get_coalesce, + .set_coalesce = emac_ethtool_set_coalesce, +#endif + }; +/* sysfs support for IBM NEW EMAC */ +#if defined(CONFIG_IBM_NEW_EMAC_SYSFS) + +#if defined(CONFIG_IBM_NEW_EMAC_INTR_COALESCE) + +/* Display interrupt coalesce parametters values */ +static ssize_t show_tx_count(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct net_device *ndev = to_net_dev(dev); + struct emac_instance *dev_ins = netdev_priv(ndev); + + return sprintf(buf, "%d\n", dev_ins->mal->coales_param[0].tx_count); +} +static ssize_t show_rx_count(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct net_device *ndev = to_net_dev(dev); + struct emac_instance *dev_ins = netdev_priv(ndev); + + return sprintf(buf, "%d\n", dev_ins->mal->coales_param[0].rx_count); +} +static ssize_t show_tx_time(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct net_device *ndev = to_net_dev(dev); + struct emac_instance *dev_ins = netdev_priv(ndev); + + return sprintf(buf, "%d\n", dev_ins->mal->coales_param[0].tx_time); +} +static ssize_t show_rx_time(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct net_device *ndev = to_net_dev(dev); + struct emac_instance *dev_ins = netdev_priv(ndev); + + return sprintf(buf, "%d\n", dev_ins->mal->coales_param[0].rx_time); +} + +static int core_reset(struct emac_instance * dev_ins) +{ + mutex_lock(&dev_ins->link_lock); + emac_netif_stop(dev_ins); + emac_rx_disable(dev_ins); + mal_disable_rx_channel(dev_ins->mal, dev_ins->mal_rx_chan); + + if (dev_ins->rx_sg_skb) { + ++dev_ins->estats.rx_dropped_resize; + dev_kfree_skb(dev_ins->rx_sg_skb); + dev_ins->rx_sg_skb = NULL; + } + + /* This is to prevent starting RX channel in emac_rx_enable() */ + set_bit(MAL_COMMAC_RX_STOPPED, &dev_ins->commac.flags); + + emac_full_tx_reset(dev_ins); + + /* Restart RX */ + clear_bit(MAL_COMMAC_RX_STOPPED, &dev_ins->commac.flags); + dev_ins->rx_slot = 0; + mal_enable_rx_channel(dev_ins->mal, dev_ins->mal_rx_chan); + emac_rx_enable(dev_ins); + emac_netif_start(dev_ins); + mutex_unlock(&dev_ins->link_lock); + + return 0; +} + +/* Set interrupt coalesce parametters values */ +static ssize_t store_tx_count(struct device *dev, + struct device_attribute *attr, const char *buf, size_t count) +{ + struct net_device *ndev = to_net_dev(dev); + struct emac_instance *dev_ins = netdev_priv(ndev); + + long tmp = simple_strtol(buf, NULL, 10); + dev_ins->mal->coales_param[0].tx_count = tmp; + + mutex_lock(&dev_ins->link_lock); + /* Reconfigure MAL interrupt coalesce parameters */ + mal_enable_coal(dev_ins->mal); + mutex_unlock(&dev_ins->link_lock); + + /* + * FIXME: It seems that not reset the interface cause + * it hangs after short period of time + */ + if (netif_running(dev_ins->ndev)) { + core_reset(dev_ins); + } + + return count; +} +static ssize_t store_rx_count(struct device *dev, + struct device_attribute *attr, const char *buf, size_t count) +{ + struct net_device *ndev = to_net_dev(dev); + struct emac_instance *dev_ins = netdev_priv(ndev); + + long tmp = simple_strtol(buf, NULL, 10); + dev_ins->mal->coales_param[0].rx_count = tmp; + + /* Reconfigure MAL interrupt coalesce parameters */ + mutex_lock(&dev_ins->link_lock); + mal_enable_coal(dev_ins->mal); + mutex_unlock(&dev_ins->link_lock); + + /* + * FIXME: It seems that not reset the interface cause + * it hangs after short period of time + */ + if (netif_running(dev_ins->ndev)) { + core_reset(dev_ins); + } + + return count; +} +static ssize_t store_tx_time(struct device *dev, + struct device_attribute *attr, const char *buf, size_t count) +{ + struct net_device *ndev = to_net_dev(dev); + struct emac_instance *dev_ins = netdev_priv(ndev); + + long tmp = simple_strtol(buf, NULL, 10); + dev_ins->mal->coales_param[0].tx_time = tmp; + + /* Reconfigure MAL interrupt coalesce parameters */ + mutex_lock(&dev_ins->link_lock); + mal_enable_coal(dev_ins->mal); + mutex_unlock(&dev_ins->link_lock); + + /* + * FIXME: It seems that not reset the interface cause + * it hangs after short period of time + */ + if (netif_running(dev_ins->ndev)) { + core_reset(dev_ins); + } + + return count; +} +static ssize_t store_rx_time(struct device *dev, + struct device_attribute *attr, const char *buf, size_t count) +{ + struct net_device *ndev = to_net_dev(dev); + struct emac_instance *dev_ins = netdev_priv(ndev); + + long tmp = simple_strtol(buf, NULL, 10); + dev_ins->mal->coales_param[0].rx_time = tmp; + + /* Reconfigure MAL interrupt coalesce parameters */ + mutex_lock(&dev_ins->link_lock); + mal_enable_coal(dev_ins->mal); + mutex_unlock(&dev_ins->link_lock); + + /* + * FIXME: It seems that not reset the interface cause + * it hangs after short period of time + */ + if (netif_running(dev_ins->ndev)) { + core_reset(dev_ins); + } + + return count; +} + +#endif + +#if defined(CONFIG_IBM_NEW_EMAC_MASK_CEXT) + +static ssize_t show_emi_fix_enable(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct net_device *ndev = to_net_dev(dev); + struct emac_instance *dev_ins = netdev_priv(ndev); + + return sprintf(buf, "%d\n", atomic_read(&dev_ins->mask_cext_enable)); +} + +static ssize_t store_emi_fix_enable(struct device *dev, + struct device_attribute *attr, const char *buf, size_t count) +{ + struct net_device *ndev = to_net_dev(dev); + struct emac_instance *dev_ins = netdev_priv(ndev); + + long tmp = simple_strtol(buf, NULL, 10); + tmp = (tmp) ? 1 : 0; + + printk(KERN_INFO "%s EMAC EMI Fix\n", (tmp) ? "Enable" : "Disable"); + atomic_set(&dev_ins->mask_cext_enable, tmp); + + /* Exit idle mode before return */ + if (atomic_read(&dev_ins->idle_mode)) { + emac_exit_idlemode(dev_ins); + atomic_set(&dev_ins->idle_mode, 0); + } + + return count; +} + +#endif + +#if defined(CONFIG_IBM_NEW_EMAC_INTR_COALESCE) +static DEVICE_ATTR(coalesce_param_tx_count, + S_IRUGO | S_IWUSR, show_tx_count, store_tx_count); +static DEVICE_ATTR(coalesce_param_rx_count, + S_IRUGO | S_IWUSR, show_rx_count, store_rx_count); +static DEVICE_ATTR(coalesce_param_tx_time, + S_IRUGO | S_IWUSR, show_tx_time, store_tx_time); +static DEVICE_ATTR(coalesce_param_rx_time, + S_IRUGO | S_IWUSR, show_rx_time, store_rx_time); +#endif + +#if defined(CONFIG_APM82181) + #if defined(CONFIG_IBM_NEW_EMAC_MASK_CEXT) +static DEVICE_ATTR(emi_fix_enable, S_IRUGO | S_IWUSR, + show_emi_fix_enable, store_emi_fix_enable); + #endif +#endif + +static struct attribute *ibm_newemac_attr[] = { +#if defined(CONFIG_IBM_NEW_EMAC_INTR_COALESCE) + &dev_attr_coalesce_param_tx_count.attr, + &dev_attr_coalesce_param_rx_count.attr, + &dev_attr_coalesce_param_tx_time.attr, + &dev_attr_coalesce_param_rx_time.attr, +#endif + +#if defined(CONFIG_APM82181) + #if defined(CONFIG_IBM_NEW_EMAC_MASK_CEXT) + &dev_attr_emi_fix_enable.attr, + #endif +#endif + NULL +}; + +static const struct attribute_group ibm_newemac_attr_group = { + .attrs = ibm_newemac_attr, +}; + +#endif + + static int emac_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) { struct emac_instance *dev = netdev_priv(ndev); @@ -2553,6 +3181,12 @@ static int __devinit emac_init_config(struct emac_instance *dev) dev->gpcs_address = 0xffffffff; if (emac_read_uint_prop(np->parent, "clock-frequency", &dev->opb_bus_freq, 1)) return -ENXIO; +#ifdef CONFIG_IBM_NEW_EMAC_INTR_COALESCE + if (emac_read_uint_prop(np->parent->parent, "clock-frequency", &dev->plb_bus_freq, 1)) + return -ENXIO; + /* save as MHz */ + dev->plb_bus_freq /= 1000000; +#endif if (emac_read_uint_prop(np, "tah-device", &dev->tah_ph, 0)) dev->tah_ph = 0; if (emac_read_uint_prop(np, "tah-channel", &dev->tah_port, 0)) @@ -2750,6 +3384,29 @@ static int __devinit emac_probe(struct of_device *ofdev, dev->blist = blist; SET_NETDEV_DEV(ndev, &ofdev->dev); +#if defined(CONFIG_IBM_EMAC_MAL_QOS_V404) + dev->vdev_index = 0; + dev->vdev[0] = NULL; + + dev->mal_rx_chan = MAX_VCHANS; + dev->rx_vchans = dev->mal_rx_chan; + for (i = 1; i < dev->rx_vchans; i++) { + dev->vdev[i] = (struct emac_instance*) + alloc_etherdev(sizeof(struct emac_instance)); + if (!dev->vdev[i]) { + printk(KERN_ERR "emac%s: could not allocate vchannel\n", + np->full_name); + return -ENOMEM; + } + + dev->vdev[i]->vdev_index = i; + dev->vdev[i]->rx_vchans = 0; /* we are the virtual channel */ + dev->vdev[i]->ndev = dev->ndev; + dev->vdev[i]->ofdev = dev->ofdev; + dev->vdev[i]->mal = dev->mal; + } +#endif + /* Initialize some embedded data structures */ mutex_init(&dev->mdio_lock); mutex_init(&dev->link_lock); @@ -2813,6 +3470,13 @@ static int __devinit emac_probe(struct of_device *ofdev, dev->rx_skb_size = emac_rx_skb_size(ndev->mtu); dev->rx_sync_size = emac_rx_sync_size(ndev->mtu); +#if defined(CONFIG_IBM_EMAC_MAL_QOS_V404) + for (i = 1; i < dev->rx_vchans; i++) { + dev->vdev[i]->rx_skb_size = emac_rx_skb_size(ndev->mtu); + dev->vdev[i]->rx_sync_size = emac_rx_sync_size(ndev->mtu); + } +#endif + /* Get pointers to BD rings */ dev->tx_desc = dev->mal->bd_virt + mal_tx_bd_offset(dev->mal, dev->mal_tx_chan); @@ -2827,7 +3491,28 @@ static int __devinit emac_probe(struct of_device *ofdev, memset(dev->rx_desc, 0, NUM_RX_BUFF * sizeof(struct mal_descriptor)); memset(dev->tx_skb, 0, NUM_TX_BUFF * sizeof(struct sk_buff *)); memset(dev->rx_skb, 0, NUM_RX_BUFF * sizeof(struct sk_buff *)); - +#ifdef CONFIG_IBM_NEW_EMAC_MASK_CEXT + /* By default: DISABLE EMI fix */ + atomic_set(&dev->mask_cext_enable, 0); +#endif + +#if defined(CONFIG_IBM_EMAC_MAL_QOS_V404) + /* + * On the 440GT and 440EX, the MAL RX active channel 0 (emac0) and + * active channel 8 (emac1) have 8 virtual RX channels each for QOS. + */ + for (i = 1; i < dev->rx_vchans; i++) { + /* Get pointers to BD RX rings */ + dev->vdev[i]->rx_desc = + dev->mal->bd_virt+mal_rx_bd_offset(dev->mal, + (i+dev->mal_rx_chan)); + + /* Clean rings */ + memset(dev->vdev[i]->rx_desc, 0, + NUM_RX_BUFF * sizeof(struct mal_descriptor)); + } +#endif + /* Attach to ZMII, if needed */ if (emac_has_feature(dev, EMAC_FTR_HAS_ZMII) && (err = zmii_attach(dev->zmii_dev, dev->zmii_port, &dev->phy_mode)) != 0) @@ -2857,7 +3542,7 @@ static int __devinit emac_probe(struct of_device *ofdev, goto err_detach_tah; if (dev->tah_dev) - ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG; + ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO; ndev->watchdog_timeo = 5 * HZ; if (emac_phy_supports_gige(dev->phy_mode)) { ndev->netdev_ops = &emac_gige_netdev_ops; @@ -2885,7 +3570,6 @@ static int __devinit emac_probe(struct of_device *ofdev, /* There's a new kid in town ! Let's tell everybody */ wake_up_all(&emac_probe_wait); - printk(KERN_INFO "%s: EMAC-%d %s, MAC %pM\n", ndev->name, dev->cell_index, np->full_name, ndev->dev_addr); @@ -2895,9 +3579,20 @@ static int __devinit emac_probe(struct of_device *ofdev, if (dev->phy.address >= 0) printk("%s: found %s PHY (0x%02x)\n", ndev->name, dev->phy.def->name, dev->phy.address); + emac_dbg_register(dev); +#if defined(CONFIG_IBM_NEW_EMAC_SYSFS) + /* Register sys fs hooks */ + err = sysfs_create_group(&dev->ndev->dev.kobj, + &ibm_newemac_attr_group); + if (err) { + printk("WARN: %s: failed to create sys interfaces for EMAC-%d %s\n", + ndev->name, dev->cell_index, np->full_name); + goto err_sysfs; + } +#endif /* Life is good */ return 0; @@ -2934,6 +3629,9 @@ static int __devinit emac_probe(struct of_device *ofdev, *blist = NULL; wake_up_all(&emac_probe_wait); } +#if defined(CONFIG_IBM_NEW_EMAC_SYSFS) + err_sysfs: +#endif return err; } @@ -2945,6 +3643,9 @@ static int __devexit emac_remove(struct of_device *ofdev) dev_set_drvdata(&ofdev->dev, NULL); +#if defined(CONFIG_IBM_NEW_EMAC_SYSFS) + sysfs_remove_group(&dev->ndev->dev.kobj, &ibm_newemac_attr_group); +#endif unregister_netdev(dev->ndev); flush_scheduled_work(); @@ -2967,6 +3668,14 @@ static int __devexit emac_remove(struct of_device *ofdev) if (dev->emac_irq != NO_IRQ) irq_dispose_mapping(dev->emac_irq); +#if defined(CONFIG_IBM_EMAC_MAL_QOS_V404) + if (dev->rx_vchans) { + int v; + for (v = 1; v < dev->rx_vchans; v++) { + kfree(dev->vdev[v]); + } + } +#endif kfree(dev->ndev); return 0; diff --git a/drivers/net/ibm_newemac/core.h b/drivers/net/ibm_newemac/core.h index 18d56c6c423..274514bdfa6 100644 --- a/drivers/net/ibm_newemac/core.h +++ b/drivers/net/ibm_newemac/core.h @@ -71,7 +71,7 @@ static inline int emac_rx_size(int mtu) #define EMAC_DMA_ALIGN(x) ALIGN((x), dma_get_cache_alignment()) #define EMAC_RX_SKB_HEADROOM \ - EMAC_DMA_ALIGN(CONFIG_IBM_NEW_EMAC_RX_SKB_HEADROOM) + EMAC_DMA_ALIGN(CONFIG_IBM_NEW_EMAC_RX_SKB_HEADROOM + 2) /* Size of RX skb for the given MTU */ static inline int emac_rx_skb_size(int mtu) @@ -161,6 +161,11 @@ struct emac_error_stats { u64 tx_errors; }; + +#if defined(CONFIG_IBM_EMAC_MAL_QOS_V404) +#define MAX_VCHANS 8 /* MAX virtual channels */ +#endif + #define EMAC_ETHTOOL_STATS_COUNT ((sizeof(struct emac_stats) + \ sizeof(struct emac_error_stats)) \ / sizeof(u64)) @@ -220,6 +225,11 @@ struct emac_instance { /* OPB bus frequency in Mhz */ u32 opb_bus_freq; + +#ifdef CONFIG_IBM_NEW_EMAC_INTR_COALESCE + /* PLB bus frequency in Mhz */ + u32 plb_bus_freq; +#endif /* Cell index within an ASIC (for clk mgmnt) */ u32 cell_index; @@ -266,6 +276,10 @@ struct emac_instance { /* Misc */ +#ifdef CONFIG_IBM_NEW_EMAC_MASK_CEXT + atomic_t idle_mode; + atomic_t mask_cext_enable; +#endif int reset_failed; int stop_timeout; /* in us */ int no_mcast; @@ -273,6 +287,12 @@ struct emac_instance { int opened; struct work_struct reset_work; spinlock_t lock; + +#if defined(CONFIG_IBM_EMAC_MAL_QOS_V404) + int rx_vchans; /* N rx virtual channels */ + int vdev_index; + struct emac_instance *vdev[MAX_VCHANS]; /* virtual channels */ +#endif }; /* diff --git a/drivers/net/ibm_newemac/emac.h b/drivers/net/ibm_newemac/emac.h index 8a61b597a16..bc54a228556 100644 --- a/drivers/net/ibm_newemac/emac.h +++ b/drivers/net/ibm_newemac/emac.h @@ -144,16 +144,18 @@ struct emac_regs { #define EMAC_MR1_TFS_2K 0x00080000 #define EMAC_MR1_TR0_MULT 0x00008000 #define EMAC_MR1_JPSM 0x00000000 -#define EMAC_MR1_MWSW_001 0x00000000 +#define EMAC_MR1_MWSW_001 0x00001000 #define EMAC_MR1_BASE(opb) (EMAC_MR1_TFS_2K | EMAC_MR1_TR0_MULT) #define EMAC4_MR1_RFS_2K 0x00100000 #define EMAC4_MR1_RFS_4K 0x00180000 +#define EMAC4_MR1_RFS_8K 0x00200000 #define EMAC4_MR1_RFS_16K 0x00280000 #define EMAC4_MR1_TFS_2K 0x00020000 -#define EMAC4_MR1_TFS_4K 0x00030000 -#define EMAC4_MR1_TFS_16K 0x00050000 +#define EMAC4_MR1_TFS_4K 0x00030000 +#define EMAC4_MR1_TFS_8K 0x00040000 +#define EMAC4_MR1_TFS_16K 0x00050000 #define EMAC4_MR1_TR 0x00008000 #define EMAC4_MR1_MWSW_001 0x00001000 #define EMAC4_MR1_JPSM 0x00000800 @@ -211,6 +213,10 @@ struct emac_regs { #define EMAC4_RMR_RFAF_64_1024 0x00000006 #define EMAC4_RMR_RFAF_128_2048 0x00000007 #define EMAC4_RMR_BASE EMAC4_RMR_RFAF_128_2048 +#if defined(CONFIG_APM82181) +#define EMAC4_RMR_MJS_MASK 0x0001fff8 +#define EMAC4_RMR_MJS(s) ((s << 3) & EMAC4_RMR_MJS_MASK) +#endif /* EMACx_ISR & EMACx_ISER */ #define EMAC4_ISR_TXPE 0x20000000 @@ -264,7 +270,7 @@ struct emac_regs { /* EMACx_TRTR */ #define EMAC_TRTR_SHIFT_EMAC4 24 -#define EMAC_TRTR_SHIFT 27 +#define EMAC_TRTR_SHIFT 27 /* EMAC specific TX descriptor control fields (write access) */ #define EMAC_TX_CTRL_GFCS 0x0200 @@ -308,4 +314,11 @@ struct emac_regs { EMAC_RX_ST_AE | EMAC_RX_ST_BFCS | \ EMAC_RX_ST_PTL | EMAC_RX_ST_ORE | \ EMAC_RX_ST_IRE ) +#define EMAC_TX_CTRL_TAH_SSR0 0x0002 +#define EMAC_TX_CTRL_TAH_SSR1 0x0004 +#define EMAC_TX_CTRL_TAH_SSR2 0x0006 +#define EMAC_TX_CTRL_TAH_SSR3 0x0008 +#define EMAC_TX_CTRL_TAH_SSR4 0x000a +#define EMAC_TX_CTRL_TAH_SSR5 0x000c +#define EMAC_TX_CTRL_TAH_CSUM 0x000e #endif /* __IBM_NEWEMAC_H */ diff --git a/drivers/net/ibm_newemac/mal.c b/drivers/net/ibm_newemac/mal.c index 2a2fc17b287..1f79a34bedf 100644 --- a/drivers/net/ibm_newemac/mal.c +++ b/drivers/net/ibm_newemac/mal.c @@ -29,8 +29,23 @@ #include "core.h" #include <asm/dcr-regs.h> +#include <asm/ppc4xx_ocm.h> static int mal_count; +#ifdef CONFIG_IBM_NEW_EMAC_INTR_COALESCE +static char *tx_coal_irqname[] = { + "TX0 COAL", + "TX1 COAL", + "TX2 COAL", + "TX3 COAL", +}; +static char *rx_coal_irqname[] = { + "RX0 COAL", + "RX1 COAL", + "RX2 COAL", + "RX3 COAL", +}; +#endif int __devinit mal_register_commac(struct mal_instance *mal, struct mal_commac *commac) @@ -217,9 +232,176 @@ static inline void mal_disable_eob_irq(struct mal_instance *mal) MAL_DBG2(mal, "disable_irq" NL); } +#ifdef CONFIG_IBM_NEW_EMAC_INTR_COALESCE + +#if defined(CONFIG_460SX) +/* Set Tx fram count */ +static inline void set_ic_txfthr(struct mal_instance *mal) +{ + int reg; + int val = mal->coales_param[0].tx_count; + + reg = (val<<23) | (1<<22) ; + + SDR_WRITE(DCRN_SDR0_ICCRTX0, reg); /* set counter */ + SDR_WRITE(DCRN_SDR0_ICCRTX0,(val<<23)); /* enable counter */ + + SDR_WRITE(DCRN_SDR0_ICCRTX1, reg); /* set counter */ + SDR_WRITE(DCRN_SDR0_ICCRTX1,(val<<23)); /* enable counter */ + + SDR_WRITE(DCRN_SDR0_ICCRTX2, reg); /* set counter */ + SDR_WRITE(DCRN_SDR0_ICCRTX2,(val<<23)); /* enable counter */ + + SDR_WRITE(DCRN_SDR0_ICCRTX3, reg); /* set counter */ + SDR_WRITE(DCRN_SDR0_ICCRTX3,(val<<23)); /* enable counter */ + + + mal->enet_coales_iccrtx = reg; +} +/* Set Rx fram count */ +static inline void set_ic_rxfthr(struct mal_instance *mal) +{ + int reg; + int val = mal->coales_param[0].rx_count; + + reg = (val<<23) | (1<<22) ; + + SDR_WRITE(DCRN_SDR0_ICCRRX0,reg); /* set counter */ + SDR_WRITE(DCRN_SDR0_ICCRRX0,(val<<23)); /* enable counter */ + + SDR_WRITE(DCRN_SDR0_ICCRRX1,reg); /* set counter */ + SDR_WRITE(DCRN_SDR0_ICCRRX1,(val<<23)); /* enable counter */ + + SDR_WRITE(DCRN_SDR0_ICCRRX2,reg); /* set counter */ + SDR_WRITE(DCRN_SDR0_ICCRRX2,(val<<23)); /* enable counter */ + + SDR_WRITE(DCRN_SDR0_ICCRRX3,reg); /* set counter */ + SDR_WRITE(DCRN_SDR0_ICCRRX3,(val<<23)); /* enable counter */ + + mal->enet_coales_iccrrx = reg; +} +#endif + +inline void mal_enable_coal(struct mal_instance *mal) +{ + unsigned int val; +#if defined(CONFIG_405EX) + /* Clear the counters */ + val = SDR0_ICC_FLUSH0 | SDR0_ICC_FLUSH1; + mtdcri(SDR0, DCRN_SDR0_ICCRTX, val); + mtdcri(SDR0, DCRN_SDR0_ICCRRX, val); + + /* Set Tx/Rx Timer values */ + mtdcri(SDR0, DCRN_SDR0_ICCTRTX0, CONFIG_IBM_NEW_EMAC_TX_COAL_TIMER); + mtdcri(SDR0, DCRN_SDR0_ICCTRTX1, CONFIG_IBM_NEW_EMAC_TX_COAL_TIMER); + mtdcri(SDR0, DCRN_SDR0_ICCTRRX0, CONFIG_IBM_NEW_EMAC_RX_COAL_TIMER); + mtdcri(SDR0, DCRN_SDR0_ICCTRRX1, CONFIG_IBM_NEW_EMAC_RX_COAL_TIMER); + + /* Enable the Tx/Rx Coalescing interrupt */ + val = ((CONFIG_IBM_NEW_EMAC_TX_COAL_COUNT & COAL_FRAME_MASK) + << SDR0_ICC_FTHR0_SHIFT) | + ((CONFIG_IBM_NEW_EMAC_TX_COAL_COUNT & COAL_FRAME_MASK) + << SDR0_ICC_FTHR1_SHIFT); + mtdcri(SDR0, DCRN_SDR0_ICCRTX, val); + + val = ((CONFIG_IBM_NEW_EMAC_RX_COAL_COUNT & COAL_FRAME_MASK) + << SDR0_ICC_FTHR0_SHIFT) | + ((CONFIG_IBM_NEW_EMAC_RX_COAL_COUNT & COAL_FRAME_MASK) + << SDR0_ICC_FTHR1_SHIFT); + + mtdcri(SDR0, DCRN_SDR0_ICCRRX, val); +#elif defined(CONFIG_APM82181) + /* Clear the counters */ + val = SDR0_ICC_FLUSH; + mtdcri(SDR0, DCRN_SDR0_ICCRTX0, val); + mtdcri(SDR0, DCRN_SDR0_ICCRRX0, val); + + /* Set Tx/Rx Timer values */ + mtdcri(SDR0, DCRN_SDR0_ICCTRTX0, mal->coales_param[0].tx_time); + mtdcri(SDR0, DCRN_SDR0_ICCTRRX0, mal->coales_param[0].rx_time); + + /* Enable the Tx/Rx Coalescing interrupt */ + val = (mal->coales_param[0].tx_count & COAL_FRAME_MASK) + << SDR0_ICC_FTHR_SHIFT; + mtdcri(SDR0, DCRN_SDR0_ICCRTX0, val); + + val = (mal->coales_param[0].rx_count & COAL_FRAME_MASK) + << SDR0_ICC_FTHR_SHIFT; + mtdcri(SDR0, DCRN_SDR0_ICCRRX0, val); + +#elif defined(CONFIG_460EX) || defined(CONFIG_460GT) + /* Clear the counters */ + val = SDR0_ICC_FLUSH; + mtdcri(SDR0, DCRN_SDR0_ICCRTX0, val); + mtdcri(SDR0, DCRN_SDR0_ICCRTX1, val); + mtdcri(SDR0, DCRN_SDR0_ICCRRX0, val); + mtdcri(SDR0, DCRN_SDR0_ICCRRX1, val); +#if defined(CONFIG_460GT) + mtdcri(SDR0, DCRN_SDR0_ICCRTX2, val); + mtdcri(SDR0, DCRN_SDR0_ICCRTX3, val); + mtdcri(SDR0, DCRN_SDR0_ICCRRX2, val); + mtdcri(SDR0, DCRN_SDR0_ICCRRX3, val); +#endif + + /* Set Tx/Rx Timer values */ + mtdcri(SDR0, DCRN_SDR0_ICCTRTX0, CONFIG_IBM_NEW_EMAC_TX_COAL_TIMER); + mtdcri(SDR0, DCRN_SDR0_ICCTRTX1, CONFIG_IBM_NEW_EMAC_TX_COAL_TIMER); + mtdcri(SDR0, DCRN_SDR0_ICCTRRX0, CONFIG_IBM_NEW_EMAC_RX_COAL_TIMER); + mtdcri(SDR0, DCRN_SDR0_ICCTRRX1, CONFIG_IBM_NEW_EMAC_RX_COAL_TIMER); +#if defined(CONFIG_460GT) + mtdcri(SDR0, DCRN_SDR0_ICCTRTX2, CONFIG_IBM_NEW_EMAC_TX_COAL_TIMER); + mtdcri(SDR0, DCRN_SDR0_ICCTRTX3, CONFIG_IBM_NEW_EMAC_TX_COAL_TIMER); + mtdcri(SDR0, DCRN_SDR0_ICCTRRX2, CONFIG_IBM_NEW_EMAC_RX_COAL_TIMER); + mtdcri(SDR0, DCRN_SDR0_ICCTRRX3, CONFIG_IBM_NEW_EMAC_RX_COAL_TIMER); +#endif + + /* Enable the Tx/Rx Coalescing interrupt */ + val = (CONFIG_IBM_NEW_EMAC_TX_COAL_COUNT & COAL_FRAME_MASK) + << SDR0_ICC_FTHR_SHIFT; + mtdcri(SDR0, DCRN_SDR0_ICCRTX0, val); + mtdcri(SDR0, DCRN_SDR0_ICCRTX1, val); +#if defined(CONFIG_460GT) + mtdcri(SDR0, DCRN_SDR0_ICCRTX2, val); + mtdcri(SDR0, DCRN_SDR0_ICCRTX3, val); +#endif + + val = (CONFIG_IBM_NEW_EMAC_RX_COAL_COUNT & COAL_FRAME_MASK) + << SDR0_ICC_FTHR_SHIFT; + mtdcri(SDR0, DCRN_SDR0_ICCRRX0, val); + mtdcri(SDR0, DCRN_SDR0_ICCRRX1, val); +#if defined(CONFIG_460GT) + mtdcri(SDR0, DCRN_SDR0_ICCRRX2, val); + mtdcri(SDR0, DCRN_SDR0_ICCRRX3, val); +#endif + +#elif defined(CONFIG_460SX) + mtdcri(SDR0, DCRN_SDR0_ICCTRTX0, mal->coales_param[0].tx_time); + mtdcri(SDR0, DCRN_SDR0_ICCTRTX1, mal->coales_param[1].tx_time); + mtdcri(SDR0, DCRN_SDR0_ICCTRTX2, mal->coales_param[2].tx_time); + mtdcri(SDR0, DCRN_SDR0_ICCTRTX3, mal->coales_param[3].tx_time); + + mtdcri(SDR0, DCRN_SDR0_ICCTRRX0, mal->coales_param[0].rx_time); + mtdcri(SDR0, DCRN_SDR0_ICCTRRX1, mal->coales_param[1].rx_time); + mtdcri(SDR0, DCRN_SDR0_ICCTRRX2, mal->coales_param[2].rx_time); + mtdcri(SDR0, DCRN_SDR0_ICCTRRX3, mal->coales_param[3].rx_time); + + set_ic_rxfthr(mal); + set_ic_txfthr(mal); +#endif + printk(KERN_INFO "MAL: Enabled Interrupt Coal TxCnt: %d RxCnt: %d\n", + mal->coales_param[0].tx_count, + mal->coales_param[0].rx_count); + + printk(KERN_INFO " TxTimer: %d RxTimer: %d\n", + mal->coales_param[0].tx_time, + mal->coales_param[0].rx_time); +} +#endif + static irqreturn_t mal_serr(int irq, void *dev_instance) { struct mal_instance *mal = dev_instance; + struct list_head *l; u32 esr = get_mal_dcrn(mal, MAL_ESR); @@ -256,6 +438,14 @@ static irqreturn_t mal_serr(int irq, void *dev_instance) "mal%d: system error, OPB (ESR = 0x%08x)\n", mal->index, esr); } + + + list_for_each(l, &mal->poll_list) { + struct mal_commac *mc = + list_entry(l, struct mal_commac, poll_list); + mc->ops->reset(mc->dev); + } + return IRQ_HANDLED; } @@ -309,6 +499,15 @@ static irqreturn_t mal_rxeob(int irq, void *dev_instance) return IRQ_HANDLED; } +#ifdef CONFIG_IBM_NEW_EMAC_INTR_COALESCE +static irqreturn_t mal_coal(int irq, void *dev_instance) +{ + struct mal_instance *mal = dev_instance; + mal_schedule_poll(mal); + return IRQ_HANDLED; +} +#endif + static irqreturn_t mal_txde(int irq, void *dev_instance) { struct mal_instance *mal = dev_instance; @@ -393,6 +592,9 @@ void mal_poll_enable(struct mal_instance *mal, struct mal_commac *commac) static int mal_poll(struct napi_struct *napi, int budget) { +#if defined(CONFIG_IBM_EMAC_MAL_QOS_V404) + int v; +#endif struct mal_instance *mal = container_of(napi, struct mal_instance, napi); struct list_head *l; int received = 0; @@ -455,6 +657,32 @@ static int mal_poll(struct napi_struct *napi, int budget) mc->ops->poll_tx(mc->dev); } +#if defined(CONFIG_IBM_EMAC_MAL_QOS_V404) + /* Process RX skbs QOS virtual channels. + * + */ + for ( v = 1; v < MAX_VCHANS; v++ ) { + list_for_each(l, &mal->poll_list) { + struct mal_commac *mc = + list_entry(l, struct mal_commac, poll_list); + struct emac_instance *dev = mc->dev; + int n; + if ( v >= dev->rx_vchans ) { + continue; + } + n = mc->ops->poll_rx(dev->vdev[v],budget); + if (n) { + received += n; + budget -= n; + if (budget <= 0) { + goto more_work; + } + } + } + + } +#endif + more_work: MAL_DBG2(mal, "poll() %d <- %d" NL, budget, received); return received; @@ -516,6 +744,7 @@ void *mal_dump_regs(struct mal_instance *mal, void *buf) return regs + 1; } + static int __devinit mal_probe(struct of_device *ofdev, const struct of_device_id *match) { @@ -524,9 +753,14 @@ static int __devinit mal_probe(struct of_device *ofdev, int index = mal_count++; unsigned int dcr_base; const u32 *prop; + const char *str_prop; u32 cfg; unsigned long irqflags; irq_handler_t hdlr_serr, hdlr_txde, hdlr_rxde; +#ifdef CONFIG_IBM_NEW_EMAC_INTR_COALESCE + int num_phys_chans; + int coal_intr_index; +#endif mal = kzalloc(sizeof(struct mal_instance), GFP_KERNEL); if (!mal) { @@ -541,6 +775,13 @@ static int __devinit mal_probe(struct of_device *ofdev, MAL_DBG(mal, "probe" NL); + str_prop = of_get_property(ofdev->node, "descriptor-memory", NULL); + if (str_prop && (!strcmp(str_prop,"ocm") || !strcmp(str_prop,"OCM"))) { + printk(KERN_INFO + "mal%d: descriptor-memory = %s\n", index, str_prop); + mal->desc_memory = MAL_DESC_MEM_OCM; + } + prop = of_get_property(ofdev->node, "num-tx-chans", NULL); if (prop == NULL) { printk(KERN_ERR @@ -609,6 +850,46 @@ static int __devinit mal_probe(struct of_device *ofdev, goto fail_unmap; } +#ifdef CONFIG_IBM_NEW_EMAC_INTR_COALESCE + /* Number of Tx channels is equal to Physical channels */ + /* Rx channels include Virtual channels so use Tx channels */ + BUG_ON(mal->num_tx_chans > MAL_MAX_PHYS_CHANNELS); + num_phys_chans = mal->num_tx_chans; + /* Older revs in 460EX and 460GT have coalesce bug in h/w */ +#if defined(CONFIG_460EX) || defined(CONFIG_460GT) + { + unsigned int pvr; + unsigned short min; + pvr = mfspr(SPRN_PVR); + min = PVR_MIN(pvr); + if (min < 4) { + printk(KERN_INFO "PVR %x Intr Coal disabled: H/W bug\n", + pvr); + mal->coalesce_disabled = 1; + } + } +#else + mal->coalesce_disabled = 0; +#endif + coal_intr_index = 5; + + /* If device tree doesn't Interrupt coal IRQ, fall back to EOB IRQ */ + for (i = 0; (i < num_phys_chans) && (mal->coalesce_disabled == 0) ; i++) { + mal->txcoal_irq[i] = irq_of_parse_and_map(ofdev->node, coal_intr_index++); + if (mal->txcoal_irq[i] == NO_IRQ) { + printk(KERN_INFO "MAL: No device tree IRQ for TxCoal%d - disabling coalescing\n", i); + mal->coalesce_disabled = 1; + } + } + for (i = 0; (i < num_phys_chans) && (mal->coalesce_disabled == 0); i++) { + mal->rxcoal_irq[i] = irq_of_parse_and_map(ofdev->node, coal_intr_index++); + if (mal->rxcoal_irq[i] == NO_IRQ) { + printk(KERN_INFO "MAL: No device tree IRQ for RxCoal%d - disabling coalescing\n", i); + mal->coalesce_disabled = 1; + } + } +#endif + INIT_LIST_HEAD(&mal->poll_list); INIT_LIST_HEAD(&mal->list); spin_lock_init(&mal->lock); @@ -641,9 +922,25 @@ static int __devinit mal_probe(struct of_device *ofdev, bd_size = sizeof(struct mal_descriptor) * (NUM_TX_BUFF * mal->num_tx_chans + NUM_RX_BUFF * mal->num_rx_chans); - mal->bd_virt = - dma_alloc_coherent(&ofdev->dev, bd_size, &mal->bd_dma, - GFP_KERNEL); + + if (mal->desc_memory == MAL_DESC_MEM_OCM) { + mal->bd_virt = ocm_alloc(&mal->bd_phys, bd_size, 4, + OCM_NON_CACHED, "mal_descriptors"); + mal->bd_dma = (u32)mal->bd_phys; + } + + if (mal->bd_virt == NULL) { + /* Allocate BD on SDRAM in case !MAL_DESC_MEM_OCM or failed OCM alloc */ + if (mal->desc_memory == MAL_DESC_MEM_OCM){ + printk(KERN_INFO + "mal%d: failed OCM alloc, descriptor-memory = SDRAM\n", index); + mal->desc_memory = MAL_DESC_MEM_SDRAM; + } + mal->bd_virt = dma_alloc_coherent(&ofdev->dev, bd_size, + &mal->bd_dma, GFP_KERNEL); + } + + if (mal->bd_virt == NULL) { printk(KERN_ERR "mal%d: out of memory allocating RX/TX descriptors!\n", @@ -651,17 +948,25 @@ static int __devinit mal_probe(struct of_device *ofdev, err = -ENOMEM; goto fail_unmap; } + memset(mal->bd_virt, 0, bd_size); + for (i = 0; i < mal->num_tx_chans; ++i) { + if (mal->desc_memory == MAL_DESC_MEM_OCM) + set_mal_dcrn(mal, MAL_TXBADDR, (mal->bd_phys >> 32)); - for (i = 0; i < mal->num_tx_chans; ++i) set_mal_dcrn(mal, MAL_TXCTPR(i), mal->bd_dma + sizeof(struct mal_descriptor) * mal_tx_bd_offset(mal, i)); + } + + for (i = 0; i < mal->num_rx_chans; ++i) { + if (mal->desc_memory == MAL_DESC_MEM_OCM) + set_mal_dcrn(mal, MAL_RXBADDR, (u32)(mal->bd_phys >> 32)); - for (i = 0; i < mal->num_rx_chans; ++i) set_mal_dcrn(mal, MAL_RXCTPR(i), mal->bd_dma + sizeof(struct mal_descriptor) * mal_rx_bd_offset(mal, i)); + } if (mal_has_feature(mal, MAL_FTR_COMMON_ERR_INT)) { irqflags = IRQF_SHARED; @@ -674,20 +979,65 @@ static int __devinit mal_probe(struct of_device *ofdev, } err = request_irq(mal->serr_irq, hdlr_serr, irqflags, "MAL SERR", mal); - if (err) - goto fail2; + if (err) { + mal->serr_irq = NO_IRQ; + goto failirq; + } err = request_irq(mal->txde_irq, hdlr_txde, irqflags, "MAL TX DE", mal); - if (err) - goto fail3; - err = request_irq(mal->txeob_irq, mal_txeob, 0, "MAL TX EOB", mal); - if (err) - goto fail4; + if (err) { + mal->txde_irq = NO_IRQ; + goto failirq; + } err = request_irq(mal->rxde_irq, hdlr_rxde, irqflags, "MAL RX DE", mal); - if (err) - goto fail5; - err = request_irq(mal->rxeob_irq, mal_rxeob, 0, "MAL RX EOB", mal); - if (err) - goto fail6; + if (err) { + mal->rxde_irq = NO_IRQ; + goto failirq; + } +#ifdef CONFIG_IBM_NEW_EMAC_INTR_COALESCE + for (i = 0; (i < num_phys_chans) && (mal->coalesce_disabled == 0); i++) { + err = request_irq(mal->txcoal_irq[i], + mal_coal, 0, tx_coal_irqname[i], mal); + if (err) { + printk(KERN_INFO "MAL: TxCoal%d ReqIRQ failed - disabling coalescing\n", i); + mal->txcoal_irq[i] = NO_IRQ; + mal->coalesce_disabled = 1; + break; + } + } + for (i = 0; (i < num_phys_chans) && (mal->coalesce_disabled == 0); i++) { + err = request_irq(mal->rxcoal_irq[i], + mal_coal, 0, rx_coal_irqname[i], mal); + if (err) { + printk(KERN_INFO "MAL: RxCoal%d ReqIRQ failed - disabling coalescing\n", i); + mal->rxcoal_irq[i] = NO_IRQ; + mal->coalesce_disabled = 1; + break; + } + } + + /* Fall back to EOB IRQ if coalesce not supported */ + if (mal->coalesce_disabled) { + /* Clean up any IRQs allocated for Coalescing */ + for (i = 0; i < num_phys_chans; i++) { + if (mal->txcoal_irq[i] != NO_IRQ) + free_irq(mal->txcoal_irq[i], mal); + if (mal->rxcoal_irq[i] != NO_IRQ) + free_irq(mal->rxcoal_irq[i], mal); + } +#endif + err = request_irq(mal->txeob_irq, mal_txeob, 0, "MAL TX EOB", mal); + if (err) { + mal->txeob_irq = NO_IRQ; + goto failirq; + } + err = request_irq(mal->rxeob_irq, mal_rxeob, 0, "MAL RX EOB", mal); + if (err) { + mal->rxeob_irq = NO_IRQ; + goto failirq; + } +#ifdef CONFIG_IBM_NEW_EMAC_INTR_COALESCE + } +#endif /* Enable all MAL SERR interrupt sources */ if (mal->version == 2) @@ -695,6 +1045,31 @@ static int __devinit mal_probe(struct of_device *ofdev, else set_mal_dcrn(mal, MAL_IER, MAL1_IER_EVENTS); +#ifdef CONFIG_IBM_NEW_EMAC_INTR_COALESCE + if (mal->coalesce_disabled == 0) { + mal->coales_param[0].tx_count = (CONFIG_IBM_NEW_EMAC_TX_COAL_COUNT & COAL_FRAME_MASK); + mal->coales_param[1].tx_count = (CONFIG_IBM_NEW_EMAC_TX_COAL_COUNT & COAL_FRAME_MASK); + mal->coales_param[2].tx_count = (CONFIG_IBM_NEW_EMAC_TX_COAL_COUNT & COAL_FRAME_MASK); + mal->coales_param[3].tx_count = (CONFIG_IBM_NEW_EMAC_TX_COAL_COUNT & COAL_FRAME_MASK); + + mal->coales_param[0].rx_count = (CONFIG_IBM_NEW_EMAC_RX_COAL_COUNT & COAL_FRAME_MASK); + mal->coales_param[1].rx_count = (CONFIG_IBM_NEW_EMAC_RX_COAL_COUNT & COAL_FRAME_MASK); + mal->coales_param[2].rx_count = (CONFIG_IBM_NEW_EMAC_RX_COAL_COUNT & COAL_FRAME_MASK); + mal->coales_param[3].rx_count = (CONFIG_IBM_NEW_EMAC_RX_COAL_COUNT & COAL_FRAME_MASK); + + mal->coales_param[0].tx_time = CONFIG_IBM_NEW_EMAC_TX_COAL_TIMER; + mal->coales_param[1].tx_time = CONFIG_IBM_NEW_EMAC_TX_COAL_TIMER; + mal->coales_param[2].tx_time = CONFIG_IBM_NEW_EMAC_TX_COAL_TIMER; + mal->coales_param[3].tx_time = CONFIG_IBM_NEW_EMAC_TX_COAL_TIMER; + + mal->coales_param[0].rx_time = CONFIG_IBM_NEW_EMAC_RX_COAL_TIMER; + mal->coales_param[1].rx_time = CONFIG_IBM_NEW_EMAC_RX_COAL_TIMER; + mal->coales_param[2].rx_time = CONFIG_IBM_NEW_EMAC_RX_COAL_TIMER; + mal->coales_param[3].rx_time = CONFIG_IBM_NEW_EMAC_RX_COAL_TIMER; + + mal_enable_coal(mal); +} +#endif /* Enable EOB interrupt */ mal_enable_eob_irq(mal); @@ -711,16 +1086,35 @@ static int __devinit mal_probe(struct of_device *ofdev, return 0; - fail6: - free_irq(mal->rxde_irq, mal); - fail5: - free_irq(mal->txeob_irq, mal); - fail4: - free_irq(mal->txde_irq, mal); - fail3: - free_irq(mal->serr_irq, mal); - fail2: - dma_free_coherent(&ofdev->dev, bd_size, mal->bd_virt, mal->bd_dma); + failirq: + if (mal->serr_irq != NO_IRQ) + free_irq(mal->serr_irq, mal); + if (mal->txde_irq != NO_IRQ) + free_irq(mal->txde_irq, mal); + if (mal->rxde_irq != NO_IRQ) + free_irq(mal->rxde_irq, mal); +#ifdef CONFIG_IBM_NEW_EMAC_INTR_COALESCE + if (mal->coalesce_disabled == 0) { + for (i = 0; i < num_phys_chans; i++) { + if (mal->txcoal_irq[i] != NO_IRQ) + free_irq(mal->txcoal_irq[i], mal); + if (mal->rxcoal_irq[i] != NO_IRQ) + free_irq(mal->rxcoal_irq[i], mal); + } + } else { +#endif + if (mal->txeob_irq != NO_IRQ) + free_irq(mal->txeob_irq, mal); + if (mal->rxeob_irq != NO_IRQ) + free_irq(mal->rxeob_irq, mal); +#ifdef CONFIG_IBM_NEW_EMAC_INTR_COALESCE + } +#endif + if (mal->desc_memory == MAL_DESC_MEM_OCM) + ocm_free(mal->bd_virt); + else + dma_free_coherent(&ofdev->dev, bd_size, + mal->bd_virt, mal->bd_dma); fail_unmap: dcr_unmap(mal->dcr_host, 0x100); fail: @@ -732,6 +1126,10 @@ static int __devinit mal_probe(struct of_device *ofdev, static int __devexit mal_remove(struct of_device *ofdev) { struct mal_instance *mal = dev_get_drvdata(&ofdev->dev); +#ifdef CONFIG_IBM_NEW_EMAC_INTR_COALESCE + int i; + int num_phys_chans; +#endif MAL_DBG(mal, "remove" NL); @@ -748,17 +1146,38 @@ static int __devexit mal_remove(struct of_device *ofdev) dev_set_drvdata(&ofdev->dev, NULL); - free_irq(mal->serr_irq, mal); - free_irq(mal->txde_irq, mal); - free_irq(mal->txeob_irq, mal); - free_irq(mal->rxde_irq, mal); - free_irq(mal->rxeob_irq, mal); - + if (mal->serr_irq != NO_IRQ) + free_irq(mal->serr_irq, mal); + if (mal->txde_irq != NO_IRQ) + free_irq(mal->txde_irq, mal); + if (mal->rxde_irq != NO_IRQ) + free_irq(mal->rxde_irq, mal); +#ifdef CONFIG_IBM_NEW_EMAC_INTR_COALESCE + num_phys_chans = mal->num_tx_chans; + if (mal->coalesce_disabled == 0) { + for (i = 0; i < num_phys_chans; i++) { + if (mal->txcoal_irq[i] != NO_IRQ) + free_irq(mal->txcoal_irq[i], mal); + if (mal->rxcoal_irq[i] != NO_IRQ) + free_irq(mal->rxcoal_irq[i], mal); + } + } else { +#endif + if (mal->txeob_irq != NO_IRQ) + free_irq(mal->txeob_irq, mal); + if (mal->rxeob_irq != NO_IRQ) + free_irq(mal->rxeob_irq, mal); +#ifdef CONFIG_IBM_NEW_EMAC_INTR_COALESCE + } +#endif mal_reset(mal); mal_dbg_unregister(mal); - dma_free_coherent(&ofdev->dev, + if (mal->desc_memory == MAL_DESC_MEM_OCM) + ocm_free(mal->bd_virt); + else + dma_free_coherent(&ofdev->dev, sizeof(struct mal_descriptor) * (NUM_TX_BUFF * mal->num_tx_chans + NUM_RX_BUFF * mal->num_rx_chans), mal->bd_virt, diff --git a/drivers/net/ibm_newemac/mal.h b/drivers/net/ibm_newemac/mal.h index 9ededfbf072..a52dd75b1b2 100644 --- a/drivers/net/ibm_newemac/mal.h +++ b/drivers/net/ibm_newemac/mal.h @@ -118,10 +118,12 @@ #define MAL_TXCARR 0x05 #define MAL_TXEOBISR 0x06 #define MAL_TXDEIR 0x07 +#define MAL_TXBADDR 0x09 #define MAL_RXCASR 0x10 #define MAL_RXCARR 0x11 #define MAL_RXEOBISR 0x12 #define MAL_RXDEIR 0x13 +#define MAL_RXBADDR 0x15 #define MAL_TXCTPR(n) ((n) + 0x20) #define MAL_RXCTPR(n) ((n) + 0x40) #define MAL_RCBS(n) ((n) + 0x60) @@ -169,7 +171,71 @@ struct mal_descriptor { #define MAL_TX_CTRL_LAST 0x1000 #define MAL_TX_CTRL_INTR 0x0400 +#define MAL_DESC_MEM_SDRAM 0x0 +#define MAL_DESC_MEM_OCM 0x1 + +#if defined(CONFIG_405EX) +#define DCRN_SDR0_ICCRTX 0x430B /* Int coal Tx control register */ +#define DCRN_SDR0_ICCRRX 0x430C /* Int coal Rx control register */ +#define SDR0_ICC_FTHR0_SHIFT 23 +#define SDR0_ICC_FLUSH0 22 +#define SDR0_ICC_FLUWI0 21 +#define SDR0_ICC_FTHR1_SHIFT 12 +#define SDR0_ICC_FLUSH1 11 +#define SDR0_ICC_FLUWI1 10 +#define DCRN_SDR0_ICCTRTX0 0x430D /* Int coal Tx0 count threshold */ +#define DCRN_SDR0_ICCTRTX1 0x430E /* Int coal Tx1 count threshold */ +#define DCRN_SDR0_ICCTRRX0 0x430F /* Int coal Rx0 count threshold */ +#define DCRN_SDR0_ICCTRRX1 0x4310 /* Int coal Rx1 count threshold */ +#define DCRN_SDR0_ICTSRTX0 0x4307 /* Int coal Tx0 timer status*/ +#define DCRN_SDR0_ICTSRTX1 0x4308 /* Int coal Tx1 timer status*/ +#define DCRN_SDR0_ICTSRRX0 0x4309 /* Int coal Rx0 timer status*/ +#define DCRN_SDR0_ICTSRRX1 0x430A /* Int coal Rx1 timer status*/ +#elif defined(CONFIG_APM82181) +#define DCRN_SDR0_ICCRTX0 0x4410 /* Int coal Tx0 control register */ +#define DCRN_SDR0_ICCRRX0 0x4414 /* Int coal Rx0 control register */ +#define SDR0_ICC_FTHR_SHIFT 23 +#define SDR0_ICC_FLUSH 22 +#define SDR0_ICC_FLUWI 21 +#define DCRN_SDR0_ICCTRTX0 0x4418 /* Int coal Tx0 count threshold */ +#define DCRN_SDR0_ICCTRRX0 0x441C /* Int coal Rx0 count threshold */ +#define DCRN_SDR0_ICTSRTX0 0x4420 /* Int coal Tx0 timer status*/ +#define DCRN_SDR0_ICTSRRX0 0x4424 /* Int coal Rx0 timer status*/ +#elif defined(CONFIG_460EX) || defined(CONFIG_460GT) || defined(CONFIG_460SX) +#define DCRN_SDR0_ICCRTX0 0x4410 /* Int coal Tx0 control register */ +#define DCRN_SDR0_ICCRTX1 0x4411 /* Int coal Tx1 control register */ +#define DCRN_SDR0_ICCRTX2 0x4412 /* Int coal Tx2 control register */ +#define DCRN_SDR0_ICCRTX3 0x4413 /* Int coal Tx3 control register */ +#define DCRN_SDR0_ICCRRX0 0x4414 /* Int coal Rx0 control register */ +#define DCRN_SDR0_ICCRRX1 0x4415 /* Int coal Rx1 control register */ +#define DCRN_SDR0_ICCRRX2 0x4416 /* Int coal Rx2 control register */ +#define DCRN_SDR0_ICCRRX3 0x4417 /* Int coal Rx3 control register */ +#define SDR0_ICC_FTHR_SHIFT 23 +#define SDR0_ICC_FLUSH 22 +#define SDR0_ICC_FLUWI 21 +#define DCRN_SDR0_ICCTRTX0 0x4418 /* Int coal Tx0 count threshold */ +#define DCRN_SDR0_ICCTRTX1 0x4419 /* Int coal Tx1 count threshold */ +#define DCRN_SDR0_ICCTRTX2 0x441A /* Int coal Tx2 count threshold */ +#define DCRN_SDR0_ICCTRTX3 0x441B /* Int coal Tx3 count threshold */ +#define DCRN_SDR0_ICCTRRX0 0x441C /* Int coal Rx0 count threshold */ +#define DCRN_SDR0_ICCTRRX1 0x441D /* Int coal Rx1 count threshold */ +#define DCRN_SDR0_ICCTRRX2 0x441E /* Int coal Rx2 count threshold */ +#define DCRN_SDR0_ICCTRRX3 0x441F /* Int coal Rx3 count threshold */ +#define DCRN_SDR0_ICTSRTX0 0x4420 /* Int coal Tx0 timer status*/ +#define DCRN_SDR0_ICTSRTX1 0x4421 /* Int coal Tx1 timer status*/ +#define DCRN_SDR0_ICTSRTX2 0x4422 /* Int coal Tx2 timer status*/ +#define DCRN_SDR0_ICTSRTX3 0x4423 /* Int coal Tx3 timer status*/ +#define DCRN_SDR0_ICTSRRX0 0x4424 /* Int coal Rx0 timer status*/ +#define DCRN_SDR0_ICTSRRX1 0x4425 /* Int coal Rx1 timer status*/ +#define DCRN_SDR0_ICTSRRX2 0x4426 /* Int coal Rx2 timer status*/ +#define DCRN_SDR0_ICTSRRX3 0x4427 /* Int coal Rx3 timer status*/ +#endif + +#define COAL_FRAME_MASK 0x1FF +#define MAL_MAX_PHYS_CHANNELS 4 + struct mal_commac_ops { + void (*reset) (void *dev); void (*poll_tx) (void *dev); int (*poll_rx) (void *dev, int budget); int (*peek_rx) (void *dev); @@ -188,10 +254,22 @@ struct mal_commac { struct list_head list; }; +#ifdef CONFIG_IBM_NEW_EMAC_INTR_COALESCE +struct mal_coales_param +{ + /* Configuration parameters for the coalescing function */ + int tx_count; + int tx_time; + int rx_count; + int rx_time; +}; +#endif + struct mal_instance { int version; dcr_host_t dcr_host; + int desc_memory; /* SDRAM or OCM */ int num_tx_chans; /* Number of TX channels */ int num_rx_chans; /* Number of RX channels */ int txeob_irq; /* TX End Of Buffer IRQ */ @@ -200,6 +278,27 @@ struct mal_instance { int rxde_irq; /* RX Descriptor Error IRQ */ int serr_irq; /* MAL System Error IRQ */ +#if defined(CONFIG_IBM_NEW_EMAC_INTR_COALESCE) + + int txcoal0_irq; /* COAL */ + int txcoal1_irq; /* COAL */ + int txcoal2_irq; /* COAL */ + int txcoal3_irq; /* COAL */ + int rxcoal0_irq; /* COAL */ + int rxcoal1_irq; /* COAL */ + int rxcoal2_irq; /* COAL */ + int rxcoal3_irq; /* COAL */ + + struct mal_coales_param coales_param[4]; + /* add copy of iccrtx and iccrrx registers + * to bypass the bug on the 440EPX pass1 where these + * registers are write only + */ + u32 enet_coales_iccrtx; + u32 enet_coales_iccrrx; + struct timer_list mal_coal_timer; +#endif + struct list_head poll_list; struct napi_struct napi; @@ -208,6 +307,7 @@ struct mal_instance { u32 rx_chan_mask; dma_addr_t bd_dma; + phys_addr_t bd_phys; struct mal_descriptor *bd_virt; struct of_device *ofdev; @@ -217,6 +317,11 @@ struct mal_instance { struct net_device dummy_dev; unsigned int features; +#ifdef CONFIG_IBM_NEW_EMAC_INTR_COALESCE + int txcoal_irq[MAL_MAX_PHYS_CHANNELS]; /* MAL TxCoalesce Error IRQ */ + int rxcoal_irq[MAL_MAX_PHYS_CHANNELS]; /* MAL RxCoalesce IRQ */ + int coalesce_disabled; /* Coalesce disable flag */ +#endif }; static inline u32 get_mal_dcrn(struct mal_instance *mal, int reg) @@ -284,6 +389,9 @@ void mal_disable_rx_channel(struct mal_instance *mal, int channel); void mal_poll_disable(struct mal_instance *mal, struct mal_commac *commac); void mal_poll_enable(struct mal_instance *mal, struct mal_commac *commac); +#ifdef CONFIG_IBM_NEW_EMAC_INTR_COALESCE +void mal_enable_coal(struct mal_instance *mal); +#endif /* Add/remove EMAC to/from MAL polling list */ void mal_poll_add(struct mal_instance *mal, struct mal_commac *commac); diff --git a/drivers/net/ibm_newemac/phy.c b/drivers/net/ibm_newemac/phy.c index ac9d964e59e..635cb96ef64 100644 --- a/drivers/net/ibm_newemac/phy.c +++ b/drivers/net/ibm_newemac/phy.c @@ -52,7 +52,7 @@ int emac_mii_reset_phy(struct mii_phy *phy) { int val; int limit = 10000; - +#ifndef CONFIG_APOLLO3G val = phy_read(phy, MII_BMCR); val &= ~(BMCR_ISOLATE | BMCR_ANENABLE); val |= BMCR_RESET; @@ -68,7 +68,7 @@ int emac_mii_reset_phy(struct mii_phy *phy) } if ((val & BMCR_ISOLATE) && limit > 0) phy_write(phy, MII_BMCR, val & ~BMCR_ISOLATE); - +#endif /* CONFIG_APOLLO3G */ return limit <= 0; } @@ -359,7 +359,51 @@ static struct mii_phy_def bcm5248_phy_def = { .name = "BCM5248 10/100 SMII Ethernet", .ops = &generic_phy_ops }; +#ifdef CONFIG_APOLLO3G +static int bcm54610_init(struct mii_phy *phy) +{ + int regb, rega; + + phy_write(phy, 0x1C, 0x2C00); + regb = phy_read(phy, 0x1C); + + phy_write(phy, 0x1C, 0xAC8C); + + phy_write(phy, 0x1C, 0x2C00); + rega = phy_read(phy, 0x1C); + + printk(KERN_INFO "%s: before 0x%04x, after 0x%04x\n", + __FUNCTION__, (regb & 0xffff), (rega & 0xffff)); + + /* the RGMII interface is not half-duplex capable */ + rega = phy_read(phy, 0x04); + phy_write(phy, 0x04, rega & ~0x00a0); + + regb = phy_read(phy, 0x09); + phy_write(phy, 0x09, regb & ~0x0100); + + printk(KERN_INFO "%s: before 0x%04x, 0x%04x; after 0x%04x, 0x%04x\n", + __FUNCTION__, (rega & 0xffff), (regb & 0xffff), + (phy_read(phy, 0x04) & 0xffff), (phy_read(phy, 0x09) & 0xffff)); + + return 0; +} + +static struct mii_phy_ops bcm54610_phy_ops = { + .init = bcm54610_init, + .setup_aneg = genmii_setup_aneg, + .setup_forced = genmii_setup_forced, + .poll_link = genmii_poll_link, + .read_link = genmii_read_link +}; +static struct mii_phy_def bcm54610_phy_def = { + .phy_id = 0x0143BD63, + .phy_id_mask = 0xffffffff, + .name = "BCM54610 Gigabit Ethernet", + .ops = &bcm54610_phy_ops +}; +#endif static int m88e1111_init(struct mii_phy *phy) { pr_debug("%s: Marvell 88E1111 Ethernet\n", __func__); @@ -400,6 +444,111 @@ static int m88e1112_init(struct mii_phy *phy) return 0; } +static int m88e1141_init(struct mii_phy *phy) +{ + unsigned short data; + + printk(KERN_CRIT "we go to init for %d\n", phy->mode); + switch (phy->mode) { + case PHY_MODE_GMII: +#if defined(CONFIG_M88E1141_DEBUG) + data = phy_read(phy, 0x00); + data |= 0x2000; /* Speed Select 1000Mbps */ + phy_write(phy, 0x00, data); + data = phy_read(phy, 0x14); + data |= 0x0010; /* GMII Deafult MAC interface speed */ + phy_write(phy, 0x14, data); + data = phy_read(phy, 0x1B); + data |= 0x8000; /* Auto Selection = Disable */ + data |= 0x0400; /* Interrupt Polarity = Active Low */ + data |= 0x0080; /* DTE Detect Status wait time */ + data |= 0x000F; /* HWCFG_MODE = GMII */ + phy_write(phy, 0x1B, data); + data = phy_read(phy, 0x04); + data |= 0x0C00; /* Async Pause + Pause */ + data |= 0x01E0; /* 100FDX + 100HDX + 10FDX + 10HDX */ + phy_write(phy, 0x04, data); + data = phy_read(phy, 0x09); + //data |= 0x1C00; /* Master/Slave Config */ + data |= 0x0300; /* 1000FDX + 1000HDX */ + phy_write(phy, 0x09, data); +#else + data = phy_read(phy, 0x14); + data |= 0x0010; /* GMII Deafult MAC interface speed */ + phy_write(phy, 0x14, data); + data = phy_read(phy, 0x1B); + data |= 0x000F; /* HWCFG_MODE = GMII */ + phy_write(phy, 0x1B, data); +#endif + break; + case PHY_MODE_RGMII: +#if defined(CONFIG_M88E1141_DEBUG) + data = phy_read(phy, 0x00); + data |= 0x2000; /* Speed Select 1000Mbps */ + phy_write(phy, 0x00, data); + data = phy_read(phy, 0x14); + data |= 0x0080; /* RGMII RX Timing Control */ + data |= 0x0002; /* RGMII TX Timing Control */ + data |= 0x0050; /* RGMII Deafult MAC interface speed */ + phy_write(phy, 0x14, data); + data = phy_read(phy, 0x1B); + data |= 0x8000; /* Auto Selection = Disable */ + data |= 0x0400; /* Interrupt Polarity = Active Low */ + data |= 0x0080; /* DTE Detect Status wait time */ + data |= 0x000B; /* HWCFG_MODE = RGMII */ + phy_write(phy, 0x1B, data); + data = phy_read(phy, 0x04); + data |= 0x0C00; /* Async Pause + Pause */ + data |= 0x01E0; /* 100FDX + 100HDX + 10FDX + 10HDX */ + phy_write(phy, 0x04, data); + data = phy_read(phy, 0x09); + //data |= 0x1C00; /* Master/Slave Config */ + data |= 0x0300; /* 1000FDX + 1000HDX */ + phy_write(phy, 0x09, data); +#else + data = phy_read(phy, 0x14); + data |= 0x0080; /* RGMII RX Timing Control */ + data |= 0x0002; /* RGMII TX Timing Control */ + data |= 0x0050; /* RGMII Deafult MAC interface speed */ + phy_write(phy, 0x14, data); + data = phy_read(phy, 0x1B); + data |= 0x000B; /* HWCFG_MODE = RGMII */ + phy_write(phy, 0x1B, data); +#endif + break; + case PHY_MODE_SGMII: + data = phy_read(phy, 0x14); + data &= ~0x0080; /* CLEAR - RGMII setting */ + data &= ~0x0002; /* CLEAR - RGMII setting */ + data &= ~0x0070; /* CLEAR - Default MAC speed */ + data |= 0x0070; /* GMII Deafult MAC interface speed */ + phy_write(phy, 0x14, data); + + data = phy_read(phy, 0x1B); + data |= 0x8000; /* Auto Selection = Disable */ + data &= ~0x0400; /* Interrupt Polarity = Active Low */ + data |= 0x0120; /* DTE Detect Status wait time */ + data &= ~0x000F;/* CLEAR - HWCFG_MODE setting */ + data |= 0x0000; /* HWCFG_MODE = SGMII */ + phy_write(phy, 0x1B, data); + + phy_write(phy, 0x10, 0x0068); + phy_write(phy, 0x16, 0x0001); + phy_write(phy, 0x00, 0x8100); + phy_write(phy, 0x16, 0x0000); + break; + } + +#if 0 + data = phy_read(phy, 0x00); + data |= 0x8000; /* Reset PHY */ + phy_write(phy, 0x00, data); + udelay(1000); +#endif + + return 0; +} + static int et1011c_init(struct mii_phy *phy) { u16 reg_short; @@ -467,12 +616,31 @@ static struct mii_phy_def m88e1112_phy_def = { .ops = &m88e1112_phy_ops, }; +static struct mii_phy_ops m88e1141_phy_ops = { + .init = m88e1141_init, + .setup_aneg = genmii_setup_aneg, + .setup_forced = genmii_setup_forced, + .poll_link = genmii_poll_link, + .read_link = genmii_read_link +}; + +static struct mii_phy_def m88e1141_phy_def = { + .phy_id = 0x01410CD0, + .phy_id_mask = 0x0ffffff0, + .name = "Marvell 88E1141 Ethernet", + .ops = &m88e1141_phy_ops, +}; + static struct mii_phy_def *mii_phy_table[] = { &et1011c_phy_def, &cis8201_phy_def, &bcm5248_phy_def, +#ifdef CONFIG_APOLLO3G + &bcm54610_phy_def, +#endif &m88e1111_phy_def, &m88e1112_phy_def, + &m88e1141_phy_def, &genmii_phy_def, NULL }; @@ -487,7 +655,11 @@ int emac_mii_phy_probe(struct mii_phy *phy, int address) phy->advertising = 0; phy->address = address; phy->speed = SPEED_10; +#ifndef CONFIG_APOLLO3G phy->duplex = DUPLEX_HALF; +#else + phy->duplex = DUPLEX_FULL; +#endif phy->pause = phy->asym_pause = 0; /* Take PHY out of isolate mode and reset it. */ @@ -511,24 +683,36 @@ int emac_mii_phy_probe(struct mii_phy *phy, int address) u16 bmsr = phy_read(phy, MII_BMSR); if (bmsr & BMSR_ANEGCAPABLE) phy->features |= SUPPORTED_Autoneg; +#ifndef CONFIG_APOLLO3G if (bmsr & BMSR_10HALF) phy->features |= SUPPORTED_10baseT_Half; +#endif if (bmsr & BMSR_10FULL) phy->features |= SUPPORTED_10baseT_Full; +#ifndef CONFIG_APOLLO3G if (bmsr & BMSR_100HALF) phy->features |= SUPPORTED_100baseT_Half; +#endif if (bmsr & BMSR_100FULL) phy->features |= SUPPORTED_100baseT_Full; if (bmsr & BMSR_ESTATEN) { u16 esr = phy_read(phy, MII_ESTATUS); if (esr & ESTATUS_1000_TFULL) phy->features |= SUPPORTED_1000baseT_Full; +#ifndef CONFIG_APOLLO3G if (esr & ESTATUS_1000_THALF) phy->features |= SUPPORTED_1000baseT_Half; +#endif } phy->features |= SUPPORTED_MII; } +#if (defined CONFIG_APM82181) /* RGMII does not support half-duplex */ + phy->features &= ~(SUPPORTED_1000baseT_Half | + SUPPORTED_100baseT_Half | + SUPPORTED_10baseT_Half); +#endif + /* Setup default advertising */ phy->advertising = phy->features; diff --git a/drivers/net/ibm_newemac/rgmii.c b/drivers/net/ibm_newemac/rgmii.c index 8d76cb89dbd..98048d8b667 100644 --- a/drivers/net/ibm_newemac/rgmii.c +++ b/drivers/net/ibm_newemac/rgmii.c @@ -222,7 +222,7 @@ void *rgmii_dump_regs(struct of_device *ofdev, void *buf) * rgmii ? if yes, then we'll add a cell_index * like we do for emac */ - memcpy_fromio(regs, dev->base, sizeof(struct rgmii_regs)); + memcpy(regs, dev->base, sizeof(struct rgmii_regs)); return regs + 1; } diff --git a/drivers/net/ibm_newemac/tah.c b/drivers/net/ibm_newemac/tah.c index 30173a9fb55..8d31b4a2c91 100644 --- a/drivers/net/ibm_newemac/tah.c +++ b/drivers/net/ibm_newemac/tah.c @@ -61,7 +61,7 @@ void tah_reset(struct of_device *ofdev) /* 10KB TAH TX FIFO accomodates the max MTU of 9000 */ out_be32(&p->mr, - TAH_MR_CVR | TAH_MR_ST_768 | TAH_MR_TFS_10KB | TAH_MR_DTFP | + TAH_MR_CVR | TAH_MR_ST_256 | TAH_MR_TFS_10KB | TAH_MR_DTFP | TAH_MR_DIG); } @@ -82,7 +82,7 @@ void *tah_dump_regs(struct of_device *ofdev, void *buf) * zmii ? if yes, then we'll add a cell_index * like we do for emac */ - memcpy_fromio(regs, dev->base, sizeof(struct tah_regs)); + memcpy(regs, dev->base, sizeof(struct tah_regs)); return regs + 1; } diff --git a/drivers/net/ibm_newemac/zmii.c b/drivers/net/ibm_newemac/zmii.c index 17b15412494..edb710c4a35 100644 --- a/drivers/net/ibm_newemac/zmii.c +++ b/drivers/net/ibm_newemac/zmii.c @@ -225,7 +225,7 @@ void *zmii_dump_regs(struct of_device *ofdev, void *buf) * zmii ? if yes, then we'll add a cell_index * like we do for emac */ - memcpy_fromio(regs, dev->base, sizeof(struct zmii_regs)); + memcpy(regs, dev->base, sizeof(struct zmii_regs)); return regs + 1; } diff --git a/drivers/pci/pcie/Kconfig b/drivers/pci/pcie/Kconfig index 5a0c6ad53f8..1d28d863285 100644 --- a/drivers/pci/pcie/Kconfig +++ b/drivers/pci/pcie/Kconfig @@ -10,6 +10,18 @@ config PCIEPORTBUS Power Management Event support and Virtual Channel support to run on PCI Express Ports (Root or Switch). +choice + prompt "PCIE Max Payload Size" + depends on PCIEPORTBUS && APM82181 + default PCIE_MAX_PAYLOAD_SIZE_256 + +config PCIE_MAX_PAYLOAD_SIZE_128 + bool "128 Bytes" + +config PCIE_MAX_PAYLOAD_SIZE_256 + bool "256 Bytes" +endchoice + # # Include service Kconfig here # diff --git a/drivers/rtc/Kconfig b/drivers/rtc/Kconfig index 3c20dae43ce..005169a6c04 100644 --- a/drivers/rtc/Kconfig +++ b/drivers/rtc/Kconfig @@ -414,6 +414,13 @@ config RTC_DRV_CMOS This driver can also be built as a module. If so, the module will be called rtc-cmos. +config RTC_DRV_PPC_DCR + tristate "IBM RTC through DCR bus base on MC146818" + select RTC_DRV_M48T86 + help + If you say yes here you get support for IBM RTC chips. + + config RTC_DRV_DS1216 tristate "Dallas DS1216" depends on SNI_RM diff --git a/drivers/rtc/Makefile b/drivers/rtc/Makefile index aa3fbd5517a..a530c13d5ea 100644 --- a/drivers/rtc/Makefile +++ b/drivers/rtc/Makefile @@ -85,3 +85,4 @@ obj-$(CONFIG_RTC_DRV_VR41XX) += rtc-vr41xx.o obj-$(CONFIG_RTC_DRV_WM831X) += rtc-wm831x.o obj-$(CONFIG_RTC_DRV_WM8350) += rtc-wm8350.o obj-$(CONFIG_RTC_DRV_X1205) += rtc-x1205.o +obj-$(CONFIG_RTC_DRV_IBM) += ibm_rtc.o diff --git a/drivers/rtc/ibm_rtc.c b/drivers/rtc/ibm_rtc.c new file mode 100644 index 00000000000..aff94f85428 --- /dev/null +++ b/drivers/rtc/ibm_rtc.c @@ -0,0 +1,479 @@ +/* + * IBM RTC driver + * Copyright (c) 2010 Applied Micro + * + * Author: Duy Nguyen <dpnguyen@appliedmicro.com> + * + * Base on ST M48T86 / Dallas DS12887 RTC driver + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This drivers only supports the clock running in BCD and 24H mode. + * If it will be ever adapted to binary and 12H mode, care must be taken + * to not introduce bugs. + */ + +#include <linux/module.h> +#include <linux/init.h> +#include <linux/device.h> +#include <linux/of_platform.h> +#include <linux/rtc.h> +#include <linux/bcd.h> + +#include <asm/dcr.h> +#include <asm/dcr-regs.h> + +#define RTC_REG_SEC 0x00 +#define RTC_REG_SECALRM 0x01 +#define RTC_REG_MIN 0x02 +#define RTC_REG_MINALRM 0x03 +#define RTC_REG_HOUR 0x04 +#define RTC_REG_HOURALRM 0x05 +#define RTC_REG_DOW 0x06 /* 1 = sunday */ +#define RTC_REG_DOM 0x07 +#define RTC_REG_MONTH 0x08 /* 1 - 12 */ +#define RTC_REG_YEAR 0x09 /* 0 - 99 */ +#define RTC_REG_A 0x0A +#define RTC_REG_B 0x0B +#define RTC_REG_C 0x0C +#define RTC_REG_D 0x0D + +#define RTC_REG_B_H24 (1 << 1) +#define RTC_REG_B_DM (1 << 2) +#define RTC_REG_B_SET (1 << 7) +#define RTC_REG_D_VRT (1 << 7) + +#define RTC_REG_PF 0x80 /* Period */ +#define RTC_REG_AF 0x40 /* Alarm */ +#define RTC_REG_UF 0x10 /* Update */ + +#define RTC_DCR_BASE_ADDR 0x300 +#define RTC_READ(reg) mfdcr(RTC_DCR_BASE_ADDR + reg) +#define RTC_WRITE(val, reg) mtdcr(RTC_DCR_BASE_ADDR + reg, val) + +/* Debug support */ +#define DBG_LEVEL 0 + +#define RTC_DBG(dev, name, fmt, arg...) \ + printk(KERN_DEBUG #name ": " fmt, ## arg) + +#if DBG_LEVEL > 0 +# define DBG(d,f,x...) RTC_DBG(d, ibm-rtc, f, ##x) +# define NL "\n" +#else +# define DBG(f,x...) ((void)0) +#endif + +#if DBG_LEVEL > 1 +# define DBG2(d,f,x...) DBG(d,f, ##x) +#else +# define DBG2(f,x...) ((void)0) +#endif + +/* + * FIXME: Temporatorily comment out read/setalarm() + * because it make /dev/rtc work wrong. + * Enabling it later (if needed) + */ +#undef CONFIG_IBM_RTC_ALARM + +struct ibm_rtc_instance { + void __iomem *ioaddr; + int irq; + struct rtc_device *rtc; + struct of_device *ofdev; + spinlock_t lock; /* serialize the NVRAM and RTC access */ +}; + +static int ibm_rtc_read_time(struct device *dev, struct rtc_time *tm) +{ + unsigned char reg; + //struct platform_device *pdev = to_platform_device(dev); + + DBG2(dev, "ibm_rtc_read_time" NL); + + reg = RTC_READ(RTC_REG_B); + + if (reg & RTC_REG_B_DM) { + /* data (binary) mode */ + tm->tm_sec = RTC_READ(RTC_REG_SEC); + tm->tm_min = RTC_READ(RTC_REG_MIN); + tm->tm_hour = RTC_READ(RTC_REG_HOUR) & 0x3F; + tm->tm_mday = RTC_READ(RTC_REG_DOM); + /* tm_mon is 0-11 */ + tm->tm_mon = RTC_READ(RTC_REG_MONTH) - 1; + tm->tm_year = RTC_READ(RTC_REG_YEAR) + 100; + tm->tm_wday = RTC_READ(RTC_REG_DOW); + } else { + /* bcd mode */ + tm->tm_sec = bcd2bin(RTC_READ(RTC_REG_SEC)); + tm->tm_min = bcd2bin(RTC_READ(RTC_REG_MIN)); + tm->tm_hour = bcd2bin(RTC_READ(RTC_REG_HOUR) & 0x3F); + tm->tm_mday = bcd2bin(RTC_READ(RTC_REG_DOM)); + /* tm_mon is 0-11 */ + tm->tm_mon = bcd2bin(RTC_READ(RTC_REG_MONTH)) - 1; + tm->tm_year = bcd2bin(RTC_READ(RTC_REG_YEAR)) + 100; + tm->tm_wday = bcd2bin(RTC_READ(RTC_REG_DOW)); + } + + /* correct the hour if the clock is in 12h mode */ + if (!(reg & RTC_REG_B_H24)) + if (RTC_READ(RTC_REG_HOUR) & 0x80) + tm->tm_hour += 12; + + return 0; +} + +static int ibm_rtc_set_time(struct device *dev, struct rtc_time *tm) +{ + unsigned char reg; + //struct platform_device *pdev = to_platform_device(dev); + + DBG2(dev, "ibm_rtc_set_time" NL); + + reg = RTC_READ(RTC_REG_B); + + /* update flag and 24h mode */ + reg |= RTC_REG_B_SET | RTC_REG_B_H24; + RTC_WRITE(reg, RTC_REG_B); + + if (reg & RTC_REG_B_DM) { + /* data (binary) mode */ + RTC_WRITE(tm->tm_sec, RTC_REG_SEC); + RTC_WRITE(tm->tm_min, RTC_REG_MIN); + RTC_WRITE(tm->tm_hour, RTC_REG_HOUR); + RTC_WRITE(tm->tm_mday, RTC_REG_DOM); + RTC_WRITE(tm->tm_mon + 1, RTC_REG_MONTH); + RTC_WRITE(tm->tm_year % 100, RTC_REG_YEAR); + RTC_WRITE(tm->tm_wday, RTC_REG_DOW); + } else { + /* bcd mode */ + RTC_WRITE(bin2bcd(tm->tm_sec), RTC_REG_SEC); + RTC_WRITE(bin2bcd(tm->tm_min), RTC_REG_MIN); + RTC_WRITE(bin2bcd(tm->tm_hour), RTC_REG_HOUR); + RTC_WRITE(bin2bcd(tm->tm_mday), RTC_REG_DOM); + RTC_WRITE(bin2bcd(tm->tm_mon + 1), RTC_REG_MONTH); + RTC_WRITE(bin2bcd(tm->tm_year % 100), RTC_REG_YEAR); + RTC_WRITE(bin2bcd(tm->tm_wday), RTC_REG_DOW); + } + + /* update ended */ + reg &= ~RTC_REG_B_SET; + RTC_WRITE(reg, RTC_REG_B); + + return 0; +} + +#if defined(CONFIG_IBM_RTC_ALARM) +/* + * Read alarm time and date in RTC + */ +static int ibm_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) +{ + unsigned char reg; + //struct platform_device *pdev = to_platform_device(dev); + struct rtc_time *tm = &alrm->time; + + DBG2(dev, "ibm_rtc_read_time" NL); + + reg = RTC_READ(RTC_REG_B); + + if (reg & RTC_REG_B_DM) { + /* data (binary) mode */ + tm->tm_sec = RTC_READ(RTC_REG_SECALRM); + tm->tm_min = RTC_READ(RTC_REG_MINALRM); + tm->tm_hour = RTC_READ(RTC_REG_HOURALRM) & 0x3F; + tm->tm_mday = RTC_READ(RTC_REG_DOM); + /* tm_mon is 0-11 */ + tm->tm_mon = RTC_READ(RTC_REG_MONTH) - 1; + tm->tm_year = RTC_READ(RTC_REG_YEAR) + 100; + tm->tm_wday = RTC_READ(RTC_REG_DOW); + } else { + /* bcd mode */ + tm->tm_sec = bcd2bin(RTC_READ(RTC_REG_SECALRM)); + tm->tm_min = bcd2bin(RTC_READ(RTC_REG_MINALRM)); + tm->tm_hour = bcd2bin(RTC_READ(RTC_REG_HOURALRM) & 0x3F); + tm->tm_mday = bcd2bin(RTC_READ(RTC_REG_DOM)); + /* tm_mon is 0-11 */ + tm->tm_mon = bcd2bin(RTC_READ(RTC_REG_MONTH)) - 1; + tm->tm_year = bcd2bin(RTC_READ(RTC_REG_YEAR)) + 100; + tm->tm_wday = bcd2bin(RTC_READ(RTC_REG_DOW)); + } + + /* correct the hour if the clock is in 12h mode */ + if (!(reg & RTC_REG_B_H24)) + if (RTC_READ(RTC_REG_HOUR) & 0x80) + tm->tm_hour += 12; + + return 0; +} + +/* + * Set alarm in RTC + */ +static int ibm_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) +{ + unsigned char reg; + struct platform_device *pdev = to_platform_device(dev); + struct ibm_rtc_instance *rtc = platform_get_drvdata(pdev); + struct rtc_time *tm = &alrm->time; + + /* If no irq, we don't support ALARM */ + if (rtc->irq == NO_IRQ) + return -EIO; + + reg = RTC_READ(RTC_REG_B); + + /* update flag and 24h mode */ + reg |= RTC_REG_B_SET | RTC_REG_B_H24; + RTC_WRITE(reg, RTC_REG_B); + + if (reg & RTC_REG_B_DM) { + /* data (binary) mode */ + RTC_WRITE(tm->tm_sec, RTC_REG_SECALRM); + RTC_WRITE(tm->tm_min, RTC_REG_MINALRM); + RTC_WRITE(tm->tm_hour, RTC_REG_HOURALRM); + RTC_WRITE(tm->tm_mday, RTC_REG_DOM); + RTC_WRITE(tm->tm_mon + 1, RTC_REG_MONTH); + RTC_WRITE(tm->tm_year % 100, RTC_REG_YEAR); + RTC_WRITE(tm->tm_wday, RTC_REG_DOW); + } else { + /* bcd mode */ + RTC_WRITE(bin2bcd(tm->tm_sec), RTC_REG_SECALRM); + RTC_WRITE(bin2bcd(tm->tm_min), RTC_REG_MINALRM); + RTC_WRITE(bin2bcd(tm->tm_hour), RTC_REG_HOURALRM); + RTC_WRITE(bin2bcd(tm->tm_mday), RTC_REG_DOM); + RTC_WRITE(bin2bcd(tm->tm_mon + 1), RTC_REG_MONTH); + RTC_WRITE(bin2bcd(tm->tm_year % 100), RTC_REG_YEAR); + RTC_WRITE(bin2bcd(tm->tm_wday), RTC_REG_DOW); + } + + /* update ended */ + reg &= ~RTC_REG_B_SET; + RTC_WRITE(reg, RTC_REG_B); + + return 0; +} +#endif //CONFIG_IBM_RTC_ALARM + +/* + * Handle commands from user-space + */ +static int ibm_rtc_ioctl(struct device *dev, unsigned int cmd, + unsigned long arg) +{ + unsigned char r; + struct platform_device *pdev = to_platform_device(dev); + struct ibm_rtc_instance *rtc = platform_get_drvdata(pdev); + unsigned long flags; + int ret = 0; + + spin_lock_irqsave(&rtc->lock, flags); + r = RTC_READ(RTC_REG_B); + + switch (cmd) { + case RTC_AIE_OFF: /* alarm interrupt off */ + r &= ~RTC_REG_AF; + break; + case RTC_AIE_ON: /* alarm interrupt on */ + r |= RTC_REG_AF; + break; + case RTC_UIE_OFF: /* update interrupt off */ + r &= ~RTC_REG_UF; + break; + case RTC_UIE_ON: /* update interrupt on */ + r |= RTC_REG_UF; + break; + case RTC_PIE_OFF: /* periodic interrupt off */ + r &= ~RTC_REG_PF; + break; + case RTC_PIE_ON: /* periodic interrupt on */ + r |= RTC_REG_PF; + break; + default: + ret = -ENOIOCTLCMD; + break; + } + + RTC_WRITE(r, RTC_REG_B); + spin_unlock_irqrestore(&rtc->lock, flags); + + return ret; +} + +static int ibm_rtc_proc(struct device *dev, struct seq_file *seq) +{ + unsigned char reg; + //struct platform_device *pdev = to_platform_device(dev); + + DBG(dev, "ibm_rtc_proc" NL); + + reg = RTC_READ(RTC_REG_B); + + seq_printf(seq, "mode\t\t: %s\n", + (reg & RTC_REG_B_DM) ? "binary" : "bcd"); + + reg = RTC_READ(RTC_REG_D); + + seq_printf(seq, "battery\t\t: %s\n", + (reg & RTC_REG_D_VRT) ? "ok" : "exhausted"); + + return 0; +} + +/* + * IRQ handler for the RTC + */ +static irqreturn_t ibm_rtc_interrupt(int irq, void *dev_id) +{ + unsigned char reg; + struct platform_device *pdev = to_platform_device((struct device *)dev_id); + struct ibm_rtc_instance *dev = platform_get_drvdata(pdev); + unsigned char events = RTC_IRQF; + + /* + * read and clear interrupt + */ + spin_lock(&dev->lock); + reg = RTC_READ(RTC_REG_C); + spin_unlock(&dev->lock); + + DBG(dev, "RTC_REG_C = %04x" NL, reg); + + if (reg & RTC_REG_PF) + events|= RTC_PF; + if (reg & RTC_REG_AF) + events|= RTC_AF; + if (reg & RTC_REG_UF) + events|= RTC_UF; + + rtc_update_irq(dev->rtc, 1, events); + + return IRQ_HANDLED; +} + +static const struct rtc_class_ops ibm_rtc_ops = { + .ioctl = ibm_rtc_ioctl, + .read_time = ibm_rtc_read_time, + .set_time = ibm_rtc_set_time, +#if defined(CONFIG_IBM_RTC_ALARM) + .read_alarm = ibm_rtc_read_alarm, + .set_alarm = ibm_rtc_set_alarm, +#endif + .proc = ibm_rtc_proc, +}; + +static int ibm_rtc_probe(struct of_device *ofdev, + const struct of_device_id *match) +{ + unsigned char reg; + struct platform_device *pdev = &ofdev->dev; + struct ibm_rtc_instance *dev = platform_get_drvdata(pdev); + struct device_node *np = ofdev->node; + struct rtc_device *rtc; + int err; + + DBG(dev, "ibm_rtc_probe" NL); + + /* + * Skip unused/unwired RTC. + */ + if (of_get_property(np, "unused", NULL) || !of_device_is_available(np)) + return -ENODEV; + + /* Allocate RTC device */ + dev = kmalloc(sizeof(struct ibm_rtc_instance), GFP_KERNEL); + if (dev == NULL) { + dev_err(&ofdev->dev, "kmalloc failed for dev\n"); + err = -ENOMEM; + goto out; + } + memset(dev, 0, sizeof(struct ibm_rtc_instance)); + + rtc = rtc_device_register("ibm_rtc", + &ofdev->dev, &ibm_rtc_ops, THIS_MODULE); + + if (IS_ERR(rtc)) + return PTR_ERR(rtc); + + dev->rtc = rtc; + dev->ofdev = ofdev; + + /* Try to get irq number. We also can work in + * the mode without IRQ. + */ + dev->irq = irq_of_parse_and_map(np, 0); + if (dev->irq == NO_IRQ) { + printk(KERN_ERR "%s: Can't map main interrupt\n", np->full_name); + err = -ENODEV; + goto out; + } + + if (dev->irq != NO_IRQ) { + err = request_irq(dev->irq, ibm_rtc_interrupt, + IRQF_SHARED, "IBM RTC", &ofdev->dev); + if (err) + goto out; + } + + dev_set_drvdata(&ofdev->dev, dev); + + /* read battery status */ + reg = RTC_READ(RTC_REG_D); + dev_info(&ofdev->dev, "battery %s\n", + (reg & RTC_REG_D_VRT) ? "ok" : "exhausted"); + + return 0; +out: + return err; +} + +static int ibm_rtc_remove(struct of_device *ofdev) +{ + struct platform_device *pdev = &ofdev->dev; + struct ibm_rtc_instance *dev = platform_get_drvdata(pdev); + struct rtc_device *rtc = dev->rtc; + + DBG(dev, "ibm_rtc_remove" NL); + + dev_set_drvdata(&ofdev->dev, NULL); + + if (rtc) + rtc_device_unregister(rtc); + + return 0; +} + +static const struct of_device_id ibm_rtc_match[] = { + { .compatible = "ibm,rtc", }, + {} +}; + +static struct of_platform_driver ibm_rtc_platform_driver = { + .name = "ibm-rtc", + .match_table = ibm_rtc_match, + + .probe = ibm_rtc_probe, + .remove = ibm_rtc_remove, +}; + +static int __init ibm_rtc_init(void) +{ + return of_register_platform_driver(&ibm_rtc_platform_driver); +} + +static void __exit ibm_rtc_exit(void) +{ + of_unregister_platform_driver(&ibm_rtc_platform_driver); +} + +MODULE_AUTHOR("Duy Nguyen <dpnguyen@appliedmicro.com>"); +MODULE_DESCRIPTION("IBM RTC driver"); +MODULE_LICENSE("GPL"); +MODULE_VERSION(DRV_VERSION); +MODULE_ALIAS("platform:ibm-rtc"); + +module_init(ibm_rtc_init); +module_exit(ibm_rtc_exit); diff --git a/drivers/scp/Kconfig b/drivers/scp/Kconfig new file mode 100755 index 00000000000..b44c6d556cb --- /dev/null +++ b/drivers/scp/Kconfig @@ -0,0 +1,12 @@ +# +# Character device configuration +# + +menu "SCP support" +config SCP + tristate "SCP device interface" + depends on (440EPX || 440GRX || 405EX || 405EXr || APM82181) + default n + help + When selected the SCP device driver is provided. +endmenu diff --git a/drivers/scp/Makefile b/drivers/scp/Makefile new file mode 100755 index 00000000000..8fa43d08906 --- /dev/null +++ b/drivers/scp/Makefile @@ -0,0 +1,5 @@ +# +# Makefile for the kernel spi bus driver. +# +amcc_scp-objs := scp-dev.o spi_eeprom.o +obj-$(CONFIG_SCP) += amcc_scp.o diff --git a/drivers/scp/scp-dev.c b/drivers/scp/scp-dev.c new file mode 100755 index 00000000000..b8f286c0342 --- /dev/null +++ b/drivers/scp/scp-dev.c @@ -0,0 +1,654 @@ +/* + ************************************************************************** + * drivers/spi/scp-dev.c -- Serial Communications Port + * + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + * + * + * + * (C) Copyright IBM Corp. 2004 Christophe Lombard <christophe_lombard@fr.ibm.com> + * + * + * Usage: + * Transmit data to scp + * echo -n "..." > /proc/driver/scp_dev + * Example: Write and read the value 0x19 at the address 0x1EE + + echo "Status Read " + + echo -n "CSENA" > /proc/driver/scp_dev # Enable FRAM + echo -n "RDSR" > /proc/driver/scp_dev # RDSR: 0x05 to read FRAM status + echo -n "0" > /proc/driver/scp_dev + echo -n "RXDATA" > /proc/driver/scp_dev # read data + echo -n "CSDIS" > /proc/driver/scp_dev # Disable FRAM + + + #echo "write data " + + echo -n "CSENA" > /proc/driver/scp_dev # Enable FRAM + echo -n "WREN" > /proc/driver/scp_dev # WREN: 0x06 + echo -n "CSDIS" > /proc/driver/scp_dev # Disable FRAM + + echo -n "CSENA" > /proc/driver/scp_dev # Enable FRAM + echo -n "WRITE" > /proc/driver/scp_dev # WRITE: 0x02 + echo -n "01" > /proc/driver/scp_dev # write address on 10 bits. Ex: 0x17EE (max : 3FF) + echo -n "EE" > /proc/driver/scp_dev + echo -n "19" > /proc/driver/scp_dev # write data on 8 bits. Ex: 19 + echo -n "CSDIS" > /proc/driver/scp_dev # Disable FRAM + + + #echo "read data " + + echo -n "CSENA" > /proc/driver/scp_dev # Enable FRAM + echo -n "READ" > /proc/driver/scp_dev # READ: 0x03 + echo -n "1" > /proc/driver/scp_dev # read address on 10 bits. Ex: 0x1EE + echo -n "EE" > /proc/driver/scp_dev + echo -n "0" > /proc/driver/scp_dev # write dummy data: 0 (Mandatory) + echo -n "RXDATA" > /proc/driver/scp_dev # read data + echo -n "CSDIS" > /proc/driver/scp_dev # Disable FRAM + * + * It is impotant to know the example to know how the SCP works. + * On Beech board the SPI EEPROM is AT25080A. This affects the max address. + * ************************************************************************/ +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/init.h> +#include <linux/proc_fs.h> +#include <asm/uaccess.h> +#include <asm/io.h> +#include <linux/delay.h> +#include <linux/interrupt.h> +#include <asm/irq.h> +#include <linux/platform_device.h> +#include <asm/dcr-native.h> +#include <linux/of_platform.h> + +#undef SCP_DEBUG +#define SCP_DEBUG +#include "scp-dev.h" + +/* + * If you want debugging uncomment: + */ +#ifdef SCP_DEBUG +int scp_verbose = 1; +#endif + +#define DRIVER_VERSION "0.1" + +MODULE_DESCRIPTION("AMCC scp driver v" DRIVER_VERSION); +MODULE_LICENSE("GPL"); +static int major; /* default is dynamic major device number */ +module_param(major, int, 0); +MODULE_PARM_DESC(major, "Major device number"); + +#define MASK_SEL_SCP 0xFFFDFFFF +#define CS_LOW 0xFFFDFFFF +#define CS_HIGH 0x00020000 +#define GPIO_MASK 0xFFFFFFF3 + +static int +scp_ioctl(struct inode *inode, struct file *filep, unsigned int cmd, + unsigned long arg) +{ + return 0; +} + +static struct file_operations scp_device_fops = { + owner:THIS_MODULE, + ioctl:scp_ioctl, +}; + +static int scpdev_initialized; +static void *virtual_scp_add; /* Virtual address to access to the scp core */ +static void *gpio_base; + + +#define scp_readb(addr) in_8((volatile u8 *)(virtual_scp_add + (addr))) +#define scp_writeb(addr,b) out_8((volatile u8 *)(virtual_scp_add + (addr)), (b)) + +//static DECLARE_WAIT_QUEUE_HEAD(scp_wait); + +/* *********************************************************************** + * FUNCTIONS + * + */ + +/* + ************************************************************************** + * scp_set_configuration + * + * Change the configuration of the SCP. + * Enable the serial port and the serial clock Phase + * + * Return nothing. + * ************************************************************************/ +void scp_set_configuration(void) +{ + /* + * SCP Clock Divisor Modulus register + */ + scp_writeb(SCPD_CDM, 0x18); + + /* + * SCP Mode register => Serial port Enabled + loopback (for test) + */ + /* + * scp_writeb(SCPD_SPMODE, SCPD_EN | SCPD_LOOP | SCPD_SCP); + */ + + /* + * SCP Mode register => Serial port Enabled + Serial Clock Phase + */ + scp_writeb(SCPD_SPMODE, SCPD_EN | SCPD_SCP); +} + + +/* + ************************************************************************** + + * scp_rx_data + + * + + * Read the Receive Data Register. Read Only register. + + * + + * Return unsigned char read + + * **********************************************************************/ +unsigned char scp_rx_data(void) +{ + unsigned char buffer = 0x00; + + /* + * In case of loopback the data are inverted + */ + /* + * buffer = ~scp_readb(SCPD_RXDATA); + */ + /* + * start the xfer + */ + //scp_writeb(SCPD_CR, SCPD_STR); /* fscz */ + buffer = (unsigned char) scp_readb(SCPD_RXDATA); +#ifdef SCP_DEBUG + if (scp_verbose) + printk("scp_rx_data: receive data: %#X \n", buffer); +#endif + + return buffer; +} + + +/* + ************************************************************************** + * scp_tx_data + * + * Write data from command on the Transmit Data Register. + * + * Return nothing. + * ************************************************************************/ +void scp_tx_data(unsigned char buffer) +{ + /* + * write data to txdata + */ +#ifdef SCP_DEBUG + if (scp_verbose) + printk("scp_tx_data: Transmit data: %#X \n", buffer); +#endif + scp_writeb(SCPD_TXDATA, buffer); + + /* + * start the xfer + */ + scp_writeb(SCPD_CR, SCPD_STR); +} + +/* + ************************************************************************** + * scp_cs + * + * Enable/Disable Chip Select in the EPLD register (Selection_2_reg). + * + * Return nothing. + * ************************************************************************/ +void scp_cs(int chipid, int high) +{ + ulong val; +#if 1 + val = in_be32((gpio_base+(GPIO0_OR-GPIO_BASE))); + if (!high) { + out_be32((gpio_base+(GPIO0_OR-GPIO_BASE)), val && CS_LOW); + } + else { + out_be32((gpio_base+(GPIO0_OR-GPIO_BASE)), val | CS_HIGH ); + } +#endif +/* CPU 32bit not 64bit + u64 val; + + val = in_be64((gpio_base+(GPIO0_OR-GPIO_BASE))); + if (!high) { + out_be64((gpio_base+(GPIO0_OR-GPIO_BASE)), val && CS_LOW); + } + else { + out_be64((gpio_base+(GPIO0_OR-GPIO_BASE)), val | CS_HIGH ); + } +*/ + +} + +/* + ************************************************************************** + * scp_write_proc: proc interface + * + * This function is called when the user writes in the interface /proc/driver/scp_dev + * + * Commands: works on chip 0 + * CSENA: Enable Chip Select in the EPLD + * CSDIS: Disable Chip Select in the EPLD + * RXDATA: Read Receive Data register + * + * WREN: Set Write Enable Latch 0x06 + * WRDI: Write Disable 0x04 + * RDSR: Read Status 0x05 + * WRSR: Write Status 0x01 + * WRITE: Write Memory Data 0x02 + * READ: Read Memory Data 0x03 + * + * Return the number of data + * + * ************************************************************************/ + +static int +scp_write_proc(struct file *file, const char *buffer, + unsigned long count, void *data) +{ + char str[10]; + int val; +#ifdef SCP_DEBUG + scp_verbose = 1; +#endif + + memset(str, 0, sizeof(str)); + if (copy_from_user(str, buffer, min_t(unsigned long, count, sizeof(str)))) + return -EFAULT; + + /* + * Enable Chip Select in the EPLD + */ + if (!strncmp(str, "CSENA", 5)) + scp_cs(0, 0); + + /* + * Disable Chip Select in the EPLD + */ + else if (!strncmp(str, "CSDIS", 5)) + scp_cs(0, 1); + + /* + * Read RX DATA + */ + else if (!strncmp(str, "RXDATA", 6)) { + scp_rx_data(); + } + /* + * Set Write Enable Latch: 0x06 + */ + else if (!strncmp(str, "WREN", 4)) + scp_tx_data(0x06); + + /* + * Write Disable: 0x04 + */ + else if (!strncmp(str, "WRDI", 4)) + scp_tx_data(0x04); + + /* + * Read Status Command: 0x05 + */ + else if (!strncmp(str, "RDSR", 4)) + scp_tx_data(0x05); + /* + * Write Status Command: 0x01 + */ + else if (!strncmp(str, "WRSR", 4)) + scp_tx_data(0x01); + + /* + * Write Memory Data: 0x02 + */ + else if (!strncmp(str, "WRITE", 5)) + scp_tx_data(0x02); + + /* + * Read Memory Data: 0x03 + */ + else if (!strncmp(str, "READ", 4)) + scp_tx_data(0x03); + + else { + val = simple_strtol(str, NULL, 16); + scp_tx_data((unsigned char) val); + } + return count; +} + +/* + ************************************************************************** + * scp_int_handler: Handle general SCP interrupts. + * + * + * ************************************************************************/ +static irqreturn_t scp_int_handler(int irq, void *dev_id) +{ + unsigned char status_register; + + status_register = scp_readb(SCPD_SR); + //wake_up(&scp_wait); + // Serial Data receive is complete and RxD is available + if (status_register & SCPD_RBR) { +#ifdef SCP_DEBUG + if (scp_verbose) + printk("Int-> "); +#endif + scp_rx_data(); + } + + return IRQ_HANDLED; +} + +int scp_io(int chipid, struct spi_dev_desc *desc, + const unsigned char **inbufs, unsigned int *incounts, + unsigned char **outbufs, unsigned int *outcounts, int cansleep) +{ + unsigned int incount, outcount, tries; + const unsigned char *inp; + unsigned char *outp; + int extra_clock=0; + + /* CS 'L' */ + scp_cs(chipid,0); + udelay(desc->tcss); +#ifdef SCP_DEBUG + scp_verbose = 0; +#endif + /* do scatter IO */ + inp = inbufs ? *inbufs : NULL; + extra_clock = (*inp == ATMEL_RDSR)? 1:0; + incount = *incounts; + while (incount && inp) { + tries = 0; + while (scp_readb(SCPD_SR) & SCPD_SR_BUSY) { + udelay(desc->tcss); + if (tries++ > 20) { + scp_cs(chipid,1); + return -1; + } + } + scp_tx_data(*inp++); + incount --; + if (!incount && *(++inbufs)) { + incount = *(++incounts); + inp = *(inbufs); + } + } +#ifdef SCP_DEBUG + scp_verbose = 0; +#endif + if (extra_clock) { + scp_tx_data(0); + scp_tx_data(0); + } + outp = outbufs ? *outbufs : NULL; + outcount = *outcounts; + while (outcount && outp) { + scp_tx_data(0); /* dummy, for clock */ + //wait_event(scp_wait, scp_readb(SCPD_SR) & SCPD_SR_RBR); + tries = 0; + while (!(scp_readb(SCPD_SR) & SCPD_SR_RBR)) { + udelay(desc->tcss); + if (tries++ > 5) { + return -1; + } + } + *outp++ = scp_rx_data(); + outcount --; + } + udelay(desc->tcss); + /* CS 'H' */ + scp_cs(chipid,1); + + return 0; +} + +static int __devinit scp_request_irq(struct of_device *ofdev, + struct platform_device *dev) +{ + struct device_node *np = ofdev->node; + int irq; + + irq = irq_of_parse_and_map(np, 0); + if (irq == NO_IRQ) { + dev_err(&ofdev->dev, "irq_of_parse_and_map failed\n"); + return NO_IRQ; + } + + /* request interrupt */ + if (request_irq(irq, scp_int_handler , 0, SCP_NAME, dev)) { + dev_err(&ofdev->dev, "request_irq %d failed\n", irq); + return NO_IRQ; + } + + return irq; +} + +/* + ************************************************************************** + * scpdev_cleanup: Clean the module + * + * + * Return nothing. + * ************************************************************************/ +static int __devexit scp_remove(struct of_device *ofdev) +{ + if (scpdev_initialized > 0) { + free_irq(SCP_IRQ, NULL); + iounmap(virtual_scp_add); + virtual_scp_add = NULL; + iounmap(gpio_base); + gpio_base = NULL; + release_mem_region(SCP_PHYS_ADD, 24); + remove_proc_entry("AMCC-SCP", NULL); + unregister_chrdev(major, "AMCC-SCP"); + scpdev_initialized--; + } + return 0; +} + +static int __init scp_probe(struct of_device *ofdev, + const struct of_device_id *match) +{ + SPI_DEV *spi_dev[NUM_SPI_SLAVES]; + struct proc_dir_entry *pentry; + struct platform_device *scp_dev; + int retval = 0, i; + ulong val; + if (scpdev_initialized) { + return -1; + } + + scp_dev = kzalloc(sizeof(*scp_dev), GFP_KERNEL); + if (!scp_dev) { + dev_err(&ofdev->dev, "failed to allocate device data\n"); + return -ENOMEM; + } + dev_set_drvdata(&ofdev->dev, scp_dev); + + if (request_mem_region(SCP_PHYS_ADD, 24, "AMCC-SCP") == NULL) { + retval = -EBUSY; + goto err0; + } + if ((virtual_scp_add = ioremap(SCP_PHYS_ADD, 24)) == NULL) { + retval = -ENOMEM; + goto err1; + } + //printk("virtual_scp_add=0x%p\n", virtual_scp_add); + if ((gpio_base = ioremap(GPIO_BASE, 0x100)) == NULL) { + retval = -ENOMEM; + goto err2; + } +#if 1 + /* select SCP */ + val = SDR_READ(DCRN_SDR_PFC1); + SDR_WRITE(DCRN_SDR_PFC1, val & MASK_SEL_SCP); + + /* enable GPIO output for pin 9, 10, 11 and 14*/ + val = SDR_READ(DCRN_SDR_PFC0); + SDR_WRITE(DCRN_SDR_PFC0, (val & 0xFF8FFFFF) | 0x00700000); + + val = SDR_READ(DCRN_SDR_PFC0); + SDR_WRITE(DCRN_SDR_PFC0, (val & 0xFFFDFFFF) | 0x00020000); + + /* configure GPIO 9 and 11 as SPIClkOut and SPIDO */ + val = in_be32((gpio_base+(GPIO0_OSRL-GPIO_BASE))); + out_be32((gpio_base+(GPIO0_OSRL-GPIO_BASE)), (val & 0xFFFFCCFF) | 0x00001100); + + val = in_be32((gpio_base+(GPIO0_TSRL-GPIO_BASE))); + out_be32((gpio_base+(GPIO0_TSRL-GPIO_BASE)), (val & 0xFFFFCCFF) | 0x00001100); + + val = in_be32((gpio_base+(GPIO0_ISR1L-GPIO_BASE))); + out_be32((gpio_base+(GPIO0_ISR1L-GPIO_BASE)), (val & 0xFFFFF3FF) | 0x00000400); + + /* configure GPIO14 as chip select */ + val = in_be32((gpio_base+(GPIO0_TCR-GPIO_BASE))); + out_be32((gpio_base+(GPIO0_TCR-GPIO_BASE)), (val & 0xFFFDFFFF) | 0x00020000); + + val = in_be32((gpio_base+(GPIO0_TSRL-GPIO_BASE))); + out_be32((gpio_base+(GPIO0_TSRL-GPIO_BASE)), (val & 0xFFFFFFF3) | 0x00000000); + + val = in_be32((gpio_base+(GPIO0_OSRL-GPIO_BASE))); + out_be32((gpio_base+(GPIO0_OSRL-GPIO_BASE)), (val & 0xFFFFFFF3) | 0x00000000); + + val = in_be32((gpio_base+(GPIO0_ODR-GPIO_BASE))); + out_be32((gpio_base+(GPIO0_ODR-GPIO_BASE)), (val & 0xFFFDFFFF) | 0x00000000); + + val = in_be32((gpio_base+(GPIO0_ISR1L-GPIO_BASE))); + out_be32((gpio_base+(GPIO0_ISR1L-GPIO_BASE)), val & GPIO_MASK); + + val = in_be32((gpio_base+(GPIO0_ISR2L-GPIO_BASE))); + out_be32((gpio_base+(GPIO0_ISR2L-GPIO_BASE)), val & GPIO_MASK); + + val = in_be32((gpio_base+(GPIO0_ISR3L-GPIO_BASE))); + out_be32((gpio_base+(GPIO0_ISR3L-GPIO_BASE)), val & GPIO_MASK); + + /* CS high, b14 <= '1' */ + val = in_be32((gpio_base+(GPIO0_OR-GPIO_BASE))); + out_be32((gpio_base+(GPIO0_OR-GPIO_BASE)), val | CS_HIGH ); +#endif + + if ((retval = register_chrdev(major, "AMCC-SCP", &scp_device_fops)) < 0) { + retval = -ENODEV; + goto err3; + } + /* Init the SCP Core */ + scp_set_configuration(); + /* Create proc entry */ + if ((pentry = create_proc_entry(SCP_PROC_NAME, 0200, NULL)) == NULL) { + retval = -ENODEV; + goto err4; + } + pentry->write_proc = scp_write_proc; + /* SCP interrupt registration to Linux. */ + printk(KERN_INFO "SCP: Requesting SCP irq %d ...\n", SCP_IRQ); + /* Request SCP interrupt */ + if ((scp_request_irq(ofdev, scp_dev)) == NO_IRQ) + { + printk(KERN_INFO "SCP: Requesting SCP irq %d ...fail\n", SCP_IRQ); + retval = -EINVAL; + goto err5; + } + + for (i = 0; i < NUM_SPI_SLAVES; i++) { + spi_dev[i] = NULL; + /* Allocate SPI Flash device */ + if ( (spi_dev[i] = (SPI_DEV *)kmalloc(sizeof(SPI_DEV), GFP_KERNEL)) + == NULL) { + retval = -ENOMEM; + goto err6; + } + spi_dev[i]->slaveid = i; + if ((retval = beech_scp_init(spi_dev[i])) != 0) { + printk(KERN_ERR + "beech_scp_init(): %s beech_scp_init err 0x%08x\n", + DEVICE_NAME, retval); + goto err7; + } + } + scpdev_initialized++; + + return 0; +err7: +err6: + for (i = 0; i < NUM_SPI_SLAVES; i++) { + if (spi_dev[i]) { + kfree(spi_dev[i]); + } + } + free_irq(SCP_IRQ, NULL); +err5: + remove_proc_entry("AMCC-SCP", NULL); + unregister_chrdev(major, "AMCC-SCP"); +err4: +err3: + iounmap(gpio_base); + gpio_base = NULL; +err2: + iounmap(virtual_scp_add); + virtual_scp_add = NULL; + +err1: + release_mem_region(SCP_PHYS_ADD, 24); +err0: + return retval; +} + +static const struct of_device_id amcc_scp_match[] = { + { .compatible = "amcc,scp-405ex", }, + {} +}; + +static struct of_platform_driver amcc_scp_driver = { + .name = "AMCC-SCP", + .match_table = amcc_scp_match, + .probe = scp_probe, + .remove = __devexit_p(scp_remove), +}; + +static int __init scp_init(void) +{ + return of_register_platform_driver(&amcc_scp_driver); +} + +static void __exit scp_exit(void) +{ + of_unregister_platform_driver(&amcc_scp_driver); +} + +module_init(scp_init); +module_exit(scp_exit); + +MODULE_AUTHOR("christophe Lombard <christophe_lombard@fr.ibm.com>"); +MODULE_DESCRIPTION("SCP /dev entries driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/scp/scp-dev.h b/drivers/scp/scp-dev.h new file mode 100755 index 00000000000..4e7c385a596 --- /dev/null +++ b/drivers/scp/scp-dev.h @@ -0,0 +1,196 @@ +/* ************************************************************************** + * drivers/spi/scp-dev.c -- Serial Communications Port + * + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + * + * + * + * (C) Copyright IBM Corp. 2004 Christophe Lombard <christophe_lombard@fr.ibm.com> + * + * + * Usage: + * Transmit data to scp + * echo "ad" > /proc/driver/scp_dev + * + * **************************************************************************/ +#include <linux/mtd/mtd.h> /* required for mtd support */ + +/* SDR read/write helper macros */ +#define DCRN_SDR_CONFIG_ADDR 0x000E +#define DCRN_SDR_CONFIG_DATA 0x000F + +#define SDR_READ(offset) ({ \ + mtdcr(DCRN_SDR_CONFIG_ADDR, offset); \ + mfdcr(DCRN_SDR_CONFIG_DATA);}) +#define SDR_WRITE(offset, data) ({ \ + mtdcr(DCRN_SDR_CONFIG_ADDR, offset); \ + mtdcr(DCRN_SDR_CONFIG_DATA, data);}) + +// Physical address +#define SCP_PHYS_ADD 0x4EF600900ULL +/* GPIO address */ +#define GPIO_BASE (0x4EF600B00ULL) +#define GPIO0_OR (GPIO_BASE+0x0) +#define GPIO0_TCR (GPIO_BASE+0x4) +#define GPIO0_OSRL (GPIO_BASE+0x8) +#define GPIO0_OSRH (GPIO_BASE+0xC) +#define GPIO0_TSRL (GPIO_BASE+0x10) +#define GPIO0_TSRH (GPIO_BASE+0x14) +#define GPIO0_ODR (GPIO_BASE+0x18) +#define GPIO0_ISR1L (GPIO_BASE+0x30) +#define GPIO0_ISR1H (GPIO_BASE+0x34) +#define GPIO0_ISR2L (GPIO_BASE+0x38) +#define GPIO0_ISR2H (GPIO_BASE+0x3C) +#define GPIO0_ISR3L (GPIO_BASE+0x40) +#define GPIO0_ISR3H (GPIO_BASE+0x44) +/* Function Selection register */ +#define DCRN_SDR_PFC0 0x4100 +#define DCRN_SDR_PFC1 0x4101 + +#define SCP_IRQ 34 +#define SCP_NAME "Serial Communications Port" +#define SCP_PROC_NAME "driver/scp_dev" + +/*-------------------------------------------------------------------------*/ +/* Device Driver Control Flags (combinable flags parameters) */ +/*-------------------------------------------------------------------------*/ +/* Flags used in SCPD_Set_Configuration API */ +#define SCPD_SCP 0x10 /* Serial Clock Phase */ +#define SCPD_EN 0x08 /* Serial Port Enabled */ +#define SCPD_RD 0x04 /* Data bit 7 transfer first */ +#define SCPD_CI 0x02 /* Clock inverse */ +#define SCPD_LOOP 0x01 /* Internal Loopback */ + +/*-------------------------------------------------------------------------*/ +/* Device Driver Control values */ +/*-------------------------------------------------------------------------*/ +/* SCPD_Tx_Char values */ +#define SCPD_STR 0x01 /* start of xfer */ + +/* SCPD_RBR values */ +#define SCPD_RBR 0x01 /* Rx Byte Ready */ + +/*----------------------------------------------------------------------*/ +/* Core Register Address Map */ +/*----------------------------------------------------------------------*/ +#define SCPD_SPMODE 0x0000 +#define SCPD_RXDATA 0x0001 +#define SCPD_TXDATA 0x0002 +#define SCPD_CR 0x0003 +#define SCPD_SR 0x0004 +#define SCPD_CDM 0x0006 + +#define SCPD_SR_BUSY 0x2 +#define SCPD_SR_RBR 0x1 + +#define MAF_NAME_STR_LEN 256 +#define MEM_TYPE_STR_LEN 256 + +#define DEVICE_NAME "scp" +#define DEVICE_REGS "ssi_regs" +#define NUM_SPI_SLAVES 1 + +/* ATMEL 250x0 instructions */ +#define ATMEL_WREN 0x06 +#define ATMEL_WRDI 0x04 +#define ATMEL_RDSR 0x05 +#define ATMEL_WRSR 0x01 +#define ATMEL_READ 0x03 +#define ATMEL_WRITE 0x02 +#define ATMEL_WRITE_SIZE 32 + +#define ATMEL_SR_BSY 0x01 +#define ATMEL_SR_WEN 0x02 +#define ATMEL_SR_BP0 0x04 +#define ATMEL_SR_BP1 0x08 + + + +/******************************************************************************* + * struct spi_chip + * Data structure for SPI Flash chip + @read_buf : read data from the chip into the buffer + @write_buf : write data from the buffer to the chip + @select_chip : select chip number + @hwcontrol : hw specific function for accessing control-lines + @dev_ready : hw specific function for device ready/busy ? + @chip_lock : lock to protect access + @wq : wait queue to sleep if SPI operation in progress + @state : current state of SPI device + @options : various chip options + @numchips : number of physical chips + @maf_name : Manufacturer name, obtained from READ_ID call + @mem_type : Memory Type, obtained from READ_ID call + @chipsize : Memory Capacity, obtained from READ_ID call + @numsectors : number of sectors on flash chip + @sectorsize : size of each sector + @numpages : number of pages on flash chip + @pagesize : size of each page + @slaveid : slave/flash chip number +******************************************************************************/ +typedef struct spi_chip +{ + /* SPI devices list */ + struct list_head list; + + void (*select_chip)(int chip, int on_off); + + int (*single_command)(struct mtd_info *mtd, + const int command); + + int (*read_buf)(struct mtd_info *mtd, ulong addr, + u_char *data, int data_len); + + int (*write_buf)(struct mtd_info *mtd, ulong addr, + const u_char *data, int data_len); + + spinlock_t chip_lock; + wait_queue_head_t wq; + uint options; + int manuf_id; + int id_mem_type; + int chipsize; + int numsectors; + int sectorsize; + int numpages; + int chip_delay; + int slaveid; + void *priv; +} SPI_DEV; + +/* SPI */ +struct spi_dev_desc { + unsigned int baud; + unsigned int tcss, tcsh, tcsr; /* CS setup/hold/recovery time */ + unsigned int byteorder:1; /* 0:LSB-First, 1:MSB-First */ + unsigned int polarity:1; /* 0:High-Active */ + unsigned int phase:1; /* 0:Sample-Then-Shift */ +}; + + +extern unsigned char scp_rx_data(void); +extern void scp_tx_data(unsigned char buffer); +extern int scp_io(int chipid, struct spi_dev_desc *desc, + const unsigned char **inbufs, unsigned int *incounts, + unsigned char **outbufs, unsigned int *outcounts, + int cansleep); +extern int beech_scp_init(SPI_DEV * s); +extern void scp_cs(int chipid, int on); + +#ifdef SCP_DEBUG +extern int scp_verbose; +#endif + diff --git a/drivers/scp/spi_eeprom.c b/drivers/scp/spi_eeprom.c new file mode 100755 index 00000000000..47c83a4679d --- /dev/null +++ b/drivers/scp/spi_eeprom.c @@ -0,0 +1,350 @@ +/* + * spi_eeprom.c + * + * 2003-2005 (c) MontaVista Software, Inc. This file is licensed under the + * terms of the GNU General Public License version 2. This program is + * licensed "as is" without any warranty of any kind, whether express + * or implied. + * + */ +#include <linux/init.h> +#include <linux/delay.h> +#include <linux/proc_fs.h> +#include <linux/spinlock.h> +#include <linux/mtd/partitions.h> /* for mtd partitions */ + +//#undef SCP_DEBUG +#define SCP_DEBUG +#include "scp-dev.h" +DEFINE_SPINLOCK(spi_eeprom_lock); + +static struct spi_dev_desc eeprom_dev_desc = { + .baud = 1500000, /* 1.5Mbps */ + .tcss = 10, + .tcsh = 10, + .tcsr = 1, + .byteorder = 1, /* MSB-First */ + .polarity = 0, /* High-Active */ + .phase = 0, /* Sample-Then-Shift */ + +}; + +static struct mtd_info beech_spi_mtd[NUM_SPI_SLAVES]; + +static struct mtd_partition spi_partition_allmem[] = { + { + .name = "scp", + .offset = 0x0, + .size = 0x400, + }, +}; + +static int +spi_eeprom_io(int chipid, + const unsigned char **inbufs, unsigned int *incounts, + unsigned char **outbufs, unsigned int *outcounts) +{ + return scp_io(chipid, &eeprom_dev_desc, + inbufs, incounts, outbufs, outcounts, 0); +} + +int spi_eeprom_write_enable(int chipid, int enable) +{ + unsigned char inbuf[1]; + const unsigned char *inbufs[2]; + unsigned int incounts[2], outcounts[1]; + unsigned long flags; + int stat; + + inbuf[0] = enable ? ATMEL_WREN : ATMEL_WRDI; + inbufs[0] = inbuf; + incounts[0] = sizeof(inbuf); + inbufs[1] = NULL; + incounts[1] = 0; + outcounts[0] = 0; + spin_lock_irqsave(&spi_eeprom_lock, flags); + stat = spi_eeprom_io(chipid, inbufs, incounts, NULL, outcounts); + spin_unlock_irqrestore(&spi_eeprom_lock, flags); + return stat; +} + +static int spi_eeprom_read_status_nolock(int chipid) +{ + unsigned char inbuf[1], outbuf[1]; + const unsigned char *inbufs[2]; + unsigned char *outbufs[1]; + unsigned int incounts[2], outcounts[1]; + int stat; + + inbuf[0] = ATMEL_RDSR; + inbufs[0] = inbuf; + incounts[0] = sizeof(inbuf); + incounts[1] = 0; + outbufs[0] = outbuf; + outcounts[0] = sizeof(outbuf); + stat = spi_eeprom_io(chipid, inbufs, incounts, outbufs, outcounts); + if (stat < 0) { + printk("KERNEL_DEBUG %s bail\n", __FUNCTION__); + return stat; + } + return outbuf[0]; +} + +int spi_eeprom_read_status(int chipid) +{ + unsigned long flags; + int stat; + + spin_lock_irqsave(&spi_eeprom_lock, flags); + stat = spi_eeprom_read_status_nolock(chipid); + spin_unlock_irqrestore(&spi_eeprom_lock, flags); + return stat; +} + + +int spi_eeprom_read(struct mtd_info *mtd, ulong address, u_char * buf, + int len) +{ + unsigned char inbuf[3]; + const unsigned char *inbufs[2]; + unsigned char *outbufs[1]; + unsigned int incounts[2], outcounts[1]; + unsigned long flags; + int stat; + + SPI_DEV *spi_dev = mtd->priv; + + address &= 0xffff; + inbuf[0] = ATMEL_READ; + inbuf[1] = address >> 8; + inbuf[2] = address & 0xff; + + inbufs[0] = inbuf; + incounts[0] = sizeof(inbuf); + inbufs[1] = NULL; + incounts[1] = 0; + outbufs[0] = buf; + outcounts[0] = len; + spin_lock_irqsave(&spi_eeprom_lock, flags); + stat = spi_eeprom_io(spi_dev->slaveid, inbufs, incounts, + outbufs, outcounts); + spin_unlock_irqrestore(&spi_eeprom_lock, flags); + return stat; +} + +int spi_eeprom_write(struct mtd_info *mtd, ulong address, + const u_char * buf, int len) +{ + unsigned char inbuf[3]; + const unsigned char *inbufs[3]; + unsigned int incounts[3], outcounts[1]; + unsigned long flags; + int i, stat, w_len, remain; + + SPI_DEV *spi_dev = mtd->priv; + + remain = len; + while (remain > 0) { + stat = spi_eeprom_write_enable(spi_dev->slaveid, 1); + if (stat < 0) + return stat; + stat = spi_eeprom_read_status(spi_dev->slaveid); + if (stat < 0) + return stat; + if (!(stat & ATMEL_SR_WEN)) + return -EPERM; + + inbuf[0] = ATMEL_WRITE; + address &= 0xffff; + inbuf[1] = address >> 8; + inbuf[2] = address & 0xff; + + inbufs[0] = inbuf; + inbufs[1] = buf; + inbufs[2] = NULL; + + incounts[0] = sizeof(inbuf); + if (address & (ATMEL_WRITE_SIZE-1)) { + w_len = ATMEL_WRITE_SIZE - (address & (ATMEL_WRITE_SIZE-1)); + if (remain <= w_len) { + w_len = remain; + } + } + else { + w_len = (remain>= ATMEL_WRITE_SIZE) ? ATMEL_WRITE_SIZE:remain; + } + remain -= w_len; + address += w_len; + buf += w_len; + + incounts[1] = w_len; + incounts[2] = 0; + + outcounts[0] = 0; + spin_lock_irqsave(&spi_eeprom_lock, flags); + stat = spi_eeprom_io(spi_dev->slaveid, inbufs, incounts, + NULL, outcounts); + if (stat < 0) + goto unlock_return; + /* write start. max 10ms */ + for (i = 5; i > 0; i--) { + mdelay(2); + stat = spi_eeprom_read_status_nolock(spi_dev->slaveid); +#ifdef SCP_DEBUG + printk("w%d 0x%x\n",i, stat); +#endif + if (stat < 0) + goto unlock_return; + if (!(stat & ATMEL_SR_BSY)) { + /* Should bail out here */ + //printk("bail ATMEL_SR_BSY\n"); + break; + } + } + spin_unlock_irqrestore(&spi_eeprom_lock, flags); + if (i == 0) { + printk(KERN_DEBUG "bail -EIO\n"); + break; + //return -EIO; + } + } + return (len-remain); +unlock_return: + printk("bail unlock_return\n"); + spin_unlock_irqrestore(&spi_eeprom_lock, flags); + return stat; +} + + +/******************************************************************************* +* Function spi_read +* This function provides the mtd interface to read the buffer from the SPI flash +* at the offset +*******************************************************************************/ +int +spi_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t * retlen, u_char * buf) +{ + int err = 0; + SPI_DEV *this = mtd->priv; +#ifdef SCP_DEBUG + printk(KERN_DEBUG "spi_read: from= 0x%08x, len= %d, buf= %p\n", + (uint) from, len, buf); +#endif + err = this->read_buf(mtd, from, buf, len); + if (err) { + printk(KERN_DEBUG "spi_read: read_data failed with err %d\n", err); + goto out; + } + + /* Tell the MTD device how many bytes have been read */ + *retlen = len; + +out: + return err; +} + +/******************************************************************************* +* Function spi_write +* This function provides the mtd interface to write the buffer to the SPI flash +* at the offset +*******************************************************************************/ +int +spi_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t * retlen, const u_char * buf) +{ + int err = 0; + SPI_DEV *this = mtd->priv; + + printk(KERN_DEBUG "spi_write: to= 0x%08x, len= %d, buf= %p\n", + (uint) to, len, buf); + err = this->write_buf(mtd, to, buf, len); +#ifdef SCP_DEBUG + printk(KERN_DEBUG "spi_write: write_buf returned %d\n", err); +#endif + return err; +} + + +/******************************************************************************* +* Function spi_scan +* This function scans for the existence of the slave SPI Flash device +* by reading the Manufacturer ID, Memory Type and Chip Size. +*******************************************************************************/ +int spi_scan(struct mtd_info *mtd) +{ +#ifdef SCP_DEBUG + printk(KERN_DEBUG "spi_scan()\n"); +#endif + /* Fill in MTD driver data */ + mtd->type = MTD_DATAFLASH; + mtd->read = spi_read; + mtd->write = spi_write; + mtd->lock = NULL; + mtd->unlock = NULL; + mtd->writesize=0x00100000; + mtd->size = 0x00100000; + mtd->name = "AMCC-SCP"; + mtd->flags |= MTD_WRITEABLE; + mtd->owner = THIS_MODULE; + mtd->erasesize = 32; + return 0; +} + + +/******************************************************************************* + * Function: pine_scp_init + * This function is called by the LiveOak SSI device layer + * to initialize the device. +*******************************************************************************/ +int beech_scp_init(SPI_DEV * this) +{ + int id = this->slaveid; + int err = 0; + +#ifdef SCP_DEBUG + printk(KERN_DEBUG "beech_spi_init() : %s slave id : %d\n", + DEVICE_NAME, id); +#endif + memset(&(beech_spi_mtd[id]), 0, sizeof(beech_spi_mtd[id])); + + /* Link the private data with the MTD structure */ + beech_spi_mtd[id].priv = (void *) this; + + this->chip_delay = 100; + + this->read_buf = spi_eeprom_read; + this->write_buf = spi_eeprom_write; + + /* Init wait queue */ + //init_waitqueue_head(&this->wq); + + /* Scan to find existence of SPI Flash device */ + if ( (err = spi_scan(&beech_spi_mtd[id])) != 0) { + goto err; + } + + /* Adr MTD partition onto SPI device */ + add_mtd_partitions(&beech_spi_mtd[id], spi_partition_allmem, + sizeof(spi_partition_allmem) / + sizeof(spi_partition_allmem[0])); +err: + return err; +} + +/**************************************************************************** + * Function: pine_spi_cleanup + * This function is called by the Pine SCP device layer + * on exit. +*****************************************************************************/ +void beech_spi_cleanup(void) +{ + int i; +#ifdef SCP_DEBUG + printk(KERN_DEBUG "beech_spi_cleanup()\n"); +#endif + for(i = 0; i < NUM_SPI_SLAVES; i++) { + /* Unregister partitions */ + del_mtd_device(&beech_spi_mtd[i]); + } +} diff --git a/drivers/serial/8250.c b/drivers/serial/8250.c index 5ed1b828a7c..6b5711e7250 100644 --- a/drivers/serial/8250.c +++ b/drivers/serial/8250.c @@ -91,7 +91,11 @@ static unsigned int skip_txen_test; /* force skip of txen test at init time */ * machine types want others as well - they're free * to redefine this in their header file. */ +#ifdef CONFIG_4xx +#define is_real_interrupt(irq) (1) +#else #define is_real_interrupt(irq) ((irq) != 0) +#endif #ifdef CONFIG_SERIAL_8250_DETECT_IRQ #define CONFIG_SERIAL_DETECT_IRQ 1 diff --git a/drivers/test/Kconfig b/drivers/test/Kconfig new file mode 100644 index 00000000000..0a5ee717b08 --- /dev/null +++ b/drivers/test/Kconfig @@ -0,0 +1,20 @@ +menu "PPC4xx Self Test support" + +config PPC4xx_TEST + tristate "PowerPC 4xx Self Test support" + help + PPC4xx self tests are kernel drivers which can be built into the + kernel, or can be built as seperate driver modules. If these + drivers are built into the kernel, then they are run when the + kernel loads the test drivers. If these test drivers are built + as modules, then use insmod to load and execute the test drivers. + +config PPC4xx_L2CACHE_TEST + tristate "PowerPC 4xx L2 Cache Self Test support" + depends on PPC4xx_TEST + help + If you say Y here, you will get support for + the L2 Cache self test interface. See driver for + more information. + +endmenu diff --git a/drivers/test/Makefile b/drivers/test/Makefile new file mode 100644 index 00000000000..65f83eb9323 --- /dev/null +++ b/drivers/test/Makefile @@ -0,0 +1,6 @@ +# +# Makefile for the PowerPC 4xx Test interface +# + + +obj-$(CONFIG_PPC4xx_L2CACHE_TEST) += l2cache/ diff --git a/drivers/test/l2cache/Makefile b/drivers/test/l2cache/Makefile new file mode 100644 index 00000000000..38394dd8c7d --- /dev/null +++ b/drivers/test/l2cache/Makefile @@ -0,0 +1,6 @@ +# +# Makefile for the PowerPC 4xx Test interface +# + +obj-$(CONFIG_PPC4xx_L2CACHE_TEST) += ppc4xx_l2cache_test_module.o + diff --git a/drivers/test/l2cache/ppc4xx_l2cache_test_module.c b/drivers/test/l2cache/ppc4xx_l2cache_test_module.c new file mode 100644 index 00000000000..71402cd442a --- /dev/null +++ b/drivers/test/l2cache/ppc4xx_l2cache_test_module.c @@ -0,0 +1,389 @@ +/**************************************************************************** + * + * Test driver for the PPC44x L2 Cache core. + * This driver will print out the L2 Cache statistics to the /proc/l2cache + * + * Author: Adam Graham <agraham@amcc.com> + * February 26, 2008 + * + * Copyright 2008 Applied Micro Circuits Corporation + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation; either version 2 of the + * License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. + * + **************************************************************************** + * + * Beware! The kernel PPC44x L2 Cache must be activated for this test. + * The example should work on any PPC440EX/GT based board, + * maybe also on PPC44x (not yet tested). + * To use this module: + * 1. Build it as a kenel module + * 2. insmod <module> + * cat /proc/l2cache/start to start the l2 cache statistics + * cat /proc/l2cache/stop to stop the l2 cache statistics + * cat /proc/l2cache/stats to read the statistics + * 3. rmmod <module> + * Everything you want to know will be printed out + * + */ + +#include <linux/module.h> /* needed by all modules */ +#include <linux/init.h> /* needed for the module_xxx_macros */ +#include <linux/fs.h> /* needed for registering a device */ +#include <linux/proc_fs.h> /* needed for registering a device */ +//#include "ppc4xx_l2cache_core.h" /* Driver Interface */ +//#include "ppc4xx_l2cache_proc.h" /* ProcFS Interface */ +#include <asm/dcr-regs.h> /* PPC4xx L2 Cache DCR defines */ +#include <asm/dcr.h> +#include <asm/reg.h> + + + + +#define DRV_NAME "ppc4xx_l2cache_test_module" +#define DRV_VERSION "0.1" + +MODULE_DESCRIPTION("PPC4xx L2 Cache test driver"); +MODULE_AUTHOR("agraham@amcc.com"); +MODULE_VERSION(DRV_VERSION); +MODULE_LICENSE("GPL"); + +uint32_t ppc4xx_l2cache_base; /* Set by ioremap function */ + +#define DCR_L2C_BASE 0x30 + +#define PPC4xx_L2CACHE_BASEADDR 0xefxxxxx; + +/* PPC4xx L2 Cache core registers */ +#define PPC4xx_L2CACHE_CONFIG 0x0 +#define PPC4xx_L2CACHE_COMMAND 0x1 +#define PPC4xx_L2CACHE_ADDRESS 0x2 +#define PPC4xx_L2CACHE_DATA 0x3 +#define PPC4xx_L2CACHE_STATUS 0x4 +#define PPC4xx_L2CACHE_CORE_VERSION 0x5 +#define PPC4xx_L2CACHE_SNOOP0 0x6 +#define PPC4xx_L2CACHE_SNOOP1 0x7 + +/* Function Prototypes */ +static void ppc4xx_l2cache_cleanup(void); +static int ppc4xx_l2cache_proc_start(char *, char **, off_t, int, int *, void *); +static int ppc4xx_l2cache_proc_stop(char *, char **, off_t, int, int *, void *); +static int ppc4xx_l2cache_proc_perf(char *, char **, off_t, int, int *, void *); +static int ppc4xx_l2cache_proc_query(char *, char **, off_t, int, int *, void *); +static int ppc4xx_l2cache_proc_regs(char *, char **, off_t, int, int *, void *); +int ppc4xx_l2cache_createProcEntry(void); +void ppc4xx_l2cache_removeProcEntry(void); +static u32 ppc4xx_l2cache_read_reg(u32); +static u32 ppc4xx_l2cache_read_config_reg(void); +static u32 ppc4xx_l2cache_read_status_reg(void); +static u32 ppc4xx_l2cache_diag(u32); + +/* + * Kernel Logging + */ +#define LOG(string, args...) \ + printk(KERN_INFO DRV_NAME ": " string "\n",##args) + +#define ALERT(string, args...) \ + printk(KERN_ALERT DRV_NAME ": " string "\n",##args) + +#define WARNING(string, args...) \ + printk(KERN_WARNING DRV_NAME ": WARNING, " string "\n",##args) + +#define ERR(string, args...) \ + printk(KERN_ALERT DRV_NAME ": ERROR, " string "\n",##args) + +#if defined(CONFIG_PPC4XX_L2CACHE_DEBUG) +#define DBG(string, args...) \DCRN_L2C0_CFG + printk(KERN_INFO DRV_NAME ": " string "\n",##args) +#else +#define DBG(string, args...) do { } while (0) +#endif + +static inline u32 ppc4xx_l2cache_read_reg(u32 l2_reg) +{ + u32 reg; + + //reg = mfdcr(l2_reg); + + return reg; +} + +static inline u32 ppc4xx_l2cache_read_config_reg(void) +{ + u32 reg; + reg = mfdcr(DCR_L2C_BASE + DCRN_L2C0_CFG); + printk("base 0x%08x\n", ppc4xx_l2cache_base); + return reg; +} + +static inline u32 ppc4xx_l2cache_read_status_reg(void) +{ + u32 reg; + reg = mfdcr(DCR_L2C_BASE + DCRN_L2C0_SR); + return reg; +} + +/******************************************************************************* + * Static Variables: + ******************************************************************************/ +static struct proc_dir_entry *proc_driver = NULL; /* /proc/ */ +static struct proc_dir_entry *proc_regs = NULL; /* /proc/driver/l2cache/ */ +static struct proc_dir_entry *proc_start = NULL; /* /proc/driver/l2cache/ */ +static struct proc_dir_entry *proc_stop = NULL; /* /proc/driver/l2cache/ */ +static struct proc_dir_entry *proc_perf = NULL; /* /proc/driver/l2cache/ */ +static struct proc_dir_entry *proc_query = NULL; /* /proc/driver/l2cache/ */ + +/* Issue L2C diagnostic command */ +static inline u32 ppc4xx_l2cache_diag(u32 addr) +{ + asm volatile ("sync" ::: "memory"); + mtdcr(DCR_L2C_BASE + DCRN_L2C0_ADDR, addr); + mtdcr(DCR_L2C_BASE + DCRN_L2C0_CMD, L2C_CMD_DIAG); + + while (!(mfdcr(DCR_L2C_BASE + DCRN_L2C0_SR) & L2C_SR_CC)) { + ; + } + asm volatile ("sync; isync" ::: "memory"); + + return mfdcr(DCR_L2C_BASE + DCRN_L2C0_DATA); +} + +static int ppc4xx_l2cache_proc_start(char *buffer, char **start_off, + off_t offset, int buff_len, int *eof, void *data) +{ + int len = 0; + u32 sr = mfdcr(DCR_L2C_BASE + DCRN_L2C0_SR); + +#if defined(L2_TEST_DEBUG) + len += sprintf(buffer + len, + "PPC4xx L2 Cache Start L2C Performance counter.\n"); +#endif + + if (sr & L2C_SR_PCS) { + /* Start Performance monitor counters */ + mtdcr(DCR_L2C_BASE + DCRN_L2C0_CMD, L2C_CMD_STRC); + len += sprintf(buffer + len, + "PPC4xx L2 Cache Performance counter started.\n"); + } else { + len += sprintf(buffer + len, + "PPC4xx L2 Cache Performance counter is already started.\n"); + } + + return len; +} + +static int ppc4xx_l2cache_proc_query(char *buffer, char **start_off, + off_t offset, int buff_len, int *eof, void *data) +{ + int len = 0; + u32 sr = mfdcr(DCR_L2C_BASE + DCRN_L2C0_SR); + +#if defined(L2_TEST_DEBUG) + len += sprintf(buffer + len, + "PPC4xx L2 Cache Query L2C Performance monitor.\n"); +#endif + + if (sr & L2C_SR_PCS) { + len += sprintf(buffer + len, + "PPC4xx L2 Cache Performance counter is stopped.\n"); + } else { + len += sprintf(buffer + len, + "PPC4xx L2 Cache Performance counter is running.\n"); + } + + return len; +} + +static int ppc4xx_l2cache_proc_stop(char *buffer, char **start_off, + off_t offset, int buff_len, int *eof, void *data) +{ + int len = 0; + u32 sr = mfdcr(DCR_L2C_BASE + DCRN_L2C0_SR); + +#if defined(L2_TEST_DEBUG) + len += sprintf(buffer + len, + "PPC4xx L2 Cache Stop L2C Performance counter.\n"); +#endif + + if (sr & L2C_SR_PCS) { + len += sprintf(buffer + len, + "PPC4xx L2 Cache Performance counter is already stopped.\n"); + } else { + /* Start Performance monitor counters */ + mtdcr(DCR_L2C_BASE + DCRN_L2C0_CMD, L2C_CMD_STPC); + len += sprintf(buffer + len, + "PPC4xx L2 Cache Performance counter stopped.\n"); + } + + return len; +} + +static int ppc4xx_l2cache_proc_perf(char *buffer, char **start_off, + off_t offset, int buff_len, int *eof, void *data) +{ + u32 l2_data; + int len = 0; + u32 sr = mfdcr(DCR_L2C_BASE + DCRN_L2C0_SR); + +#if defined(L2_TEST_DEBUG) + len += sprintf(buffer + len, + "PPC4xx L2 Cache perf L2C read Performance Counter registers.\n"); +#endif + + if (sr & L2C_SR_PCS) { + len += sprintf(buffer + len, + "PPC4xx L2 Cache Performance counter is not running.\n"); + } else { + /* read diagnostics stats */ + l2_data = ppc4xx_l2cache_diag(0x22000000); + len += sprintf(buffer + len, + "PPC4xx L2 Cache Performance Hit Counter Read 0x%08x\n", l2_data); + + l2_data = ppc4xx_l2cache_diag(0x24000000); + len += sprintf(buffer + len, + "PPC4xx L2 Cache Performance Request Counter Read 0x%08x\n", l2_data); + + l2_data = ppc4xx_l2cache_diag(0x28000000); + len += sprintf(buffer + len, + "PPC4xx L2 Cache Performance Cycle Counter Read 0x%08x\n", l2_data); + } + + return len; +} + +static int ppc4xx_l2cache_proc_regs(char *buffer, char **start_off, + off_t offset, int buff_len, int *eof, void *data) +{ + int len = 0; + +#if defined(L2_TEST_DEBUG) + len += sprintf(buffer + len, + "PPC4xx L2 Cache Registers.\n"); +#endif + + len += sprintf(buffer + len, + "PPC4xx L2_CONFIG Register 0x%08x\n", + ppc4xx_l2cache_read_config_reg()); + + len += sprintf(buffer + len, + "PPC4xx L2_STATUS Register 0x%08x\n", + ppc4xx_l2cache_read_status_reg()); + + return len; +} + +int ppc4xx_l2cache_createProcEntry(void) +{ + proc_driver = proc_mkdir("driver/l2cache", NULL); + + + if (proc_driver == NULL) { + ERR("while creating proc directory"); + return -ENOMEM; + } + + proc_regs = create_proc_entry("registers", 0, proc_driver); + + if (proc_regs == NULL) { + ERR("while creating proc register file"); + return -ENOMEM; + }else { + proc_regs->read_proc = ppc4xx_l2cache_proc_regs; + } + + proc_start = create_proc_entry("start", 0, proc_driver); + + + if (proc_start == NULL) { + ERR("while creating proc start file"); + return -ENOMEM; + }else { + proc_start->read_proc = ppc4xx_l2cache_proc_start; + } + + + proc_stop = create_proc_entry("stop", 0, proc_driver); + + if (proc_stop == NULL) { + ERR("while creating proc stop file"); + return -ENOMEM; + }else { + proc_stop->read_proc = ppc4xx_l2cache_proc_stop; + } + + proc_perf = create_proc_entry("performance", 0, proc_driver); + + if (proc_perf == NULL) { + ERR("while creating proc perf file"); + return -ENOMEM; + }else { + proc_perf->read_proc = ppc4xx_l2cache_proc_perf; + } + + proc_query = create_proc_entry("query", 0, proc_driver); + + if (proc_query == NULL) { + ERR("while creating proc query file"); + return -ENOMEM; + }else { + proc_query->read_proc = ppc4xx_l2cache_proc_query; + } + + return 0; +} + +static int __init ppc4xx_l2cache_init_module(void) +{ + int retval = 0; + + LOG("initializing"); + LOG("version %s", DRV_VERSION); + + retval = ppc4xx_l2cache_createProcEntry(); + + if (retval < 0) { + ERR("while registering l2cache test driver."); + } + + return retval; +} + +module_init(ppc4xx_l2cache_init_module); + +static void __exit ppc4xx_l2cache_cleanup_module(void) +{ + LOG("cleaning up"); + + ppc4xx_l2cache_cleanup(); +} + +module_exit(ppc4xx_l2cache_cleanup_module); + +static void +ppc4xx_l2cache_cleanup(void) +{ + ppc4xx_l2cache_removeProcEntry(); +} + +void +ppc4xx_l2cache_removeProcEntry(void) +{ + if (proc_regs) remove_proc_entry("registers", proc_driver); + if (proc_start) remove_proc_entry("start", proc_driver); + if (proc_stop) remove_proc_entry("stop", proc_driver); + if (proc_perf) remove_proc_entry("performance", proc_driver); + if (proc_query) remove_proc_entry("query", proc_driver); + if (proc_driver) remove_proc_entry("l2cache", NULL); +} diff --git a/drivers/usb/gadget/Kconfig b/drivers/usb/gadget/Kconfig index a18e3c5dd82..3d83b8d0b31 100644 --- a/drivers/usb/gadget/Kconfig +++ b/drivers/usb/gadget/Kconfig @@ -109,8 +109,8 @@ config USB_GADGET_SELECTED # - discrete ones (including all PCI-only controllers) # - debug/dummy gadget+hcd is last. # -choice - prompt "USB Peripheral Controller" +menuconfig USB_PERIPHERAL_CONTROLLER + bool "USB Peripheral Controller" depends on USB_GADGET help A USB device uses a controller to talk to its host. @@ -122,6 +122,8 @@ choice # Integrated controllers # +if USB_PERIPHERAL_CONTROLLER + config USB_GADGET_AT91 boolean "Atmel AT91 USB Device Port" depends on ARCH_AT91 && !ARCH_AT91SAM9RL && !ARCH_AT91CAP9 && !ARCH_AT91SAM9G45 @@ -504,6 +506,101 @@ config USB_LANGWELL default USB_GADGET select USB_GADGET_SELECTED +menuconfig USB_GADGET_DWC_OTG + boolean "Synopsys DWC OTG Controller" + depends on 405EZ || 405EX || 460EX || APM82181 + select USB_GADGET_DUALSPEED + help + This driver provides USB Device Controller support for the + Synopsys DesignWare USB OTG Core used on the AMCC 405EZ/405EX/ + 460EX/APM82181. + + Note that on the 405EZ, this Core provides USB Device Controller + function only. It does not act as a true OTG device, and the + 'OTG' is slightly misleading. + +if USB_GADGET_DWC_OTG + +config USB_DWC_OTG + tristate + depends on USB_GADGET_DWC_OTG + default USB_GADGET + select USB_GADGET_SELECTED + +config DWC_LEGACY_405EX + bool "Enable 405EX Legacy Support (lower performance)" + default n + depends on 405EX + select DWC_SLAVE + help + Enable Legacy 405EX Chip support (Rev 1.0) where DWC DMA is broken. + Selecting this option will cause lower performance. + Don't select this unless you want to support Rev 1.0 405EX chips (obsolete). + +menuconfig DWC_OTG_MODE + bool "DWC OTG Mode" + depends on 405EX || 460EX || APM82181 + help + Enable selection whether USB OTG should operate in Host or + Device mode only + +if DWC_OTG_MODE +config DWC_HOST_ONLY + bool "DWC Host Only Mode" + depends on 405EX || 460EX || APM82181 + help + DWC Core in only host mode. + +config DWC_DEVICE_ONLY + bool "DWC Device Only Mode" + default y if 405EZ + help + DWC Core in only device mode. + +endif + +config DWC_SLAVE + bool "DWC Slave Mode" + depends on 405EX || 460EX || APM82181 + default n + help + Slave mode uses the processor to tranfer data. + In Slave mode, processor DMA channels can be used if available. + +config DWC_USE_PLB_DMA + bool "Use PPC4xx PLB DMA (Only for Slave Mode)" + depends on DWC_SLAVE + depends on 405EX + default n + select OTG_PLB_DMA + select OTG_PLB_DMA_TASKLET + select PPC4xx_EDMA + help + Enable use of PPC4xx DMA engines in Slave Mode. + Please ensure PLB DMA channels not in use by any other block. + +if DWC_USE_PLB_DMA +config OTG_PLB_DMA + bool + default n + +config OTG_PLB_DMA_TASKLET + bool + default n + +config PPC4xx_EDMA + bool + default n +endif + +config DWC_DEBUG + bool "Enable DWC Debugging" + default n + help + Enable DWC driver debugging + +endif #USB_GADGET_DWC_OTG + # # LAST -- dummy/emulated controller @@ -541,7 +638,7 @@ config USB_DUMMY_HCD # NOTE: Please keep dummy_hcd LAST so that "real hardware" appears # first and will be selected by default. -endchoice +endif # USB_PERIPHERAL_CONTROLLER config USB_GADGET_DUALSPEED bool diff --git a/drivers/usb/gadget/Makefile b/drivers/usb/gadget/Makefile index 9d7b87c52e9..3fdde74c993 100644 --- a/drivers/usb/gadget/Makefile +++ b/drivers/usb/gadget/Makefile @@ -28,6 +28,7 @@ obj-$(CONFIG_USB_FSL_QE) += fsl_qe_udc.o obj-$(CONFIG_USB_CI13XXX) += ci13xxx_udc.o obj-$(CONFIG_USB_S3C_HSOTG) += s3c-hsotg.o obj-$(CONFIG_USB_LANGWELL) += langwell_udc.o +obj-$(CONFIG_USB_DWC_OTG) += dwc_otg/ # # USB gadget drivers diff --git a/drivers/usb/gadget/dwc_otg/Makefile b/drivers/usb/gadget/dwc_otg/Makefile new file mode 100644 index 00000000000..4d690a46658 --- /dev/null +++ b/drivers/usb/gadget/dwc_otg/Makefile @@ -0,0 +1,12 @@ +# +# Makefile for DWC_otg Highspeed USB controller driver +# + +KBUILD_CPPFLAGS += -Dlinux + +obj-$(CONFIG_USB_DWC_OTG) += dwc_otg.o + +dwc_otg-y := dwc_otg_driver.o dwc_otg_attr.o dwc_otg_cil.o \ + dwc_otg_cil_intr.o dwc_otg_pcd.o dwc_otg_pcd_intr.o \ + dwc_otg_hcd.o dwc_otg_hcd_intr.o dwc_otg_hcd_queue.o +dwc_otg-$(CONFIG_DWC_USE_PLB_DMA) += ppc4xx_dma.o diff --git a/drivers/usb/gadget/dwc_otg/dwc_otg_attr.c b/drivers/usb/gadget/dwc_otg/dwc_otg_attr.c new file mode 100644 index 00000000000..a3e1e7dff55 --- /dev/null +++ b/drivers/usb/gadget/dwc_otg/dwc_otg_attr.c @@ -0,0 +1,785 @@ +/* ========================================================================== + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_attr.c $ + * $Revision: #5 $ + * $Date: 2005/09/15 $ + * $Change: 537387 $ + * + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ + +/** @file + * + * The diagnostic interface will provide access to the controller for + * bringing up the hardware and testing. The Linux driver attributes + * feature will be used to provide the Linux Diagnostic + * Interface. These attributes are accessed through sysfs. + */ + +/** @page "Linux Module Attributes" + * + * The Linux module attributes feature is used to provide the Linux + * Diagnostic Interface. These attributes are accessed through sysfs. + * The diagnostic interface will provide access to the controller for + * bringing up the hardware and testing. + + + The following table shows the attributes. + <table> + <tr> + <td><b> Name</b></td> + <td><b> Description</b></td> + <td><b> Access</b></td> + </tr> + + <tr> + <td> mode </td> + <td> Returns the current mode: 0 for device mode, 1 for host mode</td> + <td> Read</td> + </tr> + + <tr> + <td> hnpcapable </td> + <td> Gets or sets the "HNP-capable" bit in the Core USB Configuraton Register. + Read returns the current value.</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> srpcapable </td> + <td> Gets or sets the "SRP-capable" bit in the Core USB Configuraton Register. + Read returns the current value.</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> hnp </td> + <td> Initiates the Host Negotiation Protocol. Read returns the status.</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> srp </td> + <td> Initiates the Session Request Protocol. Read returns the status.</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> buspower </td> + <td> Gets or sets the Power State of the bus (0 - Off or 1 - On)</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> bussuspend </td> + <td> Suspends the USB bus.</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> busconnected </td> + <td> Gets the connection status of the bus</td> + <td> Read</td> + </tr> + + <tr> + <td> gotgctl </td> + <td> Gets or sets the Core Control Status Register.</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> gusbcfg </td> + <td> Gets or sets the Core USB Configuration Register</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> grxfsiz </td> + <td> Gets or sets the Receive FIFO Size Register</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> gnptxfsiz </td> + <td> Gets or sets the non-periodic Transmit Size Register</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> gpvndctl </td> + <td> Gets or sets the PHY Vendor Control Register</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> ggpio </td> + <td> Gets the value in the lower 16-bits of the General Purpose IO Register + or sets the upper 16 bits.</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> guid </td> + <td> Gets or sets the value of the User ID Register</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> gsnpsid </td> + <td> Gets the value of the Synopsys ID Regester</td> + <td> Read</td> + </tr> + + <tr> + <td> devspeed </td> + <td> Gets or sets the device speed setting in the DCFG register</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> enumspeed </td> + <td> Gets the device enumeration Speed.</td> + <td> Read</td> + </tr> + + <tr> + <td> hptxfsiz </td> + <td> Gets the value of the Host Periodic Transmit FIFO</td> + <td> Read</td> + </tr> + + <tr> + <td> hprt0 </td> + <td> Gets or sets the value in the Host Port Control and Status Register</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> regoffset </td> + <td> Sets the register offset for the next Register Access</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> regvalue </td> + <td> Gets or sets the value of the register at the offset in the regoffset attribute.</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> remote_wakeup </td> + <td> On read, shows the status of Remote Wakeup. On write, initiates a remote + wakeup of the host. When bit 0 is 1 and Remote Wakeup is enabled, the Remote + Wakeup signalling bit in the Device Control Register is set for 1 + milli-second.</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> regdump </td> + <td> Dumps the contents of core registers.</td> + <td> Read</td> + </tr> + + <tr> + <td> hcddump </td> + <td> Dumps the current HCD state.</td> + <td> Read</td> + </tr> + + <tr> + <td> hcd_frrem </td> + <td> Shows the average value of the Frame Remaining + field in the Host Frame Number/Frame Remaining register when an SOF interrupt + occurs. This can be used to determine the average interrupt latency. Also + shows the average Frame Remaining value for start_transfer and the "a" and + "b" sample points. The "a" and "b" sample points may be used during debugging + bto determine how long it takes to execute a section of the HCD code.</td> + <td> Read</td> + </tr> + + <tr> + <td> rd_reg_test </td> + <td> Displays the time required to read the GNPTXFSIZ register many times + (the output shows the number of times the register is read). + <td> Read</td> + </tr> + + <tr> + <td> wr_reg_test </td> + <td> Displays the time required to write the GNPTXFSIZ register many times + (the output shows the number of times the register is written). + <td> Read</td> + </tr> + + </table> + + Example usage: + To get the current mode: + cat /sys/devices/lm0/mode + + To power down the USB: + echo 0 > /sys/devices/lm0/buspower + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/init.h> +#include <linux/device.h> +#include <linux/errno.h> +#include <linux/types.h> +#include <linux/stat.h> /* permission constants */ + +#include <asm/io.h> + +#include "linux/dwc_otg_plat.h" +#include "dwc_otg_attr.h" +#include "dwc_otg_driver.h" +#include "dwc_otg_pcd.h" +#include "dwc_otg_hcd.h" + +/* + * MACROs for defining sysfs attribute + */ +#define DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ +static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \ +{ \ + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\ + uint32_t val; \ + val = dwc_read_reg32 (_addr_); \ + val = (val & (_mask_)) >> _shift_; \ + return sprintf (buf, "%s = 0x%x\n", _string_, val); \ +} +#define DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ +static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, \ + const char *buf, size_t count) \ +{ \ + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\ + uint32_t set = simple_strtoul(buf, NULL, 16); \ + uint32_t clear = set; \ + clear = ((~clear) << _shift_) & _mask_; \ + set = (set << _shift_) & _mask_; \ + dev_dbg(_dev, "Storing Address=0x%08x Set=0x%08x Clear=0x%08x\n", (uint32_t)_addr_, set, clear); \ + dwc_modify_reg32(_addr_, clear, set); \ + return count; \ +} + +#define DWC_OTG_DEVICE_ATTR_BITFIELD_RW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ +DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ +DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ +DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store); + +#define DWC_OTG_DEVICE_ATTR_BITFIELD_RO(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ +DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ +DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL); + +/* + * MACROs for defining sysfs attribute for 32-bit registers + */ +#define DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \ +static ssize_t _otg_attr_name_##_show (struct device *_dev, \ + struct device_attribute *attr, char *buf) \ +{ \ + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\ + uint32_t val; \ + val = dwc_read_reg32 (_addr_); \ + return sprintf (buf, "%s = 0x%08x\n", _string_, val); \ +} +#define DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \ +static ssize_t _otg_attr_name_##_store (struct device *_dev, \ + struct device_attribute *attr, const char *buf, size_t count) \ +{ \ + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\ + uint32_t val = simple_strtoul(buf, NULL, 16); \ + dev_dbg(_dev, "Storing Address=0x%08x Val=0x%08x\n", (uint32_t)_addr_, val); \ + dwc_write_reg32(_addr_, val); \ + return count; \ +} + +#define DWC_OTG_DEVICE_ATTR_REG32_RW(_otg_attr_name_,_addr_,_string_) \ +DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \ +DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \ +DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store); + +#define DWC_OTG_DEVICE_ATTR_REG32_RO(_otg_attr_name_,_addr_,_string_) \ +DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \ +DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL); + + +/** @name Functions for Show/Store of Attributes */ +/**@{*/ + +/** + * Show the register offset of the Register Access. + */ +static ssize_t regoffset_show( struct device *_dev, + struct device_attribute *attr, char *buf) +{ + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); + return snprintf(buf, sizeof("0xFFFFFFFF\n")+1,"0x%08x\n", otg_dev->reg_offset); +} + +/** + * Set the register offset for the next Register Access Read/Write + */ +static ssize_t regoffset_store( struct device *_dev, struct device_attribute *attr, const char *buf, + size_t count ) +{ + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); + uint32_t offset = simple_strtoul(buf, NULL, 16); + //dev_dbg(_dev, "Offset=0x%08x\n", offset); + if (offset < SZ_256K ) { + otg_dev->reg_offset = offset; + } + else { + dev_err( _dev, "invalid offset\n" ); + } + + return count; +} +DEVICE_ATTR(regoffset, S_IRUGO|S_IWUSR, regoffset_show, regoffset_store); + +/** + * Show the value of the register at the offset in the reg_offset + * attribute. + */ +static ssize_t regvalue_show( struct device *_dev, struct device_attribute *attr, char *buf) +{ + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); + uint32_t val; + volatile uint32_t *addr; + + if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) { + /* Calculate the address */ + addr = (uint32_t*)(otg_dev->reg_offset + + (uint8_t*)otg_dev->base); + //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr); + val = dwc_read_reg32( addr ); + return snprintf(buf, sizeof("Reg@0xFFFFFFFF = 0xFFFFFFFF\n")+1, + "Reg@0x%06x = 0x%08x\n", + otg_dev->reg_offset, val); + } else { + dev_err(_dev, "Invalid offset (0x%0x)\n", + otg_dev->reg_offset); + return sprintf(buf, "invalid offset\n" ); + } +} + +/** + * Store the value in the register at the offset in the reg_offset + * attribute. + * + */ +static ssize_t regvalue_store( struct device *_dev, struct device_attribute *attr, const char *buf, + size_t count ) +{ + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); + volatile uint32_t * addr; + uint32_t val = simple_strtoul(buf, NULL, 16); + //dev_dbg(_dev, "Offset=0x%08x Val=0x%08x\n", otg_dev->reg_offset, val); + if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) { + /* Calculate the address */ + addr = (uint32_t*)(otg_dev->reg_offset + + (uint8_t*)otg_dev->base); + //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr); + dwc_write_reg32( addr, val ); + } else { + dev_err(_dev, "Invalid Register Offset (0x%08x)\n", + otg_dev->reg_offset); + } + return count; +} +DEVICE_ATTR(regvalue, S_IRUGO|S_IWUSR, regvalue_show, regvalue_store); + +/* + * Attributes + */ +DWC_OTG_DEVICE_ATTR_BITFIELD_RO(mode,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<20),20,"Mode"); +DWC_OTG_DEVICE_ATTR_BITFIELD_RW(hnpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<9),9,"Mode"); +DWC_OTG_DEVICE_ATTR_BITFIELD_RW(srpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<8),8,"Mode"); + +//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(buspower,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode"); +//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(bussuspend,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode"); +DWC_OTG_DEVICE_ATTR_BITFIELD_RO(busconnected,otg_dev->core_if->host_if->hprt0,0x01,0,"Bus Connected"); + +DWC_OTG_DEVICE_ATTR_REG32_RW(gotgctl,&(otg_dev->core_if->core_global_regs->gotgctl),"GOTGCTL"); +DWC_OTG_DEVICE_ATTR_REG32_RW(gusbcfg,&(otg_dev->core_if->core_global_regs->gusbcfg),"GUSBCFG"); +DWC_OTG_DEVICE_ATTR_REG32_RW(grxfsiz,&(otg_dev->core_if->core_global_regs->grxfsiz),"GRXFSIZ"); +DWC_OTG_DEVICE_ATTR_REG32_RW(gnptxfsiz,&(otg_dev->core_if->core_global_regs->gnptxfsiz),"GNPTXFSIZ"); +DWC_OTG_DEVICE_ATTR_REG32_RW(gpvndctl,&(otg_dev->core_if->core_global_regs->gpvndctl),"GPVNDCTL"); +DWC_OTG_DEVICE_ATTR_REG32_RW(ggpio,&(otg_dev->core_if->core_global_regs->ggpio),"GGPIO"); +DWC_OTG_DEVICE_ATTR_REG32_RW(guid,&(otg_dev->core_if->core_global_regs->guid),"GUID"); +DWC_OTG_DEVICE_ATTR_REG32_RO(gsnpsid,&(otg_dev->core_if->core_global_regs->gsnpsid),"GSNPSID"); +DWC_OTG_DEVICE_ATTR_BITFIELD_RW(devspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dcfg),0x3,0,"Device Speed"); +DWC_OTG_DEVICE_ATTR_BITFIELD_RO(enumspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dsts),0x6,1,"Device Enumeration Speed"); + +DWC_OTG_DEVICE_ATTR_REG32_RO(hptxfsiz,&(otg_dev->core_if->core_global_regs->hptxfsiz),"HPTXFSIZ"); +DWC_OTG_DEVICE_ATTR_REG32_RW(hprt0,otg_dev->core_if->host_if->hprt0,"HPRT0"); + + +/** + * @todo Add code to initiate the HNP. + */ +/** + * Show the HNP status bit + */ +static ssize_t hnp_show( struct device *_dev, struct device_attribute *attr, char *buf) +{ + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); + gotgctl_data_t val; + val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl)); + return sprintf (buf, "HstNegScs = 0x%x\n", val.b.hstnegscs); +} + +/** + * Set the HNP Request bit + */ +static ssize_t hnp_store( struct device *_dev, struct device_attribute *attr, const char *buf, + size_t count ) +{ + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); + uint32_t in = simple_strtoul(buf, NULL, 16); + uint32_t *addr = (uint32_t *)&(otg_dev->core_if->core_global_regs->gotgctl); + gotgctl_data_t mem; + mem.d32 = dwc_read_reg32(addr); + mem.b.hnpreq = in; + dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32); + dwc_write_reg32(addr, mem.d32); + return count; +} +DEVICE_ATTR(hnp, 0644, hnp_show, hnp_store); + +/** + * @todo Add code to initiate the SRP. + */ +/** + * Show the SRP status bit + */ +static ssize_t srp_show( struct device *_dev, struct device_attribute *attr, char *buf) +{ +#ifndef CONFIG_DWC_HOST_ONLY + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); + gotgctl_data_t val; + val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl)); + return sprintf (buf, "SesReqScs = 0x%x\n", val.b.sesreqscs); +#else + return sprintf(buf, "Host Only Mode!\n"); +#endif +} + +/** + * Set the SRP Request bit + */ +static ssize_t srp_store( struct device *_dev, struct device_attribute *attr, const char *buf, + size_t count ) +{ +#ifndef CONFIG_DWC_HOST_ONLY + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); + dwc_otg_pcd_initiate_srp(otg_dev->pcd); +#endif + return count; +} +DEVICE_ATTR(srp, 0644, srp_show, srp_store); + +/** + * @todo Need to do more for power on/off? + */ +/** + * Show the Bus Power status + */ +static ssize_t buspower_show( struct device *_dev, struct device_attribute *attr, char *buf) +{ + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); + hprt0_data_t val; + val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0); + return sprintf (buf, "Bus Power = 0x%x\n", val.b.prtpwr); +} + + +/** + * Set the Bus Power status + */ +static ssize_t buspower_store( struct device *_dev, struct device_attribute *attr, const char *buf, + size_t count ) +{ + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); + uint32_t on = simple_strtoul(buf, NULL, 16); + uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0; + hprt0_data_t mem; + + mem.d32 = dwc_read_reg32(addr); + mem.b.prtpwr = on; + + //dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32); + dwc_write_reg32(addr, mem.d32); + + return count; +} +DEVICE_ATTR(buspower, 0644, buspower_show, buspower_store); + +/** + * @todo Need to do more for suspend? + */ +/** + * Show the Bus Suspend status + */ +static ssize_t bussuspend_show( struct device *_dev, struct device_attribute *attr, char *buf) +{ + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); + hprt0_data_t val; + val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0); + return sprintf (buf, "Bus Suspend = 0x%x\n", val.b.prtsusp); +} + +/** + * Set the Bus Suspend status + */ +static ssize_t bussuspend_store( struct device *_dev, struct device_attribute *attr, const char *buf, + size_t count ) +{ + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); + uint32_t in = simple_strtoul(buf, NULL, 16); + uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0; + hprt0_data_t mem; + mem.d32 = dwc_read_reg32(addr); + mem.b.prtsusp = in; + dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32); + dwc_write_reg32(addr, mem.d32); + return count; +} +DEVICE_ATTR(bussuspend, 0644, bussuspend_show, bussuspend_store); + +/** + * Show the status of Remote Wakeup. + */ +static ssize_t remote_wakeup_show( struct device *_dev, struct device_attribute *attr, char *buf) +{ +#ifndef CONFIG_DWC_HOST_ONLY + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); + dctl_data_t val; + val.d32 = dwc_read_reg32( &otg_dev->core_if->dev_if->dev_global_regs->dctl); + return sprintf( buf, "Remote Wakeup = %d Enabled = %d\n", + val.b.rmtwkupsig, otg_dev->pcd->remote_wakeup_enable); +#else + return sprintf(buf, "Host Only Mode!\n"); +#endif +} + +/** + * Initiate a remote wakeup of the host. The Device control register + * Remote Wakeup Signal bit is written if the PCD Remote wakeup enable + * flag is set. + * + */ +static ssize_t remote_wakeup_store( struct device *_dev, struct device_attribute *attr, + const char *buf, size_t count ) +{ +#ifndef CONFIG_DWC_HOST_ONLY + uint32_t val = simple_strtoul(buf, NULL, 16); + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); + if (val&1) { + dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 1); + } + else { + dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 0); + } +#endif + return count; +} +DEVICE_ATTR(remote_wakeup, S_IRUGO|S_IWUSR, remote_wakeup_show, + remote_wakeup_store); + +/** + * Dump global registers and either host or device registers (depending on the + * current mode of the core). + */ +static ssize_t regdump_show( struct device *_dev, struct device_attribute *attr, char *buf) +{ + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); + printk("%s otg_dev=0x%p\n", __FUNCTION__, otg_dev); + dwc_otg_dump_global_registers( otg_dev->core_if); + if (dwc_otg_is_host_mode(otg_dev->core_if)) { + dwc_otg_dump_host_registers( otg_dev->core_if); + } else { + dwc_otg_dump_dev_registers( otg_dev->core_if); + } + return sprintf( buf, "Register Dump\n" ); +} +DEVICE_ATTR(regdump, S_IRUGO|S_IWUSR, regdump_show, 0); + +/** + * Dump the current hcd state. + */ +static ssize_t hcddump_show( struct device *_dev, struct device_attribute *attr, char *buf) +{ +#ifndef CONFIG_DWC_DEVICE_ONLY + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); + dwc_otg_hcd_dump_state(otg_dev->hcd); +#endif + return sprintf( buf, "HCD Dump\n" ); +} +DEVICE_ATTR(hcddump, S_IRUGO|S_IWUSR, hcddump_show, 0); + +/** + * Dump the average frame remaining at SOF. This can be used to + * determine average interrupt latency. Frame remaining is also shown for + * start transfer and two additional sample points. + */ +static ssize_t hcd_frrem_show( struct device *_dev, struct device_attribute *attr, char *buf) +{ +#ifndef CONFIG_DWC_DEVICE_ONLY + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); + dwc_otg_hcd_dump_frrem(otg_dev->hcd); +#endif + return sprintf( buf, "HCD Dump Frame Remaining\n" ); +} + +DEVICE_ATTR(hcd_frrem, S_IRUGO|S_IWUSR, hcd_frrem_show, 0); + +/** + * Displays the time required to read the GNPTXFSIZ register many times (the + * output shows the number of times the register is read). + */ +#define RW_REG_COUNT 10000000 +#define MSEC_PER_JIFFIE 1000/HZ +static ssize_t rd_reg_test_show( struct device *_dev, struct device_attribute *attr, char *buf) +{ + int i; + int time; + int start_jiffies; + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); + + printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n", + HZ, MSEC_PER_JIFFIE, loops_per_jiffy); + start_jiffies = jiffies; + for (i = 0; i < RW_REG_COUNT; i++) { + dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz); + } + time = jiffies - start_jiffies; + return sprintf( buf, "Time to read GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n", + RW_REG_COUNT, time * MSEC_PER_JIFFIE, time ); +} + +DEVICE_ATTR(rd_reg_test, S_IRUGO|S_IWUSR, rd_reg_test_show, 0); + +/** + * Displays the time required to write the GNPTXFSIZ register many times (the + * output shows the number of times the register is written). + */ +static ssize_t wr_reg_test_show( struct device *_dev, struct device_attribute *attr, char *buf) +{ + int i; + int time; + int start_jiffies; + dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); + uint32_t reg_val; + + printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n", + HZ, MSEC_PER_JIFFIE, loops_per_jiffy); + reg_val = dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz); + start_jiffies = jiffies; + for (i = 0; i < RW_REG_COUNT; i++) { + dwc_write_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz, reg_val); + } + time = jiffies - start_jiffies; + return sprintf( buf, "Time to write GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n", + RW_REG_COUNT, time * MSEC_PER_JIFFIE, time); +} +DEVICE_ATTR(wr_reg_test, S_IRUGO|S_IWUSR, wr_reg_test_show, 0); + +/** + * Create the device files + */ +void dwc_otg_attr_create (struct device *dev) +{ + int ret_val = 0; + ret_val = device_create_file(dev, &dev_attr_regoffset); + ret_val = device_create_file(dev, &dev_attr_regvalue); + ret_val = device_create_file(dev, &dev_attr_mode); + ret_val = device_create_file(dev, &dev_attr_hnpcapable); + ret_val = device_create_file(dev, &dev_attr_srpcapable); + ret_val = device_create_file(dev, &dev_attr_hnp); + ret_val = device_create_file(dev, &dev_attr_srp); + ret_val = device_create_file(dev, &dev_attr_buspower); + ret_val = device_create_file(dev, &dev_attr_bussuspend); + ret_val = device_create_file(dev, &dev_attr_busconnected); + ret_val = device_create_file(dev, &dev_attr_gotgctl); + ret_val = device_create_file(dev, &dev_attr_gusbcfg); + ret_val = device_create_file(dev, &dev_attr_grxfsiz); + ret_val = device_create_file(dev, &dev_attr_gnptxfsiz); + ret_val = device_create_file(dev, &dev_attr_gpvndctl); + ret_val = device_create_file(dev, &dev_attr_ggpio); + ret_val = device_create_file(dev, &dev_attr_guid); + ret_val = device_create_file(dev, &dev_attr_gsnpsid); + ret_val = device_create_file(dev, &dev_attr_devspeed); + ret_val = device_create_file(dev, &dev_attr_enumspeed); + ret_val = device_create_file(dev, &dev_attr_hptxfsiz); + ret_val = device_create_file(dev, &dev_attr_hprt0); + ret_val = device_create_file(dev, &dev_attr_remote_wakeup); + ret_val = device_create_file(dev, &dev_attr_regdump); + ret_val = device_create_file(dev, &dev_attr_hcddump); + ret_val = device_create_file(dev, &dev_attr_hcd_frrem); + ret_val = device_create_file(dev, &dev_attr_rd_reg_test); + ret_val = device_create_file(dev, &dev_attr_wr_reg_test); +} + +/** + * Remove the device files + */ +void dwc_otg_attr_remove (struct device *dev) +{ + device_remove_file(dev, &dev_attr_regoffset); + device_remove_file(dev, &dev_attr_regvalue); + device_remove_file(dev, &dev_attr_mode); + device_remove_file(dev, &dev_attr_hnpcapable); + device_remove_file(dev, &dev_attr_srpcapable); + device_remove_file(dev, &dev_attr_hnp); + device_remove_file(dev, &dev_attr_srp); + device_remove_file(dev, &dev_attr_buspower); + device_remove_file(dev, &dev_attr_bussuspend); + device_remove_file(dev, &dev_attr_busconnected); + device_remove_file(dev, &dev_attr_gotgctl); + device_remove_file(dev, &dev_attr_gusbcfg); + device_remove_file(dev, &dev_attr_grxfsiz); + device_remove_file(dev, &dev_attr_gnptxfsiz); + device_remove_file(dev, &dev_attr_gpvndctl); + device_remove_file(dev, &dev_attr_ggpio); + device_remove_file(dev, &dev_attr_guid); + device_remove_file(dev, &dev_attr_gsnpsid); + device_remove_file(dev, &dev_attr_devspeed); + device_remove_file(dev, &dev_attr_enumspeed); + device_remove_file(dev, &dev_attr_hptxfsiz); + device_remove_file(dev, &dev_attr_hprt0); + device_remove_file(dev, &dev_attr_remote_wakeup); + device_remove_file(dev, &dev_attr_regdump); + device_remove_file(dev, &dev_attr_hcddump); + device_remove_file(dev, &dev_attr_hcd_frrem); + device_remove_file(dev, &dev_attr_rd_reg_test); + device_remove_file(dev, &dev_attr_wr_reg_test); +} + diff --git a/drivers/usb/gadget/dwc_otg/dwc_otg_attr.h b/drivers/usb/gadget/dwc_otg/dwc_otg_attr.h new file mode 100644 index 00000000000..d04a7d06189 --- /dev/null +++ b/drivers/usb/gadget/dwc_otg/dwc_otg_attr.h @@ -0,0 +1,67 @@ +/* ========================================================================== + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_attr.h $ + * $Revision: #1 $ + * $Date: 2005/07/07 $ + * $Change: 510275 $ + * + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ + +#if !defined(__DWC_OTG_ATTR_H__) +#define __DWC_OTG_ATTR_H__ + +/** @file + * This file contains the interface to the Linux device attributes. + */ +extern struct device_attribute dev_attr_regoffset; +extern struct device_attribute dev_attr_regvalue; + +extern struct device_attribute dev_attr_mode; +extern struct device_attribute dev_attr_hnpcapable; +extern struct device_attribute dev_attr_srpcapable; +extern struct device_attribute dev_attr_hnp; +extern struct device_attribute dev_attr_srp; +extern struct device_attribute dev_attr_buspower; +extern struct device_attribute dev_attr_bussuspend; +extern struct device_attribute dev_attr_busconnected; +extern struct device_attribute dev_attr_gotgctl; +extern struct device_attribute dev_attr_gusbcfg; +extern struct device_attribute dev_attr_grxfsiz; +extern struct device_attribute dev_attr_gnptxfsiz; +extern struct device_attribute dev_attr_gpvndctl; +extern struct device_attribute dev_attr_ggpio; +extern struct device_attribute dev_attr_guid; +extern struct device_attribute dev_attr_gsnpsid; +extern struct device_attribute dev_attr_devspeed; +extern struct device_attribute dev_attr_enumspeed; +extern struct device_attribute dev_attr_hptxfsiz; +extern struct device_attribute dev_attr_hprt0; + +void dwc_otg_attr_create (struct device *dev); +void dwc_otg_attr_remove (struct device *dev); + +#endif diff --git a/drivers/usb/gadget/dwc_otg/dwc_otg_cil.c b/drivers/usb/gadget/dwc_otg/dwc_otg_cil.c new file mode 100644 index 00000000000..61a8879fc10 --- /dev/null +++ b/drivers/usb/gadget/dwc_otg/dwc_otg_cil.c @@ -0,0 +1,3237 @@ +/* ========================================================================== + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_cil.c $ + * $Revision: #24 $ + * $Date: 2007/02/07 $ + * $Change: 791271 $ + * + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ + + +/** @file + * + * The Core Interface Layer provides basic services for accessing and + * managing the DWC_otg hardware. These services are used by both the + * Host Controller Driver and the Peripheral Controller Driver. + * + * The CIL manages the memory map for the core so that the HCD and PCD + * don't have to do this separately. It also handles basic tasks like + * reading/writing the registers and data FIFOs in the controller. + * Some of the data access functions provide encapsulation of several + * operations required to perform a task, such as writing multiple + * registers to start a transfer. Finally, the CIL performs basic + * services that are not specific to either the host or device modes + * of operation. These services include management of the OTG Host + * Negotiation Protocol (HNP) and Session Request Protocol (SRP). A + * Diagnostic API is also provided to allow testing of the controller + * hardware. + * + * The Core Interface Layer has the following requirements: + * - Provides basic controller operations. + * - Minimal use of OS services. + * - The OS services used will be abstracted by using inline functions + * or macros. + * + */ +#include <asm/unaligned.h> +#ifdef CONFIG_DWC_DEBUG +#include <linux/jiffies.h> +#endif /* */ + +#include <asm/dcr.h> + +#include "linux/dwc_otg_plat.h" +#include "dwc_otg_regs.h" +#include "dwc_otg_cil.h" + +#ifdef CONFIG_OTG_PLB_DMA_TASKLET +atomic_t release_later = ATOMIC_INIT(0); +#endif +/** + * This function is called to initialize the DWC_otg CSR data + * structures. The register addresses in the device and host + * structures are initialized from the base address supplied by the + * caller. The calling function must make the OS calls to get the + * base address of the DWC_otg controller registers. The core_params + * argument holds the parameters that specify how the core should be + * configured. + * + * @param[in] _reg_base_addr Base address of DWC_otg core registers + * @param[in] _core_params Pointer to the core configuration parameters + * + */ +dwc_otg_core_if_t * dwc_otg_cil_init(const uint32_t * _reg_base_addr, + dwc_otg_core_params_t *_core_params) +{ + dwc_otg_core_if_t * core_if = 0; + dwc_otg_dev_if_t * dev_if = 0; + dwc_otg_host_if_t * host_if = 0; + uint8_t * reg_base = (uint8_t *) _reg_base_addr; + int i = 0; + DWC_DEBUGPL(DBG_CILV, "%s(%p,%p)\n", __func__, _reg_base_addr, + _core_params); + core_if = kmalloc(sizeof(dwc_otg_core_if_t), GFP_KERNEL); + if (core_if == 0) { + DWC_DEBUGPL(DBG_CIL,"Allocation of dwc_otg_core_if_t failed\n"); + return 0; + } + memset(core_if, 0, sizeof(dwc_otg_core_if_t)); + core_if->core_params = _core_params; + core_if->core_global_regs = (dwc_otg_core_global_regs_t *) reg_base; + + /* + * Allocate the Device Mode structures. + */ + dev_if = kmalloc(sizeof(dwc_otg_dev_if_t), GFP_KERNEL); + if (dev_if == 0) { + DWC_DEBUGPL(DBG_CIL,"Allocation of dwc_otg_dev_if_t failed\n"); + kfree(core_if); + return 0; + } + dev_if->dev_global_regs = (dwc_otg_device_global_regs_t *)(reg_base + + DWC_DEV_GLOBAL_REG_OFFSET); + for (i = 0; i < MAX_EPS_CHANNELS; i++) { + dev_if->in_ep_regs[i] = (dwc_otg_dev_in_ep_regs_t *) + (reg_base + DWC_DEV_IN_EP_REG_OFFSET + (i * DWC_EP_REG_OFFSET)); + dev_if->out_ep_regs[i] = (dwc_otg_dev_out_ep_regs_t *) + (reg_base + DWC_DEV_OUT_EP_REG_OFFSET + (i * DWC_EP_REG_OFFSET)); + DWC_DEBUGPL(DBG_CILV, "in_ep_regs[%d]->diepctl=%p\n", i, + &dev_if->in_ep_regs[i]->diepctl); + DWC_DEBUGPL(DBG_CILV, "out_ep_regs[%d]->doepctl=%p\n", i, + &dev_if->out_ep_regs[i]->doepctl); + } + dev_if->speed = 0; // unknown + core_if->dev_if = dev_if; + + /* + * Allocate the Host Mode structures. + */ + host_if = kmalloc(sizeof(dwc_otg_host_if_t), GFP_KERNEL); + if (host_if == 0) { + DWC_DEBUGPL(DBG_CIL,"Allocation of dwc_otg_host_if_t failed\n"); + kfree(dev_if); + kfree(core_if); + return 0; + } + host_if->host_global_regs = (dwc_otg_host_global_regs_t *) + (reg_base + DWC_OTG_HOST_GLOBAL_REG_OFFSET); + host_if->hprt0 = (uint32_t *) (reg_base + DWC_OTG_HOST_PORT_REGS_OFFSET); + + for (i = 0; i < MAX_EPS_CHANNELS; i++) { + host_if->hc_regs[i] = (dwc_otg_hc_regs_t *) + (reg_base + DWC_OTG_HOST_CHAN_REGS_OFFSET + (i * DWC_OTG_CHAN_REGS_OFFSET)); + DWC_DEBUGPL(DBG_CILV, "hc_reg[%d]->hcchar=%p\n", i,&host_if->hc_regs[i]->hcchar); + } + + host_if->num_host_channels = MAX_EPS_CHANNELS; + core_if->host_if = host_if; + for (i = 0; i < MAX_EPS_CHANNELS; i++) { + core_if->data_fifo[i] = + (uint32_t *) (reg_base + DWC_OTG_DATA_FIFO_OFFSET + + (i * DWC_OTG_DATA_FIFO_SIZE)); + DWC_DEBUGPL(DBG_CILV, "data_fifo[%d]=0x%08x\n", i, + (unsigned)core_if->data_fifo[i]); + } + core_if->pcgcctl = (uint32_t *) (reg_base + DWC_OTG_PCGCCTL_OFFSET); + + /* + * Store the contents of the hardware configuration registers here for + * easy access later. + */ + core_if->hwcfg1.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg1); + core_if->hwcfg2.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg2); +#ifdef CONFIG_DWC_SLAVE + core_if->hwcfg2.b.architecture = DWC_SLAVE_ONLY_ARCH; +#endif + core_if->hwcfg3.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg3); + core_if->hwcfg4.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg4); + DWC_DEBUGPL(DBG_CILV, "hwcfg1=%08x\n", core_if->hwcfg1.d32); + DWC_DEBUGPL(DBG_CILV, "hwcfg2=%08x\n", core_if->hwcfg2.d32); + DWC_DEBUGPL(DBG_CILV, "hwcfg3=%08x\n", core_if->hwcfg3.d32); + DWC_DEBUGPL(DBG_CILV, "hwcfg4=%08x\n", core_if->hwcfg4.d32); + DWC_DEBUGPL(DBG_CILV, "op_mode=%0x\n", core_if->hwcfg2.b.op_mode); + DWC_DEBUGPL(DBG_CILV, "arch=%0x\n", core_if->hwcfg2.b.architecture); + DWC_DEBUGPL(DBG_CILV, "num_dev_ep=%d\n",core_if->hwcfg2.b.num_dev_ep + 1); + DWC_DEBUGPL(DBG_CILV, "num_host_chan=%d\n",core_if->hwcfg2.b.num_host_chan); + DWC_DEBUGPL(DBG_CILV, "nonperio_tx_q_depth=0x%0x\n", + core_if->hwcfg2.b.nonperio_tx_q_depth); + DWC_DEBUGPL(DBG_CILV, "host_perio_tx_q_depth=0x%0x\n", + core_if->hwcfg2.b.host_perio_tx_q_depth); + DWC_DEBUGPL(DBG_CILV, "dev_token_q_depth=0x%0x\n", + core_if->hwcfg2.b.dev_token_q_depth); + DWC_DEBUGPL(DBG_CILV, "Total FIFO SZ=%d\n", + core_if->hwcfg3.b.dfifo_depth); + DWC_DEBUGPL(DBG_CILV, "xfer_size_cntr_width=%0x\n", + core_if->hwcfg3.b.xfer_size_cntr_width); + + /* + * Set the SRP sucess bit for FS-I2c + */ + core_if->srp_success = 0; + core_if->srp_timer_started = 0; + return core_if; +} + + +/** + * This function frees the structures allocated by dwc_otg_cil_init(). + * + * @param[in] _core_if The core interface pointer returned from + * dwc_otg_cil_init(). + * + */ +void dwc_otg_cil_remove(dwc_otg_core_if_t * _core_if) +{ + /* Disable all interrupts */ + dwc_modify_reg32(&_core_if->core_global_regs->gahbcfg, 1, 0); + dwc_write_reg32(&_core_if->core_global_regs->gintmsk, 0); + if (_core_if->dev_if) { + kfree(_core_if->dev_if); + } + if (_core_if->host_if) { + kfree(_core_if->host_if); + } + kfree(_core_if); +} + + +/** + * This function enables the controller's Global Interrupt in the AHB Config + * register. + * + * @param[in] _core_if Programming view of DWC_otg controller. + */ +extern void dwc_otg_enable_global_interrupts(dwc_otg_core_if_t * _core_if) +{ + gahbcfg_data_t ahbcfg = {.d32 = 0}; + ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */ + dwc_modify_reg32(&_core_if->core_global_regs->gahbcfg, 0, ahbcfg.d32); +} + +/** + * This function disables the controller's Global Interrupt in the AHB Config + * register. + * + * @param[in] _core_if Programming view of DWC_otg controller. + */ +extern void dwc_otg_disable_global_interrupts(dwc_otg_core_if_t * _core_if) +{ + gahbcfg_data_t ahbcfg = {.d32 = 0}; + ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */ + dwc_modify_reg32(&_core_if->core_global_regs->gahbcfg, ahbcfg.d32, 0); +} + +/** + * This function initializes the commmon interrupts, used in both + * device and host modes. + * + * @param[in] _core_if Programming view of the DWC_otg controller + * + */ +static void dwc_otg_enable_common_interrupts(dwc_otg_core_if_t * _core_if) +{ + dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs; + gintmsk_data_t intr_mask = {.d32 = 0}; + + /* Clear any pending OTG Interrupts */ + dwc_write_reg32(&global_regs->gotgint, 0xFFFFFFFF); + + /* Clear any pending interrupts */ + dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF); + + /* + * Enable the interrupts in the GINTMSK. + */ + intr_mask.b.modemismatch = 1; + intr_mask.b.otgintr = 1; + if (!_core_if->dma_enable) { + intr_mask.b.rxstsqlvl = 1; + } + intr_mask.b.conidstschng = 1; + intr_mask.b.wkupintr = 1; + intr_mask.b.disconnect = 1; + intr_mask.b.usbsuspend = 1; + intr_mask.b.sessreqintr = 1; + dwc_write_reg32(&global_regs->gintmsk, intr_mask.d32); +} + + +/** + * Initializes the FSLSPClkSel field of the HCFG register depending on the PHY + * type. + */ +static void init_fslspclksel(dwc_otg_core_if_t * _core_if) +{ + uint32_t val; + hcfg_data_t hcfg; + if (((_core_if->hwcfg2.b.hs_phy_type == 2) && + (_core_if->hwcfg2.b.fs_phy_type == 1) && + (_core_if->core_params->ulpi_fs_ls)) || + (_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) { + /* Full speed PHY */ + val = DWC_HCFG_48_MHZ; + } else { + /* High speed PHY running at full speed or high speed */ + val = DWC_HCFG_30_60_MHZ; + } + DWC_DEBUGPL(DBG_CIL, "Initializing HCFG.FSLSPClkSel to 0x%1x\n", val); + hcfg.d32 = dwc_read_reg32(&_core_if->host_if->host_global_regs->hcfg); + hcfg.b.fslspclksel = val; + dwc_write_reg32(&_core_if->host_if->host_global_regs->hcfg, hcfg.d32); +} + + +/** + * Initializes the DevSpd field of the DCFG register depending on the PHY type + * and the enumeration speed of the device. + */ +static void init_devspd(dwc_otg_core_if_t * _core_if) +{ + uint32_t val; + dcfg_data_t dcfg; + if (((_core_if->hwcfg2.b.hs_phy_type == 2) && + (_core_if->hwcfg2.b.fs_phy_type == 1) && + (_core_if->core_params->ulpi_fs_ls)) || + (_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) { + /* Full speed PHY */ + val = 0x3; + } else if (_core_if->core_params->speed == DWC_SPEED_PARAM_FULL) { + /* High speed PHY running at full speed */ + val = 0x1; + } else { + /* High speed PHY running at high speed */ + val = 0x0; + } + DWC_DEBUGPL(DBG_CIL, "Initializing DCFG.DevSpd to 0x%1x\n", val); + dcfg.d32 = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->dcfg); + dcfg.b.devspd = val; + dwc_write_reg32(&_core_if->dev_if->dev_global_regs->dcfg, dcfg.d32); +} + + +/** + * This function calculates the number of IN EPS + * using GHWCFG1 and GHWCFG2 registers values + * + * @param _pcd the pcd structure. + */ +static uint32_t calc_num_in_eps(dwc_otg_core_if_t * _core_if) +{ + uint32_t num_in_eps = 0; + uint32_t num_eps = _core_if->hwcfg2.b.num_dev_ep; + uint32_t hwcfg1 = _core_if->hwcfg1.d32 >> 2; + uint32_t num_tx_fifos = _core_if->hwcfg4.b.num_in_eps; + int i; + for (i = 0; i < num_eps; ++i) { + if (!(hwcfg1 & 0x1)) + num_in_eps++; + hwcfg1 >>= 2; + } + if (_core_if->hwcfg4.b.ded_fifo_en) { + num_in_eps = (num_in_eps > num_tx_fifos) ? num_tx_fifos : num_in_eps; + } + return num_in_eps; +} + + +/** + * This function calculates the number of OUT EPS + * using GHWCFG1 and GHWCFG2 registers values + * + * @param _pcd the pcd structure. + */ +static uint32_t calc_num_out_eps(dwc_otg_core_if_t * _core_if) +{ + uint32_t num_out_eps = 0; + uint32_t num_eps = _core_if->hwcfg2.b.num_dev_ep; + uint32_t hwcfg1 = _core_if->hwcfg1.d32 >> 2; + int i; + for (i = 0; i < num_eps; ++i) { + if (!(hwcfg1 & 0x2)) + num_out_eps++; + hwcfg1 >>= 2; + } + return num_out_eps; +} + + +/** + * This function initializes the DWC_otg controller registers and + * prepares the core for device mode or host mode operation. + * + * @param _core_if Programming view of the DWC_otg controller + * + */ +void dwc_otg_core_init(dwc_otg_core_if_t * _core_if) +{ + int i = 0; + dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs; + dwc_otg_dev_if_t * dev_if = _core_if->dev_if; + gahbcfg_data_t ahbcfg = {.d32 = 0}; + gusbcfg_data_t usbcfg = {.d32 = 0}; + gi2cctl_data_t i2cctl = {.d32 = 0}; + DWC_DEBUGPL(DBG_CILV, "dwc_otg_core_init(%p)\n", _core_if); + + /* Common Initialization */ + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); + DWC_DEBUGPL(DBG_CIL, "USB config register: 0x%08x\n", usbcfg.d32); + + /* Program the ULPI External VBUS bit if needed */ +#if defined(OTG_EXT_CHG_PUMP) || defined(CONFIG_460EX) || defined(CONFIG_APM82181) + usbcfg.b.ulpi_ext_vbus_drv = 1; +#else + //usbcfg.b.ulpi_ext_vbus_drv = 0; + usbcfg.b.ulpi_ext_vbus_drv = + (_core_if->core_params->phy_ulpi_ext_vbus == + DWC_PHY_ULPI_EXTERNAL_VBUS) ? 1 : 0; +#endif + + /* Set external TS Dline pulsing */ + usbcfg.b.term_sel_dl_pulse = (_core_if->core_params->ts_dline == 1) ? 1 : 0; + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); + + /* Reset the Controller */ + dwc_otg_core_reset(_core_if); + + /* Initialize parameters from Hardware configuration registers. */ + dev_if->num_in_eps = calc_num_in_eps(_core_if); + dev_if->num_out_eps = calc_num_out_eps(_core_if); + DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n", + _core_if->hwcfg4.b.num_dev_perio_in_ep); + DWC_DEBUGPL(DBG_CIL, "Is power optimization enabled? %s\n", + _core_if->hwcfg4.b.power_optimiz ? "Yes" : "No"); + DWC_DEBUGPL(DBG_CIL, "vbus_valid filter enabled? %s\n", + _core_if->hwcfg4.b.vbus_valid_filt_en ? "Yes" : "No"); + DWC_DEBUGPL(DBG_CIL, "iddig filter enabled? %s\n", + _core_if->hwcfg4.b.iddig_filt_en ? "Yes" : "No"); + + for (i = 0; i < _core_if->hwcfg4.b.num_dev_perio_in_ep; i++) { + dev_if->perio_tx_fifo_size[i] = + dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16; + DWC_DEBUGPL(DBG_CIL, "Periodic Tx FIFO SZ #%d=0x%0x\n", i, + dev_if->perio_tx_fifo_size[i]); + } + for (i = 0; i < _core_if->hwcfg4.b.num_in_eps; i++) { + dev_if->tx_fifo_size[i] = + dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16; + DWC_DEBUGPL(DBG_CIL, "Tx FIFO SZ #%d=0x%0x\n", i, + dev_if->perio_tx_fifo_size[i]); + } + _core_if->total_fifo_size = _core_if->hwcfg3.b.dfifo_depth; + _core_if->rx_fifo_size = dwc_read_reg32(&global_regs->grxfsiz); + _core_if->nperio_tx_fifo_size = dwc_read_reg32(&global_regs->gnptxfsiz) >> 16; + DWC_DEBUGPL(DBG_CIL, "Total FIFO SZ=%d\n", _core_if->total_fifo_size); + DWC_DEBUGPL(DBG_CIL, "Rx FIFO SZ=%d\n", _core_if->rx_fifo_size); + DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO SZ=%d\n",_core_if->nperio_tx_fifo_size); + + /* This programming sequence needs to happen in FS mode before any other + * programming occurs */ + if ((_core_if->core_params->speed == DWC_SPEED_PARAM_FULL) && + (_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) { + + /* If FS mode with FS PHY */ + + /* core_init() is now called on every switch so only call the + * following for the first time through. + */ + if (!_core_if->phy_init_done) { + _core_if->phy_init_done = 1; + DWC_DEBUGPL(DBG_CIL, "FS_PHY detected\n"); + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); + usbcfg.b.physel = 1; + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); + + /* Reset after a PHY select */ + dwc_otg_core_reset(_core_if); + } + + /* Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also + * do this on HNP Dev/Host mode switches (done in dev_init and + * host_init). + */ + if (dwc_otg_is_host_mode(_core_if)) { + DWC_DEBUGPL(DBG_CIL, "host mode\n"); + init_fslspclksel(_core_if); + } else { + DWC_DEBUGPL(DBG_CIL, "device mode\n"); + init_devspd(_core_if); + } + + if (_core_if->core_params->i2c_enable) { + DWC_DEBUGPL(DBG_CIL, "FS_PHY Enabling I2c\n"); + + /* Program GUSBCFG.OtgUtmifsSel to I2C */ + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); + usbcfg.b.otgutmifssel = 1; + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); + + /* Program GI2CCTL.I2CEn */ + i2cctl.d32 = dwc_read_reg32(&global_regs->gi2cctl); + i2cctl.b.i2cdevaddr = 1; + i2cctl.b.i2cen = 0; + dwc_write_reg32(&global_regs->gi2cctl, i2cctl.d32); + i2cctl.b.i2cen = 1; + dwc_write_reg32(&global_regs->gi2cctl, i2cctl.d32); + } + } /* endif speed == DWC_SPEED_PARAM_FULL */ + else { + /* High speed PHY. */ + if (!_core_if->phy_init_done) { + _core_if->phy_init_done = 1; + DWC_DEBUGPL(DBG_CIL, "High spped PHY\n"); + /* HS PHY parameters. These parameters are preserved + * during soft reset so only program the first time. Do + * a soft reset immediately after setting phyif. + */ + // test-only: in AMCC 460EX code not used!!!??? + usbcfg.b.ulpi_utmi_sel = _core_if->core_params->phy_type; + if (usbcfg.b.ulpi_utmi_sel == 1) { + DWC_DEBUGPL(DBG_CIL, "ULPI\n"); + /* ULPI interface */ + usbcfg.b.phyif = 0; + usbcfg.b.ddrsel = _core_if->core_params->phy_ulpi_ddr; + } else { + /* UTMI+ interface */ + if (_core_if->core_params->phy_utmi_width == 16) { + usbcfg.b.phyif = 1; + DWC_DEBUGPL(DBG_CIL, "UTMI+ 16\n"); + } else { + DWC_DEBUGPL(DBG_CIL, "UTMI+ 8\n"); + usbcfg.b.phyif = 0; + } + } + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); + /* Reset after setting the PHY parameters */ + dwc_otg_core_reset(_core_if); + } + } + if ((_core_if->hwcfg2.b.hs_phy_type == 2) && + (_core_if->hwcfg2.b.fs_phy_type == 1) && + (_core_if->core_params->ulpi_fs_ls)) { + DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS\n"); + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); + usbcfg.b.ulpi_fsls = 1; + usbcfg.b.ulpi_clk_sus_m = 1; + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); + } else { + DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS=0\n"); + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); + usbcfg.b.ulpi_fsls = 0; + usbcfg.b.ulpi_clk_sus_m = 0; + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); + } + + /* Program the GAHBCFG Register. */ + switch (_core_if->hwcfg2.b.architecture) { + case DWC_SLAVE_ONLY_ARCH: + DWC_DEBUGPL(DBG_CIL, "Slave Only Mode\n"); + ahbcfg.b.nptxfemplvl_txfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY; + ahbcfg.b.ptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY; + _core_if->dma_enable = 0; + break; + case DWC_EXT_DMA_ARCH: + DWC_DEBUGPL(DBG_CIL, "External DMA Mode\n"); + ahbcfg.b.hburstlen = _core_if->core_params->dma_burst_size; + _core_if->dma_enable = (_core_if->core_params->dma_enable != 0); + break; + case DWC_INT_DMA_ARCH: + DWC_DEBUGPL(DBG_CIL, "Internal DMA Mode\n"); + #if defined(CONFIG_APM82181) + /* Avoid system hang during concurrently using USB and SATA */ + ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR16; + #else + ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR; + #endif + _core_if->dma_enable = (_core_if->core_params->dma_enable != 0); + break; + } + ahbcfg.b.dmaenable = _core_if->dma_enable; + dwc_write_reg32(&global_regs->gahbcfg, ahbcfg.d32); + _core_if->en_multiple_tx_fifo = _core_if->hwcfg4.b.ded_fifo_en; + + /* + * Program the GUSBCFG register. + */ + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); + switch (_core_if->hwcfg2.b.op_mode) { + case DWC_MODE_HNP_SRP_CAPABLE: + usbcfg.b.hnpcap = (_core_if->core_params->otg_cap == + DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE); + usbcfg.b.srpcap = (_core_if->core_params->otg_cap != + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); + break; + case DWC_MODE_SRP_ONLY_CAPABLE: + usbcfg.b.hnpcap = 0; + usbcfg.b.srpcap = (_core_if->core_params->otg_cap != + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); + break; + case DWC_MODE_NO_HNP_SRP_CAPABLE: + usbcfg.b.hnpcap = 0; + usbcfg.b.srpcap = 0; + break; + case DWC_MODE_SRP_CAPABLE_DEVICE: + usbcfg.b.hnpcap = 0; + usbcfg.b.srpcap = (_core_if->core_params->otg_cap != + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); + break; + case DWC_MODE_NO_SRP_CAPABLE_DEVICE: + usbcfg.b.hnpcap = 0; + usbcfg.b.srpcap = 0; + break; + case DWC_MODE_SRP_CAPABLE_HOST: + usbcfg.b.hnpcap = 0; + usbcfg.b.srpcap = (_core_if->core_params->otg_cap != + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); + break; + case DWC_MODE_NO_SRP_CAPABLE_HOST: + usbcfg.b.hnpcap = 0; + usbcfg.b.srpcap = 0; + break; + } + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); + + /* Enable common interrupts */ + dwc_otg_enable_common_interrupts(_core_if); + + /* Do device or host intialization based on mode during PCD + * and HCD initialization + */ + if (dwc_otg_is_host_mode(_core_if)) { + DWC_DEBUGPL(DBG_ANY, "Host Mode\n"); + _core_if->op_state = A_HOST; + } else { + DWC_DEBUGPL(DBG_ANY, "Device Mode\n"); + _core_if->op_state = B_PERIPHERAL; +#ifdef CONFIG_DWC_DEVICE_ONLY + dwc_otg_core_dev_init(_core_if); +#endif /* */ + } +} + + +/** + * This function enables the Device mode interrupts. + * + * @param _core_if Programming view of DWC_otg controller + */ +void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t * _core_if) +{ + gintmsk_data_t intr_mask = {.d32 = 0}; + dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs; + DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__); + + /* Disable all interrupts. */ + dwc_write_reg32(&global_regs->gintmsk, 0); + + /* Clear any pending interrupts */ + dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF); + + /* Enable the common interrupts */ + dwc_otg_enable_common_interrupts(_core_if); + + /* Enable interrupts */ + intr_mask.b.usbreset = 1; + intr_mask.b.enumdone = 1; + intr_mask.b.inepintr = 1; + intr_mask.b.outepintr = 1; + intr_mask.b.erlysuspend = 1; + if (_core_if->en_multiple_tx_fifo == 0) { + intr_mask.b.epmismatch = 1; + } + + /** @todo NGS: Should this be a module parameter? */ +#ifdef USE_PERIODIC_EP + intr_mask.b.isooutdrop = 1; + intr_mask.b.eopframe = 1; + intr_mask.b.incomplisoin = 1; + intr_mask.b.incomplisoout = 1; +#endif /* */ + dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, + intr_mask.d32); + + DWC_DEBUGPL(DBG_CIL, "%s() gintmsk=%0x\n", __func__, + dwc_read_reg32(&global_regs->gintmsk)); +} + + +/** + * This function initializes the DWC_otg controller registers for + * device mode. + * + * @param _core_if Programming view of DWC_otg controller + * + */ +void dwc_otg_core_dev_init(dwc_otg_core_if_t * _core_if) +{ + int i; + dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs; + dwc_otg_dev_if_t * dev_if = _core_if->dev_if; + dwc_otg_core_params_t * params = _core_if->core_params; + dcfg_data_t dcfg = {.d32 = 0}; + grstctl_t resetctl = {.d32 = 0}; + uint32_t rx_fifo_size; + fifosize_data_t nptxfifosize; + fifosize_data_t txfifosize; + dthrctl_data_t dthrctl; + fifosize_data_t ptxfifosize; + + /* Restart the Phy Clock */ + dwc_write_reg32(_core_if->pcgcctl, 0); + + /* Device configuration register */ + init_devspd(_core_if); + dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg); + dcfg.b.perfrint = DWC_DCFG_FRAME_INTERVAL_80; + dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32); + + /* Configure data FIFO sizes */ + if (_core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) { + DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n", + _core_if->total_fifo_size); + DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n", + params->dev_rx_fifo_size); + DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n", + params->dev_nperio_tx_fifo_size); + + /* Rx FIFO */ + DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n", + dwc_read_reg32(&global_regs->grxfsiz)); + rx_fifo_size = params->dev_rx_fifo_size; + dwc_write_reg32(&global_regs->grxfsiz, rx_fifo_size); + DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n", + dwc_read_reg32(&global_regs->grxfsiz)); + + /** Set Periodic Tx FIFO Mask all bits 0 */ + _core_if->p_tx_msk = 0; + + /** Set Tx FIFO Mask all bits 0 */ + _core_if->tx_msk = 0; + if (_core_if->en_multiple_tx_fifo == 0) { + /* Non-periodic Tx FIFO */ + DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n", + dwc_read_reg32(&global_regs->gnptxfsiz)); + nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size; + nptxfifosize.b.startaddr = params->dev_rx_fifo_size; + dwc_write_reg32(&global_regs->gnptxfsiz,nptxfifosize.d32); + DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n", + dwc_read_reg32(&global_regs->gnptxfsiz)); + + /**@todo NGS: Fix Periodic FIFO Sizing! */ + /* + * Periodic Tx FIFOs These FIFOs are numbered from 1 to 15. + * Indexes of the FIFO size module parameters in the + * dev_perio_tx_fifo_size array and the FIFO size registers in + * the dptxfsiz array run from 0 to 14. + */ + /** @todo Finish debug of this */ + ptxfifosize.b.startaddr = + nptxfifosize.b.startaddr + nptxfifosize.b.depth; + for (i = 0; i < _core_if->hwcfg4.b.num_dev_perio_in_ep;i++) { + ptxfifosize.b.depth = params->dev_perio_tx_fifo_size[i]; + DWC_DEBUGPL(DBG_CIL,"initial dptxfsiz_dieptxf[%d]=%08x\n", + i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i])); + dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i],ptxfifosize.d32); + DWC_DEBUGPL(DBG_CIL,"new dptxfsiz_dieptxf[%d]=%08x\n", + i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i])); + ptxfifosize.b.startaddr += ptxfifosize.b.depth; + } + } else { + + /* + * Tx FIFOs These FIFOs are numbered from 1 to 15. + * Indexes of the FIFO size module parameters in the + * dev_tx_fifo_size array and the FIFO size registers in + * the dptxfsiz_dieptxf array run from 0 to 14. + */ + + /* Non-periodic Tx FIFO */ + DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n", + dwc_read_reg32(&global_regs->gnptxfsiz)); + nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size; + nptxfifosize.b.startaddr = params->dev_rx_fifo_size; + dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32); + DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n", + dwc_read_reg32(&global_regs->gnptxfsiz)); + txfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth; + for (i = 1;i < _core_if->hwcfg4.b.num_dev_perio_in_ep;i++) { + txfifosize.b.depth = params->dev_tx_fifo_size[i]; + DWC_DEBUGPL(DBG_CIL,"initial dptxfsiz_dieptxf[%d]=%08x\n", + i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i])); + dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i - 1],txfifosize.d32); + DWC_DEBUGPL(DBG_CIL,"new dptxfsiz_dieptxf[%d]=%08x\n", + i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i-1])); + txfifosize.b.startaddr += txfifosize.b.depth; + } + } + } + + /* Flush the FIFOs */ + dwc_otg_flush_tx_fifo(_core_if, 0x10); /* all Tx FIFOs */ + dwc_otg_flush_rx_fifo(_core_if); + + /* Flush the Learning Queue. */ + resetctl.b.intknqflsh = 1; + dwc_write_reg32(&_core_if->core_global_regs->grstctl, resetctl.d32); + + /* Clear all pending Device Interrupts */ + dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, 0); + dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, 0); + dwc_write_reg32(&dev_if->dev_global_regs->daint, 0xFFFFFFFF); + dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, 0); + for (i = 0; i <= dev_if->num_in_eps; i++) { + depctl_data_t depctl; + depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl); + if (depctl.b.epena) { + depctl.d32 = 0; + depctl.b.epdis = 1; + depctl.b.snak = 1; + } else { + depctl.d32 = 0; + } + dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl, depctl.d32); + dwc_write_reg32(&dev_if->in_ep_regs[i]->dieptsiz, 0); + dwc_write_reg32(&dev_if->in_ep_regs[i]->diepdma, 0); + dwc_write_reg32(&dev_if->in_ep_regs[i]->diepint, 0xFF); + } + for (i = 0; i <= dev_if->num_out_eps; i++) { + depctl_data_t depctl; + depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl); + if (depctl.b.epena) { + depctl.d32 = 0; + depctl.b.epdis = 1; + depctl.b.snak = 1; + } else { + depctl.d32 = 0; + } + dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl, depctl.d32); + dwc_write_reg32(&dev_if->out_ep_regs[i]->doeptsiz, 0); + dwc_write_reg32(&dev_if->out_ep_regs[i]->doepdma, 0); + dwc_write_reg32(&dev_if->out_ep_regs[i]->doepint, 0xFF); + } + if (_core_if->en_multiple_tx_fifo && _core_if->dma_enable) { + dev_if->non_iso_tx_thr_en = _core_if->core_params->thr_ctl & 0x1; + dev_if->iso_tx_thr_en = (_core_if->core_params->thr_ctl >> 1) & 0x1; + dev_if->rx_thr_en = (_core_if->core_params->thr_ctl >> 2) & 0x1; + dev_if->rx_thr_length = _core_if->core_params->rx_thr_length; + dev_if->tx_thr_length = _core_if->core_params->tx_thr_length; + dthrctl.d32 = 0; + dthrctl.b.non_iso_thr_en = dev_if->non_iso_tx_thr_en; + dthrctl.b.iso_thr_en = dev_if->iso_tx_thr_en; + dthrctl.b.tx_thr_len = dev_if->tx_thr_length; + dthrctl.b.rx_thr_en = dev_if->rx_thr_en; + dthrctl.b.rx_thr_len = dev_if->rx_thr_length; + dwc_write_reg32(&dev_if->dev_global_regs->dtknqr3_dthrctl,dthrctl.d32); + DWC_DEBUGPL(DBG_CIL, "Non ISO Tx Thr - %d\nISO Tx Thr - %d\n" + "Rx Thr - %d\nTx Thr Len - %d\nRx Thr Len - %d\n", + dthrctl.b.non_iso_thr_en, dthrctl.b.iso_thr_en, + dthrctl.b.rx_thr_en, dthrctl.b.tx_thr_len, + dthrctl.b.rx_thr_len); + } + dwc_otg_enable_device_interrupts(_core_if); + { + diepmsk_data_t msk = {.d32 = 0}; + msk.b.txfifoundrn = 1; + dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, msk.d32,msk.d32); + } +} + + +/** + * This function enables the Host mode interrupts. + * + * @param _core_if Programming view of DWC_otg controller + */ +void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t * _core_if) +{ + dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs; + gintmsk_data_t intr_mask = {.d32 = 0}; + DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__); + + /* Disable all interrupts. */ + dwc_write_reg32(&global_regs->gintmsk, 0); + + /* Clear any pending interrupts. */ + dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF); + + /* Enable the common interrupts */ + dwc_otg_enable_common_interrupts(_core_if); + + /* + * Enable host mode interrupts without disturbing common + * interrupts. + */ + intr_mask.b.sofintr = 1; + intr_mask.b.portintr = 1; + intr_mask.b.hcintr = 1; + dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32); +} + +/** + * This function disables the Host Mode interrupts. + * + * @param _core_if Programming view of DWC_otg controller + */ +void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t * _core_if) +{ + dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs; + gintmsk_data_t intr_mask = {.d32 = 0}; + DWC_DEBUGPL(DBG_CILV, "%s()\n", __func__); + + /* + * Disable host mode interrupts without disturbing common + * interrupts. + */ + intr_mask.b.sofintr = 1; + intr_mask.b.portintr = 1; + intr_mask.b.hcintr = 1; + intr_mask.b.ptxfempty = 1; + intr_mask.b.nptxfempty = 1; + dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0); +} + +#if 0 +/* currently not used, keep it here as if needed later */ +static int phy_read(dwc_otg_core_if_t * _core_if, int addr) +{ + u32 val; + int timeout = 10; + + dwc_write_reg32(&_core_if->core_global_regs->gpvndctl, + 0x02000000 | (addr << 16)); + val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl); + while (((val & 0x08000000) == 0) && (timeout--)) { + udelay(1000); + val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl); + } + val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl); + printk("%s: addr=%02x regval=%02x\n", __func__, addr, val & 0x000000ff); + + return 0; +} +#endif + +#ifdef CONFIG_405EX +static int phy_write(dwc_otg_core_if_t * _core_if, int addr, int val8) +{ + u32 val; + int timeout = 10; + + dwc_write_reg32(&_core_if->core_global_regs->gpvndctl, + 0x02000000 | 0x00400000 | (addr << 16) | (val8 & 0x000000ff)); + val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl); + while (((val & 0x08000000) == 0) && (timeout--)) { + udelay(1000); + val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl); + } + val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl); + + return 0; +} +#endif + +/** + * This function initializes the DWC_otg controller registers for + * host mode. + * + * This function flushes the Tx and Rx FIFOs and it flushes any entries in the + * request queues. Host channels are reset to ensure that they are ready for + * performing transfers. + * + * @param _core_if Programming view of DWC_otg controller + * + */ +void dwc_otg_core_host_init(dwc_otg_core_if_t * _core_if) +{ + dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs; + dwc_otg_host_if_t * host_if = _core_if->host_if; + dwc_otg_core_params_t * params = _core_if->core_params; + hprt0_data_t hprt0 = {.d32 = 0}; + fifosize_data_t nptxfifosize; + fifosize_data_t ptxfifosize; + int i; + hcchar_data_t hcchar; + hcfg_data_t hcfg; + dwc_otg_hc_regs_t * hc_regs; + int num_channels; + gotgctl_data_t gotgctl = {.d32 = 0}; + DWC_DEBUGPL(DBG_CILV, "%s(%p)\n", __func__, _core_if); + + /* Restart the Phy Clock */ + dwc_write_reg32(_core_if->pcgcctl, 0); + + /* Initialize Host Configuration Register */ + init_fslspclksel(_core_if); + if (_core_if->core_params->speed == DWC_SPEED_PARAM_FULL) { + hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg); + hcfg.b.fslssupp = 1; + dwc_write_reg32(&host_if->host_global_regs->hcfg, hcfg.d32); + } + + /* Configure data FIFO sizes */ + if (_core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) { + DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n", _core_if->total_fifo_size); + DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n", params->host_rx_fifo_size); + DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n",params->host_nperio_tx_fifo_size); + DWC_DEBUGPL(DBG_CIL, "P Tx FIFO Size=%d\n", params->host_perio_tx_fifo_size); + + /* Rx FIFO */ + DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n",dwc_read_reg32(&global_regs->grxfsiz)); + dwc_write_reg32(&global_regs->grxfsiz,params->host_rx_fifo_size); + DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n",dwc_read_reg32(&global_regs->grxfsiz)); + + /* Non-periodic Tx FIFO */ + DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n",dwc_read_reg32(&global_regs->gnptxfsiz)); + nptxfifosize.b.depth = params->host_nperio_tx_fifo_size; + nptxfifosize.b.startaddr = params->host_rx_fifo_size; + dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32); + DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz)); + + /* Periodic Tx FIFO */ + DWC_DEBUGPL(DBG_CIL, "initial hptxfsiz=%08x\n",dwc_read_reg32(&global_regs->hptxfsiz)); + ptxfifosize.b.depth = params->host_perio_tx_fifo_size; + ptxfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth; + dwc_write_reg32(&global_regs->hptxfsiz, ptxfifosize.d32); + DWC_DEBUGPL(DBG_CIL, "new hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz)); + } + + /* Clear Host Set HNP Enable in the OTG Control Register */ + gotgctl.b.hstsethnpen = 1; + dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0); + + /* Make sure the FIFOs are flushed. */ + dwc_otg_flush_tx_fifo(_core_if, 0x10 /* all Tx FIFOs */ ); + dwc_otg_flush_rx_fifo(_core_if); + + /* Flush out any leftover queued requests. */ + num_channels = _core_if->core_params->host_channels; + for (i = 0; i < num_channels; i++) { + hc_regs = _core_if->host_if->hc_regs[i]; + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + hcchar.b.chen = 0; + hcchar.b.chdis = 1; + hcchar.b.epdir = 0; + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); + } + + /* Halt all channels to put them into a known state. */ + for (i = 0; i < num_channels; i++) { + int count = 0; + hc_regs = _core_if->host_if->hc_regs[i]; + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + hcchar.b.chen = 1; + hcchar.b.chdis = 1; + hcchar.b.epdir = 0; + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); + DWC_DEBUGPL(DBG_HCDV, "%s: Halt channel %d\n", __func__, i); + + do { + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + if (++count > 200) { + DWC_ERROR + ("%s: Unable to clear halt on channel %d\n", + __func__, i); + break; + } + udelay(100); + } while (hcchar.b.chen); + } + + /* Turn on the vbus power. */ + DWC_PRINT("Init: Port Power? op_state=%d\n", _core_if->op_state); + if (_core_if->op_state == A_HOST) { + hprt0.d32 = dwc_otg_read_hprt0(_core_if); + DWC_PRINT("Init: Power Port (%d)\n", hprt0.b.prtpwr); + if (hprt0.b.prtpwr == 0) { + hprt0.b.prtpwr = 1; + dwc_write_reg32(host_if->hprt0, hprt0.d32); + } + } + +#ifdef CONFIG_405EX + /* Write 0x60 to USB PHY register 7: + * Modify "Indicator Complement" and "Indicator Pass Thru" of + * Interface control register to disable the internal Vbus + * comparator, as suggested by RichTek FAE. + * This produced better results recognizing and mounting USB + * memory sticks on the Makalu 405EX platform. I couldn't see + * any difference on Kilauea, but since it seems to be better + * on Makalu, let's keep it in here too. + */ + phy_write(_core_if, 7, 0x60); +#endif + + dwc_otg_enable_host_interrupts(_core_if); +} + + +/** + * Prepares a host channel for transferring packets to/from a specific + * endpoint. The HCCHARn register is set up with the characteristics specified + * in _hc. Host channel interrupts that may need to be serviced while this + * transfer is in progress are enabled. + * + * @param _core_if Programming view of DWC_otg controller + * @param _hc Information needed to initialize the host channel + */ +void dwc_otg_hc_init(dwc_otg_core_if_t * _core_if, dwc_hc_t * _hc) +{ + uint32_t intr_enable; + hcintmsk_data_t hc_intr_mask; + gintmsk_data_t gintmsk = {.d32 = 0}; + hcchar_data_t hcchar; + hcsplt_data_t hcsplt; + uint8_t hc_num = _hc->hc_num; + dwc_otg_host_if_t * host_if = _core_if->host_if; + dwc_otg_hc_regs_t * hc_regs = host_if->hc_regs[hc_num]; + + /* Clear old interrupt conditions for this host channel. */ + hc_intr_mask.d32 = 0xFFFFFFFF; + hc_intr_mask.b.reserved = 0; + dwc_write_reg32(&hc_regs->hcint, hc_intr_mask.d32); + + /* Enable channel interrupts required for this transfer. */ + hc_intr_mask.d32 = 0; + hc_intr_mask.b.chhltd = 1; + if (_core_if->dma_enable) { + hc_intr_mask.b.ahberr = 1; + if (_hc->error_state && !_hc->do_split && + _hc->ep_type != DWC_OTG_EP_TYPE_ISOC) { + hc_intr_mask.b.ack = 1; + if (_hc->ep_is_in) { + hc_intr_mask.b.datatglerr = 1; + if (_hc->ep_type != DWC_OTG_EP_TYPE_INTR) { + hc_intr_mask.b.nak = 1; + } + } + } + } else { + switch (_hc->ep_type) { + case DWC_OTG_EP_TYPE_CONTROL: + case DWC_OTG_EP_TYPE_BULK: + hc_intr_mask.b.xfercompl = 1; + hc_intr_mask.b.stall = 1; + hc_intr_mask.b.xacterr = 1; + hc_intr_mask.b.datatglerr = 1; + if (_hc->ep_is_in) { + hc_intr_mask.b.bblerr = 1; + } else { + hc_intr_mask.b.nak = 1; + hc_intr_mask.b.nyet = 1; + if (_hc->do_ping) { + hc_intr_mask.b.ack = 1; + } + } + if (_hc->do_split) { + hc_intr_mask.b.nak = 1; + if (_hc->complete_split) { + hc_intr_mask.b.nyet = 1; + } else { + hc_intr_mask.b.ack = 1; + } + } + if (_hc->error_state) { + hc_intr_mask.b.ack = 1; + } + break; + case DWC_OTG_EP_TYPE_INTR: + hc_intr_mask.b.xfercompl = 1; + hc_intr_mask.b.nak = 1; + hc_intr_mask.b.stall = 1; + hc_intr_mask.b.xacterr = 1; + hc_intr_mask.b.datatglerr = 1; + hc_intr_mask.b.frmovrun = 1; + if (_hc->ep_is_in) { + hc_intr_mask.b.bblerr = 1; + } + if (_hc->error_state) { + hc_intr_mask.b.ack = 1; + } + if (_hc->do_split) { + if (_hc->complete_split) { + hc_intr_mask.b.nyet = 1; + } else { + hc_intr_mask.b.ack = 1; + } + } + break; + case DWC_OTG_EP_TYPE_ISOC: + hc_intr_mask.b.xfercompl = 1; + hc_intr_mask.b.frmovrun = 1; + hc_intr_mask.b.ack = 1; + if (_hc->ep_is_in) { + hc_intr_mask.b.xacterr = 1; + hc_intr_mask.b.bblerr = 1; + } + break; + } + } + dwc_write_reg32(&hc_regs->hcintmsk, hc_intr_mask.d32); + + /* Enable the top level host channel interrupt. */ + intr_enable = (1 << hc_num); + dwc_modify_reg32(&host_if->host_global_regs->haintmsk, 0, intr_enable); + + /* Make sure host channel interrupts are enabled. */ + gintmsk.b.hcintr = 1; + dwc_modify_reg32(&_core_if->core_global_regs->gintmsk, 0, gintmsk.d32); + + /* + * Program the HCCHARn register with the endpoint characteristics for + * the current transfer. + */ + hcchar.d32 = 0; + hcchar.b.devaddr = _hc->dev_addr; + hcchar.b.epnum = _hc->ep_num; + hcchar.b.epdir = _hc->ep_is_in; + hcchar.b.lspddev = (_hc->speed == DWC_OTG_EP_SPEED_LOW); + hcchar.b.eptype = _hc->ep_type; + hcchar.b.mps = _hc->max_packet; + dwc_write_reg32(&host_if->hc_regs[hc_num]->hcchar, hcchar.d32); + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num); + DWC_DEBUGPL(DBG_HCDV, " Dev Addr: %d\n", hcchar.b.devaddr); + DWC_DEBUGPL(DBG_HCDV, " Ep Num: %d\n", hcchar.b.epnum); + DWC_DEBUGPL(DBG_HCDV, " Is In: %d\n", hcchar.b.epdir); + DWC_DEBUGPL(DBG_HCDV, " Is Low Speed: %d\n", hcchar.b.lspddev); + DWC_DEBUGPL(DBG_HCDV, " Ep Type: %d\n", hcchar.b.eptype); + DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps); + DWC_DEBUGPL(DBG_HCDV, " Multi Cnt: %d\n", hcchar.b.multicnt); + + /* + * Program the HCSPLIT register for SPLITs + */ + hcsplt.d32 = 0; + if (_hc->do_split) { + DWC_DEBUGPL(DBG_HCDV, "Programming HC %d with split --> %s\n", + _hc->hc_num,_hc->complete_split ? "CSPLIT" : "SSPLIT"); + hcsplt.b.compsplt = _hc->complete_split; + hcsplt.b.xactpos = _hc->xact_pos; + hcsplt.b.hubaddr = _hc->hub_addr; + hcsplt.b.prtaddr = _hc->port_addr; + DWC_DEBUGPL(DBG_HCDV, " comp split %d\n", _hc->complete_split); + DWC_DEBUGPL(DBG_HCDV, " xact pos %d\n", _hc->xact_pos); + DWC_DEBUGPL(DBG_HCDV, " hub addr %d\n", _hc->hub_addr); + DWC_DEBUGPL(DBG_HCDV, " port addr %d\n", _hc->port_addr); + DWC_DEBUGPL(DBG_HCDV, " is_in %d\n", _hc->ep_is_in); + DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps); + DWC_DEBUGPL(DBG_HCDV, " xferlen: %d\n", _hc->xfer_len); + } + dwc_write_reg32(&host_if->hc_regs[hc_num]->hcsplt, hcsplt.d32); +} + + +/** + * Attempts to halt a host channel. This function should only be called in + * Slave mode or to abort a transfer in either Slave mode or DMA mode. Under + * normal circumstances in DMA mode, the controller halts the channel when the + * transfer is complete or a condition occurs that requires application + * intervention. + * + * In slave mode, checks for a free request queue entry, then sets the Channel + * Enable and Channel Disable bits of the Host Channel Characteristics + * register of the specified channel to intiate the halt. If there is no free + * request queue entry, sets only the Channel Disable bit of the HCCHARn + * register to flush requests for this channel. In the latter case, sets a + * flag to indicate that the host channel needs to be halted when a request + * queue slot is open. + * + * In DMA mode, always sets the Channel Enable and Channel Disable bits of the + * HCCHARn register. The controller ensures there is space in the request + * queue before submitting the halt request. + * + * Some time may elapse before the core flushes any posted requests for this + * host channel and halts. The Channel Halted interrupt handler completes the + * deactivation of the host channel. + * + * @param _core_if Controller register interface. + * @param _hc Host channel to halt. + * @param _halt_status Reason for halting the channel. + */ +void dwc_otg_hc_halt(dwc_otg_core_if_t * _core_if, + dwc_hc_t * _hc, dwc_otg_halt_status_e _halt_status) +{ + gnptxsts_data_t nptxsts; + hptxsts_data_t hptxsts; + hcchar_data_t hcchar; + dwc_otg_hc_regs_t * hc_regs; + dwc_otg_core_global_regs_t * global_regs; + dwc_otg_host_global_regs_t * host_global_regs; + hc_regs = _core_if->host_if->hc_regs[_hc->hc_num]; + global_regs = _core_if->core_global_regs; + host_global_regs = _core_if->host_if->host_global_regs; + WARN_ON(_halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS); + if (_halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE || + _halt_status == DWC_OTG_HC_XFER_AHB_ERR) { + + /* + * Disable all channel interrupts except Ch Halted. The QTD + * and QH state associated with this transfer has been cleared + * (in the case of URB_DEQUEUE), so the channel needs to be + * shut down carefully to prevent crashes. + */ + hcintmsk_data_t hcintmsk; + hcintmsk.d32 = 0; + hcintmsk.b.chhltd = 1; + dwc_write_reg32(&hc_regs->hcintmsk, hcintmsk.d32); + + /* + * Make sure no other interrupts besides halt are currently + * pending. Handling another interrupt could cause a crash due + * to the QTD and QH state. + */ + dwc_write_reg32(&hc_regs->hcint, ~hcintmsk.d32); + + /* + * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR + * even if the channel was already halted for some other + * reason. + */ + _hc->halt_status = _halt_status; + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + if (hcchar.b.chen == 0) { + /* + * The channel is either already halted or it hasn't + * started yet. In DMA mode, the transfer may halt if + * it finishes normally or a condition occurs that + * requires driver intervention. Don't want to halt + * the channel again. In either Slave or DMA mode, + * it's possible that the transfer has been assigned + * to a channel, but not started yet when an URB is + * dequeued. Don't want to halt a channel that hasn't + * started yet. + */ + return; + } + } + if (_hc->halt_pending) { + + /* + * A halt has already been issued for this channel. This might + * happen when a transfer is aborted by a higher level in + * the stack. + */ +#ifdef CONFIG_DWC_DEBUG + DWC_PRINT("*** %s: Channel %d, _hc->halt_pending already set ***\n", + __func__, _hc->hc_num); +/* dwc_otg_dump_global_registers(_core_if); */ +/* dwc_otg_dump_host_registers(_core_if); */ +#endif /* */ + return; + } + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + hcchar.b.chen = 1; + hcchar.b.chdis = 1; + if (!_core_if->dma_enable) { + /* Check for space in the request queue to issue the halt. */ + if (_hc->ep_type == DWC_OTG_EP_TYPE_CONTROL + || _hc->ep_type == DWC_OTG_EP_TYPE_BULK) { + nptxsts.d32 = dwc_read_reg32(&global_regs->gnptxsts); + if (nptxsts.b.nptxqspcavail == 0) { + hcchar.b.chen = 0; + } + } else { + hptxsts.d32 = dwc_read_reg32(&host_global_regs->hptxsts); + if ((hptxsts.b.ptxqspcavail == 0) || + (_core_if->queuing_high_bandwidth)) { + hcchar.b.chen = 0; + } + } + } + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); + _hc->halt_status = _halt_status; + if (hcchar.b.chen) { + _hc->halt_pending = 1; + _hc->halt_on_queue = 0; + } else { + _hc->halt_on_queue = 1; + } + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num); + DWC_DEBUGPL(DBG_HCDV, " hcchar: 0x%08x\n", hcchar.d32); + DWC_DEBUGPL(DBG_HCDV, " halt_pending: %d\n", _hc->halt_pending); + DWC_DEBUGPL(DBG_HCDV, " halt_on_queue: %d\n", _hc->halt_on_queue); + DWC_DEBUGPL(DBG_HCDV, " halt_status: %d\n", _hc->halt_status); + return; +} + + +/** + * Clears the transfer state for a host channel. This function is normally + * called after a transfer is done and the host channel is being released. + * + * @param _core_if Programming view of DWC_otg controller. + * @param _hc Identifies the host channel to clean up. + */ +void dwc_otg_hc_cleanup(dwc_otg_core_if_t * _core_if, dwc_hc_t * _hc) +{ + dwc_otg_hc_regs_t * hc_regs; + _hc->xfer_started = 0; + + /* + * Clear channel interrupt enables and any unhandled channel interrupt + * conditions. + */ + hc_regs = _core_if->host_if->hc_regs[_hc->hc_num]; + dwc_write_reg32(&hc_regs->hcintmsk, 0); + dwc_write_reg32(&hc_regs->hcint, 0xFFFFFFFF); + +#ifdef CONFIG_DWC_DEBUG + del_timer(&_core_if->hc_xfer_timer[_hc->hc_num]); + { + hcchar_data_t hcchar; + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + if (hcchar.b.chdis) { + DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n", + __func__, _hc->hc_num, hcchar.d32); + } + } +#endif /* */ +} + + +/** + * Sets the channel property that indicates in which frame a periodic transfer + * should occur. This is always set to the _next_ frame. This function has no + * effect on non-periodic transfers. + * + * @param _core_if Programming view of DWC_otg controller. + * @param _hc Identifies the host channel to set up and its properties. + * @param _hcchar Current value of the HCCHAR register for the specified host + * channel. + */ +static inline void hc_set_even_odd_frame(dwc_otg_core_if_t * _core_if, + dwc_hc_t * _hc, hcchar_data_t * _hcchar) +{ + if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR || + _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { + hfnum_data_t hfnum; + hfnum.d32 = dwc_read_reg32(&_core_if->host_if->host_global_regs->hfnum); + + /* 1 if _next_ frame is odd, 0 if it's even */ + _hcchar->b.oddfrm = (hfnum.b.frnum & 0x1) ? 0 : 1; + +#ifdef CONFIG_DWC_DEBUG + if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR && _hc->do_split + && !_hc->complete_split) { + switch (hfnum.b.frnum & 0x7) { + case 7: + _core_if->hfnum_7_samples++; + _core_if->hfnum_7_frrem_accum += hfnum.b.frrem; + break; + case 0: + _core_if->hfnum_0_samples++; + _core_if->hfnum_0_frrem_accum += hfnum.b.frrem; + break; + default: + _core_if->hfnum_other_samples++; + _core_if->hfnum_other_frrem_accum += + hfnum.b.frrem; + break; + } + } +#endif /* */ + } +} + +#ifdef CONFIG_DWC_DEBUG +static void hc_xfer_timeout(unsigned long _ptr) +{ + hc_xfer_info_t * xfer_info = (hc_xfer_info_t *) _ptr; + int hc_num = xfer_info->hc->hc_num; + DWC_WARN("%s: timeout on channel %d\n", __func__, hc_num); + DWC_WARN(" start_hcchar_val 0x%08x\n", + xfer_info->core_if->start_hcchar_val[hc_num]); +} +#endif /* */ + +/* + * This function does the setup for a data transfer for a host channel and + * starts the transfer. May be called in either Slave mode or DMA mode. In + * Slave mode, the caller must ensure that there is sufficient space in the + * request queue and Tx Data FIFO. + * + * For an OUT transfer in Slave mode, it loads a data packet into the + * appropriate FIFO. If necessary, additional data packets will be loaded in + * the Host ISR. + * + * For an IN transfer in Slave mode, a data packet is requested. The data + * packets are unloaded from the Rx FIFO in the Host ISR. If necessary, + * additional data packets are requested in the Host ISR. + * + * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ + * register along with a packet count of 1 and the channel is enabled. This + * causes a single PING transaction to occur. Other fields in HCTSIZ are + * simply set to 0 since no data transfer occurs in this case. + * + * For a PING transfer in DMA mode, the HCTSIZ register is initialized with + * all the information required to perform the subsequent data transfer. In + * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the + * controller performs the entire PING protocol, then starts the data + * transfer. + * + * @param _core_if Programming view of DWC_otg controller. + * @param _hc Information needed to initialize the host channel. The xfer_len + * value may be reduced to accommodate the max widths of the XferSize and + * PktCnt fields in the HCTSIZn register. The multi_count value may be changed + * to reflect the final xfer_len value. + */ +void dwc_otg_hc_start_transfer(dwc_otg_core_if_t * _core_if, dwc_hc_t * _hc) +{ + hcchar_data_t hcchar; + hctsiz_data_t hctsiz; + uint16_t num_packets; + uint32_t max_hc_xfer_size = _core_if->core_params->max_transfer_size; + uint16_t max_hc_pkt_count = _core_if->core_params->max_packet_count; + dwc_otg_hc_regs_t * hc_regs = _core_if->host_if->hc_regs[_hc->hc_num]; + hctsiz.d32 = 0; + if (_hc->do_ping) { + if (!_core_if->dma_enable) { + dwc_otg_hc_do_ping(_core_if, _hc); + _hc->xfer_started = 1; + return; + } else { + hctsiz.b.dopng = 1; + } + } + if (_hc->do_split) { + num_packets = 1; + if (_hc->complete_split && !_hc->ep_is_in) { + /* For CSPLIT OUT Transfer, set the size to 0 so the + * core doesn't expect any data written to the FIFO */ + _hc->xfer_len = 0; + } else if (_hc->ep_is_in || (_hc->xfer_len > _hc->max_packet)) { + _hc->xfer_len = _hc->max_packet; + } else if (!_hc->ep_is_in && (_hc->xfer_len > 188)) { + _hc->xfer_len = 188; + } + hctsiz.b.xfersize = _hc->xfer_len; + } else { + /* + * Ensure that the transfer length and packet count will fit + * in the widths allocated for them in the HCTSIZn register. + */ + if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR + || _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { + /* + * Make sure the transfer size is no larger than one + * (micro)frame's worth of data. (A check was done + * when the periodic transfer was accepted to ensure + * that a (micro)frame's worth of data can be + * programmed into a channel.) + */ + uint32_t max_periodic_len = _hc->multi_count * _hc->max_packet; + if (_hc->xfer_len > max_periodic_len) { + _hc->xfer_len = max_periodic_len; + } else { + } + } else if (_hc->xfer_len > max_hc_xfer_size) { + /* Make sure that xfer_len is a multiple of max packet size. */ + _hc->xfer_len = max_hc_xfer_size - _hc->max_packet + 1; + } + if (_hc->xfer_len > 0) { + num_packets = (_hc->xfer_len + _hc->max_packet - 1) / _hc->max_packet; + if (num_packets > max_hc_pkt_count) { + num_packets = max_hc_pkt_count; + _hc->xfer_len = num_packets * _hc->max_packet; + } + } else { + /* Need 1 packet for transfer length of 0. */ + num_packets = 1; + } + if (_hc->ep_is_in) { + /* Always program an integral # of max packets for IN transfers. */ + _hc->xfer_len = num_packets * _hc->max_packet; + } + if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR + || _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { + /* + * Make sure that the multi_count field matches the + * actual transfer length. + */ + _hc->multi_count = num_packets; + } + if (_hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { + /* Set up the initial PID for the transfer. */ + if (_hc->speed == DWC_OTG_EP_SPEED_HIGH) { + if (_hc->ep_is_in) { + if (_hc->multi_count == 1) { + _hc->data_pid_start = + DWC_OTG_HC_PID_DATA0; + } else if (_hc->multi_count == 2) { + _hc->data_pid_start = + DWC_OTG_HC_PID_DATA1; + } else { + _hc->data_pid_start = + DWC_OTG_HC_PID_DATA2; + } + } else { + if (_hc->multi_count == 1) { + _hc->data_pid_start = + DWC_OTG_HC_PID_DATA0; + } else { + _hc->data_pid_start = + DWC_OTG_HC_PID_MDATA; + } + } + } else { + _hc->data_pid_start = DWC_OTG_HC_PID_DATA0; + } + } + hctsiz.b.xfersize = _hc->xfer_len; + } + _hc->start_pkt_count = num_packets; + hctsiz.b.pktcnt = num_packets; + hctsiz.b.pid = _hc->data_pid_start; + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num); + DWC_DEBUGPL(DBG_HCDV, " Xfer Size: %d\n", hctsiz.b.xfersize); + DWC_DEBUGPL(DBG_HCDV, " Num Pkts: %d\n", hctsiz.b.pktcnt); + DWC_DEBUGPL(DBG_HCDV, " Start PID: %d\n", hctsiz.b.pid); + if (_core_if->dma_enable) { + dwc_write_reg32(&hc_regs->hcdma, (uint32_t) _hc->xfer_buff); + } + + /* Start the split */ + if (_hc->do_split) { + hcsplt_data_t hcsplt; + hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt); + hcsplt.b.spltena = 1; + dwc_write_reg32(&hc_regs->hcsplt, hcsplt.d32); + } + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + hcchar.b.multicnt = _hc->multi_count; + hc_set_even_odd_frame(_core_if, _hc, &hcchar); + +#ifdef CONFIG_DWC_DEBUG + _core_if->start_hcchar_val[_hc->hc_num] = hcchar.d32; + if (hcchar.b.chdis) { + DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n", + __func__, _hc->hc_num, hcchar.d32); + } + +#endif /* */ + + /* Set host channel enable after all other setup is complete. */ + hcchar.b.chen = 1; + hcchar.b.chdis = 0; + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); + _hc->xfer_started = 1; + _hc->requests++; + if (!_core_if->dma_enable && !_hc->ep_is_in && _hc->xfer_len > 0) { + /* Load OUT packet into the appropriate Tx FIFO. */ + dwc_otg_hc_write_packet(_core_if, _hc); + } + +#ifdef CONFIG_DWC_DEBUG + /* Start a timer for this transfer. */ + _core_if->hc_xfer_timer[_hc->hc_num].function = hc_xfer_timeout; + _core_if->hc_xfer_info[_hc->hc_num].core_if = _core_if; + _core_if->hc_xfer_info[_hc->hc_num].hc = _hc; + _core_if->hc_xfer_timer[_hc->hc_num].data = + (unsigned long)(&_core_if->hc_xfer_info[_hc->hc_num]); + _core_if->hc_xfer_timer[_hc->hc_num].expires = jiffies + (HZ * 10); + add_timer(&_core_if->hc_xfer_timer[_hc->hc_num]); +#endif /* */ +} + +/** + * This function continues a data transfer that was started by previous call + * to <code>dwc_otg_hc_start_transfer</code>. The caller must ensure there is + * sufficient space in the request queue and Tx Data FIFO. This function + * should only be called in Slave mode. In DMA mode, the controller acts + * autonomously to complete transfers programmed to a host channel. + * + * For an OUT transfer, a new data packet is loaded into the appropriate FIFO + * if there is any data remaining to be queued. For an IN transfer, another + * data packet is always requested. For the SETUP phase of a control transfer, + * this function does nothing. + * + * @return 1 if a new request is queued, 0 if no more requests are required + * for this transfer. + */ +int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t * _core_if, dwc_hc_t * _hc) +{ + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num); + if (_hc->do_split) { + /* SPLITs always queue just once per channel */ + return 0; + } else if (_hc->data_pid_start == DWC_OTG_HC_PID_SETUP) { + /* SETUPs are queued only once since they can't be NAKed. */ + return 0; + } else if (_hc->ep_is_in) { + /* + * Always queue another request for other IN transfers. If + * back-to-back INs are issued and NAKs are received for both, + * the driver may still be processing the first NAK when the + * second NAK is received. When the interrupt handler clears + * the NAK interrupt for the first NAK, the second NAK will + * not be seen. So we can't depend on the NAK interrupt + * handler to requeue a NAKed request. Instead, IN requests + * are issued each time this function is called. When the + * transfer completes, the extra requests for the channel will + * be flushed. + */ + hcchar_data_t hcchar; + dwc_otg_hc_regs_t * hc_regs = _core_if->host_if->hc_regs[_hc->hc_num]; + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + hc_set_even_odd_frame(_core_if, _hc, &hcchar); + hcchar.b.chen = 1; + hcchar.b.chdis = 0; + DWC_DEBUGPL(DBG_HCDV, " IN xfer: hcchar = 0x%08x\n", hcchar.d32); + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); + _hc->requests++; + return 1; + } else { + /* OUT transfers. */ + if (_hc->xfer_count < _hc->xfer_len) { + if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR || + _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { + hcchar_data_t hcchar; + dwc_otg_hc_regs_t * hc_regs; + hc_regs = _core_if->host_if->hc_regs[_hc->hc_num]; + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + hc_set_even_odd_frame(_core_if, _hc, &hcchar); + } + + /* Load OUT packet into the appropriate Tx FIFO. */ + dwc_otg_hc_write_packet(_core_if, _hc); + _hc->requests++; + return 1; + } else { + return 0; + } + } +} + +/** + * Starts a PING transfer. This function should only be called in Slave mode. + * The Do Ping bit is set in the HCTSIZ register, then the channel is enabled. + */ +void dwc_otg_hc_do_ping(dwc_otg_core_if_t * _core_if, dwc_hc_t * _hc) +{ + hcchar_data_t hcchar; + hctsiz_data_t hctsiz; + dwc_otg_hc_regs_t * hc_regs = _core_if->host_if->hc_regs[_hc->hc_num]; + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num); + hctsiz.d32 = 0; + hctsiz.b.dopng = 1; + hctsiz.b.pktcnt = 1; + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + hcchar.b.chen = 1; + hcchar.b.chdis = 0; + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); +} + + +#ifdef CONFIG_OTG_PLB_DMA /* PPC_PLB_DMA mode */ +/* + * This will dump the status of the dma registers - + * Only used in debug mode + */ +void ppc4xx_dump_dma(unsigned int dmanr) +{ + int index; + + printk("%32s:\n", __FUNCTION__); + for (index=0; index<=7; index++) { + printk("%32s dmanr=%d , 0x%x=0x%x\n",__FUNCTION__, dmanr , + DCRN_DMACR0 + dmanr*8+index, mfdcr(DCRN_DMACR0 + dmanr*8 + index)); + } + printk("%32s DCRN_DMASR=0x%x\n", __FUNCTION__, mfdcr(DCRN_DMASR)); +} + +/* + * This function programs the PLB-DMA engine to perform MEM-MEM transfer + * This is used to RD & WR from the DWC_FIFO by the PLB_DMA engine + */ +void ppc4xx_start_plb_dma(dwc_otg_core_if_t *_core_if, void *src, void *dst, unsigned int length, + unsigned int use_interrupt, unsigned int dma_ch, unsigned int dma_dir) +{ + int res = 0; + unsigned int control; + ppc_dma_ch_t p_init; + + memset((char *)&p_init, sizeof(p_init), 0); + p_init.polarity = 0; + p_init.pwidth = PW_32; + p_init.in_use = 0; + if ( dma_dir == OTG_TX_DMA) { + p_init.sai = 1; + p_init.dai = 0; + } else if (dma_dir == OTG_RX_DMA) { + p_init.sai = 0; + p_init.dai = 1; + } + res = ppc4xx_init_dma_channel(dma_ch, &p_init); + if (res) { + printk("%32s: nit_dma_channel return %d %d bytes dest %p\n", + __FUNCTION__, res, length, dst); + } + res = ppc4xx_clr_dma_status(dma_ch); + if (res) { + printk("%32s: ppc4xx_clr_dma_status %d\n", __FUNCTION__, res); + } + + if (dma_dir == OTG_TX_DMA) { + ppc4xx_set_src_addr(dma_ch, virt_to_bus (src)); + ppc4xx_set_dst_addr(dma_ch, (_core_if->phys_addr + + (dst - (void *)(_core_if->core_global_regs))) ); + } else if (dma_dir == OTG_RX_DMA) { + ppc4xx_set_src_addr(dma_ch, (_core_if->phys_addr + + (src - (void *)(_core_if->core_global_regs))) ); + ppc4xx_set_dst_addr(dma_ch, virt_to_bus (dst)); + } + + ppc4xx_set_dma_mode(dma_ch, DMA_MODE_MM); + ppc4xx_set_dma_count(dma_ch, length); + + /* flush cache before enabling DMA transfer */ + if (dma_dir == OTG_TX_DMA) { + flush_dcache_range((unsigned long)src, + (unsigned long)(src + length)); + } else if (dma_dir == OTG_RX_DMA) { + flush_dcache_range((unsigned long)dst, + (unsigned long)(dst + length)); + } + + if (use_interrupt) { + res = ppc4xx_enable_dma_interrupt(dma_ch); + } else { + res = ppc4xx_disable_dma_interrupt(dma_ch); + } + if (res) { + printk("%32s: en/disable_dma_interrupt %d return %d per %d\n", + __FUNCTION__, use_interrupt, res, + ppc4xx_get_peripheral_width(dma_ch)); + } + + control = mfdcr(DCRN_DMACR0 + (dma_ch * 8)); + + control &= ~(SET_DMA_BEN(1)); + control &= ~(SET_DMA_PSC(3)); + control &= ~(SET_DMA_PWC(0x3f)); + control &= ~(SET_DMA_PHC(0x7)); + control &= ~(SET_DMA_PL(1)); + + mtdcr(DCRN_DMACR0 + (dma_ch * 8), control); + +#ifdef OTG_PLB_DMA_DBG + ppc4xx_dump_dma(dma_ch); +#endif + ppc4xx_enable_dma(dma_ch); +} +#endif + +/* + * This function writes a packet into the Tx FIFO associated with the Host + * Channel. For a channel associated with a non-periodic EP, the non-periodic + * Tx FIFO is written. For a channel associated with a periodic EP, the + * periodic Tx FIFO is written. This function should only be called in Slave + * mode. + * + * Upon return the xfer_buff and xfer_count fields in _hc are incremented by + * then number of bytes written to the Tx FIFO. + */ +void dwc_otg_hc_write_packet(dwc_otg_core_if_t * _core_if, dwc_hc_t * _hc) +{ +#ifndef CONFIG_OTG_PLB_DMA + uint32_t i; +#endif + uint32_t remaining_count; + uint32_t byte_count; + uint32_t dword_count; + uint32_t * data_buff = (uint32_t *) (_hc->xfer_buff); + uint32_t * data_fifo = _core_if->data_fifo[_hc->hc_num]; +#if !defined( CONFIG_OTG_PLB_DMA_TASKLET) && defined(CONFIG_OTG_PLB_DMA) + uint32_t dma_sts = 0; +#endif + remaining_count = _hc->xfer_len - _hc->xfer_count; + if (remaining_count > _hc->max_packet) { + byte_count = _hc->max_packet; + } else { + byte_count = remaining_count; + } + dword_count = (byte_count + 3) / 4; + +#ifdef CONFIG_OTG_PLB_DMA +#ifdef CONFIG_OTG_PLB_DMA_TASKLET + + if ( _hc->xfer_len < USB_BUFSIZ) { + int i; + if ((((unsigned long)data_buff) & 0x3) == 0) { + /* xfer_buff is DWORD aligned. */ + for (i = 0; i < dword_count; i++, data_buff++) { + dwc_write_datafifo32(data_fifo, *data_buff); + } + } else { + /* xfer_buff is not DWORD aligned. */ + for (i = 0; i < dword_count; i++, data_buff++) { + dwc_write_datafifo32(data_fifo, get_unaligned(data_buff)); + } + } + } else { + DWC_DEBUGPL(DBG_SP, "%s set release_later %d\n", __func__, dword_count); + atomic_set(& release_later, 1); + //disable_irq_nosync(94); + dwc_otg_disable_global_interrupts(_core_if); + + _core_if->dma_xfer.dma_data_buff = data_buff; + _core_if->dma_xfer.dma_data_fifo = (void *)data_fifo; + _core_if->dma_xfer.dma_count = dword_count; + _core_if->dma_xfer.dma_dir = OTG_TX_DMA; + tasklet_schedule(_core_if->plbdma_tasklet); + } +#else /* !CONFIG_OTG_PLB_DMA_TASKLET */ + if ((((unsigned long)data_buff) & 0x3) == 0) { + /* call tx_dma - src,dest,len,intr */ + ppc4xx_start_plb_dma(_core_if, (void *)data_buff, data_fifo, + (dword_count * 4), PLB_DMA_INT_DIS, PLB_DMA_CH, OTG_TX_DMA); + } else { + ppc4xx_start_plb_dma(_core_if, (void *)get_unaligned(data_buff), + data_fifo, (dword_count * 4), PLB_DMA_INT_DIS, PLB_DMA_CH, OTG_TX_DMA); + } + + while (mfdcr(DCRN_DMACR0 + (PLB_DMA_CH*8)) & DMA_CE_ENABLE) { + } + dma_sts = (uint32_t)ppc4xx_get_dma_status(); +#ifdef OTG_PLB_DMA_DBG + if (!(dma_sts & DMA_CS0)) { + printk("Status (Terminal Count not occured) 0x%08x\n", mfdcr(DCRN_DMASR)); + } +#endif + if (dma_sts & DMA_CH0_ERR) { + printk("Status (Channel Error) 0x%08x\n", mfdcr(DCRN_DMASR)); + } + ppc4xx_clr_dma_status(PLB_DMA_CH); +#ifdef OTG_PLB_DMA_DBG + printk("%32s DMA Status =0x%08x\n", __FUNCTION__, mfdcr(DCRN_DMASR)); /* vj_dbg */ +#endif + +#endif /* CONFIG_OTG_PLB_DMA_TASKLET */ + + +#else + if ((((unsigned long)data_buff) & 0x3) == 0) { + /* xfer_buff is DWORD aligned. */ + for (i = 0; i < dword_count; i++, data_buff++) { + dwc_write_datafifo32(data_fifo, *data_buff); + } + } else { + /* xfer_buff is not DWORD aligned. */ + for (i = 0; i < dword_count; i++, data_buff++) { + dwc_write_datafifo32(data_fifo, get_unaligned(data_buff)); + } + } +#endif + _hc->xfer_count += byte_count; + _hc->xfer_buff += byte_count; +} + +/** + * Gets the current USB frame number. This is the frame number from the last + * SOF packet. + */ +uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t * _core_if) +{ + dsts_data_t dsts; + dsts.d32 = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->dsts); + /* read current frame/microfreme number from DSTS register */ + return dsts.b.soffn; +} + + +/** + * This function reads a setup packet from the Rx FIFO into the destination + * buffer. This function is called from the Rx Status Queue Level (RxStsQLvl) + * Interrupt routine when a SETUP packet has been received in Slave mode. + * + * @param _core_if Programming view of DWC_otg controller. + * @param _dest Destination buffer for packet data. + */ +void dwc_otg_read_setup_packet(dwc_otg_core_if_t * _core_if, uint32_t * _dest) +{ + /* Get the 8 bytes of a setup transaction data */ + + /* Pop 2 DWORDS off the receive data FIFO into memory */ + _dest[0] = dwc_read_datafifo32(_core_if->data_fifo[0]); + _dest[1] = dwc_read_datafifo32(_core_if->data_fifo[0]); +} + +/** + * This function enables EP0 OUT to receive SETUP packets and configures EP0 + * IN for transmitting packets. It is normally called when the + * "Enumeration Done" interrupt occurs. + * + * @param _core_if Programming view of DWC_otg controller. + * @param _ep The EP0 data. + */ +void dwc_otg_ep0_activate(dwc_otg_core_if_t * _core_if, dwc_ep_t * _ep) +{ + dwc_otg_dev_if_t * dev_if = _core_if->dev_if; + dsts_data_t dsts; + depctl_data_t diepctl; + depctl_data_t doepctl; + dctl_data_t dctl = {.d32 = 0}; + + /* Read the Device Status and Endpoint 0 Control registers */ + dsts.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dsts); + diepctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl); + doepctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl); + + /* Set the MPS of the IN EP based on the enumeration speed */ + switch (dsts.b.enumspd) { + case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ: + case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ: + case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ: + diepctl.b.mps = DWC_DEP0CTL_MPS_64; + break; + case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ: + diepctl.b.mps = DWC_DEP0CTL_MPS_8; + break; + } + dwc_write_reg32(&dev_if->in_ep_regs[0]->diepctl, diepctl.d32); + + /* Enable OUT EP for receive */ + doepctl.b.epena = 1; + dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32); + +#ifdef VERBOSE + DWC_DEBUGPL(DBG_PCDV, "doepctl0=%0x\n", + dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl)); + DWC_DEBUGPL(DBG_PCDV, "diepctl0=%0x\n", + dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl)); + +#endif /* */ + dctl.b.cgnpinnak = 1; + dwc_modify_reg32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32); + DWC_DEBUGPL(DBG_PCDV, "dctl=%0x\n", + dwc_read_reg32(&dev_if->dev_global_regs->dctl)); +} + + +/** + * This function activates an EP. The Device EP control register for + * the EP is configured as defined in the ep structure. Note: This + * function is not used for EP0. + * + * @param _core_if Programming view of DWC_otg controller. + * @param _ep The EP to activate. + */ +void dwc_otg_ep_activate(dwc_otg_core_if_t * _core_if, dwc_ep_t * _ep) +{ + dwc_otg_dev_if_t * dev_if = _core_if->dev_if; + depctl_data_t depctl; + volatile uint32_t *addr; + daint_data_t daintmsk = {.d32 = 0}; + DWC_DEBUGPL(DBG_PCDV, "%s() EP%d-%s\n", __func__, _ep->num, + (_ep->is_in ? "IN" : "OUT")); + + /* Read DEPCTLn register */ + if (_ep->is_in == 1) { + addr = &dev_if->in_ep_regs[_ep->num]->diepctl; + daintmsk.ep.in = 1 << _ep->num; + } else { + addr = &dev_if->out_ep_regs[_ep->num]->doepctl; + daintmsk.ep.out = 1 << _ep->num; + } + + /* If the EP is already active don't change the EP Control + * register. + */ + depctl.d32 = dwc_read_reg32(addr); + if (!depctl.b.usbactep) { + depctl.b.mps = _ep->maxpacket; + depctl.b.eptype = _ep->type; + depctl.b.txfnum = _ep->tx_fifo_num; + if (_ep->type == DWC_OTG_EP_TYPE_ISOC) { + depctl.b.setd0pid = 1; // ??? + } else { + depctl.b.setd0pid = 1; + } + depctl.b.usbactep = 1; + dwc_write_reg32(addr, depctl.d32); + DWC_DEBUGPL(DBG_PCDV, "DEPCTL=%08x\n", dwc_read_reg32(addr)); + } + + /* Enable the Interrupt for this EP */ + dwc_modify_reg32(&dev_if->dev_global_regs->daintmsk, 0, + daintmsk.d32); + DWC_DEBUGPL(DBG_PCDV, "DAINTMSK=%0x\n", + dwc_read_reg32(&dev_if->dev_global_regs->daintmsk)); + _ep->stall_clear_flag = 0; + return; +} + + +/** + * This function deactivates an EP. This is done by clearing the USB Active + * EP bit in the Device EP control register. Note: This function is not used + * for EP0. EP0 cannot be deactivated. + * + * @param _core_if Programming view of DWC_otg controller. + * @param _ep The EP to deactivate. + */ +void dwc_otg_ep_deactivate(dwc_otg_core_if_t * _core_if, dwc_ep_t * _ep) +{ + depctl_data_t depctl = {.d32 = 0}; + volatile uint32_t *addr; + daint_data_t daintmsk = {.d32 = 0}; + + /* Read DEPCTLn register */ + if (_ep->is_in == 1) { + addr = &_core_if->dev_if->in_ep_regs[_ep->num]->diepctl; + daintmsk.ep.in = 1 << _ep->num; + } else { + addr = &_core_if->dev_if->out_ep_regs[_ep->num]->doepctl; + daintmsk.ep.out = 1 << _ep->num; + } + depctl.b.usbactep = 0; + dwc_write_reg32(addr, depctl.d32); + + /* Disable the Interrupt for this EP */ + dwc_modify_reg32(&_core_if->dev_if->dev_global_regs->daintmsk, + daintmsk.d32, 0); + return; +} + + +/** + * This function does the setup for a data transfer for an EP and + * starts the transfer. For an IN transfer, the packets will be + * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers, + * the packets are unloaded from the Rx FIFO in the ISR. the ISR. + * + * @param _core_if Programming view of DWC_otg controller. + * @param _ep The EP to start the transfer on. + */ +void dwc_otg_ep_start_transfer(dwc_otg_core_if_t * _core_if, dwc_ep_t * _ep) +{ + /** @todo Refactor this funciton to check the transfer size + * count value does not execed the number bits in the Transfer + * count register. */ + depctl_data_t depctl; + deptsiz_data_t deptsiz; + gintmsk_data_t intr_mask = {.d32 = 0}; + +#ifdef CHECK_PACKET_COUNTER_WIDTH + const uint32_t MAX_XFER_SIZE = _core_if->core_params->max_transfer_size; + const uint32_t MAX_PKT_COUNT = _core_if->core_params->max_packet_count; + uint32_t num_packets; + uint32_t transfer_len; + dwc_otg_dev_out_ep_regs_t * out_regs = _core_if->dev_if->out_ep_regs[_ep->num]; + dwc_otg_dev_in_ep_regs_t * in_regs = _core_if->dev_if->in_ep_regs[_ep->num]; + gnptxsts_data_t txstatus; + int lvl = SET_DEBUG_LEVEL(DBG_PCD); + DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d " + "xfer_buff=%p start_xfer_buff=%p\n", _ep->num, + (_ep->is_in ? "IN" : "OUT"), _ep->xfer_len, + _ep->xfer_count, _ep->xfer_buff, _ep->start_xfer_buff); + transfer_len = _ep->xfer_len - _ep->xfer_count; + if (transfer_len > MAX_XFER_SIZE) { + transfer_len = MAX_XFER_SIZE; + } + if (transfer_len == 0) { + num_packets = 1; + + /* OUT EP to recieve Zero-length packet set transfer + * size to maxpacket size. */ + if (!_ep->is_in) { + transfer_len = _ep->maxpacket; + } + } else { + num_packets = (transfer_len + _ep->maxpacket - 1) / _ep->maxpacket; + if (num_packets > MAX_PKT_COUNT) { + num_packets = MAX_PKT_COUNT; + } + } + DWC_DEBUGPL(DBG_PCD, "transfer_len=%d #pckt=%d\n", transfer_len, + num_packets); + deptsiz.b.xfersize = transfer_len; + deptsiz.b.pktcnt = num_packets; + + /* IN endpoint */ + if (_ep->is_in == 1) { + depctl.d32 = dwc_read_reg32(&in_regs->diepctl); + } /* OUT endpoint */ + else { + depctl.d32 = dwc_read_reg32(&out_regs->doepctl); + } + + /* EP enable, IN data in FIFO */ + depctl.b.cnak = 1; + depctl.b.epena = 1; + + /* IN endpoint */ + if (_ep->is_in == 1) { + txstatus.d32 = dwc_read_reg32(&_core_if->core_global_regs->gnptxsts); + if (txstatus.b.nptxqspcavail == 0) { + DWC_DEBUGPL(DBG_ANY, "TX Queue Full (0x%0x)\n", + txstatus.d32); + return; + } + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); + dwc_write_reg32(&in_regs->diepctl, depctl.d32); + + /** + * Enable the Non-Periodic Tx FIFO empty interrupt, the + * data will be written into the fifo by the ISR. + */ + if (_core_if->dma_enable) { + dwc_write_reg32(&in_regs->diepdma, (uint32_t) _ep->xfer_buff); + } else { + if (_core_if->en_multiple_tx_fifo == 0) { + intr_mask.b.nptxfempty = 1; + dwc_modify_reg32(&_core_if->core_global_regs->gintsts, + intr_mask.d32, 0); + dwc_modify_reg32(&_core_if->core_global_regs->gintmsk, + intr_mask.d32,intr_mask.d32); + } else { + /* Enable the Tx FIFO Empty Interrupt for this EP */ + if (_ep->xfer_len > 0 && + _ep->type != DWC_OTG_EP_TYPE_ISOC) { + uint32_t fifoemptymsk = 0; + fifoemptymsk = (0x1 << _ep->num); + dwc_modify_reg32(&_core_if->dev_if->dev_global_regs-> + dtknqr4_fifoemptymsk,0, fifoemptymsk); + } + } + } + } else { + /* OUT endpoint */ + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); + dwc_write_reg32(&out_regs->doepctl, depctl.d32); + if (_core_if->dma_enable) { + dwc_write_reg32(&out_regs->doepdma,(uint32_t) _ep->xfer_buff); + } + } + DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n", + dwc_read_reg32(&out_regs->doepctl), + dwc_read_reg32(&out_regs->doeptsiz)); + DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n", + dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk), + dwc_read_reg32(&_core_if->core_global_regs->gintmsk)); + SET_DEBUG_LEVEL(lvl); + +#endif /* */ + DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__); + DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d " + "xfer_buff=%p start_xfer_buff=%p\n", _ep->num, + (_ep->is_in ? "IN" : "OUT"), _ep->xfer_len, + _ep->xfer_count, _ep->xfer_buff, _ep->start_xfer_buff); + + /* IN endpoint */ + if (_ep->is_in == 1) { + dwc_otg_dev_in_ep_regs_t * in_regs = _core_if->dev_if->in_ep_regs[_ep->num]; + gnptxsts_data_t gtxstatus; + gtxstatus.d32 = dwc_read_reg32(&_core_if->core_global_regs->gnptxsts); + if (_core_if->en_multiple_tx_fifo == 0 && + gtxstatus.b.nptxqspcavail == 0) { +#ifdef CONFIG_DWC_DEBUG + DWC_PRINT("TX Queue Full (0x%0x)\n", gtxstatus.d32); +#endif /* */ + return; + } + depctl.d32 = dwc_read_reg32(&(in_regs->diepctl)); + deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz)); + + /* Zero Length Packet? */ + if (_ep->xfer_len == 0) { + deptsiz.b.xfersize = 0; + deptsiz.b.pktcnt = 1; + } else { + /* Program the transfer size and packet count + * as follows: xfersize = N * maxpacket + + * short_packet pktcnt = N + (short_packet + * exist ? 1 : 0) + */ + +#ifdef CONFIG_405EZ + /* + * Added-sr: 2007-07-26 + * + * Since the 405EZ (Ultra) only support 2047 bytes as + * max transfer size, we have to split up bigger transfers + * into multiple transfers of 1024 bytes sized messages. + * I happens often, that transfers of 4096 bytes are + * required (zero-gadget, file_storage-gadget). + */ + if (_ep->xfer_len > MAX_XFER_LEN) { + _ep->bytes_pending = _ep->xfer_len - MAX_XFER_LEN; + _ep->xfer_len = MAX_XFER_LEN; + } +#endif + + deptsiz.b.xfersize = _ep->xfer_len; + deptsiz.b.pktcnt = (_ep->xfer_len - 1 + _ep->maxpacket) / _ep->maxpacket; + } + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); + + /* Write the DMA register */ + if (_core_if->dma_enable) { + dwc_write_reg32(&(in_regs->diepdma), (uint32_t) _ep->dma_addr); + } else { + if (_ep->type != DWC_OTG_EP_TYPE_ISOC) { + /** + * Enable the Non-Periodic Tx FIFO empty interrupt, + * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode, + * the data will be written into the fifo by the ISR. + */ + if (_core_if->en_multiple_tx_fifo == 0) { + intr_mask.b.nptxfempty = 1; + dwc_modify_reg32(&_core_if->core_global_regs->gintsts, + intr_mask.d32, 0); + dwc_modify_reg32(&_core_if->core_global_regs->gintmsk, + intr_mask.d32, intr_mask.d32); + } else { + /* Enable the Tx FIFO Empty Interrupt for this EP */ + if (_ep->xfer_len > 0) { + uint32_t fifoemptymsk = 0; + fifoemptymsk = 1 << _ep->num; + dwc_modify_reg32(&_core_if->dev_if->dev_global_regs-> + dtknqr4_fifoemptymsk,0,fifoemptymsk); + } + } + } + } + + /* EP enable, IN data in FIFO */ + depctl.b.cnak = 1; + depctl.b.epena = 1; + dwc_write_reg32(&in_regs->diepctl, depctl.d32); + if (_core_if->dma_enable) { + depctl.d32 = dwc_read_reg32(&_core_if->dev_if->in_ep_regs[0]->diepctl); + depctl.b.nextep = _ep->num; + dwc_write_reg32(&_core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32); + } + } else { + /* OUT endpoint */ + dwc_otg_dev_out_ep_regs_t * out_regs = _core_if->dev_if->out_ep_regs[_ep->num]; + depctl.d32 = dwc_read_reg32(&(out_regs->doepctl)); + deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz)); + + /* Program the transfer size and packet count as follows: + * + * pktcnt = N + * xfersize = N * maxpacket + */ + if (_ep->xfer_len == 0) { + /* Zero Length Packet */ + deptsiz.b.xfersize = _ep->maxpacket; + deptsiz.b.pktcnt = 1; + } else { + deptsiz.b.pktcnt = (_ep->xfer_len + (_ep->maxpacket - 1)) / _ep->maxpacket; + deptsiz.b.xfersize = deptsiz.b.pktcnt * _ep->maxpacket; + } + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); + DWC_DEBUGPL(DBG_PCDV, "ep%d xfersize=%d pktcnt=%d\n", + _ep->num, deptsiz.b.xfersize, deptsiz.b.pktcnt); + if (_core_if->dma_enable) { + dwc_write_reg32(&(out_regs->doepdma), + (uint32_t) _ep->dma_addr); + } + if (_ep->type == DWC_OTG_EP_TYPE_ISOC) { + /** @todo NGS: dpid is read-only. Use setd0pid + * or setd1pid. */ + if (_ep->even_odd_frame) { + depctl.b.setd1pid = 1; + } else { + depctl.b.setd0pid = 1; + } + } + + /* EP enable */ + depctl.b.cnak = 1; + depctl.b.epena = 1; + dwc_write_reg32(&out_regs->doepctl, depctl.d32); + DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n", + dwc_read_reg32(&out_regs->doepctl), + dwc_read_reg32(&out_regs->doeptsiz)); + DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n", + dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk), + dwc_read_reg32(&_core_if->core_global_regs->gintmsk)); + } +} + +/** + * This function does the setup for a data transfer for EP0 and starts + * the transfer. For an IN transfer, the packets will be loaded into + * the appropriate Tx FIFO in the ISR. For OUT transfers, the packets are + * unloaded from the Rx FIFO in the ISR. + * + * @param _core_if Programming view of DWC_otg controller. + * @param _ep The EP0 data. + */ +void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t * _core_if, dwc_ep_t * _ep) +{ + volatile depctl_data_t depctl; + volatile deptsiz0_data_t deptsiz; + gintmsk_data_t intr_mask = {.d32 = 0}; + DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d " + "xfer_buff=%p start_xfer_buff=%p total_len=%d\n", + _ep->num, (_ep->is_in ? "IN" : "OUT"), _ep->xfer_len, + _ep->xfer_count, _ep->xfer_buff, _ep->start_xfer_buff, + _ep->total_len); + _ep->total_len = _ep->xfer_len; + + /* IN endpoint */ + if (_ep->is_in == 1) { + dwc_otg_dev_in_ep_regs_t * in_regs = _core_if->dev_if->in_ep_regs[0]; + gnptxsts_data_t gtxstatus; + gtxstatus.d32 = dwc_read_reg32(&_core_if->core_global_regs->gnptxsts); + if (_core_if->en_multiple_tx_fifo == 0 && + gtxstatus.b.nptxqspcavail == 0) { +#ifdef CONFIG_DWC_DEBUG + deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz); + DWC_DEBUGPL(DBG_PCD, "DIEPCTL0=%0x\n", + dwc_read_reg32(&in_regs->diepctl)); + DWC_DEBUGPL(DBG_PCD, "DIEPTSIZ0=%0x (sz=%d, pcnt=%d)\n", + deptsiz.d32, deptsiz.b.xfersize,deptsiz.b.pktcnt); + DWC_PRINT("TX Queue or FIFO Full (0x%0x)\n", gtxstatus.d32); +#endif /* */ + printk("TX Queue or FIFO Full!!!!\n"); // test-only + return; + } + depctl.d32 = dwc_read_reg32(&in_regs->diepctl); + deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz); + + /* Zero Length Packet? */ + if (_ep->xfer_len == 0) { + deptsiz.b.xfersize = 0; + deptsiz.b.pktcnt = 1; + } else { + /* Program the transfer size and packet count + * as follows: xfersize = N * maxpacket + + * short_packet pktcnt = N + (short_packet + * exist ? 1 : 0) + */ + if (_ep->xfer_len > _ep->maxpacket) { + _ep->xfer_len = _ep->maxpacket; + deptsiz.b.xfersize = _ep->maxpacket; + } else { + deptsiz.b.xfersize = _ep->xfer_len; + } + deptsiz.b.pktcnt = 1; + } + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); + DWC_DEBUGPL(DBG_PCDV,"IN len=%d xfersize=%d pktcnt=%d [%08x]\n", + _ep->xfer_len, deptsiz.b.xfersize,deptsiz.b.pktcnt, deptsiz.d32); + + /* Write the DMA register */ + if (_core_if->dma_enable) { + dwc_write_reg32(&(in_regs->diepdma), (uint32_t) _ep->dma_addr); + } + + /* EP enable, IN data in FIFO */ + depctl.b.cnak = 1; + depctl.b.epena = 1; + dwc_write_reg32(&in_regs->diepctl, depctl.d32); + + /** + * Enable the Non-Periodic Tx FIFO empty interrupt, the + * data will be written into the fifo by the ISR. + */ + if (!_core_if->dma_enable) { + if (_core_if->en_multiple_tx_fifo == 0) { + intr_mask.b.nptxfempty = 1; + dwc_modify_reg32(&_core_if->core_global_regs->gintsts, intr_mask.d32, 0); + dwc_modify_reg32(&_core_if->core_global_regs->gintmsk, intr_mask.d32, + intr_mask.d32); + } else { + /* Enable the Tx FIFO Empty Interrupt for this EP */ + if (_ep->xfer_len > 0) { + uint32_t fifoemptymsk = 0; + fifoemptymsk |= 1 << _ep->num; + dwc_modify_reg32(&_core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk, + 0, fifoemptymsk); + } + } + } + } else { + /* OUT endpoint */ + dwc_otg_dev_out_ep_regs_t * out_regs = _core_if->dev_if->out_ep_regs[_ep->num]; + depctl.d32 = dwc_read_reg32(&out_regs->doepctl); + deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz); + + /* Program the transfer size and packet count as follows: + * xfersize = N * (maxpacket + 4 - (maxpacket % 4)) + * pktcnt = N */ + if (_ep->xfer_len == 0) { + /* Zero Length Packet */ + deptsiz.b.xfersize = _ep->maxpacket; + deptsiz.b.pktcnt = 1; + } else { + deptsiz.b.pktcnt = (_ep->xfer_len + (_ep->maxpacket - 1)) / _ep->maxpacket; + deptsiz.b.xfersize = deptsiz.b.pktcnt * _ep->maxpacket; + } + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); + DWC_DEBUGPL(DBG_PCDV, "len=%d xfersize=%d pktcnt=%d\n", + _ep->xfer_len, deptsiz.b.xfersize,deptsiz.b.pktcnt); + if (_core_if->dma_enable) { + dwc_write_reg32(&(out_regs->doepdma), (uint32_t) _ep->dma_addr); + } + + /* EP enable */ + depctl.b.cnak = 1; + depctl.b.epena = 1; + dwc_write_reg32(&(out_regs->doepctl), depctl.d32); + } +} + + +/** + * This function continues control IN transfers started by + * dwc_otg_ep0_start_transfer, when the transfer does not fit in a + * single packet. NOTE: The DIEPCTL0/DOEPCTL0 registers only have one + * bit for the packet count. + * + * @param _core_if Programming view of DWC_otg controller. + * @param _ep The EP0 data. + */ +void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t * _core_if, + dwc_ep_t * _ep) +{ + depctl_data_t depctl; + deptsiz0_data_t deptsiz; + gintmsk_data_t intr_mask = {.d32 = 0}; + if (_ep->is_in == 1) { + dwc_otg_dev_in_ep_regs_t * in_regs = _core_if->dev_if->in_ep_regs[0]; + gnptxsts_data_t tx_status = {.d32 = 0}; + tx_status.d32 = dwc_read_reg32(&_core_if->core_global_regs->gnptxsts); + + /** @todo Should there be check for room in the Tx + * Status Queue. If not remove the code above this comment. */ + depctl.d32 = dwc_read_reg32(&in_regs->diepctl); + deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz); + + /* Program the transfer size and packet count + * as follows: xfersize = N * maxpacket + + * short_packet pktcnt = N + (short_packet + * exist ? 1 : 0) + */ + deptsiz.b.xfersize = (_ep->total_len - _ep->xfer_count) > + _ep->maxpacket ? _ep->maxpacket : (_ep->total_len - + _ep->xfer_count); + deptsiz.b.pktcnt = 1; + _ep->xfer_len += deptsiz.b.xfersize; + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); + DWC_DEBUGPL(DBG_PCDV,"IN len=%d xfersize=%d pktcnt=%d [%08x]\n", + _ep->xfer_len, deptsiz.b.xfersize,deptsiz.b.pktcnt, deptsiz.d32); + + /* Write the DMA register */ + if (_core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) { + dwc_write_reg32(&(in_regs->diepdma),(uint32_t) _ep->dma_addr); + } + + /* EP enable, IN data in FIFO */ + depctl.b.cnak = 1; + depctl.b.epena = 1; + dwc_write_reg32(&in_regs->diepctl, depctl.d32); + + /** + * Enable the Non-Periodic Tx FIFO empty interrupt, the + * data will be written into the fifo by the ISR. + */ + if (!_core_if->dma_enable) { + /* First clear it from GINTSTS */ + intr_mask.b.nptxfempty = 1; + dwc_write_reg32(&_core_if->core_global_regs->gintsts, + intr_mask.d32); + dwc_modify_reg32(&_core_if->core_global_regs->gintmsk, + intr_mask.d32, intr_mask.d32); + } + } +} + +#ifdef CONFIG_DWC_DEBUG +void dump_msg(const u8 * buf, unsigned int length) +{ + unsigned int start, num, i; + char line[52], *p; + if (length >= 512) + return; + start = 0; + while (length > 0) { + num = min(length, 16u); + p = line; + for (i = 0; i < num; ++i) { + if (i == 8) + *p++ = ' '; + sprintf(p, " %02x", buf[i]); + p += 3; + } + *p = 0; + DWC_PRINT("%6x: %s\n", start, line); + buf += num; + start += num; + length -= num; + } +} + + +#else /* */ +static inline void dump_msg(const u8 * buf, unsigned int length) +{ +} +#endif /* */ + +/** + * This function writes a packet into the Tx FIFO associated with the + * EP. For non-periodic EPs the non-periodic Tx FIFO is written. For + * periodic EPs the periodic Tx FIFO associated with the EP is written + * with all packets for the next micro-frame. + * + * @param _core_if Programming view of DWC_otg controller. + * @param _ep The EP to write packet for. + * @param _dma Indicates if DMA is being used. + */ +void dwc_otg_ep_write_packet(dwc_otg_core_if_t * _core_if, dwc_ep_t * _ep, + int _dma) +{ + /** + * The buffer is padded to DWORD on a per packet basis in + * slave/dma mode if the MPS is not DWORD aligned. The last + * packet, if short, is also padded to a multiple of DWORD. + * + * ep->xfer_buff always starts DWORD aligned in memory and is a + * multiple of DWORD in length + * + * ep->xfer_len can be any number of bytes + * + * ep->xfer_count is a multiple of ep->maxpacket until the last + * packet + * + * FIFO access is DWORD */ +#ifndef CONFIG_OTG_PLB_DMA + uint32_t i; +#endif + uint32_t byte_count; + uint32_t dword_count; + uint32_t * fifo; + uint32_t * data_buff = (uint32_t *) _ep->xfer_buff; +#if !defined( CONFIG_OTG_PLB_DMA_TASKLET) && defined(CONFIG_OTG_PLB_DMA) + uint32_t dma_sts = 0; +#endif + //DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p)\n", __func__, _core_if, _ep); + if (_ep->xfer_count >= _ep->xfer_len) { + DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s() No data for EP%d!!!\n", __func__, _ep->num); + return; + } + + /* Find the byte length of the packet either short packet or MPS */ + if ((_ep->xfer_len - _ep->xfer_count) < _ep->maxpacket) { + byte_count = _ep->xfer_len - _ep->xfer_count; + } else { + byte_count = _ep->maxpacket; + } + + /* Find the DWORD length, padded by extra bytes as neccessary if MPS + * is not a multiple of DWORD */ + dword_count = (byte_count + 3) / 4; + +#ifdef VERBOSE + dump_msg(_ep->xfer_buff, byte_count); +#endif /* */ + + /**@todo NGS Where are the Periodic Tx FIFO addresses + * intialized? What should this be? */ + fifo = _core_if->data_fifo[_ep->num]; + DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "fifo=%p buff=%p *p=%08x bc=%d\n", + fifo, data_buff, *data_buff, byte_count); + if (!_dma) { +#ifdef CONFIG_OTG_PLB_DMA +#ifdef CONFIG_OTG_PLB_DMA_TASKLET + if (byte_count < USB_BUFSIZ) { + int i; + for (i = 0; i < dword_count; i++, data_buff++) { + dwc_write_datafifo32(fifo, *data_buff); + } + } + else { + DWC_DEBUGPL(DBG_SP, "%s set release_later %d\n", __func__, dword_count); + atomic_set(& release_later, 1); + //disable_irq_nosync(94); + dwc_otg_disable_global_interrupts(_core_if); + + _core_if->dma_xfer.dma_data_buff = data_buff; + _core_if->dma_xfer.dma_data_fifo = fifo; + _core_if->dma_xfer.dma_count = dword_count; + _core_if->dma_xfer.dma_dir = OTG_TX_DMA; + tasklet_schedule(_core_if->plbdma_tasklet); + } +#else /* !CONFIG_OTG_PLB_DMA_TASKLET */ + ppc4xx_start_plb_dma(_core_if, data_buff, fifo, (dword_count * 4), + PLB_DMA_INT_DIS , PLB_DMA_CH, OTG_TX_DMA); + while (mfdcr(DCRN_DMACR0 + (DMA_CH0*8)) & DMA_CE_ENABLE) { + } + dma_sts = (uint32_t)ppc4xx_get_dma_status(); +#ifdef OTG_PLB_DMA_DBG + if (!(dma_sts & DMA_CS0)) { + printk("DMA Status (Terminal Count not occured) 0x%08x\n", mfdcr(DCRN_DMASR)); + } +#endif + if (dma_sts & DMA_CH0_ERR) { + printk("DMA Status (Channel 0 Error) 0x%08x\n", mfdcr(DCRN_DMASR)); + } + ppc4xx_clr_dma_status(PLB_DMA_CH); +#ifdef OTG_PLB_DMA_DBG + printk("%32s DMA Status =0x%08x\n", __FUNCTION__, mfdcr(DCRN_DMASR)); /* vj_dbg */ +#endif +#endif /* CONFIG_OTG_PLB_DMA_TASKLET */ + +#else /* DWC_SLAVE mode */ + for (i = 0; i < dword_count; i++, data_buff++) { + dwc_write_datafifo32(fifo, *data_buff); + } +#endif + } + + _ep->xfer_count += byte_count; + _ep->xfer_buff += byte_count; + _ep->dma_addr += byte_count; +} + + +/** + * Set the EP STALL. + * + * @param _core_if Programming view of DWC_otg controller. + * @param _ep The EP to set the stall on. + */ +void dwc_otg_ep_set_stall(dwc_otg_core_if_t * _core_if, dwc_ep_t * _ep) +{ + depctl_data_t depctl; + volatile uint32_t *depctl_addr; + DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, _ep->num, + (_ep->is_in ? "IN" : "OUT")); + if (_ep->is_in == 1) { + depctl_addr = &(_core_if->dev_if->in_ep_regs[_ep->num]->diepctl); + depctl.d32 = dwc_read_reg32(depctl_addr); + + /* set the disable and stall bits */ + if (depctl.b.epena) { + depctl.b.epdis = 1; + } + depctl.b.stall = 1; + dwc_write_reg32(depctl_addr, depctl.d32); + } else { + depctl_addr = &(_core_if->dev_if->out_ep_regs[_ep->num]->doepctl); + depctl.d32 = dwc_read_reg32(depctl_addr); + + /* set the stall bit */ + depctl.b.stall = 1; + dwc_write_reg32(depctl_addr, depctl.d32); + } + DWC_DEBUGPL(DBG_PCD, "DEPCTL=%0x\n", dwc_read_reg32(depctl_addr)); + return; +} + + +/** + * Clear the EP STALL. + * + * @param _core_if Programming view of DWC_otg controller. + * @param _ep The EP to clear stall from. + */ +void dwc_otg_ep_clear_stall(dwc_otg_core_if_t * _core_if, dwc_ep_t * _ep) +{ + depctl_data_t depctl; + volatile uint32_t *depctl_addr; + DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, _ep->num, + (_ep->is_in ? "IN" : "OUT")); + if (_ep->is_in == 1) { + depctl_addr = &(_core_if->dev_if->in_ep_regs[_ep->num]->diepctl); + } else { + depctl_addr = &(_core_if->dev_if->out_ep_regs[_ep->num]->doepctl); + } + depctl.d32 = dwc_read_reg32(depctl_addr); + + /* clear the stall bits */ + depctl.b.stall = 0; + + /* + * USB Spec 9.4.5: For endpoints using data toggle, regardless + * of whether an endpoint has the Halt feature set, a + * ClearFeature(ENDPOINT_HALT) request always results in the + * data toggle being reinitialized to DATA0. + */ + if (_ep->type == DWC_OTG_EP_TYPE_INTR || + _ep->type == DWC_OTG_EP_TYPE_BULK) { + depctl.b.setd0pid = 1; /* DATA0 */ + } + dwc_write_reg32(depctl_addr, depctl.d32); + DWC_DEBUGPL(DBG_PCD, "DEPCTL=%0x\n", dwc_read_reg32(depctl_addr)); + return; +} + + +/** + * This function reads a packet from the Rx FIFO into the destination + * buffer. To read SETUP data use dwc_otg_read_setup_packet. + * + * @param _core_if Programming view of DWC_otg controller. + * @param _dest Destination buffer for the packet. + * @param _bytes Number of bytes to copy to the destination. + */ +void dwc_otg_read_packet(dwc_otg_core_if_t * _core_if, + uint8_t * _dest, uint16_t _bytes) +{ +#ifndef CONFIG_OTG_PLB_DMA + int i; +#endif + int word_count = (_bytes + 3) / 4; + volatile uint32_t *fifo = _core_if->data_fifo[0]; + uint32_t * data_buff = (uint32_t *) _dest; +#if !defined( CONFIG_OTG_PLB_DMA_TASKLET) && defined(CONFIG_OTG_PLB_DMA) + uint32_t dma_sts = 0; +#endif + + /** + * @todo Account for the case where _dest is not dword aligned. This + * requires reading data from the FIFO into a uint32_t temp buffer, + * then moving it into the data buffer. + */ + DWC_DEBUGPL((DBG_PCDV | DBG_CILV | DBG_SP), "%s(%p,%p,%d)\n", __func__, + _core_if, _dest, _bytes); +#ifdef CONFIG_OTG_PLB_DMA +#ifdef CONFIG_OTG_PLB_DMA_TASKLET + if ( _bytes < USB_BUFSIZ) { + int i; + for (i = 0; i < word_count; i++, data_buff++) { + *data_buff = dwc_read_datafifo32(fifo); + } + } else { + DWC_DEBUGPL(DBG_SP, "%s set release_later %d\n", __func__, _bytes); + atomic_set(& release_later, 1); + //disable_irq_nosync(94); + dwc_otg_disable_global_interrupts(_core_if); + + /* plbdma tasklet */ + _core_if->dma_xfer.dma_data_buff = data_buff; + _core_if->dma_xfer.dma_data_fifo = (void *)fifo; + _core_if->dma_xfer.dma_count = word_count; + _core_if->dma_xfer.dma_dir = OTG_RX_DMA; + tasklet_schedule(_core_if->plbdma_tasklet); + } +#else /* !CONFIG_OTG_PLB_DMA_TASKLET */ + ppc4xx_start_plb_dma(_core_if,(void *)fifo,data_buff, (word_count * 4), + PLB_DMA_INT_DIS, PLB_DMA_CH, OTG_RX_DMA); + while (mfdcr(DCRN_DMACR0 + (DMA_CH0*8)) & DMA_CE_ENABLE) { + } + dma_sts = (uint32_t)ppc4xx_get_dma_status(); +#ifdef OTG_PLB_DMA_DBG + if (!(dma_sts & DMA_CS0)) { + printk("DMA Status (Terminal Count not occured) 0x%08x\n", mfdcr(DCRN_DMASR)); + } +#endif + if (dma_sts & DMA_CH0_ERR) { + printk("DMA Status (Channel 0 Error) 0x%08x\n", mfdcr(DCRN_DMASR)); + } + ppc4xx_clr_dma_status(PLB_DMA_CH); +#ifdef OTG_PLB_DMA_DBG + printk("%32s DMA Status =0x%08x\n", __FUNCTION__, mfdcr(DCRN_DMASR)); + printk(" Rxed buffer \n"); + for( i=0; i< _bytes; i++) { + printk(" 0x%02x",*(_dest +i)); + } + printk(" \n End of Rxed buffer \n"); +#endif +#endif /* CONFIG_OTG_PLB_DMA_TASKLET */ + +#else /* DWC_SLAVE mode */ + for (i = 0; i < word_count; i++, data_buff++) { + *data_buff = dwc_read_datafifo32(fifo); + } +#endif + return; +} + + +/** + * This functions reads the device registers and prints them + * + * @param _core_if Programming view of DWC_otg controller. + */ +void dwc_otg_dump_dev_registers(dwc_otg_core_if_t * _core_if) +{ + int i; + volatile uint32_t *addr; + DWC_PRINT("Device Global Registers\n"); + addr = &_core_if->dev_if->dev_global_regs->dcfg; + DWC_PRINT("DCFG @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->dev_if->dev_global_regs->dctl; + DWC_PRINT("DCTL @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->dev_if->dev_global_regs->dsts; + DWC_PRINT("DSTS @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->dev_if->dev_global_regs->diepmsk; + DWC_PRINT("DIEPMSK @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->dev_if->dev_global_regs->doepmsk; + DWC_PRINT("DOEPMSK @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->dev_if->dev_global_regs->daint; + DWC_PRINT("DAINT @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->dev_if->dev_global_regs->dtknqr1; + DWC_PRINT("DTKNQR1 @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + if (_core_if->hwcfg2.b.dev_token_q_depth > 6) { + addr = &_core_if->dev_if->dev_global_regs->dtknqr2; + DWC_PRINT("DTKNQR2 @0x%08X : 0x%08X\n", + (uint32_t) addr, dwc_read_reg32(addr)); + } + addr = &_core_if->dev_if->dev_global_regs->dvbusdis; + DWC_PRINT("DVBUSID @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->dev_if->dev_global_regs->dvbuspulse; + DWC_PRINT("DVBUSPULSE @0x%08X : 0x%08X\n", + (uint32_t) addr, dwc_read_reg32(addr)); + if (_core_if->hwcfg2.b.dev_token_q_depth > 14) { + addr = &_core_if->dev_if->dev_global_regs->dtknqr3_dthrctl; + DWC_PRINT("DTKNQR3 @0x%08X : 0x%08X\n", + (uint32_t) addr, dwc_read_reg32(addr)); + } + if (_core_if->hwcfg2.b.dev_token_q_depth > 22) { + addr = &_core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk; + DWC_PRINT("DTKNQR4 @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + } + for (i = 0; i <= _core_if->dev_if->num_in_eps; i++) { + DWC_PRINT("Device IN EP %d Registers\n", i); + addr = &_core_if->dev_if->in_ep_regs[i]->diepctl; + DWC_PRINT("DIEPCTL @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->dev_if->in_ep_regs[i]->diepint; + DWC_PRINT("DIEPINT @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->dev_if->in_ep_regs[i]->dieptsiz; + DWC_PRINT("DIETSIZ @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->dev_if->in_ep_regs[i]->diepdma; + DWC_PRINT("DIEPDMA @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->dev_if->in_ep_regs[i]->dtxfsts; + DWC_PRINT("DTXFSTS @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + } + for (i = 0; i <= _core_if->dev_if->num_out_eps; i++) { + DWC_PRINT("Device OUT EP %d Registers\n", i); + addr = &_core_if->dev_if->out_ep_regs[i]->doepctl; + DWC_PRINT("DOEPCTL @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->dev_if->out_ep_regs[i]->doepfn; + DWC_PRINT("DOEPFN @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->dev_if->out_ep_regs[i]->doepint; + DWC_PRINT("DOEPINT @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->dev_if->out_ep_regs[i]->doeptsiz; + DWC_PRINT("DOETSIZ @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->dev_if->out_ep_regs[i]->doepdma; + DWC_PRINT("DOEPDMA @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + } + return; +} + + +/** + * This function reads the host registers and prints them + * + * @param _core_if Programming view of DWC_otg controller. + */ +void dwc_otg_dump_host_registers(dwc_otg_core_if_t * _core_if) +{ + int i; + volatile uint32_t *addr; + DWC_PRINT("Host Global Registers\n"); + addr = &_core_if->host_if->host_global_regs->hcfg; + DWC_PRINT("HCFG @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->host_if->host_global_regs->hfir; + DWC_PRINT("HFIR @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->host_if->host_global_regs->hfnum; + DWC_PRINT("HFNUM @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->host_if->host_global_regs->hptxsts; + DWC_PRINT("HPTXSTS @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->host_if->host_global_regs->haint; + DWC_PRINT("HAINT @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->host_if->host_global_regs->haintmsk; + DWC_PRINT("HAINTMSK @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = _core_if->host_if->hprt0; + DWC_PRINT("HPRT0 @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + for (i = 0; i < _core_if->core_params->host_channels; i++) { + DWC_PRINT("Host Channel %d Specific Registers\n", i); + addr = &_core_if->host_if->hc_regs[i]->hcchar; + DWC_PRINT("HCCHAR @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->host_if->hc_regs[i]->hcsplt; + DWC_PRINT("HCSPLT @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->host_if->hc_regs[i]->hcint; + DWC_PRINT("HCINT @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->host_if->hc_regs[i]->hcintmsk; + DWC_PRINT("HCINTMSK @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->host_if->hc_regs[i]->hctsiz; + DWC_PRINT("HCTSIZ @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->host_if->hc_regs[i]->hcdma; + DWC_PRINT("HCDMA @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + } + return; +} + + +/** + * This function reads the core global registers and prints them + * + * @param _core_if Programming view of DWC_otg controller. + */ +void dwc_otg_dump_global_registers(dwc_otg_core_if_t * _core_if) +{ + int i; + volatile uint32_t *addr; + DWC_PRINT("Core Global Registers"); + addr = &_core_if->core_global_regs->gotgctl; + DWC_PRINT("GOTGCTL @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->core_global_regs->gotgint; + DWC_PRINT("GOTGINT @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->core_global_regs->gahbcfg; + DWC_PRINT("GAHBCFG @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->core_global_regs->gusbcfg; + DWC_PRINT("GUSBCFG @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->core_global_regs->grstctl; + DWC_PRINT("GRSTCTL @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->core_global_regs->gintsts; + DWC_PRINT("GINTSTS @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->core_global_regs->gintmsk; + DWC_PRINT("GINTMSK @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->core_global_regs->grxstsr; + DWC_PRINT("GRXSTSR @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + + //addr=&_core_if->core_global_regs->grxstsp; + //DWC_PRINT("GRXSTSP @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); + addr = &_core_if->core_global_regs->grxfsiz; + DWC_PRINT("GRXFSIZ @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->core_global_regs->gnptxfsiz; + DWC_PRINT("GNPTXFSIZ @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->core_global_regs->gnptxsts; + DWC_PRINT("GNPTXSTS @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->core_global_regs->gi2cctl; + DWC_PRINT("GI2CCTL @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->core_global_regs->gpvndctl; + DWC_PRINT("GPVNDCTL @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->core_global_regs->ggpio; + DWC_PRINT("GGPIO @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->core_global_regs->guid; + DWC_PRINT("GUID @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->core_global_regs->gsnpsid; + DWC_PRINT("GSNPSID @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->core_global_regs->ghwcfg1; + DWC_PRINT("GHWCFG1 @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->core_global_regs->ghwcfg2; + DWC_PRINT("GHWCFG2 @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->core_global_regs->ghwcfg3; + DWC_PRINT("GHWCFG3 @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->core_global_regs->ghwcfg4; + DWC_PRINT("GHWCFG4 @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + addr = &_core_if->core_global_regs->hptxfsiz; + DWC_PRINT("HPTXFSIZ @0x%08X : 0x%08X\n", (uint32_t) addr, + dwc_read_reg32(addr)); + for (i = 0; i < _core_if->hwcfg4.b.num_dev_perio_in_ep; i++) { + addr = &_core_if->core_global_regs->dptxfsiz_dieptxf[i]; + DWC_PRINT("DPTXFSIZ[%d] @0x%08X : 0x%08X\n", i, + (uint32_t) addr, dwc_read_reg32(addr)); + } +} + + +/** + * Flush a Tx FIFO. + * + * @param _core_if Programming view of DWC_otg controller. + * @param _num Tx FIFO to flush. + */ +extern void dwc_otg_flush_tx_fifo(dwc_otg_core_if_t * _core_if, + const int _num) +{ + dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs; + volatile grstctl_t greset = {.d32 = 0 }; + int count = 0; + DWC_DEBUGPL((DBG_CIL | DBG_PCDV), "Flush Tx FIFO %d\n", _num); + greset.b.txfflsh = 1; + greset.b.txfnum = _num; + dwc_write_reg32(&global_regs->grstctl, greset.d32); + + do { + greset.d32 = dwc_read_reg32(&global_regs->grstctl); + if (++count > 10000) { + DWC_WARN("%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n", + __func__, greset.d32, dwc_read_reg32(&global_regs->gnptxsts)); + break; + } + udelay(1); + } while (greset.b.txfflsh == 1); + /* Wait for 3 PHY Clocks */ + UDELAY(1); +} + + +/** + * Flush Rx FIFO. + * + * @param _core_if Programming view of DWC_otg controller. + */ +extern void dwc_otg_flush_rx_fifo(dwc_otg_core_if_t * _core_if) +{ + dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs; + volatile grstctl_t greset = {.d32 = 0 }; + int count = 0; + DWC_DEBUGPL((DBG_CIL | DBG_PCDV), "%s\n", __func__); + + /* + * + */ + greset.b.rxfflsh = 1; + dwc_write_reg32(&global_regs->grstctl, greset.d32); + + do { + greset.d32 = dwc_read_reg32(&global_regs->grstctl); + if (++count > 10000) { + DWC_WARN("%s() HANG! GRSTCTL=%0x\n", __func__, greset.d32); + break; + } + udelay(1); + } while (greset.b.rxfflsh == 1); + + /* Wait for 3 PHY Clocks */ + UDELAY(1); +} + + +/** + * Do core a soft reset of the core. Be careful with this because it + * resets all the internal state machines of the core. + */ +void dwc_otg_core_reset(dwc_otg_core_if_t * _core_if) +{ + dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs; + volatile grstctl_t greset = {.d32 = 0 }; + int count = 0; + DWC_DEBUGPL(DBG_CILV, "%s\n", __func__); + + /* Wait for AHB master IDLE state. */ + do { + UDELAY(10); + greset.d32 = dwc_read_reg32(&global_regs->grstctl); + if (++count > 100000) { + DWC_WARN("%s() HANG! AHB Idle GRSTCTL=%0x\n", __func__, greset.d32); + return; + } + } while (greset.b.ahbidle == 0); + + /* Core Soft Reset */ + count = 0; + greset.b.csftrst = 1; + dwc_write_reg32(&global_regs->grstctl, greset.d32); + + do { + greset.d32 = dwc_read_reg32(&global_regs->grstctl); + if (++count > 10000) { + DWC_WARN("%s() HANG! Soft Reset GRSTCTL=%0x\n", __func__, greset.d32); + break; + } + udelay(1); + } while (greset.b.csftrst == 1); + + /* Wait for 3 PHY Clocks */ + //DWC_PRINT("100ms\n"); + MDELAY(100); +} + + +/** + * Register HCD callbacks. The callbacks are used to start and stop + * the HCD for interrupt processing. + * + * @param _core_if Programming view of DWC_otg controller. + * @param _cb the HCD callback structure. + * @param _p pointer to be passed to callback function (usb_hcd*). + */ +extern void dwc_otg_cil_register_hcd_callbacks(dwc_otg_core_if_t * _core_if, + dwc_otg_cil_callbacks_t * _cb, void *_p) +{ + _core_if->hcd_cb = _cb; + _cb->p = _p; +} + +/** + * Register PCD callbacks. The callbacks are used to start and stop + * the PCD for interrupt processing. + * + * @param _core_if Programming view of DWC_otg controller. + * @param _cb the PCD callback structure. + * @param _p pointer to be passed to callback function (pcd*). + */ +extern void dwc_otg_cil_register_pcd_callbacks(dwc_otg_core_if_t * _core_if, + dwc_otg_cil_callbacks_t * _cb, void *_p) +{ + _core_if->pcd_cb = _cb; + _cb->p = _p; +} + diff --git a/drivers/usb/gadget/dwc_otg/dwc_otg_cil.h b/drivers/usb/gadget/dwc_otg/dwc_otg_cil.h new file mode 100644 index 00000000000..adc0086e572 --- /dev/null +++ b/drivers/usb/gadget/dwc_otg/dwc_otg_cil.h @@ -0,0 +1,991 @@ +/* ========================================================================== + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_cil.h $ + * $Revision: #12 $ + * $Date: 2007/02/08 $ + * $Change: 792294 $ + * + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ + +#if !defined(__DWC_CIL_H__) +#define __DWC_CIL_H__ + +#include "linux/dwc_otg_plat.h" +#include "dwc_otg_regs.h" +#ifdef CONFIG_DWC_DEBUG +#include "linux/timer.h" +#endif + +#ifdef CONFIG_OTG_PLB_DMA +#include "ppc4xx_dma.h" +#include <asm/cacheflush.h> +#include <linux/interrupt.h> +#include <asm/time.h> +#include <asm/unaligned.h> + +#undef OTG_PLB_DMA_DBG +#define OTG_TX_DMA 0 /* TX DMA direction */ +#define OTG_RX_DMA 1 /* RX DMA direction */ +#define PLB_DMA_CH DMA_CH0 /* plb dma channel */ +#define PLB_DMA_CH_INT 12 +#define PLB_DMA_INT_ENA 1 +#define PLB_DMA_INT_DIS 0 +#define USB_BUFSIZ 512 + +#ifdef CONFIG_OTG_PLB_DMA_TASKLET +#ifndef CONFIG_OTG_PLB_DMA +#define CONFIG_OTG_PLB_DMA +#endif + +extern atomic_t release_later; +#endif +#endif + +/** + * @file + * This file contains the interface to the Core Interface Layer. + */ + +#ifdef CONFIG_405EZ +/* + * Added-sr: 2007-07-26 + * + * Since the 405EZ (Ultra) only support 2047 bytes as + * max transfer size, we have to split up bigger transfers + * into multiple transfers of 1024 bytes sized messages. + * I happens often, that transfers of 4096 bytes are + * required (zero-gadget, file_storage-gadget). + * + * MAX_XFER_LEN is set to 1024 right now, but could be 2047, + * since the xfer-size field in the 405EZ USB device controller + * implementation has 11 bits. Using 1024 seems to work for now. + */ +#define MAX_XFER_LEN 1024 +#endif + +/** + * The <code>dwc_ep</code> structure represents the state of a single + * endpoint when acting in device mode. It contains the data items + * needed for an endpoint to be activated and transfer packets. + */ +typedef struct dwc_ep { + /** EP number used for register address lookup */ + uint8_t num; + /** EP direction 0 = OUT */ + unsigned is_in : 1; + /** EP active. */ + unsigned active : 1; + + /** Periodic Tx FIFO # for IN EPs For INTR EP set to 0 to use non-periodic Tx FIFO + If dedicated Tx FIFOs are enabled for all IN Eps - Tx FIFO # FOR IN EPs*/ + unsigned tx_fifo_num : 4; + /** EP type: 0 - Control, 1 - ISOC, 2 - BULK, 3 - INTR */ + unsigned type : 2; +#define DWC_OTG_EP_TYPE_CONTROL 0 +#define DWC_OTG_EP_TYPE_ISOC 1 +#define DWC_OTG_EP_TYPE_BULK 2 +#define DWC_OTG_EP_TYPE_INTR 3 + + /** DATA start PID for INTR and BULK EP */ + unsigned data_pid_start : 1; + /** Frame (even/odd) for ISOC EP */ + unsigned even_odd_frame : 1; + /** Max Packet bytes */ + unsigned maxpacket : 11; + + /** @name Transfer state */ + /** @{ */ + + /** + * Pointer to the beginning of the transfer buffer -- do not modify + * during transfer. + */ + + uint32_t dma_addr; + + uint8_t *start_xfer_buff; + /** pointer to the transfer buffer */ + uint8_t *xfer_buff; + /** Number of bytes to transfer */ + unsigned xfer_len : 19; + /** Number of bytes transferred. */ + unsigned xfer_count : 19; + /** Sent ZLP */ + unsigned sent_zlp : 1; + /** Total len for control transfer */ + unsigned total_len : 19; + + /** stall clear flag */ + unsigned stall_clear_flag : 1; + +#ifdef CONFIG_405EZ + /* + * Added-sr: 2007-07-26 + * + * Since the 405EZ (Ultra) only support 2047 bytes as + * max transfer size, we have to split up bigger transfers + * into multiple transfers of 1024 bytes sized messages. + * I happens often, that transfers of 4096 bytes are + * required (zero-gadget, file_storage-gadget). + * + * "bytes_pending" will hold the amount of bytes that are + * still pending to be send in further messages to complete + * the bigger transfer. + */ + u32 bytes_pending; +#endif + + /** @} */ +} dwc_ep_t; + +/* + * Reasons for halting a host channel. + */ +typedef enum dwc_otg_halt_status { + DWC_OTG_HC_XFER_NO_HALT_STATUS, + DWC_OTG_HC_XFER_COMPLETE, + DWC_OTG_HC_XFER_URB_COMPLETE, + DWC_OTG_HC_XFER_ACK, + DWC_OTG_HC_XFER_NAK, + DWC_OTG_HC_XFER_NYET, + DWC_OTG_HC_XFER_STALL, + DWC_OTG_HC_XFER_XACT_ERR, + DWC_OTG_HC_XFER_FRAME_OVERRUN, + DWC_OTG_HC_XFER_BABBLE_ERR, + DWC_OTG_HC_XFER_DATA_TOGGLE_ERR, + DWC_OTG_HC_XFER_AHB_ERR, + DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE, + DWC_OTG_HC_XFER_URB_DEQUEUE +} dwc_otg_halt_status_e; + +/** + * Host channel descriptor. This structure represents the state of a single + * host channel when acting in host mode. It contains the data items needed to + * transfer packets to an endpoint via a host channel. + */ +typedef struct dwc_hc { + /** Host channel number used for register address lookup */ + uint8_t hc_num; + + /** Device to access */ + unsigned dev_addr : 7; + + /** EP to access */ + unsigned ep_num : 4; + + /** EP direction. 0: OUT, 1: IN */ + unsigned ep_is_in : 1; + + /** + * EP speed. + * One of the following values: + * - DWC_OTG_EP_SPEED_LOW + * - DWC_OTG_EP_SPEED_FULL + * - DWC_OTG_EP_SPEED_HIGH + */ + unsigned speed : 2; +#define DWC_OTG_EP_SPEED_LOW 0 +#define DWC_OTG_EP_SPEED_FULL 1 +#define DWC_OTG_EP_SPEED_HIGH 2 + + /** + * Endpoint type. + * One of the following values: + * - DWC_OTG_EP_TYPE_CONTROL: 0 + * - DWC_OTG_EP_TYPE_ISOC: 1 + * - DWC_OTG_EP_TYPE_BULK: 2 + * - DWC_OTG_EP_TYPE_INTR: 3 + */ + unsigned ep_type : 2; + + /** Max packet size in bytes */ + unsigned max_packet : 11; + + /** + * PID for initial transaction. + * 0: DATA0,<br> + * 1: DATA2,<br> + * 2: DATA1,<br> + * 3: MDATA (non-Control EP), + * SETUP (Control EP) + */ + unsigned data_pid_start : 2; +#define DWC_OTG_HC_PID_DATA0 0 +#define DWC_OTG_HC_PID_DATA2 1 +#define DWC_OTG_HC_PID_DATA1 2 +#define DWC_OTG_HC_PID_MDATA 3 +#define DWC_OTG_HC_PID_SETUP 3 + + /** Number of periodic transactions per (micro)frame */ + unsigned multi_count: 2; + + /** @name Transfer State */ + /** @{ */ + + /** Pointer to the current transfer buffer position. */ + uint8_t *xfer_buff; + /** Total number of bytes to transfer. */ + uint32_t xfer_len; + /** Number of bytes transferred so far. */ + uint32_t xfer_count; + /** Packet count at start of transfer.*/ + uint16_t start_pkt_count; + + /** + * Flag to indicate whether the transfer has been started. Set to 1 if + * it has been started, 0 otherwise. + */ + uint8_t xfer_started; + + /** + * Set to 1 to indicate that a PING request should be issued on this + * channel. If 0, process normally. + */ + uint8_t do_ping; + + /** + * Set to 1 to indicate that the error count for this transaction is + * non-zero. Set to 0 if the error count is 0. + */ + uint8_t error_state; + + /** + * Set to 1 to indicate that this channel should be halted the next + * time a request is queued for the channel. This is necessary in + * slave mode if no request queue space is available when an attempt + * is made to halt the channel. + */ + uint8_t halt_on_queue; + + /** + * Set to 1 if the host channel has been halted, but the core is not + * finished flushing queued requests. Otherwise 0. + */ + uint8_t halt_pending; + + /** + * Reason for halting the host channel. + */ + dwc_otg_halt_status_e halt_status; + + /* + * Split settings for the host channel + */ + uint8_t do_split; /**< Enable split for the channel */ + uint8_t complete_split; /**< Enable complete split */ + uint8_t hub_addr; /**< Address of high speed hub */ + + uint8_t port_addr; /**< Port of the low/full speed device */ + /** Split transaction position + * One of the following values: + * - DWC_HCSPLIT_XACTPOS_MID + * - DWC_HCSPLIT_XACTPOS_BEGIN + * - DWC_HCSPLIT_XACTPOS_END + * - DWC_HCSPLIT_XACTPOS_ALL */ + uint8_t xact_pos; + + /** Set when the host channel does a short read. */ + uint8_t short_read; + + /** + * Number of requests issued for this channel since it was assigned to + * the current transfer (not counting PINGs). + */ + uint8_t requests; + + /** + * Queue Head for the transfer being processed by this channel. + */ + struct dwc_otg_qh *qh; + + /** @} */ + + /** Entry in list of host channels. */ + struct list_head hc_list_entry; +} dwc_hc_t; + +/** + * The following parameters may be specified when starting the module. These + * parameters define how the DWC_otg controller should be configured. + * Parameter values are passed to the CIL initialization function + * dwc_otg_cil_init. + */ +typedef struct dwc_otg_core_params +{ + int32_t opt; +#define dwc_param_opt_default 1 + + /** + * Specifies the OTG capabilities. The driver will automatically + * detect the value for this parameter if none is specified. + * 0 - HNP and SRP capable (default) + * 1 - SRP Only capable + * 2 - No HNP/SRP capable + */ + int32_t otg_cap; +#define DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE 0 +#define DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE 1 +#define DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE 2 +#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE + + /** + * Specifies whether to use slave or DMA mode for accessing the data + * FIFOs. The driver will automatically detect the value for this + * parameter if none is specified. + * 0 - Slave + * 1 - DMA (default, if available) + */ + int32_t dma_enable; +#define dwc_param_dma_enable_default 1 + + /** The DMA Burst size (applicable only for External DMA + * Mode). 1, 4, 8 16, 32, 64, 128, 256 (default 32) + */ + int32_t dma_burst_size; /* Translate this to GAHBCFG values */ +#define dwc_param_dma_burst_size_default 32 + + /** + * Specifies the maximum speed of operation in host and device mode. + * The actual speed depends on the speed of the attached device and + * the value of phy_type. The actual speed depends on the speed of the + * attached device. + * 0 - High Speed (default) + * 1 - Full Speed + */ + int32_t speed; +#define dwc_param_speed_default 0 +#define DWC_SPEED_PARAM_HIGH 0 +#define DWC_SPEED_PARAM_FULL 1 + + /** Specifies whether low power mode is supported when attached + * to a Full Speed or Low Speed device in host mode. + * 0 - Don't support low power mode (default) + * 1 - Support low power mode + */ + int32_t host_support_fs_ls_low_power; +#define dwc_param_host_support_fs_ls_low_power_default 0 + + /** Specifies the PHY clock rate in low power mode when connected to a + * Low Speed device in host mode. This parameter is applicable only if + * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS + * then defaults to 6 MHZ otherwise 48 MHZ. + * + * 0 - 48 MHz + * 1 - 6 MHz + */ + int32_t host_ls_low_power_phy_clk; +#define dwc_param_host_ls_low_power_phy_clk_default 0 +#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0 +#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1 + + /** + * 0 - Use cC FIFO size parameters + * 1 - Allow dynamic FIFO sizing (default) + */ + int32_t enable_dynamic_fifo; +#define dwc_param_enable_dynamic_fifo_default 1 + + /** Total number of 4-byte words in the data FIFO memory. This + * memory includes the Rx FIFO, non-periodic Tx FIFO, and periodic + * Tx FIFOs. + * 32 to 32768 (default 8192) + * Note: The total FIFO memory depth in the FPGA configuration is 8192. + */ + int32_t data_fifo_size; +#define dwc_param_data_fifo_size_default 8192 + + /** Number of 4-byte words in the Rx FIFO in device mode when dynamic + * FIFO sizing is enabled. + * 16 to 32768 (default 1064) + */ + int32_t dev_rx_fifo_size; +#define dwc_param_dev_rx_fifo_size_default 1064 + + /** Number of 4-byte words in the non-periodic Tx FIFO in device mode + * when dynamic FIFO sizing is enabled. + * 16 to 32768 (default 1024) + */ + int32_t dev_nperio_tx_fifo_size; +#define dwc_param_dev_nperio_tx_fifo_size_default 1024 + + /** Number of 4-byte words in each of the periodic Tx FIFOs in device + * mode when dynamic FIFO sizing is enabled. + * 4 to 768 (default 256) + */ + uint32_t dev_perio_tx_fifo_size[MAX_PERIO_FIFOS]; +#define dwc_param_dev_perio_tx_fifo_size_default 256 + + /** Number of 4-byte words in the Rx FIFO in host mode when dynamic + * FIFO sizing is enabled. + * 16 to 32768 (default 1024) + */ + int32_t host_rx_fifo_size; +#define dwc_param_host_rx_fifo_size_default 1024 + + /** Number of 4-byte words in the non-periodic Tx FIFO in host mode + * when Dynamic FIFO sizing is enabled in the core. + * 16 to 32768 (default 1024) + */ + int32_t host_nperio_tx_fifo_size; +#define dwc_param_host_nperio_tx_fifo_size_default 1024 + + /** Number of 4-byte words in the host periodic Tx FIFO when dynamic + * FIFO sizing is enabled. + * 16 to 32768 (default 1024) + */ + int32_t host_perio_tx_fifo_size; +#define dwc_param_host_perio_tx_fifo_size_default 1024 + + /** The maximum transfer size supported in bytes. + * 2047 to 65,535 (default 65,535) + */ + int32_t max_transfer_size; +#define dwc_param_max_transfer_size_default 65535 + + /** The maximum number of packets in a transfer. + * 15 to 511 (default 511) + */ + int32_t max_packet_count; +#define dwc_param_max_packet_count_default 511 + + /** The number of host channel registers to use. + * 1 to 16 (default 12) + * Note: The FPGA configuration supports a maximum of 12 host channels. + */ + int32_t host_channels; +#define dwc_param_host_channels_default 12 + + /** The number of endpoints in addition to EP0 available for device + * mode operations. + * 1 to 15 (default 6 IN and OUT) + * Note: The FPGA configuration supports a maximum of 6 IN and OUT + * endpoints in addition to EP0. + */ + int32_t dev_endpoints; +#define dwc_param_dev_endpoints_default 6 + + /** + * Specifies the type of PHY interface to use. By default, the driver + * will automatically detect the phy_type. + * + * 0 - Full Speed PHY + * 1 - UTMI+ (default) + * 2 - ULPI + */ + int32_t phy_type; +#define DWC_PHY_TYPE_PARAM_FS 0 +#define DWC_PHY_TYPE_PARAM_UTMI 1 +#define DWC_PHY_TYPE_PARAM_ULPI 2 +#define dwc_param_phy_type_default DWC_PHY_TYPE_PARAM_UTMI + + /** + * Specifies the UTMI+ Data Width. This parameter is + * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI + * PHY_TYPE, this parameter indicates the data width between + * the MAC and the ULPI Wrapper.) Also, this parameter is + * applicable only if the OTG_HSPHY_WIDTH cC parameter was set + * to "8 and 16 bits", meaning that the core has been + * configured to work at either data path width. + * + * 8 or 16 bits (default 16) + */ + int32_t phy_utmi_width; +#define dwc_param_phy_utmi_width_default 16 + + /** + * Specifies whether the ULPI operates at double or single + * data rate. This parameter is only applicable if PHY_TYPE is + * ULPI. + * + * 0 - single data rate ULPI interface with 8 bit wide data + * bus (default) + * 1 - double data rate ULPI interface with 4 bit wide data + * bus + */ + int32_t phy_ulpi_ddr; +#define dwc_param_phy_ulpi_ddr_default 0 + + /** + * Specifies whether to use the internal or external supply to + * drive the vbus with a ULPI phy. + */ + int32_t phy_ulpi_ext_vbus; +#define DWC_PHY_ULPI_INTERNAL_VBUS 0 +#define DWC_PHY_ULPI_EXTERNAL_VBUS 1 +#define dwc_param_phy_ulpi_ext_vbus_default DWC_PHY_ULPI_INTERNAL_VBUS + + /** + * Specifies whether to use the I2Cinterface for full speed PHY. This + * parameter is only applicable if PHY_TYPE is FS. + * 0 - No (default) + * 1 - Yes + */ + int32_t i2c_enable; +#define dwc_param_i2c_enable_default 0 + + int32_t ulpi_fs_ls; +#define dwc_param_ulpi_fs_ls_default 0 + + int32_t ts_dline; +#define dwc_param_ts_dline_default 0 + + /** + * Specifies whether dedicated transmit FIFOs are + * enabled for non periodic IN endpoints in device mode + * 0 - No + * 1 - Yes + */ + int32_t en_multiple_tx_fifo; +#define dwc_param_en_multiple_tx_fifo_default 1 + + /** Number of 4-byte words in each of the Tx FIFOs in device + * mode when dynamic FIFO sizing is enabled. + * 4 to 768 (default 256) + */ + uint32_t dev_tx_fifo_size[MAX_TX_FIFOS]; +#define dwc_param_dev_tx_fifo_size_default 256 + + /** Thresholding enable flag- + * bit 0 - enable non-ISO Tx thresholding + * bit 1 - enable ISO Tx thresholding + * bit 2 - enable Rx thresholding + */ + uint32_t thr_ctl; +#define dwc_param_thr_ctl_default 0 + + /** Thresholding length for Tx + * FIFOs in 32 bit DWORDs + */ + uint32_t tx_thr_length; +#define dwc_param_tx_thr_length_default 64 + + /** Thresholding length for Rx + * FIFOs in 32 bit DWORDs + */ + uint32_t rx_thr_length; +#define dwc_param_rx_thr_length_default 64 + +} dwc_otg_core_params_t; + +#ifdef CONFIG_DWC_DEBUG +struct dwc_otg_core_if; +typedef struct hc_xfer_info +{ + struct dwc_otg_core_if *core_if; + dwc_hc_t *hc; +} hc_xfer_info_t; +#endif + +#ifdef CONFIG_OTG_PLB_DMA_TASKLET +typedef struct dma_xfer_s +{ + uint32_t *dma_data_buff; + void *dma_data_fifo; + uint32_t dma_count; + uint32_t dma_dir; +} dma_xfer_t; +#endif + +/** + * The <code>dwc_otg_core_if</code> structure contains information needed to manage + * the DWC_otg controller acting in either host or device mode. It + * represents the programming view of the controller as a whole. + */ +typedef struct dwc_otg_core_if +{ + /** Parameters that define how the core should be configured.*/ + dwc_otg_core_params_t *core_params; + + /** Core Global registers starting at offset 000h. */ + dwc_otg_core_global_regs_t *core_global_regs; + + /** Device-specific information */ + dwc_otg_dev_if_t *dev_if; + /** Host-specific information */ + dwc_otg_host_if_t *host_if; + + /* + * Set to 1 if the core PHY interface bits in USBCFG have been + * initialized. + */ + uint8_t phy_init_done; + + /* + * SRP Success flag, set by srp success interrupt in FS I2C mode + */ + uint8_t srp_success; + uint8_t srp_timer_started; + + /* Common configuration information */ + /** Power and Clock Gating Control Register */ + volatile uint32_t *pcgcctl; +#define DWC_OTG_PCGCCTL_OFFSET 0xE00 + + /** Push/pop addresses for endpoints or host channels.*/ + uint32_t *data_fifo[MAX_EPS_CHANNELS]; +#define DWC_OTG_DATA_FIFO_OFFSET 0x1000 +#define DWC_OTG_DATA_FIFO_SIZE 0x1000 + + /** Total RAM for FIFOs (Bytes) */ + uint16_t total_fifo_size; + /** Size of Rx FIFO (Bytes) */ + uint16_t rx_fifo_size; + /** Size of Non-periodic Tx FIFO (Bytes) */ + uint16_t nperio_tx_fifo_size; + + + /** 1 if DMA is enabled, 0 otherwise. */ + uint8_t dma_enable; + + /** 1 if dedicated Tx FIFOs are enabled, 0 otherwise. */ + uint8_t en_multiple_tx_fifo; + + /** Set to 1 if multiple packets of a high-bandwidth transfer is in + * process of being queued */ + uint8_t queuing_high_bandwidth; + + /** Hardware Configuration -- stored here for convenience.*/ + hwcfg1_data_t hwcfg1; + hwcfg2_data_t hwcfg2; + hwcfg3_data_t hwcfg3; + hwcfg4_data_t hwcfg4; + + /** The operational State, during transations + * (a_host>>a_peripherial and b_device=>b_host) this may not + * match the core but allows the software to determine + * transitions. + */ + uint8_t op_state; + + /** + * Set to 1 if the HCD needs to be restarted on a session request + * interrupt. This is required if no connector ID status change has + * occurred since the HCD was last disconnected. + */ + uint8_t restart_hcd_on_session_req; + + /** HCD callbacks */ + /** A-Device is a_host */ +#define A_HOST (1) + /** A-Device is a_suspend */ +#define A_SUSPEND (2) + /** A-Device is a_peripherial */ +#define A_PERIPHERAL (3) + /** B-Device is operating as a Peripheral. */ +#define B_PERIPHERAL (4) + /** B-Device is operating as a Host. */ +#define B_HOST (5) + + /** HCD callbacks */ + struct dwc_otg_cil_callbacks *hcd_cb; + /** PCD callbacks */ + struct dwc_otg_cil_callbacks *pcd_cb; + + /** Device mode Periodic Tx FIFO Mask */ + uint32_t p_tx_msk; + /** Device mode Periodic Tx FIFO Mask */ + uint32_t tx_msk; + +#ifdef CONFIG_DWC_DEBUG + uint32_t start_hcchar_val[MAX_EPS_CHANNELS]; + + hc_xfer_info_t hc_xfer_info[MAX_EPS_CHANNELS]; + struct timer_list hc_xfer_timer[MAX_EPS_CHANNELS]; + + uint32_t hfnum_7_samples; + uint64_t hfnum_7_frrem_accum; + uint32_t hfnum_0_samples; + uint64_t hfnum_0_frrem_accum; + uint32_t hfnum_other_samples; + uint64_t hfnum_other_frrem_accum; +#endif + resource_size_t phys_addr; /* Added to support PLB DMA : phys-virt mapping */ +#ifdef CONFIG_OTG_PLB_DMA_TASKLET + /* Tasket to do plbdma */ + struct tasklet_struct *plbdma_tasklet; +#if 1 + dma_xfer_t dma_xfer; +#else + uint32_t *dma_data_buff; + void *dma_data_fifo; + uint32_t dma_count; + uint32_t dma_dir; +#endif +#endif + + +} dwc_otg_core_if_t; + +/* + * The following functions support initialization of the CIL driver component + * and the DWC_otg controller. + */ +extern dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *_reg_base_addr, + dwc_otg_core_params_t *_core_params); +extern void dwc_otg_cil_remove(dwc_otg_core_if_t *_core_if); +extern void dwc_otg_core_init(dwc_otg_core_if_t *_core_if); +extern void dwc_otg_core_host_init(dwc_otg_core_if_t *_core_if); +extern void dwc_otg_core_dev_init(dwc_otg_core_if_t *_core_if); +extern void dwc_otg_enable_global_interrupts( dwc_otg_core_if_t *_core_if ); +extern void dwc_otg_disable_global_interrupts( dwc_otg_core_if_t *_core_if ); + +/** @name Device CIL Functions + * The following functions support managing the DWC_otg controller in device + * mode. + */ +/**@{*/ +extern void dwc_otg_wakeup(dwc_otg_core_if_t *_core_if); +extern void dwc_otg_read_setup_packet (dwc_otg_core_if_t *_core_if, uint32_t *_dest); +extern uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *_core_if); +extern void dwc_otg_ep0_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); +extern void dwc_otg_ep_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); +extern void dwc_otg_ep_deactivate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); +extern void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); +extern void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); +extern void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); +extern void dwc_otg_ep_write_packet(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep, int _dma); +extern void dwc_otg_ep_set_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); +extern void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); +extern void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *_core_if); +extern void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *_core_if); +/**@}*/ + +/** @name Host CIL Functions + * The following functions support managing the DWC_otg controller in host + * mode. + */ +/**@{*/ +extern void dwc_otg_hc_init(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); +extern void dwc_otg_hc_halt(dwc_otg_core_if_t *_core_if, + dwc_hc_t *_hc, + dwc_otg_halt_status_e _halt_status); +extern void dwc_otg_hc_cleanup(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); +extern void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); +extern int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); +extern void dwc_otg_hc_do_ping(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); +extern void dwc_otg_hc_write_packet(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); +extern void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *_core_if); +extern void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *_core_if); + +/** + * This function Reads HPRT0 in preparation to modify. It keeps the + * WC bits 0 so that if they are read as 1, they won't clear when you + * write it back + */ +static inline uint32_t dwc_otg_read_hprt0(dwc_otg_core_if_t *_core_if) +{ + hprt0_data_t hprt0; + hprt0.d32 = dwc_read_reg32(_core_if->host_if->hprt0); + hprt0.b.prtena = 0; + hprt0.b.prtconndet = 0; + hprt0.b.prtenchng = 0; + hprt0.b.prtovrcurrchng = 0; + return hprt0.d32; +} + +extern void dwc_otg_dump_host_registers(dwc_otg_core_if_t *_core_if); +/**@}*/ + +/** @name Common CIL Functions + * The following functions support managing the DWC_otg controller in either + * device or host mode. + */ +/**@{*/ + +extern void dwc_otg_read_packet(dwc_otg_core_if_t *core_if, + uint8_t *dest, + uint16_t bytes); + +extern void dwc_otg_dump_global_registers(dwc_otg_core_if_t *_core_if); + +extern void dwc_otg_flush_tx_fifo( dwc_otg_core_if_t *_core_if, + const int _num ); +extern void dwc_otg_flush_rx_fifo( dwc_otg_core_if_t *_core_if ); +extern void dwc_otg_core_reset( dwc_otg_core_if_t *_core_if ); + +#ifdef CONFIG_OTG_PLB_DMA +extern void ppc4xx_start_plb_dma(dwc_otg_core_if_t *_core_if, void *src, void *dst, + unsigned int length, unsigned int use_interrupt, unsigned int dma_ch, unsigned int dma_dir); +#endif +#define NP_TXFIFO_EMPTY -1 +#define MAX_NP_TXREQUEST_Q_SLOTS 8 +/** + * This function returns the endpoint number of the request at + * the top of non-periodic TX FIFO, or -1 if the request FIFO is + * empty. + */ +static inline int dwc_otg_top_nptxfifo_epnum(dwc_otg_core_if_t *_core_if) { + gnptxsts_data_t txstatus = {.d32 = 0}; + + txstatus.d32 = dwc_read_reg32(&_core_if->core_global_regs->gnptxsts); + return (txstatus.b.nptxqspcavail == MAX_NP_TXREQUEST_Q_SLOTS ? + -1 : txstatus.b.nptxqtop_chnep); +} + +/** + * This function returns the Core Interrupt register. + */ +static inline uint32_t dwc_otg_read_core_intr(dwc_otg_core_if_t *_core_if) +{ + return (dwc_read_reg32(&_core_if->core_global_regs->gintsts) & + dwc_read_reg32(&_core_if->core_global_regs->gintmsk)); +} + +/** + * This function returns the OTG Interrupt register. + */ +static inline uint32_t dwc_otg_read_otg_intr (dwc_otg_core_if_t *_core_if) +{ + return (dwc_read_reg32 (&_core_if->core_global_regs->gotgint)); +} + +/** + * This function reads the Device All Endpoints Interrupt register and + * returns the IN endpoint interrupt bits. + */ +static inline uint32_t dwc_otg_read_dev_all_in_ep_intr(dwc_otg_core_if_t *_core_if) +{ + uint32_t v; + v = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daint) & + dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk); + return (v & 0xffff); + +} + +/** + * This function reads the Device All Endpoints Interrupt register and + * returns the OUT endpoint interrupt bits. + */ +static inline uint32_t dwc_otg_read_dev_all_out_ep_intr(dwc_otg_core_if_t *_core_if) +{ + uint32_t v; + v = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daint) & + dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk); + return ((v & 0xffff0000) >> 16); +} + +/** + * This function returns the Device IN EP Interrupt register + */ +static inline uint32_t dwc_otg_read_dev_in_ep_intr(dwc_otg_core_if_t *_core_if, + dwc_ep_t *_ep) +{ + dwc_otg_dev_if_t *dev_if = _core_if->dev_if; + uint32_t v, msk, emp; + msk = dwc_read_reg32(&dev_if->dev_global_regs->diepmsk); + emp = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk); + msk |= ((emp >> _ep->num) & 0x1) << 7; + v = dwc_read_reg32(&dev_if->in_ep_regs[_ep->num]->diepint) & msk; +/* + dwc_otg_dev_if_t *dev_if = _core_if->dev_if; + uint32_t v; + v = dwc_read_reg32(&dev_if->in_ep_regs[_ep->num]->diepint) & + dwc_read_reg32(&dev_if->dev_global_regs->diepmsk); +*/ + return v; +} +/** + * This function returns the Device OUT EP Interrupt register + */ +static inline uint32_t dwc_otg_read_dev_out_ep_intr(dwc_otg_core_if_t *_core_if, + dwc_ep_t *_ep) +{ + dwc_otg_dev_if_t *dev_if = _core_if->dev_if; + uint32_t v; + v = dwc_read_reg32( &dev_if->out_ep_regs[_ep->num]->doepint) & + dwc_read_reg32(&dev_if->dev_global_regs->doepmsk); + return v; +} + +/** + * This function returns the Host All Channel Interrupt register + */ +static inline uint32_t dwc_otg_read_host_all_channels_intr (dwc_otg_core_if_t *_core_if) +{ + return (dwc_read_reg32 (&_core_if->host_if->host_global_regs->haint)); +} + +static inline uint32_t dwc_otg_read_host_channel_intr (dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc) +{ + return (dwc_read_reg32 (&_core_if->host_if->hc_regs[_hc->hc_num]->hcint)); +} + + +/** + * This function returns the mode of the operation, host or device. + * + * @return 0 - Device Mode, 1 - Host Mode + */ +static inline uint32_t dwc_otg_mode(dwc_otg_core_if_t *_core_if) +{ + return (dwc_read_reg32( &_core_if->core_global_regs->gintsts ) & 0x1); +} + +static inline uint8_t dwc_otg_is_device_mode(dwc_otg_core_if_t *_core_if) +{ + return (dwc_otg_mode(_core_if) != DWC_HOST_MODE); +} +static inline uint8_t dwc_otg_is_host_mode(dwc_otg_core_if_t *_core_if) +{ + return (dwc_otg_mode(_core_if) == DWC_HOST_MODE); +} + +extern int32_t dwc_otg_handle_common_intr( dwc_otg_core_if_t *_core_if ); + + +/**@}*/ + +/** + * DWC_otg CIL callback structure. This structure allows the HCD and + * PCD to register functions used for starting and stopping the PCD + * and HCD for role change on for a DRD. + */ +typedef struct dwc_otg_cil_callbacks +{ + /** Start function for role change */ + int (*start) (void *_p); + /** Stop Function for role change */ + int (*stop) (void *_p); + /** Disconnect Function for role change */ + int (*disconnect) (void *_p); + /** Resume/Remote wakeup Function */ + int (*resume_wakeup) (void *_p); + /** Suspend function */ + int (*suspend) (void *_p); + /** Session Start (SRP) */ + int (*session_start) (void *_p); + /** Pointer passed to start() and stop() */ + void *p; +} dwc_otg_cil_callbacks_t; + +extern void dwc_otg_cil_register_pcd_callbacks( dwc_otg_core_if_t *_core_if, + dwc_otg_cil_callbacks_t *_cb, + void *_p); +extern void dwc_otg_cil_register_hcd_callbacks( dwc_otg_core_if_t *_core_if, + dwc_otg_cil_callbacks_t *_cb, + void *_p); +#endif diff --git a/drivers/usb/gadget/dwc_otg/dwc_otg_cil_intr.c b/drivers/usb/gadget/dwc_otg/dwc_otg_cil_intr.c new file mode 100644 index 00000000000..ab6db554e22 --- /dev/null +++ b/drivers/usb/gadget/dwc_otg/dwc_otg_cil_intr.c @@ -0,0 +1,701 @@ +/* ========================================================================== + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_cil_intr.c $ + * $Revision: #7 $ + * $Date: 2005/11/02 $ + * $Change: 553126 $ + * + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ + + +/** @file + * + * The Core Interface Layer provides basic services for accessing and + * managing the DWC_otg hardware. These services are used by both the + * Host Controller Driver and the Peripheral Controller Driver. + * + * This file contains the Common Interrupt handlers. + */ +#include "linux/dwc_otg_plat.h" +#include "dwc_otg_regs.h" +#include "dwc_otg_cil.h" + +inline const char *op_state_str(dwc_otg_core_if_t * _core_if) +{ + return (_core_if->op_state == A_HOST ? "a_host" : + (_core_if->op_state == A_SUSPEND ? "a_suspend" : + (_core_if->op_state == A_PERIPHERAL ? "a_peripheral" : + (_core_if->op_state == B_PERIPHERAL ? "b_peripheral" : + (_core_if->op_state == B_HOST ? "b_host" : "unknown"))))); +} + +/** This function will log a debug message + * + * @param _core_if Programming view of DWC_otg controller. + */ +int32_t dwc_otg_handle_mode_mismatch_intr(dwc_otg_core_if_t * _core_if) +{ + gintsts_data_t gintsts; + DWC_WARN("Mode Mismatch Interrupt: currently in %s mode\n", + dwc_otg_mode(_core_if) ? "Host" : "Device"); + + /* Clear interrupt */ + gintsts.d32 = 0; + gintsts.b.modemismatch = 1; + dwc_write_reg32(&_core_if->core_global_regs->gintsts, gintsts.d32); + return 1; +} + +/** Start the HCD. Helper function for using the HCD callbacks. + * + * @param _core_if Programming view of DWC_otg controller. + */ +static inline void hcd_start(dwc_otg_core_if_t * _core_if) +{ + if (_core_if->hcd_cb && _core_if->hcd_cb->start) { + _core_if->hcd_cb->start(_core_if->hcd_cb->p); + } +} + +/** Stop the HCD. Helper function for using the HCD callbacks. + * + * @param _core_if Programming view of DWC_otg controller. + */ +static inline void hcd_stop(dwc_otg_core_if_t * _core_if) +{ + if (_core_if->hcd_cb && _core_if->hcd_cb->stop) { + _core_if->hcd_cb->stop(_core_if->hcd_cb->p); + } +} + +/** Disconnect the HCD. Helper function for using the HCD callbacks. + * + * @param _core_if Programming view of DWC_otg controller. + */ +static inline void hcd_disconnect(dwc_otg_core_if_t * _core_if) +{ + if (_core_if->hcd_cb && _core_if->hcd_cb->disconnect) { + _core_if->hcd_cb->disconnect(_core_if->hcd_cb->p); + } +} + +/** Inform the HCD the a New Session has begun. Helper function for + * using the HCD callbacks. + * + * @param _core_if Programming view of DWC_otg controller. + */ +static inline void hcd_session_start(dwc_otg_core_if_t * _core_if) +{ + if (_core_if->hcd_cb && _core_if->hcd_cb->session_start) { + _core_if->hcd_cb->session_start(_core_if->hcd_cb->p); + } +} + +/** Start the PCD. Helper function for using the PCD callbacks. + * + * @param _core_if Programming view of DWC_otg controller. + */ +static inline void pcd_start(dwc_otg_core_if_t * _core_if) +{ + if (_core_if->pcd_cb && _core_if->pcd_cb->start) { + _core_if->pcd_cb->start(_core_if->pcd_cb->p); + } +} + +/** Stop the PCD. Helper function for using the PCD callbacks. + * + * @param _core_if Programming view of DWC_otg controller. + */ +static inline void pcd_stop(dwc_otg_core_if_t * _core_if) +{ + if (_core_if->pcd_cb && _core_if->pcd_cb->stop) { + _core_if->pcd_cb->stop(_core_if->pcd_cb->p); + } +} + +/** Suspend the PCD. Helper function for using the PCD callbacks. + * + * @param _core_if Programming view of DWC_otg controller. + */ +static inline void pcd_suspend(dwc_otg_core_if_t * _core_if) +{ + if (_core_if->pcd_cb && _core_if->pcd_cb->suspend) { + _core_if->pcd_cb->suspend(_core_if->pcd_cb->p); + } +} + +/** Resume the PCD. Helper function for using the PCD callbacks. + * + * @param _core_if Programming view of DWC_otg controller. + */ +static inline void pcd_resume(dwc_otg_core_if_t * _core_if) +{ + if (_core_if->pcd_cb && _core_if->pcd_cb->resume_wakeup) { + _core_if->pcd_cb->resume_wakeup(_core_if->pcd_cb->p); + } +} + +/** + * This function handles the OTG Interrupts. It reads the OTG + * Interrupt Register (GOTGINT) to determine what interrupt has + * occurred. + * + * @param _core_if Programming view of DWC_otg controller. + */ +int32_t dwc_otg_handle_otg_intr(dwc_otg_core_if_t * _core_if) +{ + dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs; + gotgint_data_t gotgint; + gotgctl_data_t gotgctl; + gintmsk_data_t gintmsk; + gotgint.d32 = dwc_read_reg32(&global_regs->gotgint); + gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl); + DWC_DEBUGPL(DBG_CIL, "++OTG Interrupt gotgint=%0x [%s]\n", gotgint.d32, + op_state_str(_core_if)); + + //DWC_DEBUGPL(DBG_CIL, "gotgctl=%08x\n", gotgctl.d32 ); + if (gotgint.b.sesenddet) { + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " + "Session End Detected++ (%s)\n", + op_state_str(_core_if)); + gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl); + if (_core_if->op_state == B_HOST) { + pcd_start(_core_if); + _core_if->op_state = B_PERIPHERAL; + } else { + /* If not B_HOST and Device HNP still set. HNP + * Did not succeed!*/ + if (gotgctl.b.devhnpen) { + DWC_DEBUGPL(DBG_ANY, "Session End Detected\n"); + DWC_ERROR("Device Not Connected/Responding!\n"); + } + /* If Session End Detected the B-Cable has + * been disconnected. */ + /* Reset PCD and Gadget driver to a + * clean state. */ + pcd_stop(_core_if); + } + gotgctl.d32 = 0; + gotgctl.b.devhnpen = 1; + dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0); + } + if (gotgint.b.sesreqsucstschng) { + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " + "Session Reqeust Success Status Change++\n"); + gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl); + if (gotgctl.b.sesreqscs) { + if ((_core_if->core_params->phy_type == + DWC_PHY_TYPE_PARAM_FS) + && (_core_if->core_params->i2c_enable)) { + _core_if->srp_success = 1; + } else { + pcd_resume(_core_if); + + /* Clear Session Request */ + gotgctl.d32 = 0; + gotgctl.b.sesreq = 1; + dwc_modify_reg32(&global_regs->gotgctl, + gotgctl.d32, 0); + } + } + } + if (gotgint.b.hstnegsucstschng) { + /* Print statements during the HNP interrupt handling + * can cause it to fail.*/ + gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl); + if (gotgctl.b.hstnegscs) { + if (dwc_otg_is_host_mode(_core_if)) { + _core_if->op_state = B_HOST; + + /* + * Need to disable SOF interrupt immediately. + * When switching from device to host, the PCD + * interrupt handler won't handle the + * interrupt if host mode is already set. The + * HCD interrupt handler won't get called if + * the HCD state is HALT. This means that the + * interrupt does not get handled and Linux + * complains loudly. + */ + gintmsk.d32 = 0; + gintmsk.b.sofintr = 1; + dwc_modify_reg32(&global_regs->gintmsk, gintmsk.d32, 0); + pcd_stop(_core_if); + + /* + * Initialize the Core for Host mode. + */ + hcd_start(_core_if); + _core_if->op_state = B_HOST; + } + } else { + gotgctl.d32 = 0; + gotgctl.b.hnpreq = 1; + gotgctl.b.devhnpen = 1; + dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0); + DWC_DEBUGPL(DBG_ANY, "HNP Failed\n"); + DWC_ERROR("Device Not Connected/Responding\n"); + } + } + if (gotgint.b.hstnegdet) { + + /* The disconnect interrupt is set at the same time as + * Host Negotiation Detected. During the mode + * switch all interrupts are cleared so the disconnect + * interrupt handler will not get executed. + */ + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " + "Host Negotiation Detected++ (%s)\n", + (dwc_otg_is_host_mode(_core_if) ? "Host" : + "Device")); + if (dwc_otg_is_device_mode(_core_if)) { + DWC_DEBUGPL(DBG_ANY, "a_suspend->a_peripheral (%d)\n", + _core_if->op_state); + hcd_disconnect(_core_if); + pcd_start(_core_if); + _core_if->op_state = A_PERIPHERAL; + } else { + + /* + * Need to disable SOF interrupt immediately. When + * switching from device to host, the PCD interrupt + * handler won't handle the interrupt if host mode is + * already set. The HCD interrupt handler won't get + * called if the HCD state is HALT. This means that + * the interrupt does not get handled and Linux + * complains loudly. + */ + gintmsk.d32 = 0; + gintmsk.b.sofintr = 1; + dwc_modify_reg32(&global_regs->gintmsk, gintmsk.d32, + 0); + pcd_stop(_core_if); + hcd_start(_core_if); + _core_if->op_state = A_HOST; + } + } + if (gotgint.b.adevtoutchng) { + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " + "A-Device Timeout Change++\n"); + } + if (gotgint.b.debdone) { + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " + "Debounce Done++\n"); + } + + /* Clear GOTGINT */ + dwc_write_reg32(&_core_if->core_global_regs->gotgint, gotgint.d32); + return 1; +} + +/** + * This function handles the Connector ID Status Change Interrupt. It + * reads the OTG Interrupt Register (GOTCTL) to determine whether this + * is a Device to Host Mode transition or a Host Mode to Device + * Transition. + * + * This only occurs when the cable is connected/removed from the PHY + * connector. + * + * @param _core_if Programming view of DWC_otg controller. + */ +int32_t dwc_otg_handle_conn_id_status_change_intr(dwc_otg_core_if_t * + _core_if) +{ + uint32_t count = 0; + gintsts_data_t gintsts = {.d32 = 0}; + gintmsk_data_t gintmsk = {.d32 = 0}; + gotgctl_data_t gotgctl = {.d32 = 0}; + + /* + * Need to disable SOF interrupt immediately. If switching from device + * to host, the PCD interrupt handler won't handle the interrupt if + * host mode is already set. The HCD interrupt handler won't get + * called if the HCD state is HALT. This means that the interrupt does + * not get handled and Linux complains loudly. + */ + gintmsk.b.sofintr = 1; + dwc_modify_reg32(&_core_if->core_global_regs->gintmsk, gintmsk.d32, 0); + DWC_DEBUGPL(DBG_CIL, + " ++Connector ID Status Change Interrupt++ (%s)\n", + (dwc_otg_is_host_mode(_core_if) ? "Host" : "Device")); + gotgctl.d32 = dwc_read_reg32(&_core_if->core_global_regs->gotgctl); + DWC_DEBUGPL(DBG_CIL, "gotgctl=%0x\n", gotgctl.d32); + DWC_DEBUGPL(DBG_CIL, "gotgctl.b.conidsts=%d\n", gotgctl.b.conidsts); + + /* B-Device connector (Device Mode) */ + if (gotgctl.b.conidsts) { + + /* Wait for switch to device mode. */ + while (!dwc_otg_is_device_mode(_core_if)) { + DWC_PRINT("Waiting for Peripheral Mode, Mode=%s\n", + (dwc_otg_is_host_mode(_core_if) ? "Host" : + "Peripheral")); + MDELAY(100); + if (++count > 10000) + *(uint32_t *) NULL = 0; + } + _core_if->op_state = B_PERIPHERAL; + dwc_otg_core_init(_core_if); + dwc_otg_enable_global_interrupts(_core_if); + pcd_start(_core_if); + } else { + + /* A-Device connector (Host Mode) */ + while (!dwc_otg_is_host_mode(_core_if)) { + DWC_PRINT("Waiting for Host Mode, Mode=%s\n", + (dwc_otg_is_host_mode(_core_if) ? "Host" : + "Peripheral")); + MDELAY(100); + if (++count > 10000) + *(uint32_t *) NULL = 0; + } + _core_if->op_state = A_HOST; + + /* + * Initialize the Core for Host mode. + */ + dwc_otg_core_init(_core_if); + dwc_otg_enable_global_interrupts(_core_if); + hcd_start(_core_if); + } + + /* Set flag and clear interrupt */ + gintsts.b.conidstschng = 1; + dwc_write_reg32(&_core_if->core_global_regs->gintsts, gintsts.d32); + return 1; +} + +/** + * This interrupt indicates that a device is initiating the Session + * Request Protocol to request the host to turn on bus power so a new + * session can begin. The handler responds by turning on bus power. If + * the DWC_otg controller is in low power mode, the handler brings the + * controller out of low power mode before turning on bus power. + * + * @param _core_if Programming view of DWC_otg controller. + */ +int32_t dwc_otg_handle_session_req_intr(dwc_otg_core_if_t * _core_if) +{ + gintsts_data_t gintsts; + +#ifndef CONFIG_DWC_HOST_ONLY + hprt0_data_t hprt0; + DWC_DEBUGPL(DBG_ANY, "++Session Request Interrupt++\n"); + if (dwc_otg_is_device_mode(_core_if)) { + DWC_PRINT("SRP: Device mode\n"); + } else { + DWC_PRINT("SRP: Host mode\n"); + + /* Turn on the port power bit. */ + hprt0.d32 = dwc_otg_read_hprt0(_core_if); + hprt0.b.prtpwr = 1; + dwc_write_reg32(_core_if->host_if->hprt0, hprt0.d32); + + /* Start the Connection timer. So a message can be displayed + * if connect does not occur within 10 seconds. */ + hcd_session_start(_core_if); + } + +#endif /* */ + + /* Clear interrupt */ + gintsts.d32 = 0; + gintsts.b.sessreqintr = 1; + dwc_write_reg32(&_core_if->core_global_regs->gintsts, gintsts.d32); + return 1; +} + +/** + * This interrupt indicates that the DWC_otg controller has detected a + * resume or remote wakeup sequence. If the DWC_otg controller is in + * low power mode, the handler must brings the controller out of low + * power mode. The controller automatically begins resume + * signaling. The handler schedules a time to stop resume signaling. + */ +int32_t dwc_otg_handle_wakeup_detected_intr(dwc_otg_core_if_t * _core_if) +{ + gintsts_data_t gintsts; + DWC_DEBUGPL(DBG_ANY,"++Resume and Remote Wakeup Detected Interrupt++\n"); + if (dwc_otg_is_device_mode(_core_if)) { + dctl_data_t dctl = {.d32 = 0}; + DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", + dwc_read_reg32(&_core_if->dev_if->dev_global_regs->dsts)); + +#ifdef PARTIAL_POWER_DOWN + if (_core_if->hwcfg4.b.power_optimiz) { + pcgcctl_data_t power = {.d32 = 0}; + power.d32 = dwc_read_reg32(_core_if->pcgcctl); + DWC_DEBUGPL(DBG_CIL, "PCGCCTL=%0x\n", power.d32); + power.b.stoppclk = 0; + dwc_write_reg32(_core_if->pcgcctl, power.d32); + power.b.pwrclmp = 0; + dwc_write_reg32(_core_if->pcgcctl, power.d32); + power.b.rstpdwnmodule = 0; + dwc_write_reg32(_core_if->pcgcctl, power.d32); + } + +#endif /* */ + /* Clear the Remote Wakeup Signalling */ + dctl.b.rmtwkupsig = 1; + dwc_modify_reg32(&_core_if->dev_if->dev_global_regs->dctl, + dctl.d32, 0); + if (_core_if->pcd_cb && _core_if->pcd_cb->resume_wakeup) { + _core_if->pcd_cb->resume_wakeup(_core_if->pcd_cb->p); + } + } else { + + /* + * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms + * so that OPT tests pass with all PHYs). + */ + hprt0_data_t hprt0 = {.d32 = 0}; + pcgcctl_data_t pcgcctl = {.d32 = 0}; + + /* Restart the Phy Clock */ + pcgcctl.b.stoppclk = 1; + dwc_modify_reg32(_core_if->pcgcctl, pcgcctl.d32, 0); + UDELAY(10); + + /* Now wait for 70 ms. */ + hprt0.d32 = dwc_otg_read_hprt0(_core_if); + DWC_DEBUGPL(DBG_ANY, "Resume: HPRT0=%0x\n", hprt0.d32); + MDELAY(70); + hprt0.b.prtres = 0; /* Resume */ + dwc_write_reg32(_core_if->host_if->hprt0, hprt0.d32); + DWC_DEBUGPL(DBG_ANY, "Clear Resume: HPRT0=%0x\n", + dwc_read_reg32(_core_if->host_if->hprt0)); + } + + /* Clear interrupt */ + gintsts.d32 = 0; + gintsts.b.wkupintr = 1; + dwc_write_reg32(&_core_if->core_global_regs->gintsts, gintsts.d32); + return 1; +} + +/** + * This interrupt indicates that a device has been disconnected from + * the root port. + */ +int32_t dwc_otg_handle_disconnect_intr(dwc_otg_core_if_t * _core_if) +{ + gintsts_data_t gintsts; + printk(KERN_ERR " Disconnect Detected Interrupt++ (%s) %s\n", + (dwc_otg_is_host_mode(_core_if) ? "Host" : "Device"), + op_state_str(_core_if)); + DWC_DEBUGPL(DBG_ANY, "++Disconnect Detected Interrupt++ (%s) %s\n", + (dwc_otg_is_host_mode(_core_if) ? "Host" : "Device"), + op_state_str(_core_if)); + +/** @todo Consolidate this if statement. */ +#ifndef CONFIG_DWC_HOST_ONLY + if (_core_if->op_state == B_HOST) { + + /* If in device mode Disconnect and stop the HCD, then + * start the PCD. */ + hcd_disconnect(_core_if); + pcd_start(_core_if); + _core_if->op_state = B_PERIPHERAL; + } else if (dwc_otg_is_device_mode(_core_if)) { + gotgctl_data_t gotgctl = {.d32 = 0}; + gotgctl.d32 = dwc_read_reg32(&_core_if->core_global_regs->gotgctl); + if (gotgctl.b.hstsethnpen == 1) { + /* Do nothing, if HNP in process the OTG + * interrupt "Host Negotiation Detected" + * interrupt will do the mode switch. + */ + } else if (gotgctl.b.devhnpen == 0) { + /* If in device mode Disconnect and stop the HCD, then + * start the PCD. */ + hcd_disconnect(_core_if); + pcd_start(_core_if); + _core_if->op_state = B_PERIPHERAL; + } else { + DWC_DEBUGPL(DBG_ANY, "!a_peripheral && !devhnpen\n"); + } + } else { + if (_core_if->op_state == A_HOST) { + /* A-Cable still connected but device disconnected. */ + hcd_disconnect(_core_if); + } + } + +#endif /* */ + gintsts.d32 = 0; + gintsts.b.disconnect = 1; + dwc_write_reg32(&_core_if->core_global_regs->gintsts, gintsts.d32); + return 1; +} + +/** + * This interrupt indicates that SUSPEND state has been detected on + * the USB. + * + * For HNP the USB Suspend interrupt signals the change from + * "a_peripheral" to "a_host". + * + * When power management is enabled the core will be put in low power + * mode. + */ +int32_t dwc_otg_handle_usb_suspend_intr(dwc_otg_core_if_t * _core_if) +{ + dsts_data_t dsts; + gintsts_data_t gintsts; + DWC_DEBUGPL(DBG_ANY, "USB SUSPEND\n"); + if (dwc_otg_is_device_mode(_core_if)) { + + /* Check the Device status register to determine if the Suspend + * state is active. */ + dsts.d32 = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->dsts); + DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", dsts.d32); + DWC_DEBUGPL(DBG_PCD, "DSTS.Suspend Status=%d " + "HWCFG4.power Optimize=%d\n", dsts.b.suspsts, + _core_if->hwcfg4.b.power_optimiz); + +#ifdef PARTIAL_POWER_DOWN +/** @todo Add a module parameter for power management. */ + if (dsts.b.suspsts && _core_if->hwcfg4.b.power_optimiz) { + pcgcctl_data_t power = {.d32 = 0}; + DWC_DEBUGPL(DBG_CIL, "suspend\n"); + power.b.pwrclmp = 1; + dwc_write_reg32(_core_if->pcgcctl, power.d32); + power.b.rstpdwnmodule = 1; + dwc_modify_reg32(_core_if->pcgcctl, 0, power.d32); + power.b.stoppclk = 1; + dwc_modify_reg32(_core_if->pcgcctl, 0, power.d32); + } else { + DWC_DEBUGPL(DBG_ANY, "disconnect?\n"); + } + +#endif /* */ + /* PCD callback for suspend. */ + pcd_suspend(_core_if); + } else { + if (_core_if->op_state == A_PERIPHERAL) { + DWC_DEBUGPL(DBG_ANY, "a_peripheral->a_host\n"); + + /* Clear the a_peripheral flag, back to a_host. */ + pcd_stop(_core_if); + hcd_start(_core_if); + _core_if->op_state = A_HOST; + } + } + + /* Clear interrupt */ + gintsts.d32 = 0; + gintsts.b.usbsuspend = 1; + dwc_write_reg32(&_core_if->core_global_regs->gintsts, gintsts.d32); + return 1; +} + +/** + * This function returns the Core Interrupt register. + */ +static inline uint32_t dwc_otg_read_common_intr(dwc_otg_core_if_t * _core_if) +{ + gintsts_data_t gintsts; + gintmsk_data_t gintmsk; + gintmsk_data_t gintmsk_common = {.d32 = 0}; + gintmsk_common.b.wkupintr = 1; + gintmsk_common.b.sessreqintr = 1; + gintmsk_common.b.conidstschng = 1; + gintmsk_common.b.otgintr = 1; + gintmsk_common.b.modemismatch = 1; + gintmsk_common.b.disconnect = 1; + gintmsk_common.b.usbsuspend = 1; + + /** @todo: The port interrupt occurs while in device + * mode. Added code to CIL to clear the interrupt for now! + */ + gintmsk_common.b.portintr = 1; + gintsts.d32 = dwc_read_reg32(&_core_if->core_global_regs->gintsts); + gintmsk.d32 = dwc_read_reg32(&_core_if->core_global_regs->gintmsk); + +#ifdef CONFIG_DWC_DEBUG + /* if any common interrupts set */ + if (gintsts.d32 & gintmsk_common.d32) { + DWC_DEBUGPL(DBG_ANY, "gintsts=%08x gintmsk=%08x\n", + gintsts.d32, gintmsk.d32); + } + +#endif /* */ + return ((gintsts.d32 & gintmsk.d32) & gintmsk_common.d32); +} + +/** + * Common interrupt handler. + * + * The common interrupts are those that occur in both Host and Device mode. + * This handler handles the following interrupts: + * - Mode Mismatch Interrupt + * - Disconnect Interrupt + * - OTG Interrupt + * - Connector ID Status Change Interrupt + * - Session Request Interrupt. + * - Resume / Remote Wakeup Detected Interrupt. + * + */ +extern int32_t dwc_otg_handle_common_intr(dwc_otg_core_if_t * _core_if) +{ + int retval = 0; + gintsts_data_t gintsts; + gintsts.d32 = dwc_otg_read_common_intr(_core_if); + if (gintsts.b.modemismatch) { + retval |= dwc_otg_handle_mode_mismatch_intr(_core_if); + } + if (gintsts.b.otgintr) { + retval |= dwc_otg_handle_otg_intr(_core_if); + } + if (gintsts.b.conidstschng) { + retval |= dwc_otg_handle_conn_id_status_change_intr(_core_if); + } + if (gintsts.b.disconnect) { + retval |= dwc_otg_handle_disconnect_intr(_core_if); + } + if (gintsts.b.sessreqintr) { + retval |= dwc_otg_handle_session_req_intr(_core_if); + } + if (gintsts.b.wkupintr) { + retval |= dwc_otg_handle_wakeup_detected_intr(_core_if); + } + if (gintsts.b.usbsuspend) { + retval |= dwc_otg_handle_usb_suspend_intr(_core_if); + } + if (gintsts.b.portintr && dwc_otg_is_device_mode(_core_if)) { + /* The port interrupt occurs while in device mode with HPRT0 + * Port Enable/Disable. + */ + gintsts.d32 = 0; + gintsts.b.portintr = 1; + dwc_write_reg32(&_core_if->core_global_regs->gintsts, + gintsts.d32); + retval |= 1; + } + return retval; +} + diff --git a/drivers/usb/gadget/dwc_otg/dwc_otg_driver.c b/drivers/usb/gadget/dwc_otg/dwc_otg_driver.c new file mode 100644 index 00000000000..9896c76ed34 --- /dev/null +++ b/drivers/usb/gadget/dwc_otg/dwc_otg_driver.c @@ -0,0 +1,1345 @@ +/* ========================================================================== + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_driver.c $ + * $Revision: #12 $ + * $Date: 2007/02/07 $ + * $Change: 791271 $ + * + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ + + +/** @file + * The dwc_otg_driver module provides the initialization and cleanup entry + * points for the DWC_otg driver. This module will be dynamically installed + * after Linux is booted using the insmod command. When the module is + * installed, the dwc_otg_driver_init function is called. When the module is + * removed (using rmmod), the dwc_otg_driver_cleanup function is called. + * + * This module also defines a data structure for the dwc_otg_driver, which is + * used in conjunction with the standard device structure. These + * structures allow the OTG driver to comply with the standard Linux driver + * model in which devices and drivers are registered with a bus driver. This + * has the benefit that Linux can expose attributes of the driver and device + * in its special sysfs file system. Users can then read or write files in + * this file system to perform diagnostics on the driver components or the + * device. + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/init.h> +#include <linux/device.h> +#include <linux/errno.h> +#include <linux/types.h> +#include <linux/stat.h> /* permission constants */ +#include <linux/platform_device.h> +#include <linux/irq.h> +#include <asm/io.h> + +#include "linux/dwc_otg_plat.h" +#include "dwc_otg_attr.h" +#include "dwc_otg_driver.h" +#include "dwc_otg_cil.h" +#include "dwc_otg_pcd.h" +#include "dwc_otg_hcd.h" + +#define DWC_DRIVER_VERSION "2.60a 22-NOV-2006" +#define DWC_DRIVER_DESC "HS OTG USB Controller driver" +static const char dwc_driver_name[] = "dwc_otg"; + +/*-------------------------------------------------------------------------*/ +/* Encapsulate the module parameter settings */ +static dwc_otg_core_params_t dwc_otg_module_params = { + .opt = -1, + .otg_cap = -1, + .dma_enable = -1, + .dma_burst_size = -1, +#if 1 + .speed = -1, +#else + .speed = 1, /* test-only: set full-speed for Beagle USB Analyzer */ +#endif + .host_support_fs_ls_low_power = -1, + .host_ls_low_power_phy_clk = -1, + .enable_dynamic_fifo = -1, + .data_fifo_size = -1, + .dev_rx_fifo_size = -1, + .dev_nperio_tx_fifo_size = -1, + .dev_perio_tx_fifo_size = { /* dev_perio_tx_fifo_size_1 */ + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + -1, -1 + }, /* 15 */ + .host_rx_fifo_size = -1, + .host_nperio_tx_fifo_size =-1, + .host_perio_tx_fifo_size = -1, + .max_transfer_size = -1, + .max_packet_count = -1, + .host_channels = -1, + .dev_endpoints = -1, + .phy_type = -1, + .phy_utmi_width = -1, + .phy_ulpi_ddr = -1, + .phy_ulpi_ext_vbus = -1, + .i2c_enable = -1, + .ulpi_fs_ls = -1, + .ts_dline = -1, + .en_multiple_tx_fifo = -1, + .dev_tx_fifo_size = { /* dev_tx_fifo_size */ + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 + }, /* 15 */ + .thr_ctl = -1, + .tx_thr_length = -1, + .rx_thr_length = -1, +}; + + +/** + * This function shows the Driver Version. + */ +static ssize_t version_show(struct device_driver *dev, char *buf) +{ + return snprintf(buf, sizeof(DWC_DRIVER_VERSION) + 2, "%s\n", + DWC_DRIVER_VERSION); +} +static DRIVER_ATTR(version, S_IRUGO, version_show, NULL); + +/** + * Global Debug Level Mask. + */ + uint32_t g_dbg_lvl = 0x0; /* OFF */ + +/** + * This function shows the driver Debug Level. + */ +static ssize_t dbg_level_show(struct device_driver *_drv, char *_buf) +{ + return sprintf(_buf, "0x%0x\n", g_dbg_lvl); +} + + +/** + * This function stores the driver Debug Level. + */ +static ssize_t dbg_level_store(struct device_driver *_drv, const char *_buf, + size_t _count) +{ + g_dbg_lvl = simple_strtoul(_buf, NULL, 16); + return _count; +} +static DRIVER_ATTR(debuglevel, S_IRUGO | S_IWUSR, dbg_level_show, + dbg_level_store); + +/** + * This function is called during module intialization to verify that + * the module parameters are in a valid state. + */ +static int check_parameters(dwc_otg_core_if_t * core_if) +{ + int i; + int retval = 0; + +/* Checks if the parameter is outside of its valid range of values */ +#define DWC_OTG_PARAM_TEST(_param_,_low_,_high_) \ + ((dwc_otg_module_params._param_ < (_low_)) || \ + (dwc_otg_module_params._param_ > (_high_))) +/* If the parameter has been set by the user, check that the parameter value is + * within the value range of values. If not, report a module error. */ +#define DWC_OTG_PARAM_ERR(_param_,_low_,_high_,_string_) \ +do { \ + if (dwc_otg_module_params._param_ != -1) { \ + if (DWC_OTG_PARAM_TEST(_param_, (_low_), (_high_))) { \ + DWC_ERROR("`%d' invalid for parameter `%s'\n", \ + dwc_otg_module_params._param_, _string_); \ + dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \ + retval++; \ + } \ + } \ +} while (0) + + DWC_OTG_PARAM_ERR(opt, 0, 1, "opt"); + DWC_OTG_PARAM_ERR(otg_cap, 0, 2, "otg_cap"); + DWC_OTG_PARAM_ERR(dma_enable, 0, 1, "dma_enable"); + DWC_OTG_PARAM_ERR(speed, 0, 1, "speed"); + DWC_OTG_PARAM_ERR(host_support_fs_ls_low_power, 0, 1, + "host_support_fs_ls_low_power"); + DWC_OTG_PARAM_ERR(host_ls_low_power_phy_clk, 0, 1, + "host_ls_low_power_phy_clk"); + DWC_OTG_PARAM_ERR(enable_dynamic_fifo, 0, 1, "enable_dynamic_fifo"); + DWC_OTG_PARAM_ERR(data_fifo_size, 32, 32768, "data_fifo_size"); + DWC_OTG_PARAM_ERR(dev_rx_fifo_size, 16, 32768, "dev_rx_fifo_size"); + DWC_OTG_PARAM_ERR(dev_nperio_tx_fifo_size, 16, 32768, + "dev_nperio_tx_fifo_size"); + DWC_OTG_PARAM_ERR(host_rx_fifo_size, 16, 32768, "host_rx_fifo_size"); + DWC_OTG_PARAM_ERR(host_nperio_tx_fifo_size, 16, 32768, + "host_nperio_tx_fifo_size"); + DWC_OTG_PARAM_ERR(host_perio_tx_fifo_size, 16, 32768, + "host_perio_tx_fifo_size"); + DWC_OTG_PARAM_ERR(max_transfer_size, 2047, 524288, + "max_transfer_size"); + DWC_OTG_PARAM_ERR(max_packet_count, 15, 511, "max_packet_count"); + DWC_OTG_PARAM_ERR(host_channels, 1, 16, "host_channels"); + DWC_OTG_PARAM_ERR(dev_endpoints, 1, 15, "dev_endpoints"); + DWC_OTG_PARAM_ERR(phy_type, 0, 2, "phy_type"); + DWC_OTG_PARAM_ERR(phy_ulpi_ddr, 0, 1, "phy_ulpi_ddr"); + DWC_OTG_PARAM_ERR(phy_ulpi_ext_vbus, 0, 1, "phy_ulpi_ext_vbus"); + DWC_OTG_PARAM_ERR(i2c_enable, 0, 1, "i2c_enable"); + DWC_OTG_PARAM_ERR(ulpi_fs_ls, 0, 1, "ulpi_fs_ls"); + DWC_OTG_PARAM_ERR(ts_dline, 0, 1, "ts_dline"); + if (dwc_otg_module_params.dma_burst_size != -1) { + if (DWC_OTG_PARAM_TEST(dma_burst_size, 1, 1) + && DWC_OTG_PARAM_TEST(dma_burst_size, 4, 4) + && DWC_OTG_PARAM_TEST(dma_burst_size, 8, 8) + && DWC_OTG_PARAM_TEST(dma_burst_size, 16, 16) + && DWC_OTG_PARAM_TEST(dma_burst_size, 32, 32) + && DWC_OTG_PARAM_TEST(dma_burst_size, 64, 64) + && DWC_OTG_PARAM_TEST(dma_burst_size, 128, 128) + && DWC_OTG_PARAM_TEST(dma_burst_size, 256, 256)) { + DWC_ERROR + ("`%d' invalid for parameter `dma_burst_size'\n", + dwc_otg_module_params.dma_burst_size); + dwc_otg_module_params.dma_burst_size = 32; + retval++; + } + } + if (dwc_otg_module_params.phy_utmi_width != -1) { + if (DWC_OTG_PARAM_TEST(phy_utmi_width, 8, 8) + && DWC_OTG_PARAM_TEST(phy_utmi_width, 16, 16)) { + DWC_ERROR("`%d'invalid for parameter `phy_utmi_width'\n", + dwc_otg_module_params.phy_utmi_width); + dwc_otg_module_params.phy_utmi_width = 8; /*fscz 16*/ + retval++; + } + } + for (i = 0; i < 15; i++) { + /** @todo should be like above */ + //DWC_OTG_PARAM_ERR(dev_perio_tx_fifo_size[i],4,768,"dev_perio_tx_fifo_size"); + if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] != -1) { + if (DWC_OTG_PARAM_TEST + (dev_perio_tx_fifo_size[i], 4, 768)) { + DWC_ERROR("`%d' invalid for parameter `%s_%d'\n", + dwc_otg_module_params.dev_perio_tx_fifo_size[i], + "dev_perio_tx_fifo_size", i); + dwc_otg_module_params. + dev_perio_tx_fifo_size[i] = + dwc_param_dev_perio_tx_fifo_size_default; + retval++; + } + } + } + DWC_OTG_PARAM_ERR(en_multiple_tx_fifo, 0, 1, "en_multiple_tx_fifo"); + for (i = 0; i < 15; i++) { + /** @todo should be like above */ + //DWC_OTG_PARAM_ERR(dev_tx_fifo_size[i],4,768,"dev_tx_fifo_size"); + if (dwc_otg_module_params.dev_tx_fifo_size[i] != -1) { + if (DWC_OTG_PARAM_TEST(dev_tx_fifo_size[i], 4, 768)) { + DWC_ERROR("`%d' invalid for parameter `%s_%d'\n", + dwc_otg_module_params.dev_tx_fifo_size[i], + "dev_tx_fifo_size", i); + dwc_otg_module_params.dev_tx_fifo_size[i] = + dwc_param_dev_tx_fifo_size_default; + retval++; + } + } + } + DWC_OTG_PARAM_ERR(thr_ctl, 0, 7, "thr_ctl"); + DWC_OTG_PARAM_ERR(tx_thr_length, 8, 128, "tx_thr_length"); + DWC_OTG_PARAM_ERR(rx_thr_length, 8, 128, "rx_thr_length"); + + /* At this point, all module parameters that have been set by the user + * are valid, and those that have not are left unset. Now set their + * default values and/or check the parameters against the hardware + * configurations of the OTG core. */ + +/* This sets the parameter to the default value if it has not been set by the + * user */ +#define DWC_OTG_PARAM_SET_DEFAULT(_param_) \ +({ \ + int changed = 1; \ + if (dwc_otg_module_params._param_ == -1) { \ + changed = 0; \ + dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \ + } \ + changed; \ +}) + +/* This checks the macro agains the hardware configuration to see if it is + * valid. It is possible that the default value could be invalid. In this + * case, it will report a module error if the user touched the parameter. + * Otherwise it will adjust the value without any error. */ +#define DWC_OTG_PARAM_CHECK_VALID(_param_,_str_,_is_valid_,_set_valid_) \ +( { \ + int changed = DWC_OTG_PARAM_SET_DEFAULT(_param_); \ + int error = 0; \ + if (!(_is_valid_)) { \ + if (changed) { \ + DWC_ERROR("`%d' invalid for parameter `%s' Check HW configuration.\n", \ + dwc_otg_module_params._param_, _str_); \ + error = 1; \ + } \ + dwc_otg_module_params._param_ = (_set_valid_); \ + } \ + error; \ +} ) + + /* OTG Cap */ + retval += DWC_OTG_PARAM_CHECK_VALID(otg_cap, "otg_cap", + ( { + int valid; + valid = 1; + switch(dwc_otg_module_params.otg_cap) { + case DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE: + if (core_if->hwcfg2.b.op_mode != + DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) + valid = 0; + break; + case DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE: + if((core_if->hwcfg2.b.op_mode != + DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) && + (core_if->hwcfg2.b.op_mode != + DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) && + (core_if->hwcfg2.b.op_mode != + DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) && + (core_if->hwcfg2.b.op_mode != + DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) { + valid = 0; + } + break; + case DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE: + /* always valid */ + break; + } + valid; + } ), + (((core_if->hwcfg2.b.op_mode == + DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) || + (core_if->hwcfg2.b.op_mode == + DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) || + (core_if->hwcfg2.b.op_mode == + DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) || + (core_if->hwcfg2.b.op_mode == + DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) ? + DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE : + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE)) ; + retval += DWC_OTG_PARAM_CHECK_VALID(dma_enable, "dma_enable", + ((dwc_otg_module_params.dma_enable == 1) && + (core_if->hwcfg2.b.architecture == 0)) ? 0 : 1, 0); + retval += DWC_OTG_PARAM_CHECK_VALID(opt, "opt", 1, 0); + DWC_OTG_PARAM_SET_DEFAULT(dma_burst_size); + retval += DWC_OTG_PARAM_CHECK_VALID(host_support_fs_ls_low_power, + "host_support_fs_ls_low_power", 1, 0); + retval += DWC_OTG_PARAM_CHECK_VALID(enable_dynamic_fifo, + "enable_dynamic_fifo", + ((dwc_otg_module_params.enable_dynamic_fifo == 0) || + (core_if->hwcfg2.b.dynamic_fifo == 1)), 0); + retval += DWC_OTG_PARAM_CHECK_VALID(data_fifo_size, "data_fifo_size", + (dwc_otg_module_params.data_fifo_size <= + core_if->hwcfg3.b.dfifo_depth), + core_if->hwcfg3.b.dfifo_depth); + retval += DWC_OTG_PARAM_CHECK_VALID(dev_rx_fifo_size, "dev_rx_fifo_size", + (dwc_otg_module_params.dev_rx_fifo_size <= + dwc_read_reg32(&core_if->core_global_regs->grxfsiz)), + dwc_read_reg32(&core_if->core_global_regs->grxfsiz)); + retval += DWC_OTG_PARAM_CHECK_VALID(dev_nperio_tx_fifo_size, + "dev_nperio_tx_fifo_size", + (dwc_otg_module_params.dev_nperio_tx_fifo_size <= + (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)), + (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)); + retval += DWC_OTG_PARAM_CHECK_VALID(host_rx_fifo_size, "host_rx_fifo_size", + (dwc_otg_module_params.host_rx_fifo_size <= + dwc_read_reg32(&core_if->core_global_regs->grxfsiz)), + dwc_read_reg32(&core_if->core_global_regs->grxfsiz)); + retval += DWC_OTG_PARAM_CHECK_VALID(host_nperio_tx_fifo_size, + "host_nperio_tx_fifo_size", + (dwc_otg_module_params.host_nperio_tx_fifo_size <= + (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)), + (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)); + retval += DWC_OTG_PARAM_CHECK_VALID(host_perio_tx_fifo_size, + "host_perio_tx_fifo_size", + (dwc_otg_module_params.host_perio_tx_fifo_size <= + ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16))), + ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16))); + retval += DWC_OTG_PARAM_CHECK_VALID(max_transfer_size, "max_transfer_size", + (dwc_otg_module_params.max_transfer_size < + (1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11))), + ((1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11)) - 1)); + retval += DWC_OTG_PARAM_CHECK_VALID(max_packet_count, "max_packet_count", + (dwc_otg_module_params.max_packet_count < + (1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4))), + ((1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4)) - 1)); + retval += DWC_OTG_PARAM_CHECK_VALID(host_channels, "host_channels", + (dwc_otg_module_params.host_channels <= + (core_if->hwcfg2.b.num_host_chan + 1)), + (core_if->hwcfg2.b.num_host_chan + 1)); + retval += DWC_OTG_PARAM_CHECK_VALID(dev_endpoints, "dev_endpoints", + (dwc_otg_module_params.dev_endpoints <= + (core_if->hwcfg2.b.num_dev_ep)), + core_if->hwcfg2.b.num_dev_ep); + +/* + * Define the following to disable the FS PHY Hardware checking. This is for + * internal testing only. + * + * #define NO_FS_PHY_HW_CHECKS + */ + +#ifdef NO_FS_PHY_HW_CHECKS + retval += DWC_OTG_PARAM_CHECK_VALID(phy_type, "phy_type", 1, 0); +#else /* */ + retval += DWC_OTG_PARAM_CHECK_VALID(phy_type, "phy_type", ( { + int valid = 0; + if ((dwc_otg_module_params.phy_type == + DWC_PHY_TYPE_PARAM_UTMI) && + ((core_if->hwcfg2.b.hs_phy_type == 1) || + (core_if->hwcfg2.b.hs_phy_type == 3))) { + valid = 1; + } + else if ((dwc_otg_module_params.phy_type == + DWC_PHY_TYPE_PARAM_ULPI) && + ((core_if->hwcfg2.b.hs_phy_type == 2) || + (core_if->hwcfg2.b.hs_phy_type == 3))) { + valid = 1; + } + else if ((dwc_otg_module_params.phy_type == + DWC_PHY_TYPE_PARAM_FS) && + (core_if->hwcfg2.b.fs_phy_type == 1)) { + valid = 1; + } + valid; + } ), + ( { + int set = DWC_PHY_TYPE_PARAM_FS; + if (core_if->hwcfg2.b.hs_phy_type) { + if ((core_if->hwcfg2.b.hs_phy_type == 3) || + (core_if->hwcfg2.b.hs_phy_type ==1)) { + set = DWC_PHY_TYPE_PARAM_UTMI; + } + else { + set = DWC_PHY_TYPE_PARAM_ULPI; + } + } + set; + } ) ) ; + +#endif /* */ + retval += DWC_OTG_PARAM_CHECK_VALID(speed, "speed", + (dwc_otg_module_params.speed == 0) && + (dwc_otg_module_params.phy_type == + DWC_PHY_TYPE_PARAM_FS) ? 0 : 1, + dwc_otg_module_params.phy_type == + DWC_PHY_TYPE_PARAM_FS ? 1 : 0); + retval += DWC_OTG_PARAM_CHECK_VALID(host_ls_low_power_phy_clk, + "host_ls_low_power_phy_clk", + ((dwc_otg_module_params.host_ls_low_power_phy_clk == + DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ) && + (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1), + ((dwc_otg_module_params.phy_type == + DWC_PHY_TYPE_PARAM_FS) ? DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ : + DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ)); + DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ddr); + DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ext_vbus); + DWC_OTG_PARAM_SET_DEFAULT(phy_utmi_width); + DWC_OTG_PARAM_SET_DEFAULT(ulpi_fs_ls); + DWC_OTG_PARAM_SET_DEFAULT(ts_dline); + +#ifdef NO_FS_PHY_HW_CHECKS + retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable, "i2c_enable", 1, 0); + +#else /* */ + retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable, "i2c_enable", + (dwc_otg_module_params.i2c_enable == 1) && + (core_if->hwcfg3.b.i2c == 0) ? 0 : 1, 0); +#endif /* */ + for (i = 0; i < 16; i++) { + int changed = 1; + int error = 0; + if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] == -1) { + changed = 0; + dwc_otg_module_params.dev_perio_tx_fifo_size[i] = + dwc_param_dev_perio_tx_fifo_size_default; + } + if (!(dwc_otg_module_params.dev_perio_tx_fifo_size[i] <= + (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) { + if (changed) { + DWC_ERROR("`%d' invalid for parameter `dev_perio_fifo_size_%d'." + "Check HW configuration.\n", + dwc_otg_module_params.dev_perio_tx_fifo_size[i], i); + error = 1; + } + dwc_otg_module_params.dev_perio_tx_fifo_size[i] = + dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]); + } + retval += error; + } + + retval += DWC_OTG_PARAM_CHECK_VALID(en_multiple_tx_fifo, + "en_multiple_tx_fifo", + ((dwc_otg_module_params.en_multiple_tx_fifo == 1) && + (core_if->hwcfg4.b.ded_fifo_en == 0)) ? 0 : 1, 0); + + for (i = 0; i < 16; i++) { + int changed = 1; + int error = 0; + if (dwc_otg_module_params.dev_tx_fifo_size[i] == -1) { + changed = 0; + dwc_otg_module_params.dev_tx_fifo_size[i] = + dwc_param_dev_tx_fifo_size_default; + } + if (!(dwc_otg_module_params.dev_tx_fifo_size[i] <= + (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) { + if (changed) { + DWC_ERROR("%d' invalid for parameter `dev_perio_fifo_size_%d'." + "Check HW configuration.\n",dwc_otg_module_params.dev_tx_fifo_size[i],i); + error = 1; + } + dwc_otg_module_params.dev_tx_fifo_size[i] = + dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]); + } + retval += error; + } + DWC_OTG_PARAM_SET_DEFAULT(thr_ctl); + DWC_OTG_PARAM_SET_DEFAULT(tx_thr_length); + DWC_OTG_PARAM_SET_DEFAULT(rx_thr_length); + return retval; +} + +/** + * This function is the top level interrupt handler for the Common + * (Device and host modes) interrupts. + */ +static irqreturn_t dwc_otg_common_irq(int _irq, void *_dev) +{ + dwc_otg_device_t * otg_dev = _dev; + int32_t retval = IRQ_NONE; + retval = dwc_otg_handle_common_intr(otg_dev->core_if); + return IRQ_RETVAL(retval); +} + +#ifdef OTG_EXT_CHG_PUMP +/** + * This function is the interrupt handler for the OverCurrent condition + * from the external charge pump (if enabled) + */ +static irqreturn_t dwc_otg_externalchgpump_irq(int _irq, void *_dev) +{ + dwc_otg_device_t * otg_dev = _dev; + int32_t retval = IRQ_NONE; + dwc_otg_hcd_t *_dwc_otg_hcd = NULL; + + DWC_DEBUGPL(DBG_OFF," ++OTG OverCurrent Detected (ExtChgPump Interrupt)++ \n"); + +// mtdcr(0x0D2, mfdcr(0x0D2) & ~0x00000020); //Disable IRQ2 - 58 +// mtdcr(0x0C0, 0x00000002); + + if(dwc_otg_is_host_mode(otg_dev->core_if)) { + hprt0_data_t hprt0 = {.d32 = 0}; + _dwc_otg_hcd = otg_dev->hcd; + _dwc_otg_hcd->flags.b.port_over_current_change = 1; + + hprt0.b.prtpwr = 0; + dwc_write_reg32(_dwc_otg_hcd->core_if->host_if->hprt0, + hprt0.d32); + } else { + /* Device mode - This int is n/a for device mode */ + DWC_ERROR(" DeviceMode: OTG OverCurrent Detected \n"); + } + +// mtdcr(0x0D0, 0x00000020); //Clear the sts +// mtdcr(0x0D2, mfdcr(0x0D2) | 0x00000020); //Enable IRQ2 - 58 + + retval |= 1; //dwc_otg_handle_common_intr(otg_dev->core_if); + return IRQ_RETVAL(retval); +} +#endif + +/** + * This function is called when a device is unregistered with the + * dwc_otg_driver. This happens, for example, when the rmmod command is + * executed. The device may or may not be electrically present. If it is + * present, the driver stops device processing. Any resources used on behalf + * of this device are freed. + * + * @param[in] _dev + */ +static int dwc_otg_driver_remove(struct platform_device *pdev) +{ + dwc_otg_device_t * otg_dev = platform_get_drvdata(pdev); + DWC_DEBUGPL(DBG_ANY, "%s(%p)\n", __func__, _dev); + if (otg_dev == NULL) { + /* Memory allocation for the dwc_otg_device failed. */ + return 0; + } +/* + * Free the IRQ + */ + if (otg_dev->common_irq_installed) { + free_irq(otg_dev->irq, otg_dev); + } + +#ifndef CONFIG_DWC_DEVICE_ONLY + if (otg_dev->hcd != NULL) { + dwc_otg_hcd_remove(&pdev->dev); + } +#endif /* */ + +#ifndef CONFIG_DWC_HOST_ONLY + if (otg_dev->pcd != NULL) { + dwc_otg_pcd_remove(&pdev->dev); + } + +#endif /* */ + if (otg_dev->core_if != NULL) { + dwc_otg_cil_remove(otg_dev->core_if); + } + + /* + * Remove the device attributes + */ + dwc_otg_attr_remove(&pdev->dev); + + /* + * Return the memory. + */ + if (otg_dev->base != NULL) { + iounmap(otg_dev->base); + } + if (otg_dev->phys_addr != 0) { + release_mem_region(otg_dev->phys_addr, otg_dev->base_len); + } + kfree(otg_dev); + + /* + * Clear the drvdata pointer. + */ + platform_set_drvdata(pdev, 0); + return 0; +} + +#ifdef CONFIG_OTG_PLB_DMA_TASKLET +/** + * This function is the top level interrupt handler for the Common + * (Device and host modes) interrupts. + */ +static irqreturn_t dwc_otg_plbdma(int _irq, void *_dev) +{ + dwc_otg_device_t * otg_dev = _dev; + int32_t retval = IRQ_HANDLED; + + ppc4xx_clr_dma_status(0); + DWC_DEBUGPL(DBG_SP, "%s reset release_later\n", __func__); + atomic_set(& release_later, 0); + dwc_otg_enable_global_interrupts(otg_dev->core_if); + //enable_irq(94); + return IRQ_RETVAL(retval); +} +#endif + +/** + * This function is called when an device is bound to a + * dwc_otg_driver. It creates the driver components required to + * control the device (CIL, HCD, and PCD) and it initializes the + * device. The driver components are stored in a dwc_otg_device + * structure. A reference to the dwc_otg_device is saved in the + * device. This allows the driver to access the dwc_otg_device + * structure on subsequent calls to driver methods for this device. + * + * @param[in] _dev device definition + */ +static int dwc_otg_driver_probe(struct platform_device *pdev) +{ + int retval = 0; + dwc_otg_device_t * dwc_otg_device; + int32_t snpsid; + struct resource *res; + gusbcfg_data_t usbcfg = {.d32 = 0}; +#if defined(OTG_EXT_CHG_PUMP) || defined(CONFIG_OTG_PLB_DMA_TASKLET) + int irq; +#endif + + dev_dbg(&pdev->dev, "dwc_otg_driver_probe (%p)\n", pdev); + dwc_otg_device = kmalloc(sizeof(dwc_otg_device_t), GFP_KERNEL); + if (dwc_otg_device == 0) { + dev_err(&pdev->dev, "kmalloc of dwc_otg_device failed\n"); + retval = -ENOMEM; + goto fail; + } + memset(dwc_otg_device, 0, sizeof(*dwc_otg_device)); + dwc_otg_device->reg_offset = 0xFFFFFFFF; + + /* + * Retrieve the memory and IRQ resources. + */ + dwc_otg_device->irq = platform_get_irq(pdev, 0); + if (dwc_otg_device->irq == 0) { + dev_err(&pdev->dev, "no device irq\n"); + retval = -ENODEV; + goto fail; + } + dev_dbg(&pdev->dev, "OTG - device irq: %d\n", dwc_otg_device->irq); + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (res == NULL) { + dev_err(&pdev->dev, "no CSR address\n"); + retval = -ENODEV; + goto fail; + } + dev_dbg(&pdev->dev, "OTG - ioresource_mem start0x%08x: end:0x%08x\n", + (unsigned)res->start, (unsigned)res->end); + dwc_otg_device->phys_addr = res->start; + dwc_otg_device->base_len = res->end - res->start + 1; + if (request_mem_region(dwc_otg_device->phys_addr, dwc_otg_device->base_len, + dwc_driver_name) == NULL) { + dev_err(&pdev->dev, "request_mem_region failed\n"); + retval = -EBUSY; + goto fail; + } + + /* + * Map the DWC_otg Core memory into virtual address space. + */ + dwc_otg_device->base = + ioremap(dwc_otg_device->phys_addr, dwc_otg_device->base_len); + if (dwc_otg_device->base == NULL) { + dev_err(&pdev->dev, "ioremap64() failed\n"); + retval = -ENOMEM; + goto fail; + } + dev_dbg(&pdev->dev, "mapped base=0x%08x\n", (unsigned)dwc_otg_device->base); + + /* + * Attempt to ensure this device is really a DWC_otg Controller. + * Read and verify the SNPSID register contents. The value should be + * 0x45F42XXX, which corresponds to "OT2", as in "OTG version 2.XX". + */ + snpsid = dwc_read_reg32((uint32_t *) ((uint8_t *) dwc_otg_device->base + 0x40)); + /* + * Initialize driver data to point to the global DWC_otg + * Device structure. + */ + platform_set_drvdata(pdev, dwc_otg_device); + dev_dbg(&pdev->dev, "dwc_otg_device=0x%p\n", dwc_otg_device); + dwc_otg_device->core_if = dwc_otg_cil_init(dwc_otg_device->base, &dwc_otg_module_params); + if (dwc_otg_device->core_if == 0) { + dev_err(&pdev->dev, "CIL initialization failed!\n"); + retval = -ENOMEM; + goto fail; + } + /* + * Validate parameter values. + */ + if (check_parameters(dwc_otg_device->core_if) != 0) { + retval = -EINVAL; + goto fail; + } + + /* Added for PLB DMA phys virt mapping */ + dwc_otg_device->core_if->phys_addr = dwc_otg_device->phys_addr; + + /* + * Create Device Attributes in sysfs + */ + dwc_otg_attr_create(&pdev->dev); + /* + * Disable the global interrupt until all the interrupt + * handlers are installed. + */ + dwc_otg_disable_global_interrupts(dwc_otg_device->core_if); + + /* + * Install the interrupt handler for the common interrupts before + * enabling common interrupts in core_init below. + */ + DWC_DEBUGPL(DBG_CIL, "registering (common) handler for irq%d\n", + dwc_otg_device->irq); + retval = request_irq(dwc_otg_device->irq, dwc_otg_common_irq, IRQF_SHARED, + "dwc_otg", dwc_otg_device); + if (retval != 0) { + DWC_ERROR("request of irq%d failed retval: %d\n", dwc_otg_device->irq, retval); + retval = -EBUSY; + goto fail; + } else { + dwc_otg_device->common_irq_installed = 1; + } + +#ifdef CONFIG_MACH_IPMATE + set_irq_type(_lmdev->irq, IRQT_LOW); +#endif /* */ + /* + * Initialize the DWC_otg core. + */ + dwc_otg_core_init(dwc_otg_device->core_if); + +#ifdef OTG_EXT_CHG_PUMP + /* configure GPIO to use IRQ2, IRQ=58 (IRQ2) */ + irq = platform_get_irq(pdev, 1); + retval = request_irq(irq, dwc_otg_externalchgpump_irq, IRQF_SHARED, + "dwc_otg_ext_chg_pump", dwc_otg_device); + if (retval != 0) { + DWC_ERROR("request of irq:2(ExtInt) failed retval: %d\n", + retval); + retval = -EBUSY; + goto fail; + } else { + printk(KERN_INFO "%s: (ExtChgPump-OverCurrent Detection)" + " IRQ2 registered\n", dwc_driver_name); + } +#endif + +#ifndef CONFIG_DWC_HOST_ONLY + /* + * Initialize the PCD + */ + retval = dwc_otg_pcd_init(&pdev->dev); + + if (retval != 0) { + DWC_ERROR("dwc_otg_pcd_init failed\n"); + dwc_otg_device->pcd = NULL; + goto fail; + } + +#endif /* */ +#ifndef CONFIG_DWC_DEVICE_ONLY + /* + * Initialize the HCD + */ +#if 1 /*fscz*/ + /* force_host_mode */ + usbcfg.d32 = dwc_read_reg32(&dwc_otg_device->core_if->core_global_regs ->gusbcfg); + usbcfg.b.force_host_mode = 1; + dwc_write_reg32(&dwc_otg_device->core_if->core_global_regs ->gusbcfg, usbcfg.d32); +#endif + retval = dwc_otg_hcd_init(&pdev->dev, dwc_otg_device); + if (retval != 0) { + DWC_ERROR("dwc_otg_hcd_init failed\n"); + dwc_otg_device->hcd = NULL; + goto fail; + } + +#endif /* */ + /* + * Enable the global interrupt after all the interrupt + * handlers are installed. + */ + dwc_otg_enable_global_interrupts(dwc_otg_device->core_if); +#if 1 /*fscz*/ + usbcfg.d32 = dwc_read_reg32(&dwc_otg_device->core_if->core_global_regs ->gusbcfg); + usbcfg.b.force_host_mode = 0; + dwc_write_reg32(&dwc_otg_device->core_if->core_global_regs ->gusbcfg, usbcfg.d32); +#endif + +#ifdef CONFIG_OTG_PLB_DMA_TASKLET + atomic_set(&release_later, 0); + irq = platform_get_irq(pdev, 2); + retval = request_irq(irq, dwc_otg_plbdma, IRQF_SHARED, + "dwc_otg_plbdma", dwc_otg_device); + if (retval != 0) { + DWC_ERROR("Request of irq %d failed retval: %d\n", PLB_DMA_CH_INT, retval); + retval = -EBUSY; + goto fail; + } else { + DWC_DEBUGPL(DBG_CIL, "%s Irq %d registered\n", dwc_driver_name, PLB_DMA_CH_INT); + } +#endif + return 0; + +fail: + dwc_otg_driver_remove(pdev); + return retval; +} + + +/** + * This structure defines the methods to be called by a bus driver + * during the lifecycle of a device on that bus. Both drivers and + * devices are registered with a bus driver. The bus driver matches + * devices to drivers based on information in the device and driver + * structures. + * + * The probe function is called when the bus driver matches a device + * to this driver. The remove function is called when a device is + * unregistered with the bus driver. + */ +static struct platform_driver dwc_otg_driver = { + .probe = dwc_otg_driver_probe, + .remove = __devexit_p(dwc_otg_driver_remove), + .driver = { + .name = (char *)dwc_driver_name, + .bus = &platform_bus_type, + }, +}; + +/** + * This function is called when the dwc_otg_driver is installed with the + * insmod command. It registers the dwc_otg_driver structure with the + * appropriate bus driver. This will cause the dwc_otg_driver_probe function + * to be called. In addition, the bus driver will automatically expose + * attributes defined for the device and driver in the special sysfs file + * system. + * + * @return + */ +static int __init dwc_otg_driver_init(void) +{ + int retval = 0, ret = 0; + printk(KERN_INFO "%s: version %s\n", dwc_driver_name, + DWC_DRIVER_VERSION); + retval = platform_driver_register(&dwc_otg_driver); + if (retval < 0) { + printk(KERN_ERR "%s registration failed. retval=%d\n", + dwc_driver_name, retval); + return retval; + } + ret = driver_create_file(&dwc_otg_driver.driver, &driver_attr_version); + ret = driver_create_file(&dwc_otg_driver.driver, &driver_attr_debuglevel); + return retval; +} + +module_init(dwc_otg_driver_init); + +/** + * This function is called when the driver is removed from the kernel + * with the rmmod command. The driver unregisters itself with its bus + * driver. + * + */ +static void __exit dwc_otg_driver_cleanup(void) +{ + printk(KERN_DEBUG "dwc_otg_driver_cleanup()\n"); + driver_remove_file(&dwc_otg_driver.driver, &driver_attr_debuglevel); + driver_remove_file(&dwc_otg_driver.driver, &driver_attr_version); + platform_driver_unregister(&dwc_otg_driver); + printk(KERN_INFO "%s module removed\n", dwc_driver_name); +} module_exit(dwc_otg_driver_cleanup); + +MODULE_DESCRIPTION(DWC_DRIVER_DESC); +MODULE_AUTHOR("Synopsys Inc."); +MODULE_LICENSE("GPL"); + +module_param_named(otg_cap, dwc_otg_module_params.otg_cap, int, 0444); +MODULE_PARM_DESC(otg_cap, "OTG Capabilities 0=HNP&SRP 1=SRP Only 2=None"); +module_param_named(opt, dwc_otg_module_params.opt, int, 0444); +MODULE_PARM_DESC(opt, "OPT Mode"); +module_param_named(dma_enable, dwc_otg_module_params.dma_enable, int, 0444); +MODULE_PARM_DESC(dma_enable, "DMA Mode 0=Slave 1=DMA enabled"); +module_param_named(dma_burst_size, dwc_otg_module_params.dma_burst_size, int,0444); +MODULE_PARM_DESC(dma_burst_size,"DMA Burst Size 1, 4, 8, 16, 32, 64, 128, 256"); +module_param_named(speed, dwc_otg_module_params.speed, int, 0444); +MODULE_PARM_DESC(speed, "Speed 0=High Speed 1=Full Speed"); +module_param_named(host_support_fs_ls_low_power, + dwc_otg_module_params.host_support_fs_ls_low_power, int,0444); +MODULE_PARM_DESC(host_support_fs_ls_low_power, + "Support Low Power w/FS or LS 0=Support 1=Don't Support"); +module_param_named(host_ls_low_power_phy_clk, + dwc_otg_module_params.host_ls_low_power_phy_clk, int, 0444); +MODULE_PARM_DESC(host_ls_low_power_phy_clk, + "Low Speed Low Power Clock 0=48Mhz 1=6Mhz"); +module_param_named(enable_dynamic_fifo, + dwc_otg_module_params.enable_dynamic_fifo, int, 0444); +MODULE_PARM_DESC(enable_dynamic_fifo, "0=cC Setting 1=Allow Dynamic Sizing"); +module_param_named(data_fifo_size, + dwc_otg_module_params.data_fifo_size, int,0444); +MODULE_PARM_DESC(data_fifo_size, + "Total number of words in the data FIFO memory 32-32768"); +module_param_named(dev_rx_fifo_size, dwc_otg_module_params.dev_rx_fifo_size, + int, 0444); +MODULE_PARM_DESC(dev_rx_fifo_size, "Number of words in the Rx FIFO 16-32768"); +module_param_named(dev_nperio_tx_fifo_size, + dwc_otg_module_params.dev_nperio_tx_fifo_size, int, 0444); +MODULE_PARM_DESC(dev_nperio_tx_fifo_size, + "Number of words in the non-periodic Tx FIFO 16-32768"); +module_param_named(dev_perio_tx_fifo_size_1, + dwc_otg_module_params.dev_perio_tx_fifo_size[0], int, 0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_1, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_2, + dwc_otg_module_params.dev_perio_tx_fifo_size[1], int, 0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_2, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_3, + dwc_otg_module_params.dev_perio_tx_fifo_size[2], int, 0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_3, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_4, + dwc_otg_module_params.dev_perio_tx_fifo_size[3], int, 0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_4, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_5, + dwc_otg_module_params.dev_perio_tx_fifo_size[4], int, 0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_5, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_6, + dwc_otg_module_params.dev_perio_tx_fifo_size[5], int, 0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_6, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_7, + dwc_otg_module_params.dev_perio_tx_fifo_size[6], int, 0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_7, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_8, + dwc_otg_module_params.dev_perio_tx_fifo_size[7], int, 0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_8, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_9, + dwc_otg_module_params.dev_perio_tx_fifo_size[8], int, 0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_9, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_10, + dwc_otg_module_params.dev_perio_tx_fifo_size[9], int, 0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_10, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_11, + dwc_otg_module_params.dev_perio_tx_fifo_size[10], int,0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_11, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_12, + dwc_otg_module_params.dev_perio_tx_fifo_size[11], int,0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_12, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_13, + dwc_otg_module_params.dev_perio_tx_fifo_size[12], int,0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_13, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_14, + dwc_otg_module_params.dev_perio_tx_fifo_size[13], int,0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_14, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_15, + dwc_otg_module_params.dev_perio_tx_fifo_size[14], int,0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_15, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(host_rx_fifo_size, dwc_otg_module_params.host_rx_fifo_size, + int, 0444); +MODULE_PARM_DESC(host_rx_fifo_size, "Number of words in the Rx FIFO 16-32768"); +module_param_named(host_nperio_tx_fifo_size, + dwc_otg_module_params.host_nperio_tx_fifo_size, int, 0444); +MODULE_PARM_DESC(host_nperio_tx_fifo_size, + "Number of words in the non-periodic Tx FIFO 16-32768"); +module_param_named(host_perio_tx_fifo_size, + dwc_otg_module_params.host_perio_tx_fifo_size, int, 0444); +MODULE_PARM_DESC(host_perio_tx_fifo_size, + "Number of words in the host periodic Tx FIFO 16-32768"); +module_param_named(max_transfer_size, dwc_otg_module_params.max_transfer_size, + int, 0444); + +/** @todo Set the max to 512K, modify checks */ +MODULE_PARM_DESC(max_transfer_size, + "The maximum transfer size supported in bytes 2047-65535"); +module_param_named(max_packet_count, dwc_otg_module_params.max_packet_count, + int, 0444); +MODULE_PARM_DESC(max_packet_count, + "The maximum number of packets in a transfer 15-511"); +module_param_named(host_channels, dwc_otg_module_params.host_channels, int, 0444); +MODULE_PARM_DESC(host_channels, + "The number of host channel registers to use 1-16"); +module_param_named(dev_endpoints, dwc_otg_module_params.dev_endpoints, int, 0444); +MODULE_PARM_DESC(dev_endpoints, + "The number of endpoints in addition to EP0 available for device mode 1-15"); +module_param_named(phy_type, dwc_otg_module_params.phy_type, int, 0444); +MODULE_PARM_DESC(phy_type, "0=Reserved 1=UTMI+ 2=ULPI"); +module_param_named(phy_utmi_width, dwc_otg_module_params.phy_utmi_width, int, + 0444); +MODULE_PARM_DESC(phy_utmi_width, + "Specifies the UTMI+ Data Width 8 or 16 bits"); +module_param_named(phy_ulpi_ddr, dwc_otg_module_params.phy_ulpi_ddr, int, + 0444); +MODULE_PARM_DESC(phy_ulpi_ddr, +#if 1 /*fscz*/ + "0"); +#else + "ULPI at double or single data rate 0=Single 1=Double"); +#endif +module_param_named(phy_ulpi_ext_vbus, dwc_otg_module_params.phy_ulpi_ext_vbus, + int, 0444); +MODULE_PARM_DESC(phy_ulpi_ext_vbus, + "ULPI PHY using internal or external vbus 0=Internal"); +module_param_named(i2c_enable, dwc_otg_module_params.i2c_enable, int, 0444); +MODULE_PARM_DESC(i2c_enable, "FS PHY Interface"); +module_param_named(ulpi_fs_ls, dwc_otg_module_params.ulpi_fs_ls, int, 0444); +MODULE_PARM_DESC(ulpi_fs_ls, "ULPI PHY FS/LS mode only"); +module_param_named(ts_dline, dwc_otg_module_params.ts_dline, int, 0444); +MODULE_PARM_DESC(ts_dline, "Term select Dline pulsing for all PHYs"); +module_param_named(debug, g_dbg_lvl, int, 0444); +MODULE_PARM_DESC(debug, "0"); +module_param_named(en_multiple_tx_fifo, + dwc_otg_module_params.en_multiple_tx_fifo, int, 0444); +MODULE_PARM_DESC(en_multiple_tx_fifo, + "Dedicated Non Periodic Tx FIFOs 0=disabled 1=enabled"); +module_param_named(dev_tx_fifo_size_1, + dwc_otg_module_params.dev_tx_fifo_size[0], int, 0444); +MODULE_PARM_DESC(dev_tx_fifo_size_1, "Number of words in the Tx FIFO 4-768"); +module_param_named(dev_tx_fifo_size_2, + dwc_otg_module_params.dev_tx_fifo_size[1], int, 0444); +MODULE_PARM_DESC(dev_tx_fifo_size_2, "Number of words in the Tx FIFO 4-768"); +module_param_named(dev_tx_fifo_size_3, + dwc_otg_module_params.dev_tx_fifo_size[2], int, 0444); +MODULE_PARM_DESC(dev_tx_fifo_size_3, "Number of words in the Tx FIFO 4-768"); +module_param_named(dev_tx_fifo_size_4, + dwc_otg_module_params.dev_tx_fifo_size[3], int, 0444); +MODULE_PARM_DESC(dev_tx_fifo_size_4, "Number of words in the Tx FIFO 4-768"); +module_param_named(dev_tx_fifo_size_5, + dwc_otg_module_params.dev_tx_fifo_size[4], int, 0444); +MODULE_PARM_DESC(dev_tx_fifo_size_5, "Number of words in the Tx FIFO 4-768"); +module_param_named(dev_tx_fifo_size_6, + dwc_otg_module_params.dev_tx_fifo_size[5], int, 0444); +MODULE_PARM_DESC(dev_tx_fifo_size_6, "Number of words in the Tx FIFO 4-768"); +module_param_named(dev_tx_fifo_size_7, + dwc_otg_module_params.dev_tx_fifo_size[6], int, 0444); +MODULE_PARM_DESC(dev_tx_fifo_size_7, "Number of words in the Tx FIFO 4-768"); +module_param_named(dev_tx_fifo_size_8, + dwc_otg_module_params.dev_tx_fifo_size[7], int, 0444); +MODULE_PARM_DESC(dev_tx_fifo_size_8, "Number of words in the Tx FIFO 4-768"); +module_param_named(dev_tx_fifo_size_9, + dwc_otg_module_params.dev_tx_fifo_size[8], int, 0444); +MODULE_PARM_DESC(dev_tx_fifo_size_9, "Number of words in the Tx FIFO 4-768"); +module_param_named(dev_tx_fifo_size_10, + dwc_otg_module_params.dev_tx_fifo_size[9], int, 0444); +MODULE_PARM_DESC(dev_tx_fifo_size_10, "Number of words in the Tx FIFO 4-768"); +module_param_named(dev_tx_fifo_size_11, + dwc_otg_module_params.dev_tx_fifo_size[10], int, 0444); +MODULE_PARM_DESC(dev_tx_fifo_size_11, "Number of words in the Tx FIFO 4-768"); +module_param_named(dev_tx_fifo_size_12, + dwc_otg_module_params.dev_tx_fifo_size[11], int, 0444); +MODULE_PARM_DESC(dev_tx_fifo_size_12, "Number of words in the Tx FIFO 4-768"); +module_param_named(dev_tx_fifo_size_13, + dwc_otg_module_params.dev_tx_fifo_size[12], int, 0444); +MODULE_PARM_DESC(dev_tx_fifo_size_13, "Number of words in the Tx FIFO 4-768"); +module_param_named(dev_tx_fifo_size_14, + dwc_otg_module_params.dev_tx_fifo_size[13], int, 0444); +MODULE_PARM_DESC(dev_tx_fifo_size_14, "Number of words in the Tx FIFO 4-768"); +module_param_named(dev_tx_fifo_size_15, + dwc_otg_module_params.dev_tx_fifo_size[14], int, 0444); +MODULE_PARM_DESC(dev_tx_fifo_size_15, "Number of words in the Tx FIFO 4-768"); +module_param_named(thr_ctl, dwc_otg_module_params.thr_ctl, int, 0444); +MODULE_PARM_DESC(thr_ctl, "Thresholding enable flag bit" + "0 - non ISO Tx thr., 1 - ISO Tx thr., 2 - Rx thr.- bit 0=disabled 1=enabled"); +module_param_named(tx_thr_length, dwc_otg_module_params.tx_thr_length, int, 0444); +MODULE_PARM_DESC(tx_thr_length, "Tx Threshold length in 32 bit DWORDs"); +module_param_named(rx_thr_length, dwc_otg_module_params.rx_thr_length, int, 0444); +MODULE_PARM_DESC(rx_thr_length, "Rx Threshold length in 32 bit DWORDs"); + +/** @page "Module Parameters" + * + * The following parameters may be specified when starting the module. + * These parameters define how the DWC_otg controller should be + * configured. Parameter values are passed to the CIL initialization + * function dwc_otg_cil_init + * + * Example: <code>modprobe dwc_otg speed=1 otg_cap=1</code> + * + + <table> + <tr><td>Parameter Name</td><td>Meaning</td></tr> + + <tr> + <td>otg_cap</td> + <td>Specifies the OTG capabilities. The driver will automatically detect the + value for this parameter if none is specified. + - 0: HNP and SRP capable (default, if available) + - 1: SRP Only capable + - 2: No HNP/SRP capable + </td></tr> + + <tr> + <td>dma_enable</td> + <td>Specifies whether to use slave or DMA mode for accessing the data FIFOs. + The driver will automatically detect the value for this parameter if none is + specified. + - 0: Slave + - 1: DMA (default, if available) + </td></tr> + + <tr> + <td>dma_burst_size</td> + <td>The DMA Burst size (applicable only for External DMA Mode). + - Values: 1, 4, 8 16, 32, 64, 128, 256 (default 32) + </td></tr> + + <tr> + <td>speed</td> + <td>Specifies the maximum speed of operation in host and device mode. The + actual speed depends on the speed of the attached device and the value of + phy_type. + - 0: High Speed (default) + - 1: Full Speed + </td></tr> + + <tr> + <td>host_support_fs_ls_low_power</td> + <td>Specifies whether low power mode is supported when attached to a Full + Speed or Low Speed device in host mode. + - 0: Don't support low power mode (default) + - 1: Support low power mode + </td></tr> + + <tr> + <td>host_ls_low_power_phy_clk</td> + <td>Specifies the PHY clock rate in low power mode when connected to a Low + Speed device in host mode. This parameter is applicable only if + HOST_SUPPORT_FS_LS_LOW_POWER is enabled. + - 0: 48 MHz (default) + - 1: 6 MHz + </td></tr> + + <tr> + <td>enable_dynamic_fifo</td> + <td> Specifies whether FIFOs may be resized by the driver software. + - 0: Use cC FIFO size parameters + - 1: Allow dynamic FIFO sizing (default) + </td></tr> + + <tr> + <td>data_fifo_size</td> + <td>Total number of 4-byte words in the data FIFO memory. This memory + includes the Rx FIFO, non-periodic Tx FIFO, and periodic Tx FIFOs. + - Values: 32 to 32768 (default 8192) + + Note: The total FIFO memory depth in the FPGA configuration is 8192. + </td></tr> + + <tr> + <td>dev_rx_fifo_size</td> + <td>Number of 4-byte words in the Rx FIFO in device mode when dynamic + FIFO sizing is enabled. + - Values: 16 to 32768 (default 1064) + </td></tr> + + <tr> + <td>dev_nperio_tx_fifo_size</td> + <td>Number of 4-byte words in the non-periodic Tx FIFO in device mode when + dynamic FIFO sizing is enabled. + - Values: 16 to 32768 (default 1024) + </td></tr> + + <tr> + <td>dev_perio_tx_fifo_size_n (n = 1 to 15)</td> + <td>Number of 4-byte words in each of the periodic Tx FIFOs in device mode + when dynamic FIFO sizing is enabled. + - Values: 4 to 768 (default 256) + </td></tr> + + <tr> + <td>host_rx_fifo_size</td> + <td>Number of 4-byte words in the Rx FIFO in host mode when dynamic FIFO + sizing is enabled. + - Values: 16 to 32768 (default 1024) + </td></tr> + + <tr> + <td>host_nperio_tx_fifo_size</td> + <td>Number of 4-byte words in the non-periodic Tx FIFO in host mode when + dynamic FIFO sizing is enabled in the core. + - Values: 16 to 32768 (default 1024) + </td></tr> + + <tr> + <td>host_perio_tx_fifo_size</td> + <td>Number of 4-byte words in the host periodic Tx FIFO when dynamic FIFO + sizing is enabled. + - Values: 16 to 32768 (default 1024) + </td></tr> + + <tr> + <td>max_transfer_size</td> + <td>The maximum transfer size supported in bytes. + - Values: 2047 to 65,535 (default 65,535) + </td></tr> + + <tr> + <td>max_packet_count</td> + <td>The maximum number of packets in a transfer. + - Values: 15 to 511 (default 511) + </td></tr> + + <tr> + <td>host_channels</td> + <td>The number of host channel registers to use. + - Values: 1 to 16 (default 12) + + Note: The FPGA configuration supports a maximum of 12 host channels. + </td></tr> + + <tr> + <td>dev_endpoints</td> + <td>The number of endpoints in addition to EP0 available for device mode + operations. + - Values: 1 to 15 (default 6 IN and OUT) + + Note: The FPGA configuration supports a maximum of 6 IN and OUT endpoints in + addition to EP0. + </td></tr> + + <tr> + <td>phy_type</td> + <td>Specifies the type of PHY interface to use. By default, the driver will + automatically detect the phy_type. + - 0: Full Speed + - 1: UTMI+ (default, if available) + - 2: ULPI + </td></tr> + + <tr> + <td>phy_utmi_width</td> + <td>Specifies the UTMI+ Data Width. This parameter is applicable for a + phy_type of UTMI+. Also, this parameter is applicable only if the + OTG_HSPHY_WIDTH cC parameter was set to "8 and 16 bits", meaning that the + core has been configured to work at either data path width. + - Values: 8 or 16 bits (default 16) + </td></tr> + + <tr> + <td>phy_ulpi_ddr</td> + <td>Specifies whether the ULPI operates at double or single data rate. This + parameter is only applicable if phy_type is ULPI. + - 0: single data rate ULPI interface with 8 bit wide data bus (default) + - 1: double data rate ULPI interface with 4 bit wide data bus + </td></tr> + + <tr> + <td>i2c_enable</td> + <td>Specifies whether to use the I2C interface for full speed PHY. This + parameter is only applicable if PHY_TYPE is FS. + - 0: Disabled (default) + - 1: Enabled + </td></tr> + + <tr> + <td>otg_en_multiple_tx_fifo</td> + <td>Specifies whether dedicatedto tx fifos are enabled for non periodic IN EPs. + The driver will automatically detect the value for this parameter if none is + specified. + - 0: Disabled + - 1: Enabled (default, if available) + </td></tr> + + <tr> + <td>dev_tx_fifo_size_n (n = 1 to 15)</td> + <td>Number of 4-byte words in each of the Tx FIFOs in device mode + when dynamic FIFO sizing is enabled. + - Values: 4 to 768 (default 256) + </td></tr> + +*/ + diff --git a/drivers/usb/gadget/dwc_otg/dwc_otg_driver.h b/drivers/usb/gadget/dwc_otg/dwc_otg_driver.h new file mode 100644 index 00000000000..e4ccd24accb --- /dev/null +++ b/drivers/usb/gadget/dwc_otg/dwc_otg_driver.h @@ -0,0 +1,82 @@ +/* ========================================================================== + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_driver.h $ + * $Revision: #2 $ + * $Date: 2007/02/07 $ + * $Change: 791271 $ + * + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ + +#if !defined(__DWC_OTG_DRIVER_H__) +#define __DWC_OTG_DRIVER_H__ + +/** @file + * This file contains the interface to the Linux driver. + */ +#include "dwc_otg_cil.h" + +/* Type declarations */ +struct dwc_otg_pcd; +struct dwc_otg_hcd; + +/** + * This structure is a wrapper that encapsulates the driver components used to + * manage a single DWC_otg controller. + */ +typedef struct dwc_otg_device +{ + /** Base address returned from ioremap() */ + void *base; + + /** Pointer to the core interface structure. */ + dwc_otg_core_if_t *core_if; + + /** Register offset for Diagnostic API.*/ + uint32_t reg_offset; + + /** Pointer to the PCD structure. */ + struct dwc_otg_pcd *pcd; + + /** Pointer to the HCD structure. */ + struct dwc_otg_hcd *hcd; + + /** Flag to indicate whether the common IRQ handler is installed. */ + uint8_t common_irq_installed; + + /** Interrupt request number. */ + unsigned int irq; + + /** Physical address of Control and Status registers, used by + * release_mem_region(). + */ + resource_size_t phys_addr; + + /** Length of memory region, used by release_mem_region(). */ + unsigned long base_len; +} dwc_otg_device_t; + +#endif diff --git a/drivers/usb/gadget/dwc_otg/dwc_otg_hcd.c b/drivers/usb/gadget/dwc_otg/dwc_otg_hcd.c new file mode 100644 index 00000000000..a813327bf40 --- /dev/null +++ b/drivers/usb/gadget/dwc_otg/dwc_otg_hcd.c @@ -0,0 +1,2900 @@ +/* ========================================================================== + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd.c $ + * $Revision: #16 $ + * $Date: 2006/12/05 $ + * $Change: 762293 $ + * + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ + +#ifndef DWC_DEVICE_ONLY + +/** + * @file + * + * This file contains the implementation of the HCD. In Linux, the HCD + * implements the hc_driver API. + */ +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/init.h> +#include <linux/device.h> +#include <linux/errno.h> +#include <linux/list.h> +#include <linux/interrupt.h> +#include <linux/string.h> +#include <linux/dma-mapping.h> + +#include "dwc_otg_driver.h" +#include "dwc_otg_hcd.h" +#include "dwc_otg_regs.h" +extern atomic_t release_later; + +static u64 dma_mask = DMA_BIT_MASK(32); + +static const char dwc_otg_hcd_name[] = "dwc_otg_hcd"; + +static int dwc_otg_hcd_suspend(struct usb_hcd *hcd) +{ + /* FIXME: Write code to right suspend processing */ + return 0; +} + +static int dwc_otg_hcd_resume(struct usb_hcd *hcd) +{ + /* FIXME: Write code to right resume processing */ + return 0; +} + +static const struct hc_driver dwc_otg_hc_driver = +{ + .description = dwc_otg_hcd_name, + .product_desc = "DWC OTG Controller", + .hcd_priv_size = sizeof(dwc_otg_hcd_t), + .irq = dwc_otg_hcd_irq, + .flags = HCD_MEMORY | HCD_USB2, + //.reset = + .start = dwc_otg_hcd_start, +#ifdef CONFIG_PM + .bus_suspend = dwc_otg_hcd_suspend, + .bus_resume = dwc_otg_hcd_resume, +#endif + .stop = dwc_otg_hcd_stop, + .urb_enqueue = dwc_otg_hcd_urb_enqueue, + .urb_dequeue = dwc_otg_hcd_urb_dequeue, + .endpoint_disable = dwc_otg_hcd_endpoint_disable, + .get_frame_number = dwc_otg_hcd_get_frame_number, + .hub_status_data = dwc_otg_hcd_hub_status_data, + .hub_control = dwc_otg_hcd_hub_control, + //.hub_suspend = + //.hub_resume = +}; + + +/** + * Work queue function for starting the HCD when A-Cable is connected. + * The dwc_otg_hcd_start() must be called in a process context. + */ +static void hcd_start_func(struct work_struct *work) +{ + struct dwc_otg_hcd *priv = + container_of(work, struct dwc_otg_hcd, start_work); + struct usb_hcd *usb_hcd = (struct usb_hcd *)priv->_p; + DWC_DEBUGPL(DBG_HCDV, "%s() %p\n", __func__, usb_hcd); + if (usb_hcd) { + dwc_otg_hcd_start(usb_hcd); + } +} + + +/** + * HCD Callback function for starting the HCD when A-Cable is + * connected. + * + * @param _p void pointer to the <code>struct usb_hcd</code> + */ +static int32_t dwc_otg_hcd_start_cb(void *_p) +{ + dwc_otg_hcd_t * dwc_otg_hcd = hcd_to_dwc_otg_hcd(_p); + dwc_otg_core_if_t * core_if = dwc_otg_hcd->core_if; + hprt0_data_t hprt0; + if (core_if->op_state == B_HOST) { + /* + * Reset the port. During a HNP mode switch the reset + * needs to occur within 1ms and have a duration of at + * least 50ms. + */ + hprt0.d32 = dwc_otg_read_hprt0(core_if); + hprt0.b.prtrst = 1; + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); + ((struct usb_hcd *)_p)->self.is_b_host = 1; + } else { + ((struct usb_hcd *)_p)->self.is_b_host = 0; + } + /* Need to start the HCD in a non-interrupt context. */ + INIT_WORK(&dwc_otg_hcd->start_work, hcd_start_func); + dwc_otg_hcd->_p = _p; + schedule_work(&dwc_otg_hcd->start_work); + return 1; +} + + +/** + * HCD Callback function for stopping the HCD. + * + * @param _p void pointer to the <code>struct usb_hcd</code> + */ +static int32_t dwc_otg_hcd_stop_cb(void *_p) +{ + struct usb_hcd *usb_hcd = (struct usb_hcd *)_p; + DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p); + dwc_otg_hcd_stop(usb_hcd); + return 1; +} +static void del_xfer_timers(dwc_otg_hcd_t * _hcd) +{ + +#ifdef DEBUG + int i; + int num_channels = _hcd->core_if->core_params->host_channels; + for (i = 0; i < num_channels; i++) { + del_timer(&_hcd->core_if->hc_xfer_timer[i]); + } + +#endif /* */ +} +static void del_timers(dwc_otg_hcd_t * _hcd) +{ + del_xfer_timers(_hcd); + del_timer(&_hcd->conn_timer); +} + +/** + * Processes all the URBs in a single list of QHs. Completes them with + * -ETIMEDOUT and frees the QTD. + */ +static void kill_urbs_in_qh_list(dwc_otg_hcd_t * _hcd, + struct list_head *_qh_list) +{ + struct list_head *qh_item; + dwc_otg_qh_t * qh; + struct list_head *qtd_item; + dwc_otg_qtd_t * qtd; + list_for_each(qh_item, _qh_list) { + qh = list_entry(qh_item, dwc_otg_qh_t, qh_list_entry); + for (qtd_item = qh->qtd_list.next; qtd_item != &qh->qtd_list; + qtd_item = qh->qtd_list.next) { + qtd = list_entry(qtd_item, dwc_otg_qtd_t, qtd_list_entry); + if (qtd->urb != NULL) { + dwc_otg_hcd_complete_urb(_hcd, qtd->urb,-ETIMEDOUT); + } + dwc_otg_hcd_qtd_remove_and_free(qtd); + } + } +} + +/** + * Responds with an error status of ETIMEDOUT to all URBs in the non-periodic + * and periodic schedules. The QTD associated with each URB is removed from + * the schedule and freed. This function may be called when a disconnect is + * detected or when the HCD is being stopped. + */ +static void kill_all_urbs(dwc_otg_hcd_t * _hcd) +{ + kill_urbs_in_qh_list(_hcd, &_hcd->non_periodic_sched_deferred); + kill_urbs_in_qh_list(_hcd, &_hcd->non_periodic_sched_inactive); + kill_urbs_in_qh_list(_hcd, &_hcd->non_periodic_sched_active); + kill_urbs_in_qh_list(_hcd, &_hcd->periodic_sched_inactive); + kill_urbs_in_qh_list(_hcd, &_hcd->periodic_sched_ready); + kill_urbs_in_qh_list(_hcd, &_hcd->periodic_sched_assigned); + kill_urbs_in_qh_list(_hcd, &_hcd->periodic_sched_queued); +} + +/** + * HCD Callback function for disconnect of the HCD. + * + * @param _p void pointer to the <code>struct usb_hcd</code> + */ +static int32_t dwc_otg_hcd_disconnect_cb(void *_p) +{ + gintsts_data_t intr; + dwc_otg_hcd_t * dwc_otg_hcd = hcd_to_dwc_otg_hcd(_p); + + //DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p); + + /* + * Set status flags for the hub driver. + */ + dwc_otg_hcd->flags.b.port_connect_status_change = 1; + dwc_otg_hcd->flags.b.port_connect_status = 0; + + /* + * Shutdown any transfers in process by clearing the Tx FIFO Empty + * interrupt mask and status bits and disabling subsequent host + * channel interrupts. + */ + intr.d32 = 0; + intr.b.nptxfempty = 1; + intr.b.ptxfempty = 1; + intr.b.hcintr = 1; + dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, + intr.d32, 0); + dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintsts, + intr.d32, 0); + del_timers(dwc_otg_hcd); + + /* + * Turn off the vbus power only if the core has transitioned to device + * mode. If still in host mode, need to keep power on to detect a + * reconnection. + */ + if (dwc_otg_is_device_mode(dwc_otg_hcd->core_if)) { + if (dwc_otg_hcd->core_if->op_state != A_SUSPEND) { + hprt0_data_t hprt0 = {.d32 = 0}; + DWC_PRINT("Disconnect: PortPower off\n"); + hprt0.b.prtpwr = 0; + dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, + hprt0.d32); + } + dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if); + } + + /* Respond with an error status to all URBs in the schedule. */ + kill_all_urbs(dwc_otg_hcd); + if (dwc_otg_is_host_mode(dwc_otg_hcd->core_if)) { + /* Clean up any host channels that were in use. */ + int num_channels; + int i; + dwc_hc_t * channel; + dwc_otg_hc_regs_t * hc_regs; + hcchar_data_t hcchar; + num_channels = dwc_otg_hcd->core_if->core_params->host_channels; + if (!dwc_otg_hcd->core_if->dma_enable) { + /* Flush out any channel requests in slave mode. */ + for (i = 0; i < num_channels; i++) { + channel = dwc_otg_hcd->hc_ptr_array[i]; + if (list_empty(&channel->hc_list_entry)) { + hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i]; + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + if (hcchar.b.chen) { + hcchar.b.chen = 0; + hcchar.b.chdis = 1; + hcchar.b.epdir = 0; + dwc_write_reg32(&hc_regs->hcchar,hcchar.d32); + } + } + } + } + for (i = 0; i < num_channels; i++) { + channel = dwc_otg_hcd->hc_ptr_array[i]; + if (list_empty(&channel->hc_list_entry)) { + hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i]; + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + if (hcchar.b.chen) { + /* Halt the channel. */ + hcchar.b.chdis = 1; + dwc_write_reg32(&hc_regs->hcchar,hcchar.d32); + } + dwc_otg_hc_cleanup(dwc_otg_hcd->core_if,channel); + list_add_tail(&channel->hc_list_entry, + &dwc_otg_hcd->free_hc_list); + } + } + } + + /* A disconnect will end the session so the B-Device is no + * longer a B-host. */ + ((struct usb_hcd *)_p)->self.is_b_host = 0; + return 1; +} + +/** + * Connection timeout function. An OTG host is required to display a + * message if the device does not connect within 10 seconds. + */ +void dwc_otg_hcd_connect_timeout(unsigned long _ptr) +{ + DWC_DEBUGPL(DBG_HCDV, "%s(%x)\n", __func__, (int)_ptr); + DWC_PRINT("Connect Timeout\n"); + DWC_ERROR("Device Not Connected/Responding\n"); +} + +/** + * Start the connection timer. An OTG host is required to display a + * message if the device does not connect within 10 seconds. The + * timer is deleted if a port connect interrupt occurs before the + * timer expires. + */ +static void dwc_otg_hcd_start_connect_timer(dwc_otg_hcd_t * _hcd) +{ + init_timer(&_hcd->conn_timer); + _hcd->conn_timer.function = dwc_otg_hcd_connect_timeout; + _hcd->conn_timer.data = (unsigned long)0; + _hcd->conn_timer.expires = jiffies + (HZ * 10); + add_timer(&_hcd->conn_timer); +} + +/** + * HCD Callback function for disconnect of the HCD. + * + * @param _p void pointer to the <code>struct usb_hcd</code> + */ +static int32_t dwc_otg_hcd_session_start_cb(void *_p) +{ + dwc_otg_hcd_t * dwc_otg_hcd = hcd_to_dwc_otg_hcd(_p); + DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p); + dwc_otg_hcd_start_connect_timer(dwc_otg_hcd); + return 1; +} + + +/** + * HCD Callback structure for handling mode switching. + */ +static dwc_otg_cil_callbacks_t hcd_cil_callbacks = +{ + .start = dwc_otg_hcd_start_cb, + .stop = dwc_otg_hcd_stop_cb, + .disconnect = dwc_otg_hcd_disconnect_cb, + .session_start = dwc_otg_hcd_session_start_cb, + .p = 0, +}; + + +/** + * Reset tasklet function + */ +static void reset_tasklet_func(unsigned long data) +{ + dwc_otg_hcd_t * dwc_otg_hcd = (dwc_otg_hcd_t *) data; + dwc_otg_core_if_t * core_if = dwc_otg_hcd->core_if; + hprt0_data_t hprt0; + DWC_DEBUGPL(DBG_HCDV, "USB RESET tasklet called\n"); + hprt0.d32 = dwc_otg_read_hprt0(core_if); + hprt0.b.prtrst = 1; + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); + mdelay(60); + hprt0.b.prtrst = 0; + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); + dwc_otg_hcd->flags.b.port_reset_change = 1; + return; +} +static struct tasklet_struct reset_tasklet = +{ + .next = NULL, + .state = 0, + .count = ATOMIC_INIT(0), + .func = reset_tasklet_func, + .data = 0, +}; + + +#ifdef OTG_PLB_DMA_TASKLET +/** + * plbdma tasklet function + */ +static void plbdma_tasklet_func(unsigned long data) +{ + unsigned long flags; + dwc_otg_core_if_t * _core_if = (dwc_otg_core_if_t *) data; + dma_xfer_t * dma_xfer = &_core_if->dma_xfer; + + local_irq_save(flags); + DWC_DEBUGPL(DBG_SP, "Plbdma tasklet called\n"); + + if (_core_if->dma_xfer.dma_dir == OTG_TX_DMA) { + if ((((unsigned long)dma_xfer->dma_data_buff) & 0x3) == 0) { + /* call tx_dma - src,dest,len,intr */ + ppc4xx_start_plb_dma(_core_if, (void *)dma_xfer->dma_data_buff, + dma_xfer->dma_data_fifo, (dma_xfer->dma_count * 4), PLB_DMA_INT_ENA, + PLB_DMA_CH, OTG_TX_DMA); + } else { + ppc4xx_start_plb_dma(_core_if, (void *)get_unaligned(dma_xfer->dma_data_buff), + dma_xfer->dma_data_fifo, (dma_xfer->dma_count * 4), PLB_DMA_INT_ENA, + PLB_DMA_CH, OTG_TX_DMA); + } + } + else { + DWC_DEBUGPL(DBG_HCD, "0x%p 0x%p %d\n", (void *)dma_xfer->dma_data_fifo, + dma_xfer->dma_data_buff, dma_xfer->dma_count ); + + ppc4xx_start_plb_dma(_core_if, (void *)dma_xfer->dma_data_fifo, + dma_xfer->dma_data_buff, (dma_xfer->dma_count * 4), PLB_DMA_INT_ENA, + PLB_DMA_CH, OTG_RX_DMA); + } + + local_irq_restore(flags); + return; +} +static struct tasklet_struct plbdma_tasklet = +{ + .next = NULL, + .state = 0, + .count = ATOMIC_INIT(0), + .func = plbdma_tasklet_func, + .data = 0, +}; + +#endif + +/** + * Initializes the HCD. This function allocates memory for and initializes the + * static parts of the usb_hcd and dwc_otg_hcd structures. It also registers the + * USB bus with the core and calls the hc_driver->start() function. It returns + * a negative error on failure. + */ +int __init dwc_otg_hcd_init(struct device *_dev, dwc_otg_device_t * dwc_otg_device) +{ + struct usb_hcd *hcd = NULL; + dwc_otg_hcd_t * dwc_otg_hcd = NULL; + dwc_otg_device_t * otg_dev = dev_get_drvdata(_dev); + int num_channels; + int i; + dwc_hc_t * channel; + int retval = 0; + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD INIT\n"); + /* + * Allocate memory for the base HCD plus the DWC OTG HCD. + * Initialize the base HCD. + */ + hcd = usb_create_hcd(&dwc_otg_hc_driver, _dev, dev_name(_dev)); + if (hcd == NULL) { + retval = -ENOMEM; + goto error1; + } + dev_set_drvdata(_dev, dwc_otg_device); /* fscz restore */ + hcd->regs = otg_dev->base; + hcd->self.otg_port = 1; + + /* Initialize the DWC OTG HCD. */ + dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); + dwc_otg_hcd->core_if = otg_dev->core_if; + otg_dev->hcd = dwc_otg_hcd; + /* Register the HCD CIL Callbacks */ + dwc_otg_cil_register_hcd_callbacks(otg_dev->core_if, + &hcd_cil_callbacks, hcd); + + /* Initialize the non-periodic schedule. */ + INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_inactive); + INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_active); + INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_deferred); + + /* Initialize the periodic schedule. */ + INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_inactive); + INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_ready); + INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_assigned); + INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_queued); + + /* + * Create a host channel descriptor for each host channel implemented + * in the controller. Initialize the channel descriptor array. + */ + INIT_LIST_HEAD(&dwc_otg_hcd->free_hc_list); + num_channels = dwc_otg_hcd->core_if->core_params->host_channels; + for (i = 0; i < num_channels; i++) { + channel = kmalloc(sizeof(dwc_hc_t), GFP_KERNEL); + if (channel == NULL) { + retval = -ENOMEM; + DWC_ERROR("%s: host channel allocation failed\n",__func__); + goto error2; + } + memset(channel, 0, sizeof(dwc_hc_t)); + channel->hc_num = i; + dwc_otg_hcd->hc_ptr_array[i] = channel; + +#ifdef DEBUG + init_timer(&dwc_otg_hcd->core_if->hc_xfer_timer[i]); +#endif /* */ + DWC_DEBUGPL(DBG_HCDV, "HCD Added channel #%d, hc=%p\n", i,channel); + } + + /* Initialize the Connection timeout timer. */ + init_timer(&dwc_otg_hcd->conn_timer); + + /* Initialize reset tasklet. */ + reset_tasklet.data = (unsigned long)dwc_otg_hcd; + dwc_otg_hcd->reset_tasklet = &reset_tasklet; + +#ifdef OTG_PLB_DMA_TASKLET + /* Initialize plbdma tasklet. */ + plbdma_tasklet.data = (unsigned long)dwc_otg_hcd->core_if; + dwc_otg_hcd->core_if->plbdma_tasklet = &plbdma_tasklet; +#endif + + /* Set device flags indicating whether the HCD supports DMA. */ + if (otg_dev->core_if->dma_enable) { + DWC_PRINT("Using DMA mode\n"); + _dev->dma_mask = &dma_mask; + _dev->coherent_dma_mask = DMA_BIT_MASK(32); + } else { + DWC_PRINT("Using Slave mode\n"); + _dev->dma_mask = (void *)0; + _dev->coherent_dma_mask = 0; + } + /* + * Finish generic HCD initialization and start the HCD. This function + * allocates the DMA buffer pool, registers the USB bus, requests the + * IRQ line, and calls dwc_otg_hcd_start method. + */ + retval = usb_add_hcd(hcd, otg_dev->irq, IRQF_SHARED); + if (retval < 0) { + goto error2; + } + /* + * Allocate space for storing data on status transactions. Normally no + * data is sent, but this space acts as a bit bucket. This must be + * done after usb_add_hcd since that function allocates the DMA buffer + * pool. + */ + if (otg_dev->core_if->dma_enable) { + dwc_otg_hcd->status_buf = + dma_alloc_coherent(_dev, DWC_OTG_HCD_STATUS_BUF_SIZE, + &dwc_otg_hcd->status_buf_dma, GFP_KERNEL | GFP_DMA); + } else { + dwc_otg_hcd->status_buf = kmalloc(DWC_OTG_HCD_STATUS_BUF_SIZE, GFP_KERNEL); + } + if (dwc_otg_hcd->status_buf == NULL) { + retval = -ENOMEM; + DWC_ERROR("%s: status_buf allocation failed\n", __func__); + goto error3; + } + DWC_DEBUGPL(DBG_HCD, + "DWC OTG HCD Initialized HCD, bus=%s, usbbus=%d\n", + _dev->bus_id, hcd->self.busnum); + return 0; + + /* Error conditions */ + error3:usb_remove_hcd(hcd); + error2:dwc_otg_hcd_free(hcd); + usb_put_hcd(hcd); + error1:return retval; +} + + +/** + * Removes the HCD. + * Frees memory and resources associated with the HCD and deregisters the bus. + */ +void dwc_otg_hcd_remove(struct device *_dev) +{ + dwc_otg_device_t * otg_dev = dev_get_drvdata(_dev); + dwc_otg_hcd_t * dwc_otg_hcd = otg_dev->hcd; + struct usb_hcd *hcd = dwc_otg_hcd_to_hcd(dwc_otg_hcd); + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD REMOVE\n"); + + /* Turn off all interrupts */ + dwc_write_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, 0); + dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gahbcfg, 1,0); + usb_remove_hcd(hcd); + dwc_otg_hcd_free(hcd); + usb_put_hcd(hcd); + return; +} + + +/* ========================================================================= + * Linux HC Driver Functions + * ========================================================================= */ + +/** + * Initializes dynamic portions of the DWC_otg HCD state. + */ +static void hcd_reinit(dwc_otg_hcd_t * _hcd) +{ + struct list_head *item; + int num_channels; + int i; + dwc_hc_t * channel; + _hcd->flags.d32 = 0; + _hcd->non_periodic_qh_ptr = &_hcd->non_periodic_sched_active; + _hcd->non_periodic_channels = 0; + _hcd->periodic_channels = 0; + + /* + * Put all channels in the free channel list and clean up channel + * states. + */ + item = _hcd->free_hc_list.next; + while (item != &_hcd->free_hc_list) { + list_del(item); + item = _hcd->free_hc_list.next; + } + num_channels = _hcd->core_if->core_params->host_channels; + for (i = 0; i < num_channels; i++) { + channel = _hcd->hc_ptr_array[i]; + list_add_tail(&channel->hc_list_entry, &_hcd->free_hc_list); + dwc_otg_hc_cleanup(_hcd->core_if, channel); + } + + /* Initialize the DWC core for host mode operation. */ + dwc_otg_core_host_init(_hcd->core_if); +} + + +/** Initializes the DWC_otg controller and its root hub and prepares it for host + * mode operation. Activates the root port. Returns 0 on success and a negative + * error code on failure. */ +int dwc_otg_hcd_start(struct usb_hcd *_hcd) +{ + dwc_otg_hcd_t * dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd); + //dwc_otg_core_if_t * core_if = dwc_otg_hcd->core_if; + struct usb_device *udev; + struct usb_bus *bus; + +// int retval; + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD START\n"); + bus = hcd_to_bus(_hcd); + + /* Initialize the bus state. If the core is in Device Mode + * HALT the USB bus and return. */ + + _hcd->state = HC_STATE_RUNNING; + + /* Initialize and connect root hub if one is not already attached */ + if (bus->root_hub) { + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Has Root Hub\n"); + + /* Inform the HUB driver to resume. */ + usb_hcd_resume_root_hub(_hcd); + } + + else { + udev = usb_alloc_dev(NULL, bus, 0); + udev->speed = USB_SPEED_HIGH; + if (!udev) { + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Error udev alloc\n"); + return -ENODEV; + } + + /* Not needed - VJ + if ((retval = usb_hcd_register_root_hub(udev, _hcd)) != 0) { + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Error registering %d\n", retval); + return -ENODEV; + } + */ + } + hcd_reinit(dwc_otg_hcd); + return 0; +} +static void qh_list_free(dwc_otg_hcd_t * _hcd, struct list_head *_qh_list) +{ + struct list_head *item; + dwc_otg_qh_t * qh; + if (_qh_list->next == NULL) { + /* The list hasn't been initialized yet. */ + return; + } + + /* Ensure there are no QTDs or URBs left. */ + kill_urbs_in_qh_list(_hcd, _qh_list); + for (item = _qh_list->next; item != _qh_list; item = _qh_list->next) { + qh = list_entry(item, dwc_otg_qh_t, qh_list_entry); + dwc_otg_hcd_qh_remove_and_free(_hcd, qh); + } +} + + +/** + * Halts the DWC_otg host mode operations in a clean manner. USB transfers are + * stopped. + */ +void dwc_otg_hcd_stop(struct usb_hcd *_hcd) +{ + dwc_otg_hcd_t * dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd); + hprt0_data_t hprt0 = {.d32 = 0}; + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD STOP\n"); + + /* Turn off all host-specific interrupts. */ + dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if); + + /* + * The root hub should be disconnected before this function is called. + * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue) + * and the QH lists (via ..._hcd_endpoint_disable). + */ + + /* Turn off the vbus power */ + DWC_PRINT("PortPower off\n"); + hprt0.b.prtpwr = 0; + dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32); + return; +} + + +/** Returns the current frame number. */ +int dwc_otg_hcd_get_frame_number(struct usb_hcd *_hcd) +{ + dwc_otg_hcd_t * dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd); + hfnum_data_t hfnum; + hfnum.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if->host_if-> + host_global_regs->hfnum); + +#ifdef DEBUG_SOF + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD GET FRAME NUMBER %d\n", + hfnum.b.frnum); +#endif /* */ + return hfnum.b.frnum; +} + + +/** + * Frees secondary storage associated with the dwc_otg_hcd structure contained + * in the struct usb_hcd field. + */ +void dwc_otg_hcd_free(struct usb_hcd *_hcd) +{ + dwc_otg_hcd_t * dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd); + int i; + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD FREE\n"); + del_timers(dwc_otg_hcd); + + /* Free memory for QH/QTD lists */ + qh_list_free(dwc_otg_hcd, + &dwc_otg_hcd->non_periodic_sched_inactive); + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_deferred); + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_active); + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_inactive); + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_ready); + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_assigned); + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_queued); + + /* Free memory for the host channels. */ + for (i = 0; i < MAX_EPS_CHANNELS; i++) { + dwc_hc_t * hc = dwc_otg_hcd->hc_ptr_array[i]; + if (hc != NULL) { + DWC_DEBUGPL(DBG_HCDV, "HCD Free channel #%i, hc=%p\n",i, hc); + kfree(hc); + } + } + if (dwc_otg_hcd->core_if->dma_enable) { + if (dwc_otg_hcd->status_buf_dma) { + dma_free_coherent(_hcd->self.controller, + DWC_OTG_HCD_STATUS_BUF_SIZE, + dwc_otg_hcd->status_buf, + dwc_otg_hcd->status_buf_dma); + } + } else if (dwc_otg_hcd->status_buf != NULL) { + kfree(dwc_otg_hcd->status_buf); + } + return; +} + + +#ifdef DEBUG +static void dump_urb_info(struct urb *_urb, char *_fn_name) +{ + DWC_PRINT("%s, urb %p\n", _fn_name, _urb); + DWC_PRINT(" Device address: %d\n", usb_pipedevice(_urb->pipe)); + DWC_PRINT(" Endpoint: %d, %s\n", usb_pipeendpoint(_urb->pipe), + (usb_pipein(_urb->pipe) ? "IN" : "OUT")); + DWC_PRINT(" Endpoint type: %s\n", ( { + char *pipetype; + switch (usb_pipetype(_urb->pipe)) { + case PIPE_CONTROL: + pipetype = "CONTROL"; break; + case PIPE_BULK: + pipetype = "BULK"; break; + case PIPE_INTERRUPT: + pipetype = "INTERRUPT"; break; + case PIPE_ISOCHRONOUS: + pipetype = "ISOCHRONOUS"; break; + default: + pipetype = "UNKNOWN"; break; + }; + pipetype; + } )) ; + DWC_PRINT(" Speed: %s\n", ( { + char *speed; + switch (_urb->dev->speed) { + case USB_SPEED_HIGH: + speed = "HIGH"; break; + case USB_SPEED_FULL: + speed = "FULL"; break; + case USB_SPEED_LOW: + speed = "LOW"; break; + default: + speed = "UNKNOWN"; break; + }; + speed; + } )) ; + DWC_PRINT(" Max packet size: %d\n", + usb_maxpacket(_urb->dev, _urb->pipe, usb_pipeout(_urb->pipe))); + DWC_PRINT(" Data buffer length: %d\n", _urb->transfer_buffer_length); + DWC_PRINT(" Transfer buffer: %p, Transfer DMA: %p\n", + _urb->transfer_buffer, (void *)_urb->transfer_dma); + DWC_PRINT(" Setup buffer: %p, Setup DMA: %p\n", _urb->setup_packet, + (void *)_urb->setup_dma); + DWC_PRINT(" Interval: %d\n", _urb->interval); + if (usb_pipetype(_urb->pipe) == PIPE_ISOCHRONOUS) { + int i; + for (i = 0; i < _urb->number_of_packets; i++) { + DWC_PRINT(" ISO Desc %d:\n", i); + DWC_PRINT(" offset: %d, length %d\n", + _urb->iso_frame_desc[i].offset, + _urb->iso_frame_desc[i].length); + } + } +} +static void dump_channel_info(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * qh) +{ + if (qh->channel != NULL) { + dwc_hc_t * hc = qh->channel; + struct list_head *item; + dwc_otg_qh_t * qh_item; + int num_channels = _hcd->core_if->core_params->host_channels; + int i; + dwc_otg_hc_regs_t * hc_regs; + hcchar_data_t hcchar; + hcsplt_data_t hcsplt; + hctsiz_data_t hctsiz; + uint32_t hcdma; + hc_regs = _hcd->core_if->host_if->hc_regs[hc->hc_num]; + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt); + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); + hcdma = dwc_read_reg32(&hc_regs->hcdma); + DWC_PRINT(" Assigned to channel %p:\n", hc); + DWC_PRINT(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32); + DWC_PRINT(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma); + DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n", + hc->dev_addr, hc->ep_num, hc->ep_is_in); + DWC_PRINT(" ep_type: %d\n", hc->ep_type); + DWC_PRINT(" max_packet: %d\n", hc->max_packet); + DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start); + DWC_PRINT(" xfer_started: %d\n", hc->xfer_started); + DWC_PRINT(" halt_status: %d\n", hc->halt_status); + DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff); + DWC_PRINT(" xfer_len: %d\n", hc->xfer_len); + DWC_PRINT(" qh: %p\n", hc->qh); + DWC_PRINT(" NP inactive sched:\n"); + list_for_each(item, &_hcd->non_periodic_sched_inactive) { + qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry); + DWC_PRINT(" %p\n", qh_item); + } DWC_PRINT(" NP active sched:\n"); + list_for_each(item, &_hcd->non_periodic_sched_deferred) { + qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry); + DWC_PRINT(" %p\n", qh_item); + } DWC_PRINT(" NP deferred sched:\n"); + list_for_each(item, &_hcd->non_periodic_sched_active) { + qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry); + DWC_PRINT(" %p\n", qh_item); + } DWC_PRINT(" Channels: \n"); + for (i = 0; i < num_channels; i++) { + dwc_hc_t * hc = _hcd->hc_ptr_array[i]; + DWC_PRINT(" %2d: %p\n", i, hc); + } + } +} + +#endif /* */ + +/** Starts processing a USB transfer request specified by a USB Request Block + * (URB). mem_flags indicates the type of memory allocation to use while + * processing this URB. */ +int dwc_otg_hcd_urb_enqueue(struct usb_hcd *_hcd, + struct urb *_urb, + gfp_t _mem_flags) +{ + unsigned long flags; + int retval; + dwc_otg_hcd_t * dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd); + dwc_otg_qtd_t * qtd; + + local_irq_save(flags); + retval = usb_hcd_link_urb_to_ep(_hcd, _urb); + if (retval) { + local_irq_restore(flags); + return retval; + } +#ifdef DEBUG + if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) { + dump_urb_info(_urb, "dwc_otg_hcd_urb_enqueue"); + } +#endif /* */ + if (!dwc_otg_hcd->flags.b.port_connect_status) { + /* No longer connected. */ + local_irq_restore(flags); + return -ENODEV; + } + qtd = dwc_otg_hcd_qtd_create(_urb); + if (qtd == NULL) { + local_irq_restore(flags); + DWC_ERROR("DWC OTG HCD URB Enqueue failed creating QTD\n"); + return -ENOMEM; + } + retval = dwc_otg_hcd_qtd_add(qtd, dwc_otg_hcd); + if (retval < 0) { + DWC_ERROR("DWC OTG HCD URB Enqueue failed adding QTD. " + "Error status %d\n", retval); + dwc_otg_hcd_qtd_free(qtd); + } + local_irq_restore(flags); + return retval; +} + + +/** Aborts/cancels a USB transfer request. Always returns 0 to indicate + * success. */ +int dwc_otg_hcd_urb_dequeue(struct usb_hcd *_hcd, struct urb *_urb, int _status) +{ + unsigned long flags; + dwc_otg_hcd_t * dwc_otg_hcd; + dwc_otg_qtd_t * urb_qtd; + dwc_otg_qh_t * qh; + int retval; + + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Dequeue\n"); + local_irq_save(flags); + retval = usb_hcd_check_unlink_urb(_hcd, _urb, _status); + if (retval) { + local_irq_restore(flags); + return retval; + } + + dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd); + + urb_qtd = (dwc_otg_qtd_t *) _urb->hcpriv; + if (urb_qtd == NULL) { + printk("urb_qtd is NULL for _urb %08x\n",(unsigned)_urb); + goto done; + } + qh = (dwc_otg_qh_t *) urb_qtd->qtd_qh_ptr; + if (qh == NULL) { + goto done; + } +#ifdef DEBUG + if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) { + dump_urb_info(_urb, "dwc_otg_hcd_urb_dequeue"); + if (urb_qtd == qh->qtd_in_process) { + dump_channel_info(dwc_otg_hcd, qh); + } + } + +#endif /* */ + if (urb_qtd == qh->qtd_in_process) { + /* The QTD is in process (it has been assigned to a channel). */ + if (dwc_otg_hcd->flags.b.port_connect_status) { + + /* + * If still connected (i.e. in host mode), halt the + * channel so it can be used for other transfers. If + * no longer connected, the host registers can't be + * written to halt the channel since the core is in + * device mode. + */ + dwc_otg_hc_halt(dwc_otg_hcd->core_if, qh->channel, + DWC_OTG_HC_XFER_URB_DEQUEUE); + } + } + + /* + * Free the QTD and clean up the associated QH. Leave the QH in the + * schedule if it has any remaining QTDs. + */ + dwc_otg_hcd_qtd_remove_and_free(urb_qtd); + if (urb_qtd == qh->qtd_in_process) { + dwc_otg_hcd_qh_deactivate(dwc_otg_hcd, qh, 0); + qh->channel = NULL; + qh->qtd_in_process = NULL; + } else if (list_empty(&qh->qtd_list)) { + dwc_otg_hcd_qh_remove(dwc_otg_hcd, qh); + } +done: + local_irq_restore(flags); + _urb->hcpriv = NULL; + + /* Higher layer software sets URB status. */ +#if 1 /* Fixed bug relate kernel hung when unplug cable */ + usb_hcd_unlink_urb_from_ep(_hcd, _urb); + usb_hcd_giveback_urb(_hcd, _urb, _status); + if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) { + DWC_PRINT("Called usb_hcd_giveback_urb()\n"); + DWC_PRINT(" urb->status = %d\n", _status); + } +#else + if (_status != -ECONNRESET) { + usb_hcd_unlink_urb_from_ep(_hcd, _urb); + usb_hcd_giveback_urb(_hcd, _urb, _status); + if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) { + DWC_PRINT("Called usb_hcd_giveback_urb()\n"); + DWC_PRINT(" urb->status = %d\n", _status); + } + } +#endif + return 0; +} + + +/** Frees resources in the DWC_otg controller related to a given endpoint. Also + * clears state in the HCD related to the endpoint. Any URBs for the endpoint + * must already be dequeued. */ +void dwc_otg_hcd_endpoint_disable(struct usb_hcd *_hcd, + struct usb_host_endpoint *_ep) +{ + dwc_otg_qh_t * qh; + dwc_otg_hcd_t * dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd); + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD EP DISABLE: _bEndpointAddress=0x%02x, " + "endpoint=%d\n", _ep->desc.bEndpointAddress, + dwc_ep_addr_to_endpoint(_ep->desc.bEndpointAddress)); + qh = (dwc_otg_qh_t *) (_ep->hcpriv); + if (qh != NULL) { + +#ifdef DEBUG + /** Check that the QTD list is really empty */ + if (!list_empty(&qh->qtd_list)) { + DWC_WARN("DWC OTG HCD EP DISABLE:" + " QTD List for this endpoint is not empty\n"); + } + +#endif /* */ + dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd, qh); + _ep->hcpriv = NULL; + } + return; +} + +extern int fscz_debug; +/** Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if + * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid + * interrupt. + * + * This function is called by the USB core when an interrupt occurs */ +irqreturn_t dwc_otg_hcd_irq(struct usb_hcd * _hcd) +{ + dwc_otg_hcd_t * dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd); + return IRQ_RETVAL(dwc_otg_hcd_handle_intr(dwc_otg_hcd)); +} + +/** Creates Status Change bitmap for the root hub and root port. The bitmap is + * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1 + * is the status change indicator for the single root port. Returns 1 if either + * change indicator is 1, otherwise returns 0. */ +int dwc_otg_hcd_hub_status_data(struct usb_hcd *_hcd, char *_buf) +{ + dwc_otg_hcd_t * dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd); + _buf[0] = 0; + _buf[0] |= (dwc_otg_hcd->flags.b.port_connect_status_change + || dwc_otg_hcd->flags.b.port_reset_change + || dwc_otg_hcd->flags.b.port_enable_change + || dwc_otg_hcd->flags.b.port_suspend_change + || dwc_otg_hcd->flags.b.port_over_current_change) << 1; + +#ifdef DEBUG + if (_buf[0]) { + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB STATUS DATA:" + " Root port status changed\n"); + DWC_DEBUGPL(DBG_HCDV, " port_connect_status_change: %d\n", + dwc_otg_hcd->flags.b.port_connect_status_change); + DWC_DEBUGPL(DBG_HCDV, " port_reset_change: %d\n", + dwc_otg_hcd->flags.b.port_reset_change); + DWC_DEBUGPL(DBG_HCDV, " port_enable_change: %d\n", + dwc_otg_hcd->flags.b.port_enable_change); + DWC_DEBUGPL(DBG_HCDV, " port_suspend_change: %d\n", + dwc_otg_hcd->flags.b.port_suspend_change); + DWC_DEBUGPL(DBG_HCDV, " port_over_current_change: %d\n", + dwc_otg_hcd->flags.b.port_over_current_change); + } + +#endif /* */ + return (_buf[0] != 0); +} + + +#ifdef DWC_HS_ELECT_TST +/* + * Quick and dirty hack to implement the HS Electrical Test + * SINGLE_STEP_GET_DEVICE_DESCRIPTOR feature. + * + * This code was copied from our userspace app "hset". It sends a + * Get Device Descriptor control sequence in two parts, first the + * Setup packet by itself, followed some time later by the In and + * Ack packets. Rather than trying to figure out how to add this + * functionality to the normal driver code, we just hijack the + * hardware, using these two function to drive the hardware + * directly. + */ +dwc_otg_core_global_regs_t * global_regs; +dwc_otg_host_global_regs_t * hc_global_regs; +dwc_otg_hc_regs_t * hc_regs; +uint32_t * data_fifo; + +static void do_setup(void) +{ + gintsts_data_t gintsts; + hctsiz_data_t hctsiz; + hcchar_data_t hcchar; + haint_data_t haint; + hcint_data_t hcint; + + /* Enable HAINTs */ + dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001); + + /* Enable HCINTs */ + dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3); + + /* Read GINTSTS */ + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); + + /* Read HAINT */ + haint.d32 = dwc_read_reg32(&hc_global_regs->haint); + + //fprintf(stderr, "HAINT: %08x\n", haint.d32); + + /* Read HCINT */ + hcint.d32 = dwc_read_reg32(&hc_regs->hcint); + + //fprintf(stderr, "HCINT: %08x\n", hcint.d32); + + /* Read HCCHAR */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); + + /* Clear HCINT */ + dwc_write_reg32(&hc_regs->hcint, hcint.d32); + + /* Clear HAINT */ + dwc_write_reg32(&hc_global_regs->haint, haint.d32); + + /* Clear GINTSTS */ + dwc_write_reg32(&global_regs->gintsts, gintsts.d32); + + /* Read GINTSTS */ + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); + + /* + * Send Setup packet (Get Device Descriptor) + */ + + /* Make sure channel is disabled */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + if (hcchar.b.chen) { + + //fprintf(stderr, "Channel already enabled 1, HCCHAR = %08x\n", hcchar.d32); + hcchar.b.chdis = 1; + +// hcchar.b.chen = 1; + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); + + //sleep(1); + mdelay(1000); + + /* Read GINTSTS */ + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); + + /* Read HAINT */ + haint.d32 = dwc_read_reg32(&hc_global_regs->haint); + + //fprintf(stderr, "HAINT: %08x\n", haint.d32); + + /* Read HCINT */ + hcint.d32 = dwc_read_reg32(&hc_regs->hcint); + + //fprintf(stderr, "HCINT: %08x\n", hcint.d32); + + /* Read HCCHAR */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); + + /* Clear HCINT */ + dwc_write_reg32(&hc_regs->hcint, hcint.d32); + + /* Clear HAINT */ + dwc_write_reg32(&hc_global_regs->haint, haint.d32); + + /* Clear GINTSTS */ + dwc_write_reg32(&global_regs->gintsts, gintsts.d32); + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + + //if (hcchar.b.chen) { + // fprintf(stderr, "** Channel _still_ enabled 1, HCCHAR = %08x **\n", hcchar.d32); + //} + } + + /* Set HCTSIZ */ + hctsiz.d32 = 0; + hctsiz.b.xfersize = 8; + hctsiz.b.pktcnt = 1; + hctsiz.b.pid = DWC_OTG_HC_PID_SETUP; + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); + + /* Set HCCHAR */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL; + hcchar.b.epdir = 0; + hcchar.b.epnum = 0; + hcchar.b.mps = 8; + hcchar.b.chen = 1; + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); + + /* Fill FIFO with Setup data for Get Device Descriptor */ + data_fifo = (uint32_t *) ((char *)global_regs + 0x1000); + dwc_write_reg32(data_fifo++, 0x01000680); + dwc_write_reg32(data_fifo++, 0x00080000); + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + //fprintf(stderr, "Waiting for HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32); + + /* Wait for host channel interrupt */ + do { + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + } while (gintsts.b.hcintr == 0); + + //fprintf(stderr, "Got HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32); + + /* Disable HCINTs */ + dwc_write_reg32(&hc_regs->hcintmsk, 0x0000); + + /* Disable HAINTs */ + dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000); + + /* Read HAINT */ + haint.d32 = dwc_read_reg32(&hc_global_regs->haint); + + //fprintf(stderr, "HAINT: %08x\n", haint.d32); + + /* Read HCINT */ + hcint.d32 = dwc_read_reg32(&hc_regs->hcint); + + //fprintf(stderr, "HCINT: %08x\n", hcint.d32); + + /* Read HCCHAR */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); + + /* Clear HCINT */ + dwc_write_reg32(&hc_regs->hcint, hcint.d32); + + /* Clear HAINT */ + dwc_write_reg32(&hc_global_regs->haint, haint.d32); + + /* Clear GINTSTS */ + dwc_write_reg32(&global_regs->gintsts, gintsts.d32); + + /* Read GINTSTS */ + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); +} + +static void do_in_ack(void) +{ + gintsts_data_t gintsts; + hctsiz_data_t hctsiz; + hcchar_data_t hcchar; + haint_data_t haint; + hcint_data_t hcint; + host_grxsts_data_t grxsts; + + /* Enable HAINTs */ + dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001); + + /* Enable HCINTs */ + dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3); + + /* Read GINTSTS */ + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); + + /* Read HAINT */ + haint.d32 = dwc_read_reg32(&hc_global_regs->haint); + + //fprintf(stderr, "HAINT: %08x\n", haint.d32); + + /* Read HCINT */ + hcint.d32 = dwc_read_reg32(&hc_regs->hcint); + + //fprintf(stderr, "HCINT: %08x\n", hcint.d32); + + /* Read HCCHAR */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); + + /* Clear HCINT */ + dwc_write_reg32(&hc_regs->hcint, hcint.d32); + + /* Clear HAINT */ + dwc_write_reg32(&hc_global_regs->haint, haint.d32); + + /* Clear GINTSTS */ + dwc_write_reg32(&global_regs->gintsts, gintsts.d32); + + /* Read GINTSTS */ + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); + + /* + * Receive Control In packet + */ + + /* Make sure channel is disabled */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + + if (hcchar.b.chen) { + //fprintf(stderr, "Channel already enabled 2, HCCHAR = %08x\n", hcchar.d32); + hcchar.b.chdis = 1; + hcchar.b.chen = 1; + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); + + //sleep(1); + mdelay(1000); + + /* Read GINTSTS */ + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); + + /* Read HAINT */ + haint.d32 = dwc_read_reg32(&hc_global_regs->haint); + + //fprintf(stderr, "HAINT: %08x\n", haint.d32); + + /* Read HCINT */ + hcint.d32 = dwc_read_reg32(&hc_regs->hcint); + + //fprintf(stderr, "HCINT: %08x\n", hcint.d32); + + /* Read HCCHAR */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); + + /* Clear HCINT */ + dwc_write_reg32(&hc_regs->hcint, hcint.d32); + + /* Clear HAINT */ + dwc_write_reg32(&hc_global_regs->haint, haint.d32); + + /* Clear GINTSTS */ + dwc_write_reg32(&global_regs->gintsts, gintsts.d32); + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + + //if (hcchar.b.chen) { + // fprintf(stderr, "** Channel _still_ enabled 2, HCCHAR = %08x **\n", hcchar.d32); + //} + } + + /* Set HCTSIZ */ + hctsiz.d32 = 0; + hctsiz.b.xfersize = 8; + hctsiz.b.pktcnt = 1; + hctsiz.b.pid = DWC_OTG_HC_PID_DATA1; + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); + + /* Set HCCHAR */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL; + hcchar.b.epdir = 1; + hcchar.b.epnum = 0; + hcchar.b.mps = 8; + hcchar.b.chen = 1; + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + //fprintf(stderr, "Waiting for RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32); + + /* Wait for receive status queue interrupt */ + do { + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + } while (gintsts.b.rxstsqlvl == 0); + + //fprintf(stderr, "Got RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32); + + /* Read RXSTS */ + grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp); + + //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32); + + /* Clear RXSTSQLVL in GINTSTS */ + gintsts.d32 = 0; + gintsts.b.rxstsqlvl = 1; + dwc_write_reg32(&global_regs->gintsts, gintsts.d32); + switch (grxsts.b.pktsts) { + case DWC_GRXSTS_PKTSTS_IN: + /* Read the data into the host buffer */ + if (grxsts.b.bcnt > 0) { + int i; + int word_count = (grxsts.b.bcnt + 3) / 4; + data_fifo = (uint32_t *) ((char *)global_regs + 0x1000); + for (i = 0; i < word_count; i++) { + (void)dwc_read_reg32(data_fifo++); + } + } + //fprintf(stderr, "Received %u bytes\n", (unsigned)grxsts.b.bcnt); + break; + default: + //fprintf(stderr, "** Unexpected GRXSTS packet status 1 **\n"); + break; + } + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + //fprintf(stderr, "Waiting for RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32); + + /* Wait for receive status queue interrupt */ + do { + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + } while (gintsts.b.rxstsqlvl == 0); + + //fprintf(stderr, "Got RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32); + + /* Read RXSTS */ + grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp); + + //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32); + + /* Clear RXSTSQLVL in GINTSTS */ + gintsts.d32 = 0; + gintsts.b.rxstsqlvl = 1; + dwc_write_reg32(&global_regs->gintsts, gintsts.d32); + switch (grxsts.b.pktsts) { + case DWC_GRXSTS_PKTSTS_IN_XFER_COMP: + break; + default: + //fprintf(stderr, "** Unexpected GRXSTS packet status 2 **\n"); + break; + } + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + //fprintf(stderr, "Waiting for HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32); + + /* Wait for host channel interrupt */ + do { + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + } while (gintsts.b.hcintr == 0); + + //fprintf(stderr, "Got HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32); + + /* Read HAINT */ + haint.d32 = dwc_read_reg32(&hc_global_regs->haint); + + //fprintf(stderr, "HAINT: %08x\n", haint.d32); + + /* Read HCINT */ + hcint.d32 = dwc_read_reg32(&hc_regs->hcint); + + //fprintf(stderr, "HCINT: %08x\n", hcint.d32); + + /* Read HCCHAR */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); + + /* Clear HCINT */ + dwc_write_reg32(&hc_regs->hcint, hcint.d32); + + /* Clear HAINT */ + dwc_write_reg32(&hc_global_regs->haint, haint.d32); + + /* Clear GINTSTS */ + dwc_write_reg32(&global_regs->gintsts, gintsts.d32); + + /* Read GINTSTS */ + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); + + // usleep(100000); + // mdelay(100); + mdelay(1); + + /* + * Send handshake packet + */ + + /* Read HAINT */ + haint.d32 = dwc_read_reg32(&hc_global_regs->haint); + + //fprintf(stderr, "HAINT: %08x\n", haint.d32); + + /* Read HCINT */ + hcint.d32 = dwc_read_reg32(&hc_regs->hcint); + + //fprintf(stderr, "HCINT: %08x\n", hcint.d32); + + /* Read HCCHAR */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); + + /* Clear HCINT */ + dwc_write_reg32(&hc_regs->hcint, hcint.d32); + + /* Clear HAINT */ + dwc_write_reg32(&hc_global_regs->haint, haint.d32); + + /* Clear GINTSTS */ + dwc_write_reg32(&global_regs->gintsts, gintsts.d32); + + /* Read GINTSTS */ + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); + + /* Make sure channel is disabled */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + if (hcchar.b.chen) { + + //fprintf(stderr, "Channel already enabled 3, HCCHAR = %08x\n", hcchar.d32); + hcchar.b.chdis = 1; + hcchar.b.chen = 1; + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); + + //sleep(1); + mdelay(1000); + + /* Read GINTSTS */ + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); + + /* Read HAINT */ + haint.d32 = dwc_read_reg32(&hc_global_regs->haint); + + //fprintf(stderr, "HAINT: %08x\n", haint.d32); + + /* Read HCINT */ + hcint.d32 = dwc_read_reg32(&hc_regs->hcint); + + //fprintf(stderr, "HCINT: %08x\n", hcint.d32); + + /* Read HCCHAR */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); + + /* Clear HCINT */ + dwc_write_reg32(&hc_regs->hcint, hcint.d32); + + /* Clear HAINT */ + dwc_write_reg32(&hc_global_regs->haint, haint.d32); + + /* Clear GINTSTS */ + dwc_write_reg32(&global_regs->gintsts, gintsts.d32); + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + + //if (hcchar.b.chen) { + // fprintf(stderr, "** Channel _still_ enabled 3, HCCHAR = %08x **\n", hcchar.d32); + //} + } + + /* Set HCTSIZ */ + hctsiz.d32 = 0; + hctsiz.b.xfersize = 0; + hctsiz.b.pktcnt = 1; + hctsiz.b.pid = DWC_OTG_HC_PID_DATA1; + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); + + /* Set HCCHAR */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL; + hcchar.b.epdir = 0; + hcchar.b.epnum = 0; + hcchar.b.mps = 8; + hcchar.b.chen = 1; + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + //fprintf(stderr, "Waiting for HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32); + + /* Wait for host channel interrupt */ + do { + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + } while (gintsts.b.hcintr == 0); + + //fprintf(stderr, "Got HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32); + + /* Disable HCINTs */ + dwc_write_reg32(&hc_regs->hcintmsk, 0x0000); + + /* Disable HAINTs */ + dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000); + + /* Read HAINT */ + haint.d32 = dwc_read_reg32(&hc_global_regs->haint); + + //fprintf(stderr, "HAINT: %08x\n", haint.d32); + + /* Read HCINT */ + hcint.d32 = dwc_read_reg32(&hc_regs->hcint); + + //fprintf(stderr, "HCINT: %08x\n", hcint.d32); + + /* Read HCCHAR */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); + + /* Clear HCINT */ + dwc_write_reg32(&hc_regs->hcint, hcint.d32); + + /* Clear HAINT */ + dwc_write_reg32(&hc_global_regs->haint, haint.d32); + + /* Clear GINTSTS */ + dwc_write_reg32(&global_regs->gintsts, gintsts.d32); + + /* Read GINTSTS */ + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); +} + +#endif /* DWC_HS_ELECT_TST */ + +/** Handles hub class-specific requests.*/ +int dwc_otg_hcd_hub_control(struct usb_hcd *_hcd, u16 _typeReq, u16 _wValue, + u16 _wIndex, char *_buf, u16 _wLength) +{ + int retval = 0; + dwc_otg_hcd_t * dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd); + dwc_otg_core_if_t * core_if = hcd_to_dwc_otg_hcd(_hcd)->core_if; + struct usb_hub_descriptor *desc; + hprt0_data_t hprt0 = {.d32 = 0}; + uint32_t port_status; + switch (_typeReq) { + case ClearHubFeature: + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "ClearHubFeature 0x%x\n", _wValue); + switch (_wValue) { + case C_HUB_LOCAL_POWER: + case C_HUB_OVER_CURRENT: + /* Nothing required here */ + break; + default: + retval = -EINVAL; + DWC_ERROR("DWC OTG HCD - ClearHubFeature request %xh unknown\n", + _wValue); + } + break; + case ClearPortFeature: + if (!_wIndex || _wIndex > 1) + goto error; + switch (_wValue) { + case USB_PORT_FEAT_ENABLE: + DWC_DEBUGPL(DBG_ANY, "DWC OTG HCD HUB CONTROL - " + "ClearPortFeature USB_PORT_FEAT_ENABLE\n"); + hprt0.d32 = dwc_otg_read_hprt0(core_if); + hprt0.b.prtena = 1; + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); + break; + case USB_PORT_FEAT_SUSPEND: + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "ClearPortFeature USB_PORT_FEAT_SUSPEND\n"); + hprt0.d32 = dwc_otg_read_hprt0(core_if); + hprt0.b.prtres = 1; + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); + + /* Clear Resume bit */ + mdelay(100); + hprt0.b.prtres = 0; + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); + break; + case USB_PORT_FEAT_POWER: + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "ClearPortFeature USB_PORT_FEAT_POWER\n"); + hprt0.d32 = dwc_otg_read_hprt0(core_if); + hprt0.b.prtpwr = 0; + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); + break; + case USB_PORT_FEAT_INDICATOR: + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "ClearPortFeature USB_PORT_FEAT_INDICATOR\n"); + + /* Port inidicator not supported */ + break; + case USB_PORT_FEAT_C_CONNECTION: + /* Clears drivers internal connect status change + * flag */ + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n"); + dwc_otg_hcd->flags.b.port_connect_status_change = 0; + break; + case USB_PORT_FEAT_C_RESET: + /* Clears the driver's internal Port Reset Change + * flag */ + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "ClearPortFeature USB_PORT_FEAT_C_RESET\n"); + dwc_otg_hcd->flags.b.port_reset_change = 0; + break; + case USB_PORT_FEAT_C_ENABLE: + /* Clears the driver's internal Port + * Enable/Disable Change flag */ + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n"); + dwc_otg_hcd->flags.b.port_enable_change = 0; + break; + case USB_PORT_FEAT_C_SUSPEND: + /* Clears the driver's internal Port Suspend + * Change flag, which is set when resume signaling on + * the host port is complete */ + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n"); + dwc_otg_hcd->flags.b.port_suspend_change = 0; + break; + case USB_PORT_FEAT_C_OVER_CURRENT: + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n"); + dwc_otg_hcd->flags.b.port_over_current_change = 0; + break; + default: + retval = -EINVAL; + DWC_ERROR("DWC OTG HCD - " + "ClearPortFeature request %xh " + "unknown or unsupported\n", _wValue); + } + break; + case GetHubDescriptor: + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "GetHubDescriptor\n"); + desc = (struct usb_hub_descriptor *)_buf; + desc->bDescLength = 9; + desc->bDescriptorType = 0x29; + desc->bNbrPorts = 1; + desc->wHubCharacteristics = 0x08; + desc->bPwrOn2PwrGood = 1; + desc->bHubContrCurrent = 0; + desc->bitmap[0] = 0; + desc->bitmap[1] = 0xff; + break; + case GetHubStatus: + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "GetHubStatus\n"); + memset(_buf, 0, 4); + break; + case GetPortStatus: + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "GetPortStatus\n"); + if (!_wIndex || _wIndex > 1) + goto error; + port_status = 0; + if (dwc_otg_hcd->flags.b.port_connect_status_change) + port_status |= (1 << USB_PORT_FEAT_C_CONNECTION); + if (dwc_otg_hcd->flags.b.port_enable_change) + port_status |= (1 << USB_PORT_FEAT_C_ENABLE); + if (dwc_otg_hcd->flags.b.port_suspend_change) + port_status |= (1 << USB_PORT_FEAT_C_SUSPEND); + if (dwc_otg_hcd->flags.b.port_reset_change) + port_status |= (1 << USB_PORT_FEAT_C_RESET); + if (dwc_otg_hcd->flags.b.port_over_current_change) { + DWC_ERROR("Device Not Supported\n"); + port_status |= (1 << USB_PORT_FEAT_C_OVER_CURRENT); + } + if (!dwc_otg_hcd->flags.b.port_connect_status) { + /* + * The port is disconnected, which means the core is + * either in device mode or it soon will be. Just + * return 0's for the remainder of the port status + * since the port register can't be read if the core + * is in device mode. + */ + *((__le32 *) _buf) = cpu_to_le32(port_status); + break; + } + hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0); + DWC_DEBUGPL(DBG_HCDV, " HPRT0: 0x%08x\n", hprt0.d32); + if (hprt0.b.prtconnsts) + port_status |= (1 << USB_PORT_FEAT_CONNECTION); + if (hprt0.b.prtena) + port_status |= (1 << USB_PORT_FEAT_ENABLE); + if (hprt0.b.prtsusp) + port_status |= (1 << USB_PORT_FEAT_SUSPEND); + if (hprt0.b.prtovrcurract) + port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT); + if (hprt0.b.prtrst) + port_status |= (1 << USB_PORT_FEAT_RESET); + if (hprt0.b.prtpwr) + port_status |= (1 << USB_PORT_FEAT_POWER); + if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) + port_status |= (1 << USB_PORT_FEAT_HIGHSPEED); + + else if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED) + port_status |= (1 << USB_PORT_FEAT_LOWSPEED); + if (hprt0.b.prttstctl) + port_status |= (1 << USB_PORT_FEAT_TEST); + + /* USB_PORT_FEAT_INDICATOR unsupported always 0 */ + *((__le32 *) _buf) = cpu_to_le32(port_status); + break; + case SetHubFeature: + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "SetHubFeature\n"); + + /* No HUB features supported */ + break; + case SetPortFeature: + if (_wValue != USB_PORT_FEAT_TEST && (!_wIndex || _wIndex > 1)) + goto error; + if (!dwc_otg_hcd->flags.b.port_connect_status) { + /* + * The port is disconnected, which means the core is + * either in device mode or it soon will be. Just + * return without doing anything since the port + * register can't be written if the core is in device + * mode. + */ + break; + } + switch (_wValue) { + case USB_PORT_FEAT_SUSPEND: + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "SetPortFeature - USB_PORT_FEAT_SUSPEND\n"); + if (_hcd->self.otg_port == _wIndex + && _hcd->self.b_hnp_enable) { + gotgctl_data_t gotgctl = {.d32 = 0}; + gotgctl.b.hstsethnpen = 1; + dwc_modify_reg32(&core_if->core_global_regs-> + gotgctl, 0, gotgctl.d32); + core_if->op_state = A_SUSPEND; + } + hprt0.d32 = dwc_otg_read_hprt0(core_if); + hprt0.b.prtsusp = 1; + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); + + //DWC_PRINT( "SUSPEND: HPRT0=%0x\n", hprt0.d32); + /* Suspend the Phy Clock */ + { + pcgcctl_data_t pcgcctl = {.d32 = 0}; + pcgcctl.b.stoppclk = 1; + dwc_write_reg32(core_if->pcgcctl, pcgcctl.d32); + } + + /* For HNP the bus must be suspended for at least 200ms. */ + if (_hcd->self.b_hnp_enable) { + mdelay(200); + + //DWC_PRINT( "SUSPEND: wait complete! (%d)\n", _hcd->state); + } + break; + case USB_PORT_FEAT_POWER: + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "SetPortFeature - USB_PORT_FEAT_POWER\n"); + hprt0.d32 = dwc_otg_read_hprt0(core_if); + hprt0.b.prtpwr = 1; + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); + break; + case USB_PORT_FEAT_RESET: + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "SetPortFeature - USB_PORT_FEAT_RESET\n"); + hprt0.d32 = dwc_otg_read_hprt0(core_if); + + /* When B-Host the Port reset bit is set in + * the Start HCD Callback function, so that + * the reset is started within 1ms of the HNP + * success interrupt. */ + if (!_hcd->self.is_b_host) { + hprt0.b.prtrst = 1; + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); + } + + /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */ + MDELAY(60); + hprt0.b.prtrst = 0; + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); + break; + +#ifdef DWC_HS_ELECT_TST + case USB_PORT_FEAT_TEST: + { + uint32_t t; + gintmsk_data_t gintmsk; + t = (_wIndex >> 8); /* MSB wIndex USB */ + DWC_DEBUGPL(DBG_HCD, + "DWC OTG HCD HUB CONTROL - " + "SetPortFeature - USB_PORT_FEAT_TEST %d\n", + t); + warn("USB_PORT_FEAT_TEST %d\n", t); + if (t < 6) { + hprt0.d32 = dwc_otg_read_hprt0(core_if); + hprt0.b.prttstctl = t; + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); + } else { + /* Setup global vars with reg addresses (quick and + * dirty hack, should be cleaned up) + */ + global_regs = core_if->core_global_regs; + hc_global_regs = core_if->host_if->host_global_regs; + hc_regs = (dwc_otg_hc_regs_t *) ((char *) global_regs + 0x500); + data_fifo = (uint32_t *) ((char *)global_regs + 0x1000); + if (t == 6) { /* HS_HOST_PORT_SUSPEND_RESUME */ + /* Save current interrupt mask */ + gintmsk.d32 =dwc_read_reg32(&global_regs->gintmsk); + + /* Disable all interrupts while we muck with + * the hardware directly + */ + dwc_write_reg32(&global_regs->gintmsk, 0); + + /* 15 second delay per the test spec */ + mdelay(15000); + + /* Drive suspend on the root port */ + hprt0.d32 = dwc_otg_read_hprt0(core_if); + hprt0.b.prtsusp = 1; + hprt0.b.prtres = 0; + dwc_write_reg32(core_if->host_if->hprt0,hprt0.d32); + + /* 15 second delay per the test spec */ + mdelay(15000); + + /* Drive resume on the root port */ + hprt0.d32 = dwc_otg_read_hprt0(core_if); + hprt0.b.prtsusp = 0; + hprt0.b.prtres = 1; + dwc_write_reg32(core_if->host_if->hprt0,hprt0.d32); + mdelay(100); + + /* Clear the resume bit */ + hprt0.b.prtres = 0; + dwc_write_reg32(core_if->host_if->hprt0,hprt0.d32); + + /* Restore interrupts */ + dwc_write_reg32(&global_regs->gintmsk,gintmsk.d32); + } else if (t == 7) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR setup */ + /* Save current interrupt mask */ + gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk); + + /* Disable all interrupts while we muck with + * the hardware directly + */ + dwc_write_reg32(&global_regs->gintmsk, 0); + + /* 15 second delay per the test spec */ + mdelay(15000); + + /* Send the Setup packet */ + do_setup(); + + /* 15 second delay so nothing else happens for awhile */ + mdelay(15000); + + /* Restore interrupts */ + dwc_write_reg32(&global_regs->gintmsk,gintmsk.d32); + } else if (t == 8) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR execute */ + /* Save current interrupt mask */ + gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk); + + /* Disable all interrupts while we muck with + * the hardware directly + */ + dwc_write_reg32(&global_regs->gintmsk, 0); + + /* Send the Setup packet */ + do_setup(); + + /* 15 second delay so nothing else happens for awhile */ + mdelay(15000); + + /* Send the In and Ack packets */ + do_in_ack(); + + /* 15 second delay so nothing else happens for awhile */ + mdelay(15000); + + /* Restore interrupts */ + dwc_write_reg32(&global_regs->gintmsk,gintmsk.d32); + } + } + break; + } + +#endif /* DWC_HS_ELECT_TST */ + case USB_PORT_FEAT_INDICATOR: + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "SetPortFeature - USB_PORT_FEAT_INDICATOR\n"); + /* Not supported */ + break; + default: + retval = -EINVAL; + DWC_ERROR("DWC OTG HCD - " + "SetPortFeature request %xh " + "unknown or unsupported\n", _wValue); + break; + } + break; + default: + error:retval = -EINVAL; + DWC_WARN("DWC OTG HCD - " + "Unknown hub control request type or invalid typeReq: %xh wIndex: %xh wValue: %xh\n", + _typeReq, _wIndex, _wValue); + break; + } + return retval; +} + + +/** + * Assigns transactions from a QTD to a free host channel and initializes the + * host channel to perform the transactions. The host channel is removed from + * the free list. + * + * @param _hcd The HCD state structure. + * @param _qh Transactions from the first QTD for this QH are selected and + * assigned to a free host channel. + */ +static void assign_and_init_hc(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh) +{ + dwc_hc_t * hc; + dwc_otg_qtd_t * qtd; + struct urb *urb; + DWC_DEBUGPL(DBG_HCDV, "%s(%p,%p)\n", __func__, _hcd, _qh); + hc = list_entry(_hcd->free_hc_list.next, dwc_hc_t, hc_list_entry); + + /* Remove the host channel from the free list. */ + list_del_init(&hc->hc_list_entry); + qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); + urb = qtd->urb; + _qh->channel = hc; + _qh->qtd_in_process = qtd; + + /* + * Use usb_pipedevice to determine device address. This address is + * 0 before the SET_ADDRESS command and the correct address afterward. + */ + hc->dev_addr = usb_pipedevice(urb->pipe); + hc->ep_num = usb_pipeendpoint(urb->pipe); + if (urb->dev->speed == USB_SPEED_LOW) { + hc->speed = DWC_OTG_EP_SPEED_LOW; + } else if (urb->dev->speed == USB_SPEED_FULL) { + hc->speed = DWC_OTG_EP_SPEED_FULL; + } else { + hc->speed = DWC_OTG_EP_SPEED_HIGH; + } + hc->max_packet = dwc_max_packet(_qh->maxp); + hc->xfer_started = 0; + hc->halt_status = DWC_OTG_HC_XFER_NO_HALT_STATUS; + hc->error_state = (qtd->error_count > 0); + hc->halt_on_queue = 0; + hc->halt_pending = 0; + hc->requests = 0; + + /* + * The following values may be modified in the transfer type section + * below. The xfer_len value may be reduced when the transfer is + * started to accommodate the max widths of the XferSize and PktCnt + * fields in the HCTSIZn register. + */ + hc->do_ping = _qh->ping_state; + hc->ep_is_in = (usb_pipein(urb->pipe) != 0); + hc->data_pid_start = _qh->data_toggle; + hc->multi_count = 1; + if (_hcd->core_if->dma_enable) { + hc->xfer_buff = + (uint8_t *)(u32)urb->transfer_dma + urb->actual_length; + } else { + hc->xfer_buff = + (uint8_t *) urb->transfer_buffer + urb->actual_length; + } + hc->xfer_len = urb->transfer_buffer_length - urb->actual_length; + hc->xfer_count = 0; + + /* + * Set the split attributes + */ + hc->do_split = 0; + if (_qh->do_split) { + hc->do_split = 1; + hc->xact_pos = qtd->isoc_split_pos; + hc->complete_split = qtd->complete_split; + hc->hub_addr = urb->dev->tt->hub->devnum; + hc->port_addr = urb->dev->ttport; + } + switch (usb_pipetype(urb->pipe)) { + case PIPE_CONTROL: + hc->ep_type = DWC_OTG_EP_TYPE_CONTROL; + switch (qtd->control_phase) { + case DWC_OTG_CONTROL_SETUP: + DWC_DEBUGPL(DBG_HCDV, " Control setup transaction\n"); + hc->do_ping = 0; + hc->ep_is_in = 0; + hc->data_pid_start = DWC_OTG_HC_PID_SETUP; + if (_hcd->core_if->dma_enable) { + hc->xfer_buff = (uint8_t *)(u32)urb->setup_dma; + } else { + hc->xfer_buff = (uint8_t *) urb->setup_packet; + } + hc->xfer_len = 8; + break; + case DWC_OTG_CONTROL_DATA: + DWC_DEBUGPL(DBG_HCDV, " Control data transaction\n"); + hc->data_pid_start = qtd->data_toggle; + break; + case DWC_OTG_CONTROL_STATUS: + + /* + * Direction is opposite of data direction or IN if no + * data. + */ + DWC_DEBUGPL(DBG_HCDV, + " Control status transaction\n"); + if (urb->transfer_buffer_length == 0) { + hc->ep_is_in = 1; + } else { + hc->ep_is_in = (usb_pipein(urb->pipe) != USB_DIR_IN); + } + if (hc->ep_is_in) { + hc->do_ping = 0; + } + hc->data_pid_start = DWC_OTG_HC_PID_DATA1; + hc->xfer_len = 0; + if (_hcd->core_if->dma_enable) { + hc->xfer_buff = (uint8_t *)(u32)_hcd->status_buf_dma; + } else { + hc->xfer_buff = (uint8_t *) _hcd->status_buf; + } + break; + } + break; + case PIPE_BULK: + hc->ep_type = DWC_OTG_EP_TYPE_BULK; + break; + case PIPE_INTERRUPT: + hc->ep_type = DWC_OTG_EP_TYPE_INTR; + break; + case PIPE_ISOCHRONOUS: + { + struct usb_iso_packet_descriptor *frame_desc; + frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index]; + hc->ep_type = DWC_OTG_EP_TYPE_ISOC; + if (_hcd->core_if->dma_enable) { + hc->xfer_buff = (uint8_t *)(u32)urb->transfer_dma; + } else { + hc->xfer_buff = (uint8_t *) urb->transfer_buffer; + } + hc->xfer_buff += frame_desc->offset + qtd->isoc_split_offset; + hc->xfer_len = frame_desc->length - qtd->isoc_split_offset; + if (hc->xact_pos == DWC_HCSPLIT_XACTPOS_ALL) { + if (hc->xfer_len <= 188) { + hc->xact_pos = DWC_HCSPLIT_XACTPOS_ALL; + } else { + hc->xact_pos = DWC_HCSPLIT_XACTPOS_BEGIN; + } + } + } + break; + } + + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR + || hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { + /* + * This value may be modified when the transfer is started to + * reflect the actual transfer length. + */ + hc->multi_count = dwc_hb_mult(_qh->maxp); + } + dwc_otg_hc_init(_hcd->core_if, hc); + hc->qh = _qh; +} + + +/** + * This function selects transactions from the HCD transfer schedule and + * assigns them to available host channels. It is called from HCD interrupt + * handler functions. + * + * @param _hcd The HCD state structure. + * + * @return The types of new transactions that were assigned to host channels. + */ +dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *_hcd) +{ + struct list_head *qh_ptr; + dwc_otg_qh_t * qh; + int num_channels; + dwc_otg_transaction_type_e ret_val = DWC_OTG_TRANSACTION_NONE; + +#ifdef DEBUG_SOF + DWC_DEBUGPL(DBG_HCD, " Select Transactions\n"); +#endif /* */ + + /* Process entries in the periodic ready list. */ + qh_ptr = _hcd->periodic_sched_ready.next; + while (qh_ptr != &_hcd->periodic_sched_ready + && !list_empty(&_hcd->free_hc_list)) { + qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry); + assign_and_init_hc(_hcd, qh); + /* + * Move the QH from the periodic ready schedule to the + * periodic assigned schedule. + */ + qh_ptr = qh_ptr->next; + list_move(&qh->qh_list_entry, &_hcd->periodic_sched_assigned); + ret_val = DWC_OTG_TRANSACTION_PERIODIC; + } + /* + * Process entries in the deferred portion of the non-periodic list. + * A NAK put them here and, at the right time, they need to be + * placed on the sched_inactive list. + */ + qh_ptr = _hcd->non_periodic_sched_deferred.next; + while (qh_ptr != &_hcd->non_periodic_sched_deferred) { + uint16_t frame_number = + dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(_hcd)); + unsigned long flags; + qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry); + qh_ptr = qh_ptr->next; + + if (dwc_frame_num_le(qh->sched_frame, frame_number)) { + // NAK did this + /* + * Move the QH from the non periodic deferred schedule to + * the non periodic inactive schedule. + */ + local_irq_save(flags); + list_move(&qh->qh_list_entry, + &_hcd->non_periodic_sched_inactive); + local_irq_restore(flags); + } + } + + /* + * Process entries in the inactive portion of the non-periodic + * schedule. Some free host channels may not be used if they are + * reserved for periodic transfers. + */ + qh_ptr = _hcd->non_periodic_sched_inactive.next; + num_channels = _hcd->core_if->core_params->host_channels; + while (qh_ptr != &_hcd->non_periodic_sched_inactive && + (_hcd->non_periodic_channels < + num_channels - _hcd->periodic_channels) + && !list_empty(&_hcd->free_hc_list)) { + qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry); + assign_and_init_hc(_hcd, qh); + + /* + * Move the QH from the non-periodic inactive schedule to the + * non-periodic active schedule. + */ + qh_ptr = qh_ptr->next; + list_move(&qh->qh_list_entry, + &_hcd->non_periodic_sched_active); + if (ret_val == DWC_OTG_TRANSACTION_NONE) { + ret_val = DWC_OTG_TRANSACTION_NON_PERIODIC; + } else { + ret_val = DWC_OTG_TRANSACTION_ALL; + } + _hcd->non_periodic_channels++; + } + return ret_val; +} + +/** + * Attempts to queue a single transaction request for a host channel + * associated with either a periodic or non-periodic transfer. This function + * assumes that there is space available in the appropriate request queue. For + * an OUT transfer or SETUP transaction in Slave mode, it checks whether space + * is available in the appropriate Tx FIFO. + * + * @param _hcd The HCD state structure. + * @param _hc Host channel descriptor associated with either a periodic or + * non-periodic transfer. + * @param _fifo_dwords_avail Number of DWORDs available in the periodic Tx + * FIFO for periodic transfers or the non-periodic Tx FIFO for non-periodic + * transfers. + * + * @return 1 if a request is queued and more requests may be needed to + * complete the transfer, 0 if no more requests are required for this + * transfer, -1 if there is insufficient space in the Tx FIFO. + */ +static int queue_transaction(dwc_otg_hcd_t * _hcd, + dwc_hc_t * _hc, uint16_t _fifo_dwords_avail) +{ + int retval; + if (_hcd->core_if->dma_enable) { + if (!_hc->xfer_started) { + dwc_otg_hc_start_transfer(_hcd->core_if, _hc); + _hc->qh->ping_state = 0; + } + retval = 0; + } else if (_hc->halt_pending) { + /* Don't queue a request if the channel has been halted. */ + retval = 0; + } else if (_hc->halt_on_queue) { + dwc_otg_hc_halt(_hcd->core_if, _hc, _hc->halt_status); + retval = 0; + } else if (_hc->do_ping) { + if (!_hc->xfer_started) { + dwc_otg_hc_start_transfer(_hcd->core_if, _hc); + } + retval = 0; + } else if (!_hc->ep_is_in || _hc->data_pid_start == DWC_OTG_HC_PID_SETUP) { + if ((_fifo_dwords_avail * 4) >= _hc->max_packet) { + if (!_hc->xfer_started) { + dwc_otg_hc_start_transfer(_hcd->core_if, _hc); + retval = 1; + } else { + retval = dwc_otg_hc_continue_transfer(_hcd->core_if, _hc); + } + } else { + retval = -1; + } + } else { + if (!_hc->xfer_started) { + dwc_otg_hc_start_transfer(_hcd->core_if, _hc); + retval = 1; + } else { + retval = dwc_otg_hc_continue_transfer(_hcd->core_if, _hc); + } + } + return retval; +} + + +/** + * Processes active non-periodic channels and queues transactions for these + * channels to the DWC_otg controller. After queueing transactions, the NP Tx + * FIFO Empty interrupt is enabled if there are more transactions to queue as + * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx + * FIFO Empty interrupt is disabled. + */ +static void process_non_periodic_channels(dwc_otg_hcd_t * _hcd) +{ + gnptxsts_data_t tx_status; + struct list_head *orig_qh_ptr; + dwc_otg_qh_t * qh; + int status; + int no_queue_space = 0; + int no_fifo_space = 0; + int more_to_do = 0; + dwc_otg_core_global_regs_t * global_regs = + _hcd->core_if->core_global_regs; + DWC_DEBUGPL(DBG_HCDV, "Queue non-periodic transactions\n"); + +#ifdef DEBUG + tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts); + DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (before queue): %d\n", + tx_status.b.nptxqspcavail); + DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (before queue): %d\n", + tx_status.b.nptxfspcavail); +#endif /* */ + /* + * Keep track of the starting point. Skip over the start-of-list + * entry. + */ + if (_hcd->non_periodic_qh_ptr == &_hcd->non_periodic_sched_active) { + _hcd->non_periodic_qh_ptr = _hcd->non_periodic_qh_ptr->next; + } + orig_qh_ptr = _hcd->non_periodic_qh_ptr; + + /* + * Process once through the active list or until no more space is + * available in the request queue or the Tx FIFO. + */ + do { + + tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts); + if (!_hcd->core_if->dma_enable + && tx_status.b.nptxqspcavail == 0) { + no_queue_space = 1; + break; + } + qh = + list_entry(_hcd->non_periodic_qh_ptr, dwc_otg_qh_t, + qh_list_entry); + status = + queue_transaction(_hcd, qh->channel, + tx_status.b.nptxfspcavail); + + if (status > 0) { + more_to_do = 1; + } else if (status < 0) { + no_fifo_space = 1; + break; + } +#ifdef OTG_PLB_DMA_TASKLET + if (atomic_read(&release_later)) { + break; + } +#endif + + /* Advance to next QH, skipping start-of-list entry. */ + _hcd->non_periodic_qh_ptr = _hcd->non_periodic_qh_ptr->next; + if (_hcd->non_periodic_qh_ptr == &_hcd->non_periodic_sched_active) { + _hcd->non_periodic_qh_ptr = _hcd->non_periodic_qh_ptr->next; + } + } while (_hcd->non_periodic_qh_ptr != orig_qh_ptr); + if (!_hcd->core_if->dma_enable) { + gintmsk_data_t intr_mask = {.d32 = 0}; + intr_mask.b.nptxfempty = 1; + +#ifndef OTG_PLB_DMA_TASKLET +#ifdef DEBUG + tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts); + DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (after queue): %d\n", + tx_status.b.nptxqspcavail); + DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (after queue): %d\n", + tx_status.b.nptxfspcavail); +#endif /* */ +#endif + + if (more_to_do || no_queue_space || no_fifo_space) { + + /* + * May need to queue more transactions as the request + * queue or Tx FIFO empties. Enable the non-periodic + * Tx FIFO empty interrupt. (Always use the half-empty + * level to ensure that new requests are loaded as + * soon as possible.) + */ + dwc_modify_reg32(&global_regs->gintmsk, 0,intr_mask.d32); + } else { + /* + * Disable the Tx FIFO empty interrupt since there are + * no more transactions that need to be queued right + * now. This function is called from interrupt + * handlers to queue more transactions as transfer + * states change. + */ + dwc_modify_reg32(&global_regs->gintmsk,intr_mask.d32, 0); + } + } +} + +/** + * Processes periodic channels for the next frame and queues transactions for + * these channels to the DWC_otg controller. After queueing transactions, the + * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions + * to queue as Periodic Tx FIFO or request queue space becomes available. + * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled. + */ +static void process_periodic_channels(dwc_otg_hcd_t * _hcd) +{ + hptxsts_data_t tx_status; + struct list_head *qh_ptr; + dwc_otg_qh_t * qh; + int status; + int no_queue_space = 0; + int no_fifo_space = 0; + dwc_otg_host_global_regs_t * host_regs; + host_regs = _hcd->core_if->host_if->host_global_regs; + DWC_DEBUGPL(DBG_HCDV, "Queue periodic transactions\n"); + +#ifdef DEBUG + tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts); + DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (before queue): %d\n", + tx_status.b.ptxqspcavail); + DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (before queue): %d\n", + tx_status.b.ptxfspcavail); + +#endif /* */ + qh_ptr = _hcd->periodic_sched_assigned.next; + while (qh_ptr != &_hcd->periodic_sched_assigned) { + tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts); + if (tx_status.b.ptxqspcavail == 0) { + no_queue_space = 1; + break; + } + qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry); + + /* + * Set a flag if we're queuing high-bandwidth in slave mode. + * The flag prevents any halts to get into the request queue in + * the middle of multiple high-bandwidth packets getting queued. + */ + if ((!_hcd->core_if->dma_enable) && + (qh->channel->multi_count > 1)) { + _hcd->core_if->queuing_high_bandwidth = 1; + } + status = queue_transaction(_hcd, qh->channel,tx_status.b.ptxfspcavail); + if (status < 0) { + no_fifo_space = 1; + break; + } + + /* + * In Slave mode, stay on the current transfer until there is + * nothing more to do or the high-bandwidth request count is + * reached. In DMA mode, only need to queue one request. The + * controller automatically handles multiple packets for + * high-bandwidth transfers. + */ + if (_hcd->core_if->dma_enable || + (status == 0 || qh->channel->requests == qh->channel->multi_count)) { + qh_ptr = qh_ptr->next; + + /* + * Move the QH from the periodic assigned schedule to + * the periodic queued schedule. + */ + list_move(&qh->qh_list_entry, + &_hcd->periodic_sched_queued); + + /* done queuing high bandwidth */ + _hcd->core_if->queuing_high_bandwidth = 0; + } + } + if (!_hcd->core_if->dma_enable) { + dwc_otg_core_global_regs_t * global_regs; + gintmsk_data_t intr_mask = {.d32 = 0}; + global_regs = _hcd->core_if->core_global_regs; + intr_mask.b.ptxfempty = 1; + +#ifdef DEBUG + tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts); + DWC_DEBUGPL(DBG_HCDV," P Tx Req Queue Space Avail (after queue): %d\n", + tx_status.b.ptxqspcavail); + DWC_DEBUGPL(DBG_HCDV," P Tx FIFO Space Avail (after queue): %d\n", + tx_status.b.ptxfspcavail); + +#endif /* */ + if (!(list_empty(&_hcd->periodic_sched_assigned)) + || no_queue_space || no_fifo_space) { + + /* + * May need to queue more transactions as the request + * queue or Tx FIFO empties. Enable the periodic Tx + * FIFO empty interrupt. (Always use the half-empty + * level to ensure that new requests are loaded as + * soon as possible.) + */ + dwc_modify_reg32(&global_regs->gintmsk, 0,intr_mask.d32); + } else { + /* + * Disable the Tx FIFO empty interrupt since there are + * no more transactions that need to be queued right + * now. This function is called from interrupt + * handlers to queue more transactions as transfer + * states change. + */ + dwc_modify_reg32(&global_regs->gintmsk,intr_mask.d32, 0); + } + } +} + + + +/** + * This function processes the currently active host channels and queues + * transactions for these channels to the DWC_otg controller. It is called + * from HCD interrupt handler functions. + * + * @param _hcd The HCD state structure. + * @param _tr_type The type(s) of transactions to queue (non-periodic, + * periodic, or both). + */ +void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t * _hcd, + dwc_otg_transaction_type_e _tr_type) +{ + +#ifdef DEBUG_SOF + DWC_DEBUGPL(DBG_HCD, "Queue Transactions\n"); + +#endif /* */ + /* Process host channels associated with periodic transfers. */ + if ((_tr_type == DWC_OTG_TRANSACTION_PERIODIC + || _tr_type == DWC_OTG_TRANSACTION_ALL) + && !list_empty(&_hcd->periodic_sched_assigned)) { + process_periodic_channels(_hcd); + } + + /* Process host channels associated with non-periodic transfers. */ + if ((_tr_type == DWC_OTG_TRANSACTION_NON_PERIODIC + || _tr_type == DWC_OTG_TRANSACTION_ALL)) { + if (!list_empty(&_hcd->non_periodic_sched_active)) { + process_non_periodic_channels(_hcd); + } else { + /* + * Ensure NP Tx FIFO empty interrupt is disabled when + * there are no non-periodic transfers to process. + */ + gintmsk_data_t gintmsk = {.d32 = 0}; + gintmsk.b.nptxfempty = 1; + dwc_modify_reg32(&_hcd->core_if->core_global_regs->gintmsk, gintmsk.d32, 0); + } + } +} + +/** + * Sets the final status of an URB and returns it to the device driver. Any + * required cleanup of the URB is performed. + */ +void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t * _hcd, struct urb *_urb, + int _status) +__releases(_hcd->lock) +__acquires(_hcd->lock) +{ + +#ifdef DEBUG + if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) { + DWC_PRINT("%s: urb %p, device %d, ep %d %s, status=%d\n", + __func__, _urb, usb_pipedevice(_urb->pipe), + usb_pipeendpoint(_urb->pipe), + usb_pipein(_urb->pipe) ? "IN" : "OUT", _status); + if (usb_pipetype(_urb->pipe) == PIPE_ISOCHRONOUS) { + int i; + for (i = 0; i < _urb->number_of_packets; i++) { + DWC_PRINT(" ISO Desc %d status: %d\n", i, + _urb->iso_frame_desc[i].status); + } + } + } + +#endif /* */ + _urb->hcpriv = NULL; + usb_hcd_unlink_urb_from_ep(dwc_otg_hcd_to_hcd(_hcd), _urb); + spin_unlock(&_hcd->lock); + usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(_hcd), _urb, _status); + spin_lock(&_hcd->lock); +} + + +/* + * Returns the Queue Head for an URB. + */ +dwc_otg_qh_t * dwc_urb_to_qh(struct urb *_urb) +{ + struct usb_host_endpoint *ep = dwc_urb_to_endpoint(_urb); + return (dwc_otg_qh_t *) ep->hcpriv; +} + + +#ifdef DEBUG +void dwc_print_setup_data(uint8_t * setup) +{ + int i; + if (CHK_DEBUG_LEVEL(DBG_HCD)) { + DWC_PRINT("Setup Data = MSB "); + for (i = 7; i >= 0; i--) + DWC_PRINT("%02x ", setup[i]); + DWC_PRINT("\n"); + DWC_PRINT(" bmRequestType Tranfer = %s\n", + (setup[0] & 0x80) ? "Device-to-Host" : + "Host-to-Device"); + DWC_PRINT(" bmRequestType Type = "); + switch ((setup[0] & 0x60) >> 5) { + case 0: + DWC_PRINT("Standard\n"); + break; + case 1: + DWC_PRINT("Class\n"); + break; + case 2: + DWC_PRINT("Vendor\n"); + break; + case 3: + DWC_PRINT("Reserved\n"); + break; + } + DWC_PRINT(" bmRequestType Recipient = "); + switch (setup[0] & 0x1f) { + case 0: + DWC_PRINT("Device\n"); + break; + case 1: + DWC_PRINT("Interface\n"); + break; + case 2: + DWC_PRINT("Endpoint\n"); + break; + case 3: + DWC_PRINT("Other\n"); + break; + default: + DWC_PRINT("Reserved\n"); + break; + } + DWC_PRINT(" bRequest = 0x%0x\n", setup[1]); + DWC_PRINT(" wValue = 0x%0x\n", *((uint16_t *) & setup[2])); + DWC_PRINT(" wIndex = 0x%0x\n", *((uint16_t *) & setup[4])); + DWC_PRINT(" wLength = 0x%0x\n\n", *((uint16_t *) & setup[6])); + } +} + + +#endif /* */ +void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t * _hcd) +{ + +/* +#ifdef DEBUG + DWC_PRINT("Frame remaining at SOF:\n"); + DWC_PRINT(" samples %u, accum %llu, avg %llu\n", + _hcd->frrem_samples, _hcd->frrem_accum, + (_hcd->frrem_samples > 0) ? + _hcd->frrem_accum/_hcd->frrem_samples : 0); + + DWC_PRINT("\n"); + DWC_PRINT("Frame remaining at start_transfer (uframe 7):\n"); + DWC_PRINT(" samples %u, accum %llu, avg %llu\n", + _hcd->core_if->hfnum_7_samples, _hcd->core_if->hfnum_7_frrem_accum, + (_hcd->core_if->hfnum_7_samples > 0) ? + _hcd->core_if->hfnum_7_frrem_accum/_hcd->core_if->hfnum_7_samples : 0); + DWC_PRINT("Frame remaining at start_transfer (uframe 0):\n"); + DWC_PRINT(" samples %u, accum %llu, avg %llu\n", + _hcd->core_if->hfnum_0_samples, _hcd->core_if->hfnum_0_frrem_accum, + (_hcd->core_if->hfnum_0_samples > 0) ? + _hcd->core_if->hfnum_0_frrem_accum/_hcd->core_if->hfnum_0_samples : 0); + DWC_PRINT("Frame remaining at start_transfer (uframe 1-6):\n"); + DWC_PRINT(" samples %u, accum %llu, avg %llu\n", + _hcd->core_if->hfnum_other_samples, _hcd->core_if->hfnum_other_frrem_accum, + (_hcd->core_if->hfnum_other_samples > 0) ? + _hcd->core_if->hfnum_other_frrem_accum/_hcd->core_if->hfnum_other_samples : 0); + + DWC_PRINT("\n"); + DWC_PRINT("Frame remaining at sample point A (uframe 7):\n"); + DWC_PRINT(" samples %u, accum %llu, avg %llu\n", + _hcd->hfnum_7_samples_a, _hcd->hfnum_7_frrem_accum_a, + (_hcd->hfnum_7_samples_a > 0) ? + _hcd->hfnum_7_frrem_accum_a/_hcd->hfnum_7_samples_a : 0); + DWC_PRINT("Frame remaining at sample point A (uframe 0):\n"); + DWC_PRINT(" samples %u, accum %llu, avg %llu\n", + _hcd->hfnum_0_samples_a, _hcd->hfnum_0_frrem_accum_a, + (_hcd->hfnum_0_samples_a > 0) ? + _hcd->hfnum_0_frrem_accum_a/_hcd->hfnum_0_samples_a : 0); + DWC_PRINT("Frame remaining at sample point A (uframe 1-6):\n"); + DWC_PRINT(" samples %u, accum %llu, avg %llu\n", + _hcd->hfnum_other_samples_a, _hcd->hfnum_other_frrem_accum_a, + (_hcd->hfnum_other_samples_a > 0) ? + _hcd->hfnum_other_frrem_accum_a/_hcd->hfnum_other_samples_a : 0); + + DWC_PRINT("\n"); + DWC_PRINT("Frame remaining at sample point B (uframe 7):\n"); + DWC_PRINT(" samples %u, accum %llu, avg %llu\n", + _hcd->hfnum_7_samples_b, _hcd->hfnum_7_frrem_accum_b, + (_hcd->hfnum_7_samples_b > 0) ? + _hcd->hfnum_7_frrem_accum_b/_hcd->hfnum_7_samples_b : 0); + DWC_PRINT("Frame remaining at sample point B (uframe 0):\n"); + DWC_PRINT(" samples %u, accum %llu, avg %llu\n", + _hcd->hfnum_0_samples_b, _hcd->hfnum_0_frrem_accum_b, + (_hcd->hfnum_0_samples_b > 0) ? + _hcd->hfnum_0_frrem_accum_b/_hcd->hfnum_0_samples_b : 0); + DWC_PRINT("Frame remaining at sample point B (uframe 1-6):\n"); + DWC_PRINT(" samples %u, accum %llu, avg %llu\n", + _hcd->hfnum_other_samples_b, _hcd->hfnum_other_frrem_accum_b, + (_hcd->hfnum_other_samples_b > 0) ? + _hcd->hfnum_other_frrem_accum_b/_hcd->hfnum_other_samples_b : 0); +#endif +*/ +} void dwc_otg_hcd_dump_state(dwc_otg_hcd_t * _hcd) +{ + +#ifdef DEBUG + int num_channels; + int i; + gnptxsts_data_t np_tx_status; + hptxsts_data_t p_tx_status; + num_channels = _hcd->core_if->core_params->host_channels; + DWC_PRINT("\n"); + DWC_PRINT + ("************************************************************\n"); + DWC_PRINT("HCD State:\n"); + DWC_PRINT(" Num channels: %d\n", num_channels); + for (i = 0; i < num_channels; i++) { + dwc_hc_t * hc = _hcd->hc_ptr_array[i]; + DWC_PRINT(" Channel %d:\n", i); + DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n", + hc->dev_addr, hc->ep_num, hc->ep_is_in); + DWC_PRINT(" speed: %d\n", hc->speed); + DWC_PRINT(" ep_type: %d\n", hc->ep_type); + DWC_PRINT(" max_packet: %d\n", hc->max_packet); + DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start); + DWC_PRINT(" multi_count: %d\n", hc->multi_count); + DWC_PRINT(" xfer_started: %d\n", hc->xfer_started); + DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff); + DWC_PRINT(" xfer_len: %d\n", hc->xfer_len); + DWC_PRINT(" xfer_count: %d\n", hc->xfer_count); + DWC_PRINT(" halt_on_queue: %d\n", hc->halt_on_queue); + DWC_PRINT(" halt_pending: %d\n", hc->halt_pending); + DWC_PRINT(" halt_status: %d\n", hc->halt_status); + DWC_PRINT(" do_split: %d\n", hc->do_split); + DWC_PRINT(" complete_split: %d\n", hc->complete_split); + DWC_PRINT(" hub_addr: %d\n", hc->hub_addr); + DWC_PRINT(" port_addr: %d\n", hc->port_addr); + DWC_PRINT(" xact_pos: %d\n", hc->xact_pos); + DWC_PRINT(" requests: %d\n", hc->requests); + DWC_PRINT(" qh: %p\n", hc->qh); + if (hc->xfer_started) { + hfnum_data_t hfnum; + hcchar_data_t hcchar; + hctsiz_data_t hctsiz; + hcint_data_t hcint; + hcintmsk_data_t hcintmsk; + hfnum.d32 = + dwc_read_reg32(&_hcd->core_if->host_if-> + host_global_regs->hfnum); + hcchar.d32 = + dwc_read_reg32(&_hcd->core_if->host_if->hc_regs[i]-> + hcchar); + hctsiz.d32 = + dwc_read_reg32(&_hcd->core_if->host_if->hc_regs[i]-> + hctsiz); + hcint.d32 = + dwc_read_reg32(&_hcd->core_if->host_if->hc_regs[i]-> + hcint); + hcintmsk.d32 = + dwc_read_reg32(&_hcd->core_if->host_if->hc_regs[i]-> + hcintmsk); + DWC_PRINT(" hfnum: 0x%08x\n", hfnum.d32); + DWC_PRINT(" hcchar: 0x%08x\n", hcchar.d32); + DWC_PRINT(" hctsiz: 0x%08x\n", hctsiz.d32); + DWC_PRINT(" hcint: 0x%08x\n", hcint.d32); + DWC_PRINT(" hcintmsk: 0x%08x\n", hcintmsk.d32); + } + if (hc->xfer_started && (hc->qh != NULL) + && (hc->qh->qtd_in_process != NULL)) { + dwc_otg_qtd_t * qtd; + struct urb *urb; + qtd = hc->qh->qtd_in_process; + urb = qtd->urb; + DWC_PRINT(" URB Info:\n"); + DWC_PRINT(" qtd: %p, urb: %p\n", qtd, urb); + if (urb != NULL) { + DWC_PRINT(" Dev: %d, EP: %d %s\n", + usb_pipedevice(urb->pipe), + usb_pipeendpoint(urb->pipe), + usb_pipein(urb-> + pipe) ? "IN" : "OUT"); + DWC_PRINT(" Max packet size: %d\n", + usb_maxpacket(urb->dev, urb->pipe, + usb_pipeout(urb-> + pipe))); + DWC_PRINT(" transfer_buffer: %p\n", + urb->transfer_buffer); + DWC_PRINT(" transfer_dma: %p\n", + (void *)urb->transfer_dma); + DWC_PRINT(" transfer_buffer_length: %d\n", + urb->transfer_buffer_length); + DWC_PRINT(" actual_length: %d\n", + urb->actual_length); + } + } + } DWC_PRINT(" non_periodic_channels: %d\n", + _hcd->non_periodic_channels); + DWC_PRINT(" periodic_channels: %d\n", _hcd->periodic_channels); + DWC_PRINT(" periodic_usecs: %d\n", _hcd->periodic_usecs); + np_tx_status.d32 = + dwc_read_reg32(&_hcd->core_if->core_global_regs->gnptxsts); + DWC_PRINT(" NP Tx Req Queue Space Avail: %d\n", + np_tx_status.b.nptxqspcavail); + DWC_PRINT(" NP Tx FIFO Space Avail: %d\n", + np_tx_status.b.nptxfspcavail); + p_tx_status.d32 = + dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hptxsts); + DWC_PRINT(" P Tx Req Queue Space Avail: %d\n", + p_tx_status.b.ptxqspcavail); + DWC_PRINT(" P Tx FIFO Space Avail: %d\n", p_tx_status.b.ptxfspcavail); + dwc_otg_hcd_dump_frrem(_hcd); + dwc_otg_dump_global_registers(_hcd->core_if); + dwc_otg_dump_host_registers(_hcd->core_if); + DWC_PRINT + ("************************************************************\n"); + DWC_PRINT("\n"); + +#endif /* */ +} +#endif /* DWC_DEVICE_ONLY */ diff --git a/drivers/usb/gadget/dwc_otg/dwc_otg_hcd.h b/drivers/usb/gadget/dwc_otg/dwc_otg_hcd.h new file mode 100644 index 00000000000..ae2b8c3e179 --- /dev/null +++ b/drivers/usb/gadget/dwc_otg/dwc_otg_hcd.h @@ -0,0 +1,660 @@ +/* ========================================================================== + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd.h $ + * $Revision: #6 $ + * $Date: 2006/12/05 $ + * $Change: 762293 $ + * + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ +#ifndef CONFIG_DWC_DEVICE_ONLY +#if !defined(__DWC_HCD_H__) +#define __DWC_HCD_H__ + +#include <linux/list.h> +#include <linux/usb.h> +#include <../drivers/usb/core/hcd.h> + +struct lm_device; +struct dwc_otg_device; + +#include "dwc_otg_cil.h" + +/** + * @file + * + * This file contains the structures, constants, and interfaces for + * the Host Contoller Driver (HCD). + * + * The Host Controller Driver (HCD) is responsible for translating requests + * from the USB Driver into the appropriate actions on the DWC_otg controller. + * It isolates the USBD from the specifics of the controller by providing an + * API to the USBD. + */ + +/** + * Phases for control transfers. + */ +typedef enum dwc_otg_control_phase { + DWC_OTG_CONTROL_SETUP, + DWC_OTG_CONTROL_DATA, + DWC_OTG_CONTROL_STATUS +} dwc_otg_control_phase_e; + +/** Transaction types. */ +typedef enum dwc_otg_transaction_type { + DWC_OTG_TRANSACTION_NONE, + DWC_OTG_TRANSACTION_PERIODIC, + DWC_OTG_TRANSACTION_NON_PERIODIC, + DWC_OTG_TRANSACTION_ALL +} dwc_otg_transaction_type_e; + +/** + * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control, + * interrupt, or isochronous transfer. A single QTD is created for each URB + * (of one of these types) submitted to the HCD. The transfer associated with + * a QTD may require one or multiple transactions. + * + * A QTD is linked to a Queue Head, which is entered in either the + * non-periodic or periodic schedule for execution. When a QTD is chosen for + * execution, some or all of its transactions may be executed. After + * execution, the state of the QTD is updated. The QTD may be retired if all + * its transactions are complete or if an error occurred. Otherwise, it + * remains in the schedule so more transactions can be executed later. + */ + +struct dwc_otg_qh; + +typedef struct dwc_otg_qtd { + /** + * Determines the PID of the next data packet for the data phase of + * control transfers. Ignored for other transfer types.<br> + * One of the following values: + * - DWC_OTG_HC_PID_DATA0 + * - DWC_OTG_HC_PID_DATA1 + */ + uint8_t data_toggle; + + /** Current phase for control transfers (Setup, Data, or Status). */ + dwc_otg_control_phase_e control_phase; + + /** Keep track of the current split type + * for FS/LS endpoints on a HS Hub */ + uint8_t complete_split; + + /** How many bytes transferred during SSPLIT OUT */ + uint32_t ssplit_out_xfer_count; + + /** + * Holds the number of bus errors that have occurred for a transaction + * within this transfer. + */ + uint8_t error_count; + + /** + * Index of the next frame descriptor for an isochronous transfer. A + * frame descriptor describes the buffer position and length of the + * data to be transferred in the next scheduled (micro)frame of an + * isochronous transfer. It also holds status for that transaction. + * The frame index starts at 0. + */ + int isoc_frame_index; + + /** Position of the ISOC split on full/low speed */ + uint8_t isoc_split_pos; + + /** Position of the ISOC split in the buffer for the current frame */ + uint16_t isoc_split_offset; + + /** URB for this transfer */ + struct urb *urb; + + /** This list of QTDs */ + struct list_head qtd_list_entry; + + /* Field to track the qh pointer */ + struct dwc_otg_qh *qtd_qh_ptr; +} dwc_otg_qtd_t; + +/** + * A Queue Head (QH) holds the static characteristics of an endpoint and + * maintains a list of transfers (QTDs) for that endpoint. A QH structure may + * be entered in either the non-periodic or periodic schedule. + */ +typedef struct dwc_otg_qh { + /** + * Endpoint type. + * One of the following values: + * - USB_ENDPOINT_XFER_CONTROL + * - USB_ENDPOINT_XFER_ISOC + * - USB_ENDPOINT_XFER_BULK + * - USB_ENDPOINT_XFER_INT + */ + uint8_t ep_type; + uint8_t ep_is_in; + + /** wMaxPacketSize Field of Endpoint Descriptor. */ + uint16_t maxp; + + /** + * Determines the PID of the next data packet for non-control + * transfers. Ignored for control transfers.<br> + * One of the following values: + * - DWC_OTG_HC_PID_DATA0 + * - DWC_OTG_HC_PID_DATA1 + */ + uint8_t data_toggle; + + /** Ping state if 1. */ + uint8_t ping_state; + + /** + * List of QTDs for this QH. + */ + struct list_head qtd_list; + + /** Host channel currently processing transfers for this QH. */ + dwc_hc_t *channel; + + /** QTD currently assigned to a host channel for this QH. */ + dwc_otg_qtd_t *qtd_in_process; + + /** Full/low speed endpoint on high-speed hub requires split. */ + uint8_t do_split; + + /** @name Periodic schedule information */ + /** @{ */ + + /** Bandwidth in microseconds per (micro)frame. */ + uint8_t usecs; + + /** Interval between transfers in (micro)frames. */ + uint16_t interval; + + /** + * (micro)frame to initialize a periodic transfer. The transfer + * executes in the following (micro)frame. + */ + uint16_t sched_frame; + + /** (micro)frame at which last start split was initialized. */ + uint16_t start_split_frame; + + /** @} */ + + /** Entry for QH in either the periodic or non-periodic schedule. */ + struct list_head qh_list_entry; +} dwc_otg_qh_t; + +/** + * This structure holds the state of the HCD, including the non-periodic and + * periodic schedules. + */ +typedef struct dwc_otg_hcd { + + spinlock_t lock; + + /** DWC OTG Core Interface Layer */ + dwc_otg_core_if_t *core_if; + + /** Internal DWC HCD Flags */ + volatile union dwc_otg_hcd_internal_flags { + uint32_t d32; + struct { + unsigned port_connect_status_change : 1; + unsigned port_connect_status : 1; + unsigned port_reset_change : 1; + unsigned port_enable_change : 1; + unsigned port_suspend_change : 1; + unsigned port_over_current_change : 1; + unsigned reserved : 27; + } b; + } flags; + + /** + * Inactive items in the non-periodic schedule. This is a list of + * Queue Heads. Transfers associated with these Queue Heads are not + * currently assigned to a host channel. + */ + struct list_head non_periodic_sched_inactive; + + /** + * Deferred items in the non-periodic schedule. This is a list of + * Queue Heads. Transfers associated with these Queue Heads are not + * currently assigned to a host channel. + * When we get an NAK, the QH goes here. + */ + struct list_head non_periodic_sched_deferred; + + /** + * Active items in the non-periodic schedule. This is a list of + * Queue Heads. Transfers associated with these Queue Heads are + * currently assigned to a host channel. + */ + struct list_head non_periodic_sched_active; + + /** + * Pointer to the next Queue Head to process in the active + * non-periodic schedule. + */ + struct list_head *non_periodic_qh_ptr; + + /** + * Inactive items in the periodic schedule. This is a list of QHs for + * periodic transfers that are _not_ scheduled for the next frame. + * Each QH in the list has an interval counter that determines when it + * needs to be scheduled for execution. This scheduling mechanism + * allows only a simple calculation for periodic bandwidth used (i.e. + * must assume that all periodic transfers may need to execute in the + * same frame). However, it greatly simplifies scheduling and should + * be sufficient for the vast majority of OTG hosts, which need to + * connect to a small number of peripherals at one time. + * + * Items move from this list to periodic_sched_ready when the QH + * interval counter is 0 at SOF. + */ + struct list_head periodic_sched_inactive; + + /** + * List of periodic QHs that are ready for execution in the next + * frame, but have not yet been assigned to host channels. + * + * Items move from this list to periodic_sched_assigned as host + * channels become available during the current frame. + */ + struct list_head periodic_sched_ready; + + /** + * List of periodic QHs to be executed in the next frame that are + * assigned to host channels. + * + * Items move from this list to periodic_sched_queued as the + * transactions for the QH are queued to the DWC_otg controller. + */ + struct list_head periodic_sched_assigned; + + /** + * List of periodic QHs that have been queued for execution. + * + * Items move from this list to either periodic_sched_inactive or + * periodic_sched_ready when the channel associated with the transfer + * is released. If the interval for the QH is 1, the item moves to + * periodic_sched_ready because it must be rescheduled for the next + * frame. Otherwise, the item moves to periodic_sched_inactive. + */ + struct list_head periodic_sched_queued; + + /** + * Total bandwidth claimed so far for periodic transfers. This value + * is in microseconds per (micro)frame. The assumption is that all + * periodic transfers may occur in the same (micro)frame. + */ + uint16_t periodic_usecs; + + /** + * Frame number read from the core at SOF. The value ranges from 0 to + * DWC_HFNUM_MAX_FRNUM. + */ + uint16_t frame_number; + + /** + * Free host channels in the controller. This is a list of + * dwc_hc_t items. + */ + struct list_head free_hc_list; + + /** + * Number of host channels assigned to periodic transfers. Currently + * assuming that there is a dedicated host channel for each periodic + * transaction and at least one host channel available for + * non-periodic transactions. + */ + int periodic_channels; + + /** + * Number of host channels assigned to non-periodic transfers. + */ + int non_periodic_channels; + + /** + * Array of pointers to the host channel descriptors. Allows accessing + * a host channel descriptor given the host channel number. This is + * useful in interrupt handlers. + */ + dwc_hc_t *hc_ptr_array[MAX_EPS_CHANNELS]; + + /** + * Buffer to use for any data received during the status phase of a + * control transfer. Normally no data is transferred during the status + * phase. This buffer is used as a bit bucket. + */ + uint8_t *status_buf; + + /** + * DMA address for status_buf. + */ + dma_addr_t status_buf_dma; +#define DWC_OTG_HCD_STATUS_BUF_SIZE 64 + + /** + * Structure to allow starting the HCD in a non-interrupt context + * during an OTG role change. + */ + struct work_struct start_work; + struct usb_hcd *_p; + + /** + * Connection timer. An OTG host must display a message if the device + * does not connect. Started when the VBus power is turned on via + * sysfs attribute "buspower". + */ + struct timer_list conn_timer; + + /* Tasket to do a reset */ + struct tasklet_struct *reset_tasklet; + +#ifdef CONFIG_DWC_DEBUG + uint32_t frrem_samples; + uint64_t frrem_accum; + + uint32_t hfnum_7_samples_a; + uint64_t hfnum_7_frrem_accum_a; + uint32_t hfnum_0_samples_a; + uint64_t hfnum_0_frrem_accum_a; + uint32_t hfnum_other_samples_a; + uint64_t hfnum_other_frrem_accum_a; + + uint32_t hfnum_7_samples_b; + uint64_t hfnum_7_frrem_accum_b; + uint32_t hfnum_0_samples_b; + uint64_t hfnum_0_frrem_accum_b; + uint32_t hfnum_other_samples_b; + uint64_t hfnum_other_frrem_accum_b; +#endif + +} dwc_otg_hcd_t; + +/** Gets the dwc_otg_hcd from a struct usb_hcd */ +static inline dwc_otg_hcd_t *hcd_to_dwc_otg_hcd(struct usb_hcd *hcd) +{ + return (dwc_otg_hcd_t *)(hcd->hcd_priv); +} + +/** Gets the struct usb_hcd that contains a dwc_otg_hcd_t. */ +static inline struct usb_hcd *dwc_otg_hcd_to_hcd(dwc_otg_hcd_t *dwc_otg_hcd) +{ + return container_of((void *)dwc_otg_hcd, struct usb_hcd, hcd_priv); +} + +/** @name HCD Create/Destroy Functions */ +/** @{ */ +extern int __init dwc_otg_hcd_init(struct device *_dev, dwc_otg_device_t * dwc_otg_device); +extern void dwc_otg_hcd_remove(struct device *_dev); +/** @} */ + +/** @name Linux HC Driver API Functions */ +/** @{ */ + +extern int dwc_otg_hcd_start(struct usb_hcd *hcd); +extern void dwc_otg_hcd_stop(struct usb_hcd *hcd); +extern int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd); +extern void dwc_otg_hcd_free(struct usb_hcd *hcd); +extern int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd, + struct urb *urb, + gfp_t mem_flags); +extern int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd, +/* struct usb_host_endpoint *ep,*/ + struct urb *urb, int status); +extern void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd, + struct usb_host_endpoint *ep); +extern irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd); +extern int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd, + char *buf); +extern int dwc_otg_hcd_hub_control(struct usb_hcd *hcd, + u16 typeReq, + u16 wValue, + u16 wIndex, + char *buf, + u16 wLength); + +/** @} */ + +/** @name Transaction Execution Functions */ +/** @{ */ +extern dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *_hcd); +extern void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *_hcd, + dwc_otg_transaction_type_e _tr_type); +extern void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *_hcd, struct urb *_urb, + int _status); +/** @} */ + +/** @name Interrupt Handler Functions */ +/** @{ */ +extern int32_t dwc_otg_hcd_handle_intr (dwc_otg_hcd_t *_dwc_otg_hcd); +extern int32_t dwc_otg_hcd_handle_sof_intr (dwc_otg_hcd_t *_dwc_otg_hcd); +extern int32_t dwc_otg_hcd_handle_rx_status_q_level_intr (dwc_otg_hcd_t *_dwc_otg_hcd); +extern int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd); +extern int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd); +extern int32_t dwc_otg_hcd_handle_incomplete_periodic_intr(dwc_otg_hcd_t *_dwc_otg_hcd); +extern int32_t dwc_otg_hcd_handle_port_intr (dwc_otg_hcd_t *_dwc_otg_hcd); +extern int32_t dwc_otg_hcd_handle_conn_id_status_change_intr (dwc_otg_hcd_t *_dwc_otg_hcd); +extern int32_t dwc_otg_hcd_handle_disconnect_intr (dwc_otg_hcd_t *_dwc_otg_hcd); +extern int32_t dwc_otg_hcd_handle_hc_intr (dwc_otg_hcd_t *_dwc_otg_hcd); +extern int32_t dwc_otg_hcd_handle_hc_n_intr (dwc_otg_hcd_t *_dwc_otg_hcd, uint32_t _num); +extern int32_t dwc_otg_hcd_handle_session_req_intr (dwc_otg_hcd_t *_dwc_otg_hcd); +extern int32_t dwc_otg_hcd_handle_wakeup_detected_intr (dwc_otg_hcd_t *_dwc_otg_hcd); +/** @} */ + + +/** @name Schedule Queue Functions */ +/** @{ */ + +/* Implemented in dwc_otg_hcd_queue.c */ +extern dwc_otg_qh_t *dwc_otg_hcd_qh_create (dwc_otg_hcd_t *_hcd, struct urb *_urb); +extern void dwc_otg_hcd_qh_init (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, struct urb *_urb); +extern void dwc_otg_hcd_qh_free (dwc_otg_qh_t *_qh); +extern int dwc_otg_hcd_qh_add (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh); +extern void dwc_otg_hcd_qh_remove (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh); +extern void dwc_otg_hcd_qh_deactivate (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, int sched_csplit); +extern int dwc_otg_hcd_qh_deferr (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, int delay); + +/** Remove and free a QH */ +static inline void dwc_otg_hcd_qh_remove_and_free (dwc_otg_hcd_t *_hcd, + dwc_otg_qh_t *_qh) +{ + dwc_otg_hcd_qh_remove (_hcd, _qh); + dwc_otg_hcd_qh_free (_qh); +} + +/** Allocates memory for a QH structure. + * @return Returns the memory allocate or NULL on error. */ +static inline dwc_otg_qh_t *dwc_otg_hcd_qh_alloc (void) +{ + return (dwc_otg_qh_t *) kmalloc (sizeof(dwc_otg_qh_t), GFP_KERNEL); +} + +extern dwc_otg_qtd_t *dwc_otg_hcd_qtd_create (struct urb *urb); +extern void dwc_otg_hcd_qtd_init (dwc_otg_qtd_t *qtd, struct urb *urb); +extern int dwc_otg_hcd_qtd_add (dwc_otg_qtd_t *qtd, dwc_otg_hcd_t *dwc_otg_hcd); + +/** Allocates memory for a QTD structure. + * @return Returns the memory allocate or NULL on error. */ +static inline dwc_otg_qtd_t *dwc_otg_hcd_qtd_alloc (void) +{ + return (dwc_otg_qtd_t *) kmalloc (sizeof(dwc_otg_qtd_t), GFP_KERNEL); +} + +/** Frees the memory for a QTD structure. QTD should already be removed from + * list. + * @param[in] _qtd QTD to free.*/ +static inline void dwc_otg_hcd_qtd_free (dwc_otg_qtd_t *_qtd) +{ + kfree (_qtd); +} + +/** Removes a QTD from list. + * @param[in] _qtd QTD to remove from list. */ +static inline void dwc_otg_hcd_qtd_remove (dwc_otg_qtd_t *_qtd) +{ + unsigned long flags; + local_irq_save (flags); + list_del (&_qtd->qtd_list_entry); + local_irq_restore (flags); +} + +/** Remove and free a QTD */ +static inline void dwc_otg_hcd_qtd_remove_and_free (dwc_otg_qtd_t *_qtd) +{ + dwc_otg_hcd_qtd_remove (_qtd); + dwc_otg_hcd_qtd_free (_qtd); +} + +/** @} */ + + +/** @name Internal Functions */ +/** @{ */ +dwc_otg_qh_t *dwc_urb_to_qh(struct urb *_urb); +void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *_hcd); +void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *_hcd); +/** @} */ + +/** Gets the usb_host_endpoint associated with an URB. */ +static inline struct usb_host_endpoint *dwc_urb_to_endpoint(struct urb *_urb) +{ + struct usb_device *dev = _urb->dev; + int ep_num = usb_pipeendpoint(_urb->pipe); + + if (usb_pipein(_urb->pipe)) + return dev->ep_in[ep_num]; + else + return dev->ep_out[ep_num]; +} + +/** + * Gets the endpoint number from a _bEndpointAddress argument. The endpoint is + * qualified with its direction (possible 32 endpoints per device). + */ +#define dwc_ep_addr_to_endpoint(_bEndpointAddress_) \ + ((_bEndpointAddress_ & USB_ENDPOINT_NUMBER_MASK) | \ + ((_bEndpointAddress_ & USB_DIR_IN) != 0) << 4) + +/** Gets the QH that contains the list_head */ +#define dwc_list_to_qh(_list_head_ptr_) (container_of(_list_head_ptr_,dwc_otg_qh_t,qh_list_entry)) + +/** Gets the QTD that contains the list_head */ +#define dwc_list_to_qtd(_list_head_ptr_) (container_of(_list_head_ptr_,dwc_otg_qtd_t,qtd_list_entry)) + +/** Check if QH is non-periodic */ +#define dwc_qh_is_non_per(_qh_ptr_) ((_qh_ptr_->ep_type == USB_ENDPOINT_XFER_BULK) || \ + (_qh_ptr_->ep_type == USB_ENDPOINT_XFER_CONTROL)) + +/** High bandwidth multiplier as encoded in highspeed endpoint descriptors */ +#define dwc_hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) + +/** Packet size for any kind of endpoint descriptor */ +#define dwc_max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) + +/** + * Returns true if _frame1 is less than or equal to _frame2. The comparison is + * done modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the + * frame number when the max frame number is reached. + */ +static inline int dwc_frame_num_le(uint16_t _frame1, uint16_t _frame2) +{ + return ((_frame2 - _frame1) & DWC_HFNUM_MAX_FRNUM) <= + (DWC_HFNUM_MAX_FRNUM >> 1); +} + +/** + * Returns true if _frame1 is greater than _frame2. The comparison is done + * modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the frame + * number when the max frame number is reached. + */ +static inline int dwc_frame_num_gt(uint16_t _frame1, uint16_t _frame2) +{ + return (_frame1 != _frame2) && + (((_frame1 - _frame2) & DWC_HFNUM_MAX_FRNUM) < + (DWC_HFNUM_MAX_FRNUM >> 1)); +} + +/** + * Increments _frame by the amount specified by _inc. The addition is done + * modulo DWC_HFNUM_MAX_FRNUM. Returns the incremented value. + */ +static inline uint16_t dwc_frame_num_inc(uint16_t _frame, uint16_t _inc) +{ + return (_frame + _inc) & DWC_HFNUM_MAX_FRNUM; +} + +static inline uint16_t dwc_full_frame_num (uint16_t _frame) +{ + return ((_frame) & DWC_HFNUM_MAX_FRNUM) >> 3; +} + +static inline uint16_t dwc_micro_frame_num (uint16_t _frame) +{ + return (_frame) & 0x7; +} + +#ifdef CONFIG_DWC_DEBUG +/** + * Macro to sample the remaining PHY clocks left in the current frame. This + * may be used during debugging to determine the average time it takes to + * execute sections of code. There are two possible sample points, "a" and + * "b", so the _letter argument must be one of these values. + * + * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For + * example, "cat /sys/devices/lm0/hcd_frrem". + */ +#define dwc_sample_frrem(_hcd, _qh, _letter) \ +{ \ + hfnum_data_t hfnum; \ + dwc_otg_qtd_t *qtd; \ + qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); \ + if (usb_pipeint(qtd->urb->pipe) && _qh->start_split_frame != 0 && !qtd->complete_split) { \ + hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); \ + switch (hfnum.b.frnum & 0x7) { \ + case 7: \ + _hcd->hfnum_7_samples_##_letter++; \ + _hcd->hfnum_7_frrem_accum_##_letter += hfnum.b.frrem; \ + break; \ + case 0: \ + _hcd->hfnum_0_samples_##_letter++; \ + _hcd->hfnum_0_frrem_accum_##_letter += hfnum.b.frrem; \ + break; \ + default: \ + _hcd->hfnum_other_samples_##_letter++; \ + _hcd->hfnum_other_frrem_accum_##_letter += hfnum.b.frrem; \ + break; \ + } \ + } \ +} +#else +#define dwc_sample_frrem(_hcd, _qh, _letter) +#endif +#endif +#endif /* DWC_DEVICE_ONLY */ diff --git a/drivers/usb/gadget/dwc_otg/dwc_otg_hcd_intr.c b/drivers/usb/gadget/dwc_otg/dwc_otg_hcd_intr.c new file mode 100644 index 00000000000..39a995f9948 --- /dev/null +++ b/drivers/usb/gadget/dwc_otg/dwc_otg_hcd_intr.c @@ -0,0 +1,1746 @@ +/* ========================================================================== + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd_intr.c $ + * $Revision: #7 $ + * $Date: 2005/11/02 $ + * $Change: 553126 $ + * + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ + +#ifndef CONFIG_DWC_DEVICE_ONLY + +#include "dwc_otg_driver.h" +#include "dwc_otg_hcd.h" +#include "dwc_otg_regs.h" + +const int erratum_usb09_patched = 0; +const int deferral_on = 1; +int nak_deferral_delay = 20; +module_param(nak_deferral_delay, int, 0644); +const int nyet_deferral_delay = 1; + +/** @file + * This file contains the implementation of the HCD Interrupt handlers. + */ + +/** This function handles interrupts for the HCD. */ +int32_t dwc_otg_hcd_handle_intr(dwc_otg_hcd_t * _dwc_otg_hcd) +{ + int retval = 0; + dwc_otg_core_if_t * core_if = _dwc_otg_hcd->core_if; + gintsts_data_t gintsts; + +#ifdef CONFIG_DWC_DEBUG + dwc_otg_core_global_regs_t * global_regs = core_if->core_global_regs; + +#endif /* */ + + /* Check if HOST Mode */ + if (dwc_otg_is_host_mode(core_if)) { + gintsts.d32 = dwc_otg_read_core_intr(core_if); + if (!gintsts.d32) { + return 0; + } +#ifdef CONFIG_DWC_DEBUG + /* Don't print debug message in the interrupt handler on SOF */ +#ifndef DEBUG_SOF + if (gintsts.d32 != DWC_SOF_INTR_MASK) +#endif + DWC_DEBUGPL(DBG_HCD, "\n"); +#endif /* */ + +#ifdef CONFIG_DWC_DEBUG +#ifndef DEBUG_SOF + if (gintsts.d32 != DWC_SOF_INTR_MASK) +#endif + DWC_DEBUGPL(DBG_HCD,"DWC OTG HCD Interrupt Detected gintsts&gintmsk=0x%08x\n", + gintsts.d32); +#endif /* */ + if (gintsts.b.sofintr) { + retval |= dwc_otg_hcd_handle_sof_intr(_dwc_otg_hcd); + } +#ifdef CONFIG_OTG_PLB_DMA_TASKLET + if (!atomic_read(&release_later) && gintsts.b.rxstsqlvl) { +#else + if (gintsts.b.rxstsqlvl) { +#endif + retval |= dwc_otg_hcd_handle_rx_status_q_level_intr(_dwc_otg_hcd); + } +#ifdef CONFIG_OTG_PLB_DMA_TASKLET + if (!atomic_read(&release_later) && gintsts.b.nptxfempty) { +#else + if (gintsts.b.nptxfempty) { +#endif + retval |= dwc_otg_hcd_handle_np_tx_fifo_empty_intr(_dwc_otg_hcd); + } + if (gintsts.b.i2cintr) { + /** @todo Implement i2cintr handler. */ + } + if (gintsts.b.portintr) { + retval |= dwc_otg_hcd_handle_port_intr(_dwc_otg_hcd); + } + if (gintsts.b.hcintr) { + retval |= dwc_otg_hcd_handle_hc_intr(_dwc_otg_hcd); + } + if (gintsts.b.ptxfempty) { + retval |= dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(_dwc_otg_hcd); + } + +#ifdef CONFIG_DWC_DEBUG +#ifndef DEBUG_SOF + if (gintsts.d32 != DWC_SOF_INTR_MASK) +#endif + { + DWC_DEBUGPL(DBG_HCD, + "DWC OTG HCD Finished Servicing Interrupts\n"); + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintsts=0x%08x\n", + dwc_read_reg32(&global_regs->gintsts)); + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintmsk=0x%08x\n", + dwc_read_reg32(&global_regs->gintmsk)); + } +#endif /* */ + +#ifdef CONFIG_DWC_DEBUG +#ifndef DEBUG_SOF + if (gintsts.d32 != DWC_SOF_INTR_MASK) +#endif + DWC_DEBUGPL(DBG_HCD, "\n"); +#endif /* */ + } + return retval; +} + + +#ifdef DWC_TRACK_MISSED_SOFS +#warning Compiling code to track missed SOFs +#define FRAME_NUM_ARRAY_SIZE 1000 +/** + * This function is for debug only. + */ +static inline void track_missed_sofs(uint16_t _curr_frame_number) +{ + static uint16_t frame_num_array[FRAME_NUM_ARRAY_SIZE]; + static uint16_t last_frame_num_array[FRAME_NUM_ARRAY_SIZE]; + static int frame_num_idx = 0; + static uint16_t last_frame_num = DWC_HFNUM_MAX_FRNUM; + static int dumped_frame_num_array = 0; + if (frame_num_idx < FRAME_NUM_ARRAY_SIZE) { + if ((((last_frame_num + 1) & DWC_HFNUM_MAX_FRNUM) != + _curr_frame_number)) { + frame_num_array[frame_num_idx] = _curr_frame_number; + last_frame_num_array[frame_num_idx++] = last_frame_num; + } + } else if (!dumped_frame_num_array) { + int i; + printk(KERN_EMERG USB_DWC "Frame Last Frame\n"); + printk(KERN_EMERG USB_DWC "----- ----------\n"); + for (i = 0; i < FRAME_NUM_ARRAY_SIZE; i++) { + printk(KERN_EMERG USB_DWC "0x%04x 0x%04x\n", + frame_num_array[i], last_frame_num_array[i]); + } + dumped_frame_num_array = 1; + } + last_frame_num = _curr_frame_number; +} +#endif /* */ + +/** + * Handles the start-of-frame interrupt in host mode. Non-periodic + * transactions may be queued to the DWC_otg controller for the current + * (micro)frame. Periodic transactions may be queued to the controller for the + * next (micro)frame. + */ +int32_t dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd_t * _hcd) +{ + hfnum_data_t hfnum; + struct list_head *qh_entry; + dwc_otg_qh_t * qh; + dwc_otg_transaction_type_e tr_type; + gintsts_data_t gintsts = {.d32 = 0}; + hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); + +#ifdef DEBUG_SOF + DWC_DEBUGPL(DBG_HCD, "--Start of Frame Interrupt--\n"); +#endif /* */ + _hcd->frame_number = hfnum.b.frnum; +#ifdef CONFIG_DWC_DEBUG + _hcd->frrem_accum += hfnum.b.frrem; + _hcd->frrem_samples++; +#endif /* */ + +#ifdef DWC_TRACK_MISSED_SOFS + track_missed_sofs(_hcd->frame_number); +#endif /* */ + + /* Determine whether any periodic QHs should be executed. */ + qh_entry = _hcd->periodic_sched_inactive.next; + while (qh_entry != &_hcd->periodic_sched_inactive) { + qh = list_entry(qh_entry, dwc_otg_qh_t, qh_list_entry); + qh_entry = qh_entry->next; + if (dwc_frame_num_le(qh->sched_frame, _hcd->frame_number)) { + /* + * Move QH to the ready list to be executed next + * (micro)frame. + */ + list_move(&qh->qh_list_entry,&_hcd->periodic_sched_ready); + } + } + tr_type = dwc_otg_hcd_select_transactions(_hcd); + if (tr_type != DWC_OTG_TRANSACTION_NONE) { + dwc_otg_hcd_queue_transactions(_hcd, tr_type); + //schedule_work(&_hcd->hcd_queue_work); + } + + /* Clear interrupt */ + gintsts.b.sofintr = 1; + dwc_write_reg32(&_hcd->core_if->core_global_regs->gintsts,gintsts.d32); + return 1; +} + +/** Handles the Rx Status Queue Level Interrupt, which indicates that there is at + * least one packet in the Rx FIFO. The packets are moved from the FIFO to + * memory if the DWC_otg controller is operating in Slave mode. */ +int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd_t *_dwc_otg_hcd) +{ + host_grxsts_data_t grxsts; + dwc_hc_t * hc = NULL; + DWC_DEBUGPL(DBG_HCD, "--RxStsQ Level Interrupt--\n"); + grxsts.d32 = dwc_read_reg32(&_dwc_otg_hcd->core_if->core_global_regs->grxstsp); + hc = _dwc_otg_hcd->hc_ptr_array[grxsts.b.chnum]; + + /* Packet Status */ + DWC_DEBUGPL(DBG_HCDV, " Ch num = %d\n", grxsts.b.chnum); + DWC_DEBUGPL(DBG_HCDV, " Count = %d\n", grxsts.b.bcnt); + DWC_DEBUGPL(DBG_HCDV, " DPID = %d, hc.dpid = %d\n", grxsts.b.dpid, + hc->data_pid_start); + DWC_DEBUGPL(DBG_HCDV, " PStatus = %d\n", grxsts.b.pktsts); + switch (grxsts.b.pktsts) { + case DWC_GRXSTS_PKTSTS_IN: + /* Read the data into the host buffer. */ + if (grxsts.b.bcnt > 0) { + dwc_otg_read_packet(_dwc_otg_hcd->core_if, + hc->xfer_buff, grxsts.b.bcnt); + + /* Update the HC fields for the next packet received. */ + hc->xfer_count += grxsts.b.bcnt; + hc->xfer_buff += grxsts.b.bcnt; + } + case DWC_GRXSTS_PKTSTS_IN_XFER_COMP: + case DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR: + case DWC_GRXSTS_PKTSTS_CH_HALTED: + /* Handled in interrupt, just ignore data */ + break; + default: + DWC_ERROR("RX_STS_Q Interrupt: Unknown status %d\n", + grxsts.b.pktsts); + break; + } + return 1; +} + + +/** This interrupt occurs when the non-periodic Tx FIFO is half-empty. More + * data packets may be written to the FIFO for OUT transfers. More requests + * may be written to the non-periodic request queue for IN transfers. This + * interrupt is enabled only in Slave mode. */ +int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd_t * + _dwc_otg_hcd) +{ + DWC_DEBUGPL(DBG_HCD, "--Non-Periodic TxFIFO Empty Interrupt--\n"); + dwc_otg_hcd_queue_transactions(_dwc_otg_hcd, + DWC_OTG_TRANSACTION_NON_PERIODIC); + //schedule_work(&_dwc_otg_hcd->hcd_queue_work); + return 1; +} + + +/** This interrupt occurs when the periodic Tx FIFO is half-empty. More data + * packets may be written to the FIFO for OUT transfers. More requests may be + * written to the periodic request queue for IN transfers. This interrupt is + * enabled only in Slave mode. */ +int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd_t * + _dwc_otg_hcd) +{ + DWC_DEBUGPL(DBG_HCD, "--Periodic TxFIFO Empty Interrupt--\n"); + dwc_otg_hcd_queue_transactions(_dwc_otg_hcd, + DWC_OTG_TRANSACTION_PERIODIC); + //schedule_work(&_dwc_otg_hcd->hcd_queue_work); + return 1; +} + + +/** There are multiple conditions that can cause a port interrupt. This function + * determines which interrupt conditions have occurred and handles them + * appropriately. */ +int32_t dwc_otg_hcd_handle_port_intr(dwc_otg_hcd_t * _dwc_otg_hcd) +{ + int retval = 0; + hprt0_data_t hprt0; + hprt0_data_t hprt0_modify; + hprt0.d32 = dwc_read_reg32(_dwc_otg_hcd->core_if->host_if->hprt0); + hprt0_modify.d32 = dwc_read_reg32(_dwc_otg_hcd->core_if->host_if->hprt0); + + /* Clear appropriate bits in HPRT0 to clear the interrupt bit in + * GINTSTS */ + hprt0_modify.b.prtena = 0; + hprt0_modify.b.prtconndet = 0; + hprt0_modify.b.prtenchng = 0; + hprt0_modify.b.prtovrcurrchng = 0; + + /* Port Connect Detected + * Set flag and clear if detected */ + if (hprt0.b.prtconndet) { + DWC_DEBUGPL(DBG_HCD, "--Port Interrupt HPRT0=0x%08x " + "Port Connect Detected--\n", hprt0.d32); + _dwc_otg_hcd->flags.b.port_connect_status_change = 1; + _dwc_otg_hcd->flags.b.port_connect_status = 1; + hprt0_modify.b.prtconndet = 1; + + /* B-Device has connected, Delete the connection timer. */ + del_timer(&_dwc_otg_hcd->conn_timer); + + /* The Hub driver asserts a reset when it sees port connect + * status change flag + */ + retval |= 1; + } + + /* Port Enable Changed + * Clear if detected - Set internal flag if disabled */ + if (hprt0.b.prtenchng) { + DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x " + "Port Enable Changed--\n", hprt0.d32); + hprt0_modify.b.prtenchng = 1; + if (hprt0.b.prtena == 1) { + int do_reset = 0; + dwc_otg_core_params_t * params = + _dwc_otg_hcd->core_if->core_params; + dwc_otg_core_global_regs_t * global_regs = + _dwc_otg_hcd->core_if->core_global_regs; + dwc_otg_host_if_t * host_if = + _dwc_otg_hcd->core_if->host_if; + + /* Check if we need to adjust the PHY clock speed for + * low power and adjust it */ + if (params->host_support_fs_ls_low_power) { + gusbcfg_data_t usbcfg; + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); + if ((hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED) || + (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_FULL_SPEED)) { + /* + * Low power + */ + hcfg_data_t hcfg; + if (usbcfg.b.phylpwrclksel == 0) { + /* Set PHY low power clock select for FS/LS devices */ + usbcfg.b.phylpwrclksel = 1; + dwc_write_reg32(&global_regs->gusbcfg,usbcfg.d32); + do_reset = 1; + } + hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg); + if ((hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED) && + (params->host_ls_low_power_phy_clk == + DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ)) { + /* 6 MHZ */ + DWC_DEBUGPL(DBG_CIL,"FS_PHY programming HCFG to 6 MHz (Low Power)\n"); + if (hcfg.b.fslspclksel != DWC_HCFG_6_MHZ) { + hcfg.b.fslspclksel = DWC_HCFG_6_MHZ; + dwc_write_reg32(&host_if->host_global_regs->hcfg, hcfg.d32); + do_reset = 1; + } + } else { + /* 48 MHZ */ + DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 48 MHz ()\n"); + if (hcfg.b.fslspclksel != DWC_HCFG_48_MHZ) { + hcfg.b.fslspclksel = DWC_HCFG_48_MHZ; + dwc_write_reg32(&host_if->host_global_regs->hcfg, hcfg.d32); + do_reset = 1; + } + } + } else { + /* + * Not low power + */ + if (usbcfg.b.phylpwrclksel == 1) { + usbcfg.b.phylpwrclksel = 0; + dwc_write_reg32(&global_regs->gusbcfg,usbcfg.d32); + do_reset = 1; + } + } + if (do_reset) { + tasklet_schedule(_dwc_otg_hcd->reset_tasklet); + } + } + if (!do_reset) { + /* Port has been enabled set the reset change flag */ + _dwc_otg_hcd->flags.b.port_reset_change = 1; + } + } else { + _dwc_otg_hcd->flags.b.port_enable_change = 1; + } + retval |= 1; + } + + /** Overcurrent Change Interrupt */ + if (hprt0.b.prtovrcurrchng) { + DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x " + "Port Overcurrent Changed--\n", hprt0.d32); + _dwc_otg_hcd->flags.b.port_over_current_change = 1; + hprt0_modify.b.prtovrcurrchng = 1; + retval |= 1; + } + + /* Clear Port Interrupts */ + dwc_write_reg32(_dwc_otg_hcd->core_if->host_if->hprt0,hprt0_modify.d32); + return retval; +} + +/** This interrupt indicates that one or more host channels has a pending + * interrupt. There are multiple conditions that can cause each host channel + * interrupt. This function determines which conditions have occurred for each + * host channel interrupt and handles them appropriately. */ +int32_t dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd_t * _dwc_otg_hcd) +{ + int i; + int retval = 0; + haint_data_t haint; + + /* Clear appropriate bits in HCINTn to clear the interrupt bit in + * GINTSTS */ + haint.d32 = dwc_otg_read_host_all_channels_intr(_dwc_otg_hcd->core_if); + for (i = 0; i < _dwc_otg_hcd->core_if->core_params->host_channels;i++) { + if (haint.b2.chint & (1 << i)) { + retval |= dwc_otg_hcd_handle_hc_n_intr(_dwc_otg_hcd, i); + } + } + return retval; +} + +/* Macro used to clear one channel interrupt */ +#define clear_hc_int(_hc_regs_,_intr_) \ + do { \ + hcint_data_t hcint_clear = { .d32 = 0}; \ + hcint_clear.b._intr_ = 1; \ + dwc_write_reg32(&((_hc_regs_)->hcint), hcint_clear.d32); \ + } while (0) + +/* + * Macro used to disable one channel interrupt. Channel interrupts are + * disabled when the channel is halted or released by the interrupt handler. + * There is no need to handle further interrupts of that type until the + * channel is re-assigned. In fact, subsequent handling may cause crashes + * because the channel structures are cleaned up when the channel is released. + */ +#define disable_hc_int(_hc_regs_,_intr_) \ + do { \ + hcintmsk_data_t hcintmsk = {.d32 = 0}; \ + hcintmsk.b._intr_ = 1; \ + dwc_modify_reg32(&((_hc_regs_)->hcintmsk), hcintmsk.d32, 0); \ + } while (0) + +/** + * Gets the actual length of a transfer after the transfer halts. _halt_status + * holds the reason for the halt. + * + * For IN transfers where _halt_status is DWC_OTG_HC_XFER_COMPLETE, + * *_short_read is set to 1 upon return if less than the requested + * number of bytes were transferred. Otherwise, *_short_read is set to 0 upon + * return. _short_read may also be NULL on entry, in which case it remains + * unchanged. + */ +static uint32_t get_actual_xfer_length(dwc_hc_t * _hc, + dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, + dwc_otg_halt_status_e _halt_status, int *_short_read) +{ + hctsiz_data_t hctsiz; + uint32_t length; + if (_short_read != NULL) { + *_short_read = 0; + } + hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); + if (_halt_status == DWC_OTG_HC_XFER_COMPLETE) { + if (_hc->ep_is_in) { + length = _hc->xfer_len - hctsiz.b.xfersize; + if (_short_read != NULL) { + *_short_read = (hctsiz.b.xfersize != 0); + } + } else if (_hc->qh->do_split) { + length = _qtd->ssplit_out_xfer_count; + } else { + length = _hc->xfer_len; + } + } else { + /* + * Must use the hctsiz.pktcnt field to determine how much data + * has been transferred. This field reflects the number of + * packets that have been transferred via the USB. This is + * always an integral number of packets if the transfer was + * halted before its normal completion. (Can't use the + * hctsiz.xfersize field because that reflects the number of + * bytes transferred via the AHB, not the USB). + */ + length = (_hc->start_pkt_count - hctsiz.b.pktcnt) * _hc->max_packet; + } + return length; +} + +/** + * Updates the state of the URB after a Transfer Complete interrupt on the + * host channel. Updates the actual_length field of the URB based on the + * number of bytes transferred via the host channel. Sets the URB status + * if the data transfer is finished. + * + * @return 1 if the data transfer specified by the URB is completely finished, + * 0 otherwise. + */ +static int update_urb_state_xfer_comp(dwc_hc_t * _hc, + dwc_otg_hc_regs_t * _hc_regs, struct urb *_urb, + dwc_otg_qtd_t * _qtd, int *status) +{ + int xfer_done = 0; + int short_read = 0; + _urb->actual_length += get_actual_xfer_length(_hc, _hc_regs, _qtd, + DWC_OTG_HC_XFER_COMPLETE, &short_read); + if (short_read || (_urb->actual_length == _urb->transfer_buffer_length)) { + xfer_done = 1; + if (short_read && (_urb->transfer_flags & URB_SHORT_NOT_OK)) { + *status = -EREMOTEIO; + } else { + *status = 0; + } + } + +#ifdef CONFIG_DWC_DEBUG + { + hctsiz_data_t hctsiz; + hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); + DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n", + __func__, (_hc->ep_is_in ? "IN" : "OUT"), _hc->hc_num); + DWC_DEBUGPL(DBG_HCDV, " hc->xfer_len %d\n", _hc->xfer_len); + DWC_DEBUGPL(DBG_HCDV, " hctsiz.xfersize %d\n",hctsiz.b.xfersize); + DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n", + _urb->transfer_buffer_length); + DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", + _urb->actual_length); + DWC_DEBUGPL(DBG_HCDV, " short_read %d, xfer_done %d\n", + short_read, xfer_done); + } +#endif /* */ + return xfer_done; +} + +/* + * Save the starting data toggle for the next transfer. The data toggle is + * saved in the QH for non-control transfers and it's saved in the QTD for + * control transfers. + */ +static void save_data_toggle(dwc_hc_t * _hc, + dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd) +{ + hctsiz_data_t hctsiz; + hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); + if (_hc->ep_type != DWC_OTG_EP_TYPE_CONTROL) { + dwc_otg_qh_t * qh = _hc->qh; + if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) { + qh->data_toggle = DWC_OTG_HC_PID_DATA0; + } else { + qh->data_toggle = DWC_OTG_HC_PID_DATA1; + } + } else { + if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) { + _qtd->data_toggle = DWC_OTG_HC_PID_DATA0; + } else { + _qtd->data_toggle = DWC_OTG_HC_PID_DATA1; + } + } +} + +/** + * Frees the first QTD in the QH's list if free_qtd is 1. For non-periodic + * QHs, removes the QH from the active non-periodic schedule. If any QTDs are + * still linked to the QH, the QH is added to the end of the inactive + * non-periodic schedule. For periodic QHs, removes the QH from the periodic + * schedule if no more QTDs are linked to the QH. + */ +static void deactivate_qh(dwc_otg_hcd_t * _hcd, + dwc_otg_qh_t * _qh, int free_qtd) +{ + int continue_split = 0; + dwc_otg_qtd_t * qtd; + DWC_DEBUGPL(DBG_HCDV, " %s(%p,%p,%d)\n", __func__, _hcd, _qh, + free_qtd); + qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); + if (qtd->complete_split) { + continue_split = 1; + } else if ((qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_MID) || + (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_END)) { + continue_split = 1; + } + + if (free_qtd) { + /* + * Note that this was previously a call to + * dwc_otg_hcd_qtd_remove_and_free(qtd), which frees the qtd. + * However, that call frees the qtd memory, and we continue in the + * interrupt logic to access it many more times, including writing + * to it. With slub debugging on, it is clear that we were writing + * to memory we had freed. + * Call this instead, and now I have moved the freeing of the memory to + * the end of processing this interrupt. + */ + dwc_otg_hcd_qtd_remove(qtd); + + continue_split = 0; + } + _qh->channel = NULL; + _qh->qtd_in_process = NULL; + dwc_otg_hcd_qh_deactivate(_hcd, _qh, continue_split); +} + +/** + * Updates the state of an Isochronous URB when the transfer is stopped for + * any reason. The fields of the current entry in the frame descriptor array + * are set based on the transfer state and the input _halt_status. Completes + * the Isochronous URB if all the URB frames have been completed. + * + * @return DWC_OTG_HC_XFER_COMPLETE if there are more frames remaining to be + * transferred in the URB. Otherwise return DWC_OTG_HC_XFER_URB_COMPLETE. + */ +static dwc_otg_halt_status_e update_isoc_urb_state(dwc_otg_hcd_t * _hcd, + dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, + dwc_otg_halt_status_e _halt_status) +{ + struct urb *urb = _qtd->urb; + dwc_otg_halt_status_e ret_val = _halt_status; + struct usb_iso_packet_descriptor *frame_desc; + frame_desc = &urb->iso_frame_desc[_qtd->isoc_frame_index]; + switch (_halt_status) { + case DWC_OTG_HC_XFER_COMPLETE: + frame_desc->status = 0; + frame_desc->actual_length = + get_actual_xfer_length(_hc, _hc_regs, _qtd, _halt_status,NULL); + break; + case DWC_OTG_HC_XFER_FRAME_OVERRUN: + urb->error_count++; + if (_hc->ep_is_in) { + frame_desc->status = -ENOSR; + } else { + frame_desc->status = -ECOMM; + } + frame_desc->actual_length = 0; + break; + case DWC_OTG_HC_XFER_BABBLE_ERR: + urb->error_count++; + frame_desc->status = -EOVERFLOW; + + /* Don't need to update actual_length in this case. */ + break; + case DWC_OTG_HC_XFER_XACT_ERR: + urb->error_count++; + frame_desc->status = -EPROTO; + frame_desc->actual_length = + get_actual_xfer_length(_hc, _hc_regs, _qtd, _halt_status,NULL); + default: + DWC_ERROR("%s: Unhandled _halt_status (%d)\n", __func__, _halt_status); + BUG(); + break; + } + if (++_qtd->isoc_frame_index == urb->number_of_packets) { + /* + * urb->status is not used for isoc transfers. + * The individual frame_desc statuses are used instead. + */ + dwc_otg_hcd_complete_urb(_hcd, urb, 0); + ret_val = DWC_OTG_HC_XFER_URB_COMPLETE; + } else { + ret_val = DWC_OTG_HC_XFER_COMPLETE; + } + return ret_val; +} + +/** + * Releases a host channel for use by other transfers. Attempts to select and + * queue more transactions since at least one host channel is available. + * + * @param _hcd The HCD state structure. + * @param _hc The host channel to release. + * @param _qtd The QTD associated with the host channel. This QTD may be freed + * if the transfer is complete or an error has occurred. + * @param _halt_status Reason the channel is being released. This status + * determines the actions taken by this function. + */ + +static void release_channel(dwc_otg_hcd_t * _hcd, + dwc_hc_t * _hc, dwc_otg_qtd_t * _qtd, dwc_otg_halt_status_e _halt_status, int *must_free) { + dwc_otg_transaction_type_e tr_type; + int free_qtd; + dwc_otg_qh_t * _qh; + int deact = 1; + int retry_delay = 1; + + DWC_DEBUGPL(DBG_HCDV, " %s: channel %d, halt_status %d\n", __func__, + _hc->hc_num, _halt_status); + switch (_halt_status) { + case DWC_OTG_HC_XFER_NYET: + case DWC_OTG_HC_XFER_NAK: + if (_halt_status == DWC_OTG_HC_XFER_NYET) { + retry_delay = nyet_deferral_delay; + } else { + retry_delay = nak_deferral_delay; + } + free_qtd = 0; + if (deferral_on && _hc->do_split) { + _qh = _hc->qh; + if (_qh) { + deact = dwc_otg_hcd_qh_deferr(_hcd, _qh , retry_delay); + } + } + break; + + case DWC_OTG_HC_XFER_URB_COMPLETE: + free_qtd = 1; + break; + case DWC_OTG_HC_XFER_AHB_ERR: + case DWC_OTG_HC_XFER_STALL: + case DWC_OTG_HC_XFER_BABBLE_ERR: + free_qtd = 1; + break; + case DWC_OTG_HC_XFER_XACT_ERR: + if (_qtd->error_count >= 3) { + DWC_DEBUGPL(DBG_HCDV, " Complete URB with transaction error\n"); + free_qtd = 1; + dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EPROTO); + } else { + free_qtd = 0; + } + break; + case DWC_OTG_HC_XFER_URB_DEQUEUE: + /* + * The QTD has already been removed and the QH has been + * deactivated. Don't want to do anything except release the + * host channel and try to queue more transfers. + */ + goto cleanup; + case DWC_OTG_HC_XFER_NO_HALT_STATUS: + DWC_ERROR("%s: No halt_status, channel %d\n", __func__, + _hc->hc_num); + free_qtd = 0; + break; + default: + free_qtd = 0; + break; + } + *must_free = free_qtd; + if (deact) { + deactivate_qh(_hcd, _hc->qh, free_qtd); + } +cleanup: + /* + * Release the host channel for use by other transfers. The cleanup + * function clears the channel interrupt enables and conditions, so + * there's no need to clear the Channel Halted interrupt separately. + */ + dwc_otg_hc_cleanup(_hcd->core_if, _hc); + list_add_tail(&_hc->hc_list_entry, &_hcd->free_hc_list); + switch (_hc->ep_type) { + case DWC_OTG_EP_TYPE_CONTROL: + case DWC_OTG_EP_TYPE_BULK: + _hcd->non_periodic_channels--; + break; + default: + /* + * Don't release reservations for periodic channels here. + * That's done when a periodic transfer is descheduled (i.e. + * when the QH is removed from the periodic schedule). + */ + break; + } + /* Try to queue more transfers now that there's a free channel, */ + /* unless erratum_usb09_patched is set */ + if (!erratum_usb09_patched) { + tr_type = dwc_otg_hcd_select_transactions(_hcd); + if (tr_type != DWC_OTG_TRANSACTION_NONE) { + dwc_otg_hcd_queue_transactions(_hcd, tr_type); + } + } +} + +/** + * Halts a host channel. If the channel cannot be halted immediately because + * the request queue is full, this function ensures that the FIFO empty + * interrupt for the appropriate queue is enabled so that the halt request can + * be queued when there is space in the request queue. + * + * This function may also be called in DMA mode. In that case, the channel is + * simply released since the core always halts the channel automatically in + * DMA mode. + */ +static void halt_channel(dwc_otg_hcd_t * _hcd, + dwc_hc_t * _hc, dwc_otg_qtd_t * _qtd, dwc_otg_halt_status_e _halt_status, int *must_free) +{ + if (_hcd->core_if->dma_enable) { + release_channel(_hcd, _hc, _qtd, _halt_status, must_free); + return; + } + + /* Slave mode processing... */ + dwc_otg_hc_halt(_hcd->core_if, _hc, _halt_status); + if (_hc->halt_on_queue) { + gintmsk_data_t gintmsk = {.d32 = 0}; + dwc_otg_core_global_regs_t * global_regs; + global_regs = _hcd->core_if->core_global_regs; + if (_hc->ep_type == DWC_OTG_EP_TYPE_CONTROL || + _hc->ep_type == DWC_OTG_EP_TYPE_BULK) { + /* + * Make sure the Non-periodic Tx FIFO empty interrupt + * is enabled so that the non-periodic schedule will + * be processed. + */ + gintmsk.b.nptxfempty = 1; + dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32); + } else { + /* + * Move the QH from the periodic queued schedule to + * the periodic assigned schedule. This allows the + * halt to be queued when the periodic schedule is + * processed. + */ + list_move(&_hc->qh->qh_list_entry, + &_hcd->periodic_sched_assigned); + + /* + * Make sure the Periodic Tx FIFO Empty interrupt is + * enabled so that the periodic schedule will be + * processed. + */ + gintmsk.b.ptxfempty = 1; + dwc_modify_reg32(&global_regs->gintmsk, 0,gintmsk.d32); + } + } +} + +/** + * Performs common cleanup for non-periodic transfers after a Transfer + * Complete interrupt. This function should be called after any endpoint type + * specific handling is finished to release the host channel. + */ +static void complete_non_periodic_xfer(dwc_otg_hcd_t * _hcd, + dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, + dwc_otg_halt_status_e _halt_status, int *must_free) +{ + hcint_data_t hcint; + _qtd->error_count = 0; + hcint.d32 = dwc_read_reg32(&_hc_regs->hcint); + if (hcint.b.nyet) { + /* + * Got a NYET on the last transaction of the transfer. This + * means that the endpoint should be in the PING state at the + * beginning of the next transfer. + */ + _hc->qh->ping_state = 1; + clear_hc_int(_hc_regs, nyet); + } + + /* + * Always halt and release the host channel to make it available for + * more transfers. There may still be more phases for a control + * transfer or more data packets for a bulk transfer at this point, + * but the host channel is still halted. A channel will be reassigned + * to the transfer when the non-periodic schedule is processed after + * the channel is released. This allows transactions to be queued + * properly via dwc_otg_hcd_queue_transactions, which also enables the + * Tx FIFO Empty interrupt if necessary. + */ + if (_hc->ep_is_in) { + /* + * IN transfers in Slave mode require an explicit disable to + * halt the channel. (In DMA mode, this call simply releases + * the channel.) + */ + halt_channel(_hcd, _hc, _qtd, _halt_status, must_free); + } else { + /* + * The channel is automatically disabled by the core for OUT + * transfers in Slave mode. + */ + release_channel(_hcd, _hc, _qtd, _halt_status, must_free); + } +} + +/** + * Performs common cleanup for periodic transfers after a Transfer Complete + * interrupt. This function should be called after any endpoint type specific + * handling is finished to release the host channel. + */ +static void complete_periodic_xfer(dwc_otg_hcd_t * _hcd, + dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, + dwc_otg_halt_status_e _halt_status, int *must_free) +{ + hctsiz_data_t hctsiz; + _qtd->error_count = 0; + hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); + if (!_hc->ep_is_in || hctsiz.b.pktcnt == 0) { + /* Core halts channel in these cases. */ + release_channel(_hcd, _hc, _qtd, _halt_status, must_free); + } else { + /* Flush any outstanding requests from the Tx queue. */ + halt_channel(_hcd, _hc, _qtd, _halt_status, must_free); + } +} + +/** + * Handles a host channel Transfer Complete interrupt. This handler may be + * called in either DMA mode or Slave mode. + */ +static int32_t handle_hc_xfercomp_intr(dwc_otg_hcd_t * _hcd, + dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) +{ + int urb_xfer_done; + dwc_otg_halt_status_e halt_status = DWC_OTG_HC_XFER_COMPLETE; + struct urb *urb = _qtd->urb; + int pipe_type = usb_pipetype(urb->pipe); + int status = -EINPROGRESS; + + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " + "Transfer Complete--\n", _hc->hc_num); + + /* + * Handle xfer complete on CSPLIT. + */ + if (_hc->qh->do_split) { + _qtd->complete_split = 0; + } + + /* Update the QTD and URB states. */ + switch (pipe_type) { + case PIPE_CONTROL: + switch (_qtd->control_phase) { + case DWC_OTG_CONTROL_SETUP: + if (urb->transfer_buffer_length > 0) { + _qtd->control_phase = DWC_OTG_CONTROL_DATA; + } else { + _qtd->control_phase = DWC_OTG_CONTROL_STATUS; + } + DWC_DEBUGPL(DBG_HCDV, + " Control setup transaction done\n"); + halt_status = DWC_OTG_HC_XFER_COMPLETE; + break; + case DWC_OTG_CONTROL_DATA:{ + urb_xfer_done = update_urb_state_xfer_comp(_hc, _hc_regs,urb, _qtd, &status); + if (urb_xfer_done) { + _qtd->control_phase = DWC_OTG_CONTROL_STATUS; + DWC_DEBUGPL(DBG_HCDV," Control data transfer done\n"); + } else { + save_data_toggle(_hc, _hc_regs, _qtd); + } + halt_status = DWC_OTG_HC_XFER_COMPLETE; + break; + } + case DWC_OTG_CONTROL_STATUS: + DWC_DEBUGPL(DBG_HCDV, " Control transfer complete\n"); + if (status == -EINPROGRESS) { + status = 0; + } + dwc_otg_hcd_complete_urb(_hcd, urb, status); + halt_status = DWC_OTG_HC_XFER_URB_COMPLETE; + break; + } + complete_non_periodic_xfer(_hcd, _hc, _hc_regs, _qtd, + halt_status, must_free); + break; + case PIPE_BULK: + DWC_DEBUGPL(DBG_HCDV, " Bulk transfer complete\n"); + urb_xfer_done = update_urb_state_xfer_comp(_hc, _hc_regs, urb, _qtd, &status); + if (urb_xfer_done) { + dwc_otg_hcd_complete_urb(_hcd, urb, status); + halt_status = DWC_OTG_HC_XFER_URB_COMPLETE; + } else { + halt_status = DWC_OTG_HC_XFER_COMPLETE; + } + save_data_toggle(_hc, _hc_regs, _qtd); + complete_non_periodic_xfer(_hcd, _hc, _hc_regs, _qtd,halt_status, must_free); + break; + case PIPE_INTERRUPT: + DWC_DEBUGPL(DBG_HCDV, " Interrupt transfer complete\n"); + update_urb_state_xfer_comp(_hc, _hc_regs, urb, _qtd, &status); + /* + * Interrupt URB is done on the first transfer complete + * interrupt. + */ + dwc_otg_hcd_complete_urb(_hcd, urb, status); + save_data_toggle(_hc, _hc_regs, _qtd); + complete_periodic_xfer(_hcd, _hc, _hc_regs, _qtd, + DWC_OTG_HC_XFER_URB_COMPLETE, must_free); + break; + case PIPE_ISOCHRONOUS: + DWC_DEBUGPL(DBG_HCDV, " Isochronous transfer complete\n"); + if (_qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_ALL) { + halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd, + DWC_OTG_HC_XFER_COMPLETE); + } + complete_periodic_xfer(_hcd, _hc, _hc_regs, _qtd, halt_status, must_free); + break; + } + disable_hc_int(_hc_regs, xfercompl); + return 1; +} + +/** + * Handles a host channel STALL interrupt. This handler may be called in + * either DMA mode or Slave mode. + */ +static int32_t handle_hc_stall_intr(dwc_otg_hcd_t * _hcd, + dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) +{ + struct urb *urb = _qtd->urb; + int pipe_type = usb_pipetype(urb->pipe); + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " + "STALL Received--\n", _hc->hc_num); + if (pipe_type == PIPE_CONTROL) { + dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EPIPE); + } + if (pipe_type == PIPE_BULK || pipe_type == PIPE_INTERRUPT) { + dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EPIPE); + /* + * USB protocol requires resetting the data toggle for bulk + * and interrupt endpoints when a CLEAR_FEATURE(ENDPOINT_HALT) + * setup command is issued to the endpoint. Anticipate the + * CLEAR_FEATURE command since a STALL has occurred and reset + * the data toggle now. + */ + _hc->qh->data_toggle = 0; + } + halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_STALL, must_free); + disable_hc_int(_hc_regs, stall); + return 1; +} + +/* + * Updates the state of the URB when a transfer has been stopped due to an + * abnormal condition before the transfer completes. Modifies the + * actual_length field of the URB to reflect the number of bytes that have + * actually been transferred via the host channel. + */ +static void update_urb_state_xfer_intr(dwc_hc_t * _hc, + dwc_otg_hc_regs_t * _hc_regs, struct urb *_urb, dwc_otg_qtd_t * _qtd, + dwc_otg_halt_status_e _halt_status) +{ + uint32_t bytes_transferred = + get_actual_xfer_length(_hc, _hc_regs, _qtd, _halt_status, NULL); + _urb->actual_length += bytes_transferred; + +#ifdef CONFIG_DWC_DEBUG + { + hctsiz_data_t hctsiz; + hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); + DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n", + __func__, (_hc->ep_is_in ? "IN" : "OUT"),_hc->hc_num); + DWC_DEBUGPL(DBG_HCDV, " _hc->start_pkt_count %d\n", + _hc->start_pkt_count); + DWC_DEBUGPL(DBG_HCDV, " hctsiz.pktcnt %d\n", hctsiz.b.pktcnt); + DWC_DEBUGPL(DBG_HCDV, " _hc->max_packet %d\n",_hc->max_packet); + DWC_DEBUGPL(DBG_HCDV, " bytes_transferred %d\n", + bytes_transferred); + DWC_DEBUGPL(DBG_HCDV, " _urb->actual_length %d\n", + _urb->actual_length); + DWC_DEBUGPL(DBG_HCDV, " _urb->transfer_buffer_length %d\n", + _urb->transfer_buffer_length); + } +#endif /* */ +} + +/** + * Handles a host channel NAK interrupt. This handler may be called in either + * DMA mode or Slave mode. + */ +static int32_t handle_hc_nak_intr(dwc_otg_hcd_t * _hcd, + dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) { + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " + "NAK Received--\n", _hc->hc_num); + /* + * Handle NAK for IN/OUT SSPLIT/CSPLIT transfers, bulk, control, and + * interrupt. Re-start the SSPLIT transfer. + */ + if (_hc->do_split) { + if (_hc->complete_split) { + _qtd->error_count = 0; + } + _qtd->complete_split = 0; + halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NAK, must_free); + goto handle_nak_done; + } + switch (usb_pipetype(_qtd->urb->pipe)) { + case PIPE_CONTROL: + case PIPE_BULK: + if (_hcd->core_if->dma_enable && _hc->ep_is_in) { + /* + * NAK interrupts are enabled on bulk/control IN + * transfers in DMA mode for the sole purpose of + * resetting the error count after a transaction error + * occurs. The core will continue transferring data. + */ + _qtd->error_count = 0; + goto handle_nak_done; + } + + /* + * NAK interrupts normally occur during OUT transfers in DMA + * or Slave mode. For IN transfers, more requests will be + * queued as request queue space is available. + */ + _qtd->error_count = 0; + if (!_hc->qh->ping_state) { + update_urb_state_xfer_intr(_hc, _hc_regs, _qtd->urb, + _qtd, DWC_OTG_HC_XFER_NAK); + save_data_toggle(_hc, _hc_regs, _qtd); + if (_qtd->urb->dev->speed == USB_SPEED_HIGH) { + _hc->qh->ping_state = 1; + } + } + + /* + * Halt the channel so the transfer can be re-started from + * the appropriate point or the PING protocol will + * start/continue. + */ + halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NAK, must_free); + break; + case PIPE_INTERRUPT: + _qtd->error_count = 0; + halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NAK, must_free); + break; + case PIPE_ISOCHRONOUS: + /* Should never get called for isochronous transfers. */ + BUG(); + break; + } + handle_nak_done:disable_hc_int(_hc_regs, nak); + clear_hc_int(_hc_regs, nak); + return 1; +} + +/** + * Handles a host channel ACK interrupt. This interrupt is enabled when + * performing the PING protocol in Slave mode, when errors occur during + * either Slave mode or DMA mode, and during Start Split transactions. + */ +static int32_t handle_hc_ack_intr(dwc_otg_hcd_t * _hcd, + dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) +{ + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " + "ACK Received--\n", _hc->hc_num); + if (_hc->do_split) { + /* + * Handle ACK on SSPLIT. + * ACK should not occur in CSPLIT. + */ + if ((!_hc->ep_is_in) && (_hc->data_pid_start != DWC_OTG_HC_PID_SETUP)) { + _qtd->ssplit_out_xfer_count = _hc->xfer_len; + } + if (!(_hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !_hc->ep_is_in)) { + /* Don't need complete for isochronous out transfers. */ + _qtd->complete_split = 1; + } + + /* ISOC OUT */ + if ((_hc->ep_type == DWC_OTG_EP_TYPE_ISOC) && !_hc->ep_is_in) { + switch (_hc->xact_pos) { + case DWC_HCSPLIT_XACTPOS_ALL: + break; + case DWC_HCSPLIT_XACTPOS_END: + _qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL; + _qtd->isoc_split_offset = 0; + break; + case DWC_HCSPLIT_XACTPOS_BEGIN: + case DWC_HCSPLIT_XACTPOS_MID: + /* + * For BEGIN or MID, calculate the length for + * the next microframe to determine the correct + * SSPLIT token, either MID or END. + */ + do { + struct usb_iso_packet_descriptor *frame_desc; + frame_desc = &_qtd->urb->iso_frame_desc[_qtd->isoc_frame_index]; + _qtd->isoc_split_offset += 188; + if ((frame_desc->length - _qtd->isoc_split_offset) <=188) { + _qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_END; + } else { + _qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_MID; + } + } while (0); + break; + } + } else { + halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_ACK, must_free); + } + } else { + _qtd->error_count = 0; + if (_hc->qh->ping_state) { + _hc->qh->ping_state = 0; + + /* + * Halt the channel so the transfer can be re-started + * from the appropriate point. This only happens in + * Slave mode. In DMA mode, the ping_state is cleared + * when the transfer is started because the core + * automatically executes the PING, then the transfer. + */ + halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_ACK, must_free); + } + } + + /* + * If the ACK occurred when _not_ in the PING state, let the channel + * continue transferring data after clearing the error count. + */ + disable_hc_int(_hc_regs, ack); + clear_hc_int(_hc_regs, ack); + return 1; +} + +/** + * Handles a host channel NYET interrupt. This interrupt should only occur on + * Bulk and Control OUT endpoints and for complete split transactions. If a + * NYET occurs at the same time as a Transfer Complete interrupt, it is + * handled in the xfercomp interrupt handler, not here. This handler may be + * called in either DMA mode or Slave mode. + */ +static int32_t handle_hc_nyet_intr(dwc_otg_hcd_t * _hcd, + dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) +{ + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " + "NYET Received--\n", _hc->hc_num); + + /* + * NYET on CSPLIT + * re-do the CSPLIT immediately on non-periodic + */ + if ((_hc->do_split) && (_hc->complete_split)) { + if ((_hc->ep_type == DWC_OTG_EP_TYPE_INTR) || + (_hc->ep_type == DWC_OTG_EP_TYPE_ISOC)) { + int frnum = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd + (_hcd)); + if (dwc_full_frame_num(frnum) != + dwc_full_frame_num(_hc->qh->sched_frame)) { + + /* + * No longer in the same full speed frame. + * Treat this as a transaction error. + */ +#if 0 + /** @todo Fix system performance so this can + * be treated as an error. Right now complete + * splits cannot be scheduled precisely enough + * due to other system activity, so this error + * occurs regularly in Slave mode. + */ + _qtd->error_count++; + +#endif /* */ + _qtd->complete_split = 0; + halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_XACT_ERR, must_free); + + /** @todo add support for isoc release */ + goto handle_nyet_done; + } + } + halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NYET, must_free); + goto handle_nyet_done; + } + _hc->qh->ping_state = 1; + _qtd->error_count = 0; + update_urb_state_xfer_intr(_hc, _hc_regs, _qtd->urb, _qtd, + DWC_OTG_HC_XFER_NYET); + save_data_toggle(_hc, _hc_regs, _qtd); + + /* + * Halt the channel and re-start the transfer so the PING + * protocol will start. + */ + halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NYET, must_free); +handle_nyet_done: + disable_hc_int(_hc_regs, nyet); + clear_hc_int(_hc_regs, nyet); + + return 1; +} + +/** + * Handles a host channel babble interrupt. This handler may be called in + * either DMA mode or Slave mode. + */ +static int32_t handle_hc_babble_intr(dwc_otg_hcd_t * _hcd, + dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) +{ + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " + "Babble Error--\n", _hc->hc_num); + if (_hc->ep_type != DWC_OTG_EP_TYPE_ISOC) { + dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EOVERFLOW); + halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_BABBLE_ERR, must_free); + } else { + dwc_otg_halt_status_e halt_status; + halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd, + DWC_OTG_HC_XFER_BABBLE_ERR); + halt_channel(_hcd, _hc, _qtd, halt_status, must_free); + } + disable_hc_int(_hc_regs, bblerr); + return 1; +} + +/** + * Handles a host channel AHB error interrupt. This handler is only called in + * DMA mode. + */ +static int32_t handle_hc_ahberr_intr(dwc_otg_hcd_t * _hcd, + dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd) +{ + hcchar_data_t hcchar; + hcsplt_data_t hcsplt; + hctsiz_data_t hctsiz; + uint32_t hcdma; + struct urb *urb = _qtd->urb; + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " + "AHB Error--\n", _hc->hc_num); + hcchar.d32 = dwc_read_reg32(&_hc_regs->hcchar); + hcsplt.d32 = dwc_read_reg32(&_hc_regs->hcsplt); + hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); + hcdma = dwc_read_reg32(&_hc_regs->hcdma); + DWC_ERROR("AHB ERROR, Channel %d\n", _hc->hc_num); + DWC_ERROR(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32); + DWC_ERROR(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma); + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Enqueue\n"); + DWC_ERROR(" Device address: %d\n", usb_pipedevice(urb->pipe)); + DWC_ERROR(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe), + (usb_pipein(urb->pipe) ? "IN" : "OUT")); + DWC_ERROR(" Endpoint type: %s\n", ( { + char *pipetype; + switch (usb_pipetype(urb->pipe)) { + case PIPE_CONTROL: + pipetype = "CONTROL"; break; + case PIPE_BULK: + pipetype = "BULK"; break; + case PIPE_INTERRUPT: + pipetype = "INTERRUPT"; break; + case PIPE_ISOCHRONOUS: + pipetype = "ISOCHRONOUS"; break; + default: + pipetype = "UNKNOWN"; break; + }; + pipetype; + } )) ; + DWC_ERROR(" Speed: %s\n", ( { + char *speed; + switch (urb->dev->speed) { + case USB_SPEED_HIGH: + speed = "HIGH"; break; + case USB_SPEED_FULL: + speed = "FULL"; break; + case USB_SPEED_LOW: + speed = "LOW"; break; + default: + speed = "UNKNOWN"; break; + }; + speed; + } )) ; + DWC_ERROR(" Max packet size: %d\n", + usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))); + DWC_ERROR(" Data buffer length: %d\n", urb->transfer_buffer_length); + DWC_ERROR(" Transfer buffer: %p, Transfer DMA: %p\n", + urb->transfer_buffer, (void *)(u32)urb->transfer_dma); + DWC_ERROR(" Setup buffer: %p, Setup DMA: %p\n", urb->setup_packet, + (void *)(u32)urb->setup_dma); + DWC_ERROR(" Interval: %d\n", urb->interval); + dwc_otg_hcd_complete_urb(_hcd, urb, -EIO); + + /* + * Force a channel halt. Don't call halt_channel because that won't + * write to the HCCHARn register in DMA mode to force the halt. + */ + dwc_otg_hc_halt(_hcd->core_if, _hc, DWC_OTG_HC_XFER_AHB_ERR); + disable_hc_int(_hc_regs, ahberr); + return 1; +} + +/** + * Handles a host channel transaction error interrupt. This handler may be + * called in either DMA mode or Slave mode. + */ +static int32_t handle_hc_xacterr_intr(dwc_otg_hcd_t * _hcd, + dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) +{ + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " + "Transaction Error--\n", _hc->hc_num); + switch (usb_pipetype(_qtd->urb->pipe)) { + case PIPE_CONTROL: + case PIPE_BULK: + _qtd->error_count++; + if (!_hc->qh->ping_state) { + update_urb_state_xfer_intr(_hc, _hc_regs, _qtd->urb, + _qtd, DWC_OTG_HC_XFER_XACT_ERR); + save_data_toggle(_hc, _hc_regs, _qtd); + if (!_hc->ep_is_in && _qtd->urb->dev->speed == USB_SPEED_HIGH) { + _hc->qh->ping_state = 1; + } + } + + /* + * Halt the channel so the transfer can be re-started from + * the appropriate point or the PING protocol will start. + */ + halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_XACT_ERR, must_free); + break; + case PIPE_INTERRUPT: + _qtd->error_count++; + if ((_hc->do_split) && (_hc->complete_split)) { + _qtd->complete_split = 0; + } + halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_XACT_ERR, must_free); + break; + case PIPE_ISOCHRONOUS: + { + dwc_otg_halt_status_e halt_status; + halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd, + DWC_OTG_HC_XFER_XACT_ERR); + halt_channel(_hcd, _hc, _qtd, halt_status, must_free); + } + break; + } + disable_hc_int(_hc_regs, xacterr); + return 1; +} + +/** + * Handles a host channel frame overrun interrupt. This handler may be called + * in either DMA mode or Slave mode. + */ +static int32_t handle_hc_frmovrun_intr(dwc_otg_hcd_t * _hcd, + dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) +{ + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " + "Frame Overrun--\n", _hc->hc_num); + switch (usb_pipetype(_qtd->urb->pipe)) { + case PIPE_CONTROL: + case PIPE_BULK: + break; + case PIPE_INTERRUPT: + halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_FRAME_OVERRUN, must_free); + break; + case PIPE_ISOCHRONOUS: + { + dwc_otg_halt_status_e halt_status; + halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd, + DWC_OTG_HC_XFER_FRAME_OVERRUN); + halt_channel(_hcd, _hc, _qtd, halt_status, must_free); + } + break; + } + disable_hc_int(_hc_regs, frmovrun); + return 1; +} + +/** + * Handles a host channel data toggle error interrupt. This handler may be + * called in either DMA mode or Slave mode. + */ +static int32_t handle_hc_datatglerr_intr(dwc_otg_hcd_t * _hcd, + dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) +{ + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " + "Data Toggle Error--\n", _hc->hc_num); + if (_hc->ep_is_in) { + _qtd->error_count = 0; + } else { + DWC_ERROR("Data Toggle Error on OUT transfer," + "channel %d\n", _hc->hc_num); + } + disable_hc_int(_hc_regs, datatglerr); + return 1; +} + +#ifdef CONFIG_DWC_DEBUG +/** + * This function is for debug only. It checks that a valid halt status is set + * and that HCCHARn.chdis is clear. If there's a problem, corrective action is + * taken and a warning is issued. + * @return 1 if halt status is ok, 0 otherwise. + */ +static inline int halt_status_ok(dwc_otg_hcd_t * _hcd, + dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd) +{ + hcchar_data_t hcchar; + hctsiz_data_t hctsiz; + hcint_data_t hcint; + hcintmsk_data_t hcintmsk; + hcsplt_data_t hcsplt; + if (_hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS) { + /* + * This code is here only as a check. This condition should + * never happen. Ignore the halt if it does occur. + */ + hcchar.d32 = dwc_read_reg32(&_hc_regs->hcchar); + hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); + hcint.d32 = dwc_read_reg32(&_hc_regs->hcint); + hcintmsk.d32 = dwc_read_reg32(&_hc_regs->hcintmsk); + hcsplt.d32 = dwc_read_reg32(&_hc_regs->hcsplt); + DWC_WARN("%s: _hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS, " + "channel %d, hcchar 0x%08x, hctsiz 0x%08x, " + "hcint 0x%08x, hcintmsk 0x%08x, " + "hcsplt 0x%08x, qtd->complete_split %d\n", __func__, + _hc->hc_num, hcchar.d32, hctsiz.d32, hcint.d32, + hcintmsk.d32, hcsplt.d32, _qtd->complete_split); + DWC_WARN("%s: no halt status, channel %d, ignoring interrupt\n", + __func__, _hc->hc_num); + DWC_WARN("\n"); + clear_hc_int(_hc_regs, chhltd); + return 0; + } + + /* + * This code is here only as a check. hcchar.chdis should + * never be set when the halt interrupt occurs. Halt the + * channel again if it does occur. + */ + hcchar.d32 = dwc_read_reg32(&_hc_regs->hcchar); + if (hcchar.b.chdis) { + DWC_WARN("%s: hcchar.chdis set unexpectedly, " + "hcchar 0x%08x, trying to halt again\n", __func__, + hcchar.d32); + clear_hc_int(_hc_regs, chhltd); + _hc->halt_pending = 0; + halt_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free); + return 0; + } + return 1; +} +#endif /* */ + +/** + * Handles a host Channel Halted interrupt in DMA mode. This handler + * determines the reason the channel halted and proceeds accordingly. + */ +static void handle_hc_chhltd_intr_dma(dwc_otg_hcd_t * _hcd, + dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) +{ + hcint_data_t hcint; + hcintmsk_data_t hcintmsk; + if (_hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE || + _hc->halt_status == DWC_OTG_HC_XFER_AHB_ERR) { + /* + * Just release the channel. A dequeue can happen on a + * transfer timeout. In the case of an AHB Error, the channel + * was forced to halt because there's no way to gracefully + * recover. + */ + release_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free); + return; + } + + /* Read the HCINTn register to determine the cause for the halt. */ + hcint.d32 = dwc_read_reg32(&_hc_regs->hcint); + hcintmsk.d32 = dwc_read_reg32(&_hc_regs->hcintmsk); + if (hcint.b.xfercomp) { + + /** @todo This is here because of a possible hardware bug. Spec + * says that on SPLIT-ISOC OUT transfers in DMA mode that a HALT + * interrupt w/ACK bit set should occur, but I only see the + * XFERCOMP bit, even with it masked out. This is a workaround + * for that behavior. Should fix this when hardware is fixed. + */ + if ((_hc->ep_type == DWC_OTG_EP_TYPE_ISOC) && (!_hc->ep_is_in)) { + handle_hc_ack_intr(_hcd, _hc, _hc_regs, _qtd, must_free); + } + handle_hc_xfercomp_intr(_hcd, _hc, _hc_regs, _qtd, must_free); + } else if (hcint.b.stall) { + handle_hc_stall_intr(_hcd, _hc, _hc_regs, _qtd, must_free); + } else if (hcint.b.xacterr) { + /* + * Must handle xacterr before nak or ack. Could get a xacterr + * at the same time as either of these on a BULK/CONTROL OUT + * that started with a PING. The xacterr takes precedence. + */ + handle_hc_xacterr_intr(_hcd, _hc, _hc_regs, _qtd, must_free); + } else if (hcint.b.nyet) { + /* + * Must handle nyet before nak or ack. Could get a nyet at the + * same time as either of those on a BULK/CONTROL OUT that + * started with a PING. The nyet takes precedence. + */ + handle_hc_nyet_intr(_hcd, _hc, _hc_regs, _qtd, must_free); + } else if (hcint.b.bblerr) { + handle_hc_babble_intr(_hcd, _hc, _hc_regs, _qtd, must_free); + } else if (hcint.b.frmovrun) { + handle_hc_frmovrun_intr(_hcd, _hc, _hc_regs, _qtd, must_free); + } else if (hcint.b.datatglerr) { + handle_hc_datatglerr_intr(_hcd, _hc, _hc_regs, _qtd, must_free); + } else if (hcint.b.nak && !hcintmsk.b.nak) { + /* + * If nak is not masked, it's because a non-split IN transfer + * is in an error state. In that case, the nak is handled by + * the nak interrupt handler, not here. Handle nak here for + * BULK/CONTROL OUT transfers, which halt on a NAK to allow + * rewinding the buffer pointer. + */ + handle_hc_nak_intr(_hcd, _hc, _hc_regs, _qtd, must_free); + } else if (hcint.b.ack && !hcintmsk.b.ack) { + /* + * If ack is not masked, it's because a non-split IN transfer + * is in an error state. In that case, the ack is handled by + * the ack interrupt handler, not here. Handle ack here for + * split transfers. Start splits halt on ACK. + */ + handle_hc_ack_intr(_hcd, _hc, _hc_regs, _qtd, must_free); + } else { + if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR || + _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { + /* + * A periodic transfer halted with no other channel + * interrupts set. Assume it was halted by the core + * because it could not be completed in its scheduled + * (micro)frame. + */ +#ifdef CONFIG_DWC_DEBUG + DWC_PRINT("%s: Halt channel %d (assume incomplete periodic transfer)\n", + __func__, _hc->hc_num); + +#endif /* */ + halt_channel(_hcd, _hc, _qtd, + DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE, must_free); + } else { + DWC_ERROR("%s: Channel %d, DMA Mode -- ChHltd set, but reason " + "for halting is unknown, nyet %d, hcint 0x%08x, intsts 0x%08x\n", + __func__, _hc->hc_num, hcint.b.nyet, hcint.d32, + dwc_read_reg32(&_hcd->core_if->core_global_regs->gintsts)); + } + } +} + +/** + * Handles a host channel Channel Halted interrupt. + * + * In slave mode, this handler is called only when the driver specifically + * requests a halt. This occurs during handling other host channel interrupts + * (e.g. nak, xacterr, stall, nyet, etc.). + * + * In DMA mode, this is the interrupt that occurs when the core has finished + * processing a transfer on a channel. Other host channel interrupts (except + * ahberr) are disabled in DMA mode. + */ +static int32_t handle_hc_chhltd_intr(dwc_otg_hcd_t * _hcd, + dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) +{ + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " + "Channel Halted--\n", _hc->hc_num); + if (_hcd->core_if->dma_enable) { + handle_hc_chhltd_intr_dma(_hcd, _hc, _hc_regs, _qtd, must_free); + } else { +#ifdef CONFIG_DWC_DEBUG + if (!halt_status_ok(_hcd, _hc, _hc_regs, _qtd)) { + return 1; + } +#endif /* */ + release_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free); + } + clear_hc_int(_hc_regs, chhltd); + return 1; +} + +/** Handles interrupt for a specific Host Channel */ +int32_t dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd_t * _dwc_otg_hcd, uint32_t _num) +{ + int must_free = 0; + int retval = 0; + hcint_data_t hcint; + hcintmsk_data_t hcintmsk; + dwc_hc_t * hc; + dwc_otg_hc_regs_t * hc_regs; + dwc_otg_qtd_t * qtd; + DWC_DEBUGPL(DBG_HCDV, "--Host Channel Interrupt--, Channel %d\n",_num); + hc = _dwc_otg_hcd->hc_ptr_array[_num]; + hc_regs = _dwc_otg_hcd->core_if->host_if->hc_regs[_num]; + qtd = list_entry(hc->qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); + hcint.d32 = dwc_read_reg32(&hc_regs->hcint); + hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk); + DWC_DEBUGPL(DBG_HCDV, " hcint 0x%08x, hcintmsk 0x%08x, hcint&hcintmsk 0x%08x\n", + hcint.d32, hcintmsk.d32, (hcint.d32 & hcintmsk.d32)); + hcint.d32 = hcint.d32 & hcintmsk.d32; + if (!_dwc_otg_hcd->core_if->dma_enable) { + if ((hcint.b.chhltd) && (hcint.d32 != 0x2)) { + hcint.b.chhltd = 0; + } + } + if (hcint.b.xfercomp) { + retval |= handle_hc_xfercomp_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); + /* + * If NYET occurred at same time as Xfer Complete, the NYET is + * handled by the Xfer Complete interrupt handler. Don't want + * to call the NYET interrupt handler in this case. + */ + hcint.b.nyet = 0; + } + if (hcint.b.chhltd) { + retval |= handle_hc_chhltd_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); + } + if (hcint.b.ahberr) { + retval |= handle_hc_ahberr_intr(_dwc_otg_hcd, hc, hc_regs, qtd); + } + if (hcint.b.stall) { + retval |= handle_hc_stall_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); + } + if (hcint.b.nak) { + retval |= handle_hc_nak_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); + } + if (hcint.b.ack) { + retval |= handle_hc_ack_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); + } + if (hcint.b.nyet) { + retval |= handle_hc_nyet_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); + } + if (hcint.b.xacterr) { + retval |= handle_hc_xacterr_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); + } + if (hcint.b.bblerr) { + retval |= handle_hc_babble_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); + } + if (hcint.b.frmovrun) { + retval |= handle_hc_frmovrun_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); + } + if (hcint.b.datatglerr) { + retval |= handle_hc_datatglerr_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); + } + /* + * Logic to free the qtd here, at the end of the hc intr + * processing, if the handling of this interrupt determined + * that it needs to be freed. + */ + if (must_free) { + /* Free the qtd here now that we are done using it. */ + dwc_otg_hcd_qtd_free(qtd); + } + return retval; +} + +#endif /* DWC_DEVICE_ONLY */ diff --git a/drivers/usb/gadget/dwc_otg/dwc_otg_hcd_queue.c b/drivers/usb/gadget/dwc_otg/dwc_otg_hcd_queue.c new file mode 100644 index 00000000000..b33b32e8468 --- /dev/null +++ b/drivers/usb/gadget/dwc_otg/dwc_otg_hcd_queue.c @@ -0,0 +1,696 @@ +/* ========================================================================== + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd_queue.c $ + * $Revision: #4 $ + * $Date: 2005/09/15 $ + * $Change: 537387 $ + * + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ + +#ifndef CONFIG_DWC_DEVICE_ONLY + +/** + * @file + * + * This file contains the functions to manage Queue Heads and Queue + * Transfer Descriptors. + */ +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/init.h> +#include <linux/device.h> +#include <linux/errno.h> +#include <linux/list.h> +#include <linux/interrupt.h> +#include <linux/string.h> + +#include "dwc_otg_driver.h" +#include "dwc_otg_hcd.h" +#include "dwc_otg_regs.h" + +/** + * This function allocates and initializes a QH. + * + * @param _hcd The HCD state structure for the DWC OTG controller. + * @param[in] _urb Holds the information about the device/endpoint that we need + * to initialize the QH. + * + * @return Returns pointer to the newly allocated QH, or NULL on error. */ +dwc_otg_qh_t * dwc_otg_hcd_qh_create(dwc_otg_hcd_t * _hcd, + struct urb * _urb) +{ + dwc_otg_qh_t * qh; + + /* Allocate memory */ + /** @todo add memflags argument */ + qh = dwc_otg_hcd_qh_alloc(); + if (qh == NULL) { + return NULL; + } + dwc_otg_hcd_qh_init(_hcd, qh, _urb); + return qh; +} + +/** Free each QTD in the QH's QTD-list then free the QH. QH should already be + * removed from a list. QTD list should already be empty if called from URB + * Dequeue. + * + * @param[in] _qh The QH to free. + */ +void dwc_otg_hcd_qh_free(dwc_otg_qh_t * _qh) +{ + dwc_otg_qtd_t * qtd; + struct list_head *pos; + unsigned long flags; + + /* Free each QTD in the QTD list */ + local_irq_save(flags); + for (pos = _qh->qtd_list.next; pos != &_qh->qtd_list; + pos = _qh->qtd_list.next) { + list_del(pos); + qtd = dwc_list_to_qtd(pos); + dwc_otg_hcd_qtd_free(qtd); + } + local_irq_restore(flags); + kfree(_qh); + return; +} + +/** Initializes a QH structure. + * + * @param[in] _hcd The HCD state structure for the DWC OTG controller. + * @param[in] _qh The QH to init. + * @param[in] _urb Holds the information about the device/endpoint that we need + * to initialize the QH. */ +#define SCHEDULE_SLOP 10 +void dwc_otg_hcd_qh_init(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh, + struct urb *_urb) +{ + memset(_qh, 0, sizeof(dwc_otg_qh_t)); + + /* Initialize QH */ + switch (usb_pipetype(_urb->pipe)) { + case PIPE_CONTROL: + _qh->ep_type = USB_ENDPOINT_XFER_CONTROL; + break; + case PIPE_BULK: + _qh->ep_type = USB_ENDPOINT_XFER_BULK; + break; + case PIPE_ISOCHRONOUS: + _qh->ep_type = USB_ENDPOINT_XFER_ISOC; + break; + case PIPE_INTERRUPT: + _qh->ep_type = USB_ENDPOINT_XFER_INT; + break; + } + _qh->ep_is_in = usb_pipein(_urb->pipe) ? 1 : 0; + _qh->data_toggle = DWC_OTG_HC_PID_DATA0; + _qh->maxp = usb_maxpacket(_urb->dev, _urb->pipe, !(usb_pipein(_urb->pipe))); + INIT_LIST_HEAD(&_qh->qtd_list); + INIT_LIST_HEAD(&_qh->qh_list_entry); + _qh->channel = NULL; + + /* FS/LS Enpoint on HS Hub + * NOT virtual root hub */ + _qh->do_split = 0; + if (((_urb->dev->speed == USB_SPEED_LOW) || + (_urb->dev->speed == USB_SPEED_FULL)) && + (_urb->dev->tt) && (_urb->dev->tt->hub) && (_urb->dev->tt->hub->devnum != 1)) { + DWC_DEBUGPL(DBG_HCD, "QH init: EP %d: TT found at hub addr %d, for port %d\n", + usb_pipeendpoint(_urb->pipe), _urb->dev->tt->hub->devnum, _urb->dev->ttport); + _qh->do_split = 1; + } + if (_qh->ep_type == USB_ENDPOINT_XFER_INT + || _qh->ep_type == USB_ENDPOINT_XFER_ISOC) { + + /* Compute scheduling parameters once and save them. */ + hprt0_data_t hprt; + + /** @todo Account for split transfers in the bus time. */ + int bytecount = dwc_hb_mult(_qh->maxp) * dwc_max_packet(_qh->maxp); + _qh->usecs = NS_TO_US(usb_calc_bus_time(_urb->dev->speed, + usb_pipein(_urb->pipe), + (_qh->ep_type == USB_ENDPOINT_XFER_ISOC),bytecount)); + + /* Start in a slightly future (micro)frame. */ + _qh->sched_frame = dwc_frame_num_inc(_hcd->frame_number, SCHEDULE_SLOP); + _qh->interval = _urb->interval; + +#if 0 + /* Increase interrupt polling rate for debugging. */ + if (_qh->ep_type == USB_ENDPOINT_XFER_INT) { + _qh->interval = 8; + } + +#endif /* */ + hprt.d32 = dwc_read_reg32(_hcd->core_if->host_if->hprt0); + if ((hprt.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) && + ((_urb->dev->speed == USB_SPEED_LOW) || + (_urb->dev->speed == USB_SPEED_FULL))) { + _qh->interval *= 8; + _qh->sched_frame |= 0x7; + _qh->start_split_frame = _qh->sched_frame; + } + } + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD QH Initialized\n"); + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - qh = %p\n", _qh); + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Device Address = %d\n", + _urb->dev->devnum); + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Endpoint %d, %s\n", + usb_pipeendpoint(_urb->pipe), + usb_pipein(_urb->pipe) == USB_DIR_IN ? "IN" : "OUT"); + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Speed = %s\n", ( { + char *speed; + switch(_urb->dev->speed) { + case USB_SPEED_LOW: + speed = "low"; break; + case USB_SPEED_FULL: + speed = "full"; break; + case USB_SPEED_HIGH: + speed = "high"; break; + default: + speed = "?"; + break; + }; + speed; + } )) ; + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Type = %s\n", ( { + char *type; + switch (_qh->ep_type) { + case USB_ENDPOINT_XFER_ISOC: + type = "isochronous"; break; + case USB_ENDPOINT_XFER_INT: + type = "interrupt"; break; + case USB_ENDPOINT_XFER_CONTROL: + type = "control"; break; + case USB_ENDPOINT_XFER_BULK: + type = "bulk"; break; + default: + type = "?";break; + }; + type; + } )) ; + +#ifdef CONFIG_DWC_DEBUG + if (_qh->ep_type == USB_ENDPOINT_XFER_INT) { + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - usecs = %d\n", + _qh->usecs); + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - interval = %d\n", + _qh->interval); + } + +#endif /* */ + return; +} + +/** + * Checks that a channel is available for a periodic transfer. + * + * @return 0 if successful, negative error code otherise. + */ +static int periodic_channel_available(dwc_otg_hcd_t * _hcd) +{ + /* + * Currently assuming that there is a dedicated host channnel for each + * periodic transaction plus at least one host channel for + * non-periodic transactions. + */ + int status; + int num_channels; + num_channels = _hcd->core_if->core_params->host_channels; + if ((_hcd->periodic_channels + _hcd->non_periodic_channels < + num_channels) && (_hcd->periodic_channels < num_channels - 1)) { + status = 0; + } else { + DWC_NOTICE("%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n", + __func__, num_channels, _hcd->periodic_channels, + _hcd->non_periodic_channels); + status = -ENOSPC; + } + return status; +} + +/** + * Checks that there is sufficient bandwidth for the specified QH in the + * periodic schedule. For simplicity, this calculation assumes that all the + * transfers in the periodic schedule may occur in the same (micro)frame. + * + * @param _hcd The HCD state structure for the DWC OTG controller. + * @param _qh QH containing periodic bandwidth required. + * + * @return 0 if successful, negative error code otherwise. + */ +static int check_periodic_bandwidth(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh) +{ + int status; + uint16_t max_claimed_usecs; + status = 0; + if (_hcd->core_if->core_params->speed == DWC_SPEED_PARAM_HIGH) { + /* + * High speed mode. + * Max periodic usecs is 80% x 125 usec = 100 usec. + */ + max_claimed_usecs = 100 - _qh->usecs; + } else { + /* + * Full speed mode. + * Max periodic usecs is 90% x 1000 usec = 900 usec. + */ + max_claimed_usecs = 900 - _qh->usecs; + } + if (_hcd->periodic_usecs > max_claimed_usecs) { +#undef USB_DWC_OTG_IGNORE_BANDWIDTH +#ifndef USB_DWC_OTG_IGNORE_BANDWIDTH + DWC_NOTICE("%s: already claimed usecs %d, required usecs %d\n", + __func__, _hcd->periodic_usecs, _qh->usecs); + status = -ENOSPC; +#else + status = 0; +#endif + } + return status; +} + +/** + * Checks that the max transfer size allowed in a host channel is large enough + * to handle the maximum data transfer in a single (micro)frame for a periodic + * transfer. + * + * @param _hcd The HCD state structure for the DWC OTG controller. + * @param _qh QH for a periodic endpoint. + * + * @return 0 if successful, negative error code otherwise. + */ +static int check_max_xfer_size(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh) +{ + int status; + uint32_t max_xfer_size; + uint32_t max_channel_xfer_size; + status = 0; + max_xfer_size = dwc_max_packet(_qh->maxp) * dwc_hb_mult(_qh->maxp); + max_channel_xfer_size = _hcd->core_if->core_params->max_transfer_size; + if (max_xfer_size > max_channel_xfer_size) { + DWC_NOTICE("%s: Periodic xfer length %d > " + "max xfer length for channel %d\n", __func__, + max_xfer_size, max_channel_xfer_size); + status = -ENOSPC; + } + return status; +} + +/** + * Schedules an interrupt or isochronous transfer in the periodic schedule. + * + * @param _hcd The HCD state structure for the DWC OTG controller. + * @param _qh QH for the periodic transfer. The QH should already contain the + * scheduling information. + * + * @return 0 if successful, negative error code otherwise. + */ +static int schedule_periodic(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh) +{ + int status = 0; + status = periodic_channel_available(_hcd); + if (status) { + DWC_NOTICE("%s: No host channel available for periodic " + "transfer.\n", __func__); + return status; + } + status = check_periodic_bandwidth(_hcd, _qh); + if (status) { + DWC_NOTICE("%s: Insufficient periodic bandwidth for " + "periodic transfer.\n", __func__); + return status; + } + status = check_max_xfer_size(_hcd, _qh); + if (status) { + DWC_NOTICE("%s: Channel max transfer size too small " + "for periodic transfer.\n", __func__); + return status; + } + + /* Always start in the inactive schedule. */ + list_add_tail(&_qh->qh_list_entry, &_hcd->periodic_sched_inactive); + + /* Reserve the periodic channel. */ + _hcd->periodic_channels++; + + /* Update claimed usecs per (micro)frame. */ + _hcd->periodic_usecs += _qh->usecs; + + /* Update average periodic bandwidth claimed and # periodic reqs for usbfs. */ + hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_allocated += + _qh->usecs / _qh->interval; + + if (_qh->ep_type == USB_ENDPOINT_XFER_INT) { + hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_int_reqs++; + DWC_DEBUGPL(DBG_HCD, + "Scheduled intr: qh %p, usecs %d, period %d\n", + _qh, _qh->usecs, _qh->interval); + } else { + hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_isoc_reqs++; + DWC_DEBUGPL(DBG_HCD, + "Scheduled isoc: qh %p, usecs %d, period %d\n", + _qh, _qh->usecs, _qh->interval); + } + return status; +} + +/** + * This function adds a QH to either the non periodic or periodic schedule if + * it is not already in the schedule. If the QH is already in the schedule, no + * action is taken. + * + * @return 0 if successful, negative error code otherwise. + */ +int dwc_otg_hcd_qh_add(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh) +{ + unsigned long flags; + int status = 0; + local_irq_save(flags); + if (!list_empty(&_qh->qh_list_entry)) { + /* QH already in a schedule. */ + goto done; + } + + /* Add the new QH to the appropriate schedule */ + if (dwc_qh_is_non_per(_qh)) { + /* Always start in the inactive schedule. */ + list_add_tail(&_qh->qh_list_entry, + &_hcd->non_periodic_sched_inactive); + } else { + status = schedule_periodic(_hcd, _qh); + } + +done:local_irq_restore(flags); + return status; +} +/** + * This function adds a QH to the non periodic deferred schedule. + * + * @return 0 if successful, negative error code otherwise. + */ +int dwc_otg_hcd_qh_add_deferred(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh) +{ + unsigned long flags; + local_irq_save(flags); + if (!list_empty(&_qh->qh_list_entry)) { + /* QH already in a schedule. */ + goto done; + } + + /* Add the new QH to the non periodic deferred schedule */ + if (dwc_qh_is_non_per(_qh)) { + list_add_tail(&_qh->qh_list_entry, + &_hcd->non_periodic_sched_deferred); + } +done: + local_irq_restore(flags); + return 0; +} + +/** + * Removes an interrupt or isochronous transfer from the periodic schedule. + * + * @param _hcd The HCD state structure for the DWC OTG controller. + * @param _qh QH for the periodic transfer. + */ +static void deschedule_periodic(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh) +{ + list_del_init(&_qh->qh_list_entry); + + /* Release the periodic channel reservation. */ + _hcd->periodic_channels--; + + /* Update claimed usecs per (micro)frame. */ + _hcd->periodic_usecs -= _qh->usecs; + + /* Update average periodic bandwidth claimed and # periodic reqs for usbfs. */ + hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_allocated -= + _qh->usecs / _qh->interval; + + if (_qh->ep_type == USB_ENDPOINT_XFER_INT) { + hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_int_reqs--; + DWC_DEBUGPL(DBG_HCD, + "Descheduled intr: qh %p, usecs %d, period %d\n", + _qh, _qh->usecs, _qh->interval); + } else { + hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_isoc_reqs--; + DWC_DEBUGPL(DBG_HCD, + "Descheduled isoc: qh %p, usecs %d, period %d\n", + _qh, _qh->usecs, _qh->interval); + } +} + +/** + * Removes a QH from either the non-periodic or periodic schedule. Memory is + * not freed. + * + * @param[in] _hcd The HCD state structure. + * @param[in] _qh QH to remove from schedule. */ +void dwc_otg_hcd_qh_remove(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh) +{ + unsigned long flags; + local_irq_save(flags); + if (list_empty(&_qh->qh_list_entry)) { + /* QH is not in a schedule. */ + goto done; + } + if (dwc_qh_is_non_per(_qh)) { + if (_hcd->non_periodic_qh_ptr == &_qh->qh_list_entry) { + _hcd->non_periodic_qh_ptr = _hcd->non_periodic_qh_ptr->next; + } + list_del_init(&_qh->qh_list_entry); + } else { + deschedule_periodic(_hcd, _qh); + } + +done:local_irq_restore(flags); +} + +/** + * Defers a QH. For non-periodic QHs, removes the QH from the active + * non-periodic schedule. The QH is added to the deferred non-periodic + * schedule if any QTDs are still attached to the QH. + */ +int dwc_otg_hcd_qh_deferr(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh, int delay) +{ + int deact = 1; + unsigned long flags; + local_irq_save(flags); + if (dwc_qh_is_non_per(_qh)) { + _qh->sched_frame = + dwc_frame_num_inc(_hcd->frame_number, + delay); + _qh->channel = NULL; + _qh->qtd_in_process = NULL; + deact = 0; + dwc_otg_hcd_qh_remove(_hcd, _qh); + if (!list_empty(&_qh->qtd_list)) { + /* Add back to deferred non-periodic schedule. */ + dwc_otg_hcd_qh_add_deferred(_hcd, _qh); + } + } + local_irq_restore(flags); + return deact; +} +/** + * Deactivates a QH. For non-periodic QHs, removes the QH from the active + * non-periodic schedule. The QH is added to the inactive non-periodic + * schedule if any QTDs are still attached to the QH. + * + * For periodic QHs, the QH is removed from the periodic queued schedule. If + * there are any QTDs still attached to the QH, the QH is added to either the + * periodic inactive schedule or the periodic ready schedule and its next + * scheduled frame is calculated. The QH is placed in the ready schedule if + * the scheduled frame has been reached already. Otherwise it's placed in the + * inactive schedule. If there are no QTDs attached to the QH, the QH is + * completely removed from the periodic schedule. + */ +void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh, + int sched_next_periodic_split) +{ + unsigned long flags; + local_irq_save(flags); + if (dwc_qh_is_non_per(_qh)) { + dwc_otg_hcd_qh_remove(_hcd, _qh); + if (!list_empty(&_qh->qtd_list)) { + /* Add back to inactive non-periodic schedule. */ + dwc_otg_hcd_qh_add(_hcd, _qh); + } + } else { + uint16_t frame_number = + dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(_hcd)); + if (_qh->do_split) { + /* Schedule the next continuing periodic split transfer */ + if (sched_next_periodic_split) { + _qh->sched_frame = frame_number; + if (dwc_frame_num_le(frame_number, + dwc_frame_num_inc(_qh->start_split_frame,1))) { + /* + * Allow one frame to elapse after start + * split microframe before scheduling + * complete split, but DONT if we are + * doing the next start split in the + * same frame for an ISOC out. + */ + if ((_qh->ep_type != USB_ENDPOINT_XFER_ISOC) + || (_qh->ep_is_in != 0)) { + _qh->sched_frame = dwc_frame_num_inc(_qh->sched_frame,1); + } + } + } else { + _qh->sched_frame = dwc_frame_num_inc(_qh->start_split_frame, + _qh->interval); + if (dwc_frame_num_le(_qh->sched_frame, frame_number)) { + _qh->sched_frame = frame_number; + } + _qh->sched_frame |= 0x7; + _qh->start_split_frame = _qh->sched_frame; + } + } else { + _qh->sched_frame = + dwc_frame_num_inc(_qh->sched_frame, _qh->interval); + if (dwc_frame_num_le(_qh->sched_frame, frame_number)) { + _qh->sched_frame = frame_number; + } + } + if (list_empty(&_qh->qtd_list)) { + dwc_otg_hcd_qh_remove(_hcd, _qh); + } else { + /* + * Remove from periodic_sched_queued and move to + * appropriate queue. + */ + if (_qh->sched_frame == frame_number) { + list_move(&_qh->qh_list_entry, + &_hcd->periodic_sched_ready); + } else { + list_move(&_qh->qh_list_entry, + &_hcd->periodic_sched_inactive); + } + } + } + local_irq_restore(flags); +} + +/** + * This function allocates and initializes a QTD. + * + * @param[in] _urb The URB to create a QTD from. Each URB-QTD pair will end up + * pointing to each other so each pair should have a unique correlation. + * + * @return Returns pointer to the newly allocated QTD, or NULL on error. */ +dwc_otg_qtd_t * dwc_otg_hcd_qtd_create(struct urb *_urb) +{ + dwc_otg_qtd_t * qtd; + qtd = dwc_otg_hcd_qtd_alloc(); + if (qtd == NULL) { + return NULL; + } + dwc_otg_hcd_qtd_init(qtd, _urb); + return qtd; +} + +/** + * Initializes a QTD structure. + * + * @param[in] _qtd The QTD to initialize. + * @param[in] _urb The URB to use for initialization. */ +void dwc_otg_hcd_qtd_init(dwc_otg_qtd_t * _qtd, struct urb *_urb) +{ + memset(_qtd, 0, sizeof(dwc_otg_qtd_t)); + _qtd->urb = _urb; + if (usb_pipecontrol(_urb->pipe)) { + /* + * The only time the QTD data toggle is used is on the data + * phase of control transfers. This phase always starts with + * DATA1. + */ + _qtd->data_toggle = DWC_OTG_HC_PID_DATA1; + _qtd->control_phase = DWC_OTG_CONTROL_SETUP; + } + + /* start split */ + _qtd->complete_split = 0; + _qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL; + _qtd->isoc_split_offset = 0; + + /* Store the qtd ptr in the urb to reference what QTD. */ + _urb->hcpriv = _qtd; + return; +} + +/** + * This function adds a QTD to the QTD-list of a QH. It will find the correct + * QH to place the QTD into. If it does not find a QH, then it will create a + * new QH. If the QH to which the QTD is added is not currently scheduled, it + * is placed into the proper schedule based on its EP type. + * + * @param[in] _qtd The QTD to add + * @param[in] _dwc_otg_hcd The DWC HCD structure + * + * @return 0 if successful, negative error code otherwise. + */ +int dwc_otg_hcd_qtd_add(dwc_otg_qtd_t * _qtd, dwc_otg_hcd_t * _dwc_otg_hcd) +{ + struct usb_host_endpoint *ep; + dwc_otg_qh_t * qh; + unsigned long flags; + int retval = 0; + struct urb *urb = _qtd->urb; + local_irq_save(flags); + + /* + * Get the QH which holds the QTD-list to insert to. Create QH if it + * doesn't exist. + */ + ep = dwc_urb_to_endpoint(urb); + qh = (dwc_otg_qh_t *) ep->hcpriv; + if (qh == NULL) { + qh = dwc_otg_hcd_qh_create(_dwc_otg_hcd, urb); + if (qh == NULL) { + retval = -1; + goto done; + } + ep->hcpriv = qh; + } + _qtd->qtd_qh_ptr = qh; + retval = dwc_otg_hcd_qh_add(_dwc_otg_hcd, qh); + if (retval == 0) { + list_add_tail(&_qtd->qtd_list_entry, &qh->qtd_list); + } + +done: + local_irq_restore(flags); + + return retval; +} + + +#endif /* DWC_DEVICE_ONLY */ diff --git a/drivers/usb/gadget/dwc_otg/dwc_otg_pcd.c b/drivers/usb/gadget/dwc_otg/dwc_otg_pcd.c new file mode 100644 index 00000000000..4bd17de7939 --- /dev/null +++ b/drivers/usb/gadget/dwc_otg/dwc_otg_pcd.c @@ -0,0 +1,1408 @@ + /* ========================================================================== + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_pcd.c $ + * $Revision: #18 $ + * $Date: 2007/02/07 $ + * $Change: 791271 $ + * + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ + +#ifndef CONFIG_DWC_HOST_ONLY + +/** @file + * This file implements the Peripheral Controller Driver. + * + * The Peripheral Controller Driver (PCD) is responsible for + * translating requests from the Function Driver into the appropriate + * actions on the DWC_otg controller. It isolates the Function Driver + * from the specifics of the controller by providing an API to the + * Function Driver. + * + * The Peripheral Controller Driver for Linux will implement the + * Gadget API, so that the existing Gadget drivers can be used. + * (Gadget Driver is the Linux terminology for a Function Driver.) + * + * The Linux Gadget API is defined in the header file + * <code><linux/usb/gadget.h></code>. The USB EP operations API is + * defined in the structure <code>usb_ep_ops</code> and the USB + * Controller API is defined in the structure + * <code>usb_gadget_ops</code>. + * + * An important function of the PCD is managing interrupts generated + * by the DWC_otg controller. The implementation of the DWC_otg device + * mode interrupt service routines is in dwc_otg_pcd_intr.c. + * + * @todo Add Device Mode test modes (Test J mode, Test K mode, etc). + * @todo Does it work when the request size is greater than DEPTSIZ + * transfer size + * + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/init.h> +#include <linux/device.h> +#include <linux/errno.h> +#include <linux/list.h> +#include <linux/interrupt.h> +#include <linux/string.h> +#include <linux/dma-mapping.h> + +#include <linux/usb/ch9.h> +#include <linux/usb/gadget.h> + +#include "dwc_otg_driver.h" +#include "dwc_otg_pcd.h" + +/** + * Static PCD pointer for use in usb_gadget_register_driver and + * usb_gadget_unregister_driver. Initialized in dwc_otg_pcd_init. + */ +static dwc_otg_pcd_t *s_pcd = 0; + +/* Display the contents of the buffer */ +extern void dump_msg(const u8 * buf, unsigned int length); + +/** + * This function completes a request. It call's the request call back. + */ +void request_done(dwc_otg_pcd_ep_t * _ep, dwc_otg_pcd_request_t * _req, + int _status) +{ + unsigned stopped = _ep->stopped; + DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _ep); + if (_req->mapped) { + dma_unmap_single(_ep->pcd->gadget.dev.parent, + _req->req.dma, _req->req.length, + _ep->dwc_ep.is_in + ? DMA_TO_DEVICE + : DMA_FROM_DEVICE); + _req->req.dma = DMA_ADDR_INVALID; + _req->mapped = 0; + } else + dma_sync_single_for_cpu(_ep->pcd->gadget.dev.parent, + _req->req.dma, _req->req.length, + _ep->dwc_ep.is_in + ? DMA_TO_DEVICE + : DMA_FROM_DEVICE); + + list_del_init(&_req->queue); + if (_req->req.status == -EINPROGRESS) { + _req->req.status = _status; + } else { + _status = _req->req.status; + } + + /* don't modify queue heads during completion callback */ + _ep->stopped = 1; + SPIN_UNLOCK(&_ep->pcd->lock); + _req->req.complete(&_ep->ep, &_req->req); + SPIN_LOCK(&_ep->pcd->lock); + if (_ep->pcd->request_pending > 0) { + --_ep->pcd->request_pending; + } + _ep->stopped = stopped; + +#ifdef CONFIG_405EZ + /* + * Added-sr: 2007-07-26 + * + * Finally, when the current request is done, mark this endpoint + * as not active, so that new requests can be processed. + */ + _ep->dwc_ep.active = 0; +#endif +} + +/** + * This function terminates all the requsts in the EP request queue. + */ +void request_nuke(dwc_otg_pcd_ep_t * _ep) +{ + dwc_otg_pcd_request_t * req; + _ep->stopped = 1; + /* called with irqs blocked?? */ + while (!list_empty(&_ep->queue)) { + req = list_entry(_ep->queue.next, dwc_otg_pcd_request_t, queue); + request_done(_ep, req, -ESHUTDOWN); + } +} + +/* USB Endpoint Operations */ +/* + * The following sections briefly describe the behavior of the Gadget + * API endpoint operations implemented in the DWC_otg driver + * software. Detailed descriptions of the generic behavior of each of + * these functions can be found in the Linux header file + * include/linux/usb_gadget.h. + * + * The Gadget API provides wrapper functions for each of the function + * pointers defined in usb_ep_ops. The Gadget Driver calls the wrapper + * function, which then calls the underlying PCD function. The + * following sections are named according to the wrapper + * functions. Within each section, the corresponding DWC_otg PCD + * function name is specified. + * + */ + +/** + * This function assigns periodic Tx FIFO to an periodic EP + * in shared Tx FIFO mode + */ +static uint32_t assign_perio_tx_fifo(dwc_otg_core_if_t * core_if) +{ + uint32_t PerTxMsk = 1; + int i; + for (i = 0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; ++i) { + if ((PerTxMsk & core_if->p_tx_msk) == 0) { + core_if->p_tx_msk |= PerTxMsk; + return i + 1; + } + PerTxMsk <<= 1; + } + return 0; +} + +/** + * This function releases periodic Tx FIFO + * in shared Tx FIFO mode + */ +static void release_perio_tx_fifo(dwc_otg_core_if_t * core_if, + uint32_t fifo_num) +{ + core_if->p_tx_msk = (core_if->p_tx_msk & (1 << (fifo_num - 1))) ^ core_if->p_tx_msk; +} + +/** + * This function assigns periodic Tx FIFO to an periodic EP + * in shared Tx FIFO mode + */ +static uint32_t assign_tx_fifo(dwc_otg_core_if_t * core_if) +{ + uint32_t TxMsk = 1; + int i; + for (i = 0; i < core_if->hwcfg4.b.num_in_eps; ++i) { + if ((TxMsk & core_if->tx_msk) == 0) { + core_if->tx_msk |= TxMsk; + return i + 1; + } + TxMsk <<= 1; + } + return 0; +} + +/** + * This function releases periodic Tx FIFO + * in shared Tx FIFO mode + */ +static void release_tx_fifo(dwc_otg_core_if_t * core_if, uint32_t fifo_num) +{ + core_if->tx_msk = (core_if->tx_msk & (1 << (fifo_num - 1))) ^ core_if->tx_msk; +} + +/** + * This function is called by the Gadget Driver for each EP to be + * configured for the current configuration (SET_CONFIGURATION). + * + * This function initializes the dwc_otg_ep_t data structure, and then + * calls dwc_otg_ep_activate. + */ +static int dwc_otg_pcd_ep_enable(struct usb_ep *_ep, + const struct usb_endpoint_descriptor *_desc) +{ + dwc_otg_pcd_ep_t * ep = 0; + dwc_otg_pcd_t * pcd = 0; + unsigned long flags; + DWC_DEBUGPL(DBG_PCDV, "%s(%p,%p)\n", __func__, _ep, _desc); + ep = container_of(_ep, dwc_otg_pcd_ep_t, ep); + if (!_ep || !_desc || ep->desc + || _desc->bDescriptorType != USB_DT_ENDPOINT) { + DWC_WARN("%s, bad ep or descriptor\n", __func__); + return -EINVAL; + } + if (ep == &ep->pcd->ep0) { + DWC_WARN("%s, bad ep(0)\n", __func__); + return -EINVAL; + } + + /* Check FIFO size? */ + if (!_desc->wMaxPacketSize) { + DWC_WARN("%s, bad %s maxpacket\n", __func__, _ep->name); + return -ERANGE; + } + pcd = ep->pcd; + if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) { + DWC_WARN("%s, bogus device state\n", __func__); + return -ESHUTDOWN; + } + SPIN_LOCK_IRQSAVE(&pcd->lock, flags); + ep->desc = _desc; + ep->ep.maxpacket = le16_to_cpu(_desc->wMaxPacketSize); + + /* + * Activate the EP + */ + ep->stopped = 0; + ep->dwc_ep.is_in = (USB_DIR_IN & _desc->bEndpointAddress) != 0; + ep->dwc_ep.maxpacket = ep->ep.maxpacket; + ep->dwc_ep.type = _desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; + if (ep->dwc_ep.is_in) { + if (!pcd->otg_dev->core_if->en_multiple_tx_fifo) { + ep->dwc_ep.tx_fifo_num = 0; + if ((_desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == + USB_ENDPOINT_XFER_ISOC) { + /* + * if ISOC EP then assign a Periodic Tx FIFO. + */ + ep->dwc_ep.tx_fifo_num = assign_perio_tx_fifo(pcd->otg_dev->core_if); + } + } else { + /* + * if Dedicated FIFOs mode is on then assign a Tx FIFO. + */ + ep->dwc_ep.tx_fifo_num = assign_tx_fifo(pcd->otg_dev->core_if); + } + } + + /* Set initial data PID. */ + if ((_desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == + USB_ENDPOINT_XFER_BULK) { + ep->dwc_ep.data_pid_start = 0; + } + DWC_DEBUGPL(DBG_PCD, "Activate %s-%s: type=%d, mps=%d desc=%p\n", + ep->ep.name, (ep->dwc_ep.is_in ? "IN" : "OUT"), + ep->dwc_ep.type, ep->dwc_ep.maxpacket, ep->desc); + dwc_otg_ep_activate(GET_CORE_IF(pcd), &ep->dwc_ep); + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags); + return 0; +} + + +/** + * This function is called when an EP is disabled due to disconnect or + * change in configuration. Any pending requests will terminate with a + * status of -ESHUTDOWN. + * + * This function modifies the dwc_otg_ep_t data structure for this EP, + * and then calls dwc_otg_ep_deactivate. + */ +static int dwc_otg_pcd_ep_disable(struct usb_ep *_ep) +{ + dwc_otg_pcd_ep_t * ep; + unsigned long flags; + DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _ep); + ep = container_of(_ep, dwc_otg_pcd_ep_t, ep); + if (!_ep || !ep->desc) { + DWC_DEBUGPL(DBG_PCD, "%s, %s not enabled\n", __func__, + _ep ? ep->ep.name : NULL); + return -EINVAL; + } + SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags); + request_nuke(ep); + dwc_otg_ep_deactivate(GET_CORE_IF(ep->pcd), &ep->dwc_ep); + ep->desc = 0; + ep->stopped = 1; + if (ep->dwc_ep.is_in) { + release_perio_tx_fifo(GET_CORE_IF(ep->pcd),ep->dwc_ep.tx_fifo_num); + release_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num); + } + SPIN_UNLOCK_IRQRESTORE(&ep->pcd->lock, flags); + DWC_DEBUGPL(DBG_PCD, "%s disabled\n", _ep->name); + return 0; +} + + +/** + * This function allocates a request object to use with the specified + * endpoint. + * + * @param _ep The endpoint to be used with with the request + * @param _gfp_flags the GFP_* flags to use. + */ +static struct usb_request *dwc_otg_pcd_alloc_request(struct usb_ep *_ep, + gfp_t _gfp_flags) +{ + dwc_otg_pcd_request_t * req; + DWC_DEBUGPL(DBG_PCDV, "%s(%p,%d)\n", __func__, _ep, _gfp_flags); + if (0 == _ep) { + DWC_WARN("%s() %s\n", __func__, "Invalid EP!\n"); + return 0; + } + req = kmalloc(sizeof(dwc_otg_pcd_request_t), _gfp_flags); + if (0 == req) { + DWC_WARN("%s() %s\n", __func__,"request allocation failed!\n"); + return 0; + } + memset(req, 0, sizeof(dwc_otg_pcd_request_t)); + req->req.dma = DMA_ADDR_INVALID; + INIT_LIST_HEAD(&req->queue); + return &req->req; +} + + +/** + * This function frees a request object. + * + * @param _ep The endpoint associated with the request + * @param _req The request being freed + */ +static void dwc_otg_pcd_free_request(struct usb_ep *_ep, + struct usb_request *_req) +{ + dwc_otg_pcd_request_t * req; + DWC_DEBUGPL(DBG_PCDV, "%s(%p,%p)\n", __func__, _ep, _req); + if (0 == _ep || 0 == _req) { + DWC_WARN("%s() %s\n", __func__,"Invalid ep or req argument!\n"); + return; + } + req = container_of(_req, dwc_otg_pcd_request_t, req); + kfree(req); +} + + +/** + * This function is used to submit an I/O Request to an EP. + * + * - When the request completes the request's completion callback + * is called to return the request to the driver. + * - An EP, except control EPs, may have multiple requests + * pending. + * - Once submitted the request cannot be examined or modified. + * - Each request is turned into one or more packets. + * - A BULK EP can queue any amount of data; the transfer is + * packetized. + * - Zero length Packets are specified with the request 'zero' + * flag. + */ +static int dwc_otg_pcd_ep_queue(struct usb_ep *_ep, struct usb_request *_req, + gfp_t _gfp_flags) +{ + int prevented = 0; + dwc_otg_pcd_request_t * req; + dwc_otg_pcd_ep_t * ep; + dwc_otg_pcd_t * pcd; + unsigned long flags = 0; + + DWC_DEBUGPL(DBG_PCDV, "%s(%p,%p,%d)\n", __func__, _ep, _req, + _gfp_flags); + req = container_of(_req, dwc_otg_pcd_request_t, req); + if (!_req || !_req->complete || !_req->buf + || !list_empty(&req->queue)) { + DWC_WARN("%s, bad params\n", __func__); + return -EINVAL; + } + ep = container_of(_ep, dwc_otg_pcd_ep_t, ep); + if (!_ep || (!ep->desc && ep->dwc_ep.num != 0)) { + DWC_WARN("%s, bad ep\n", __func__); + return -EINVAL; + } + pcd = ep->pcd; + if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) { + DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed); + DWC_WARN("%s, bogus device state\n", __func__); + return -ESHUTDOWN; + } + DWC_DEBUGPL(DBG_PCD, "%s queue req %p, len %d buf %p\n", _ep->name, + _req, _req->length, _req->buf); + if (!GET_CORE_IF(pcd)->core_params->opt) { + if (ep->dwc_ep.num != 0) { + DWC_ERROR("%s queue req %p, len %d buf %p\n", + _ep->name, _req, _req->length, _req->buf); + } + } + SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags); + +#if defined(CONFIG_DWC_DEBUG) & defined(VERBOSE) + dump_msg(_req->buf, _req->length); + +#endif /* */ + _req->status = -EINPROGRESS; + _req->actual = 0; + + /* + * For EP0 IN without premature status, zlp is required? + */ + if (ep->dwc_ep.num == 0 && ep->dwc_ep.is_in) { + DWC_DEBUGPL(DBG_PCDV, "%s-OUT ZLP\n", _ep->name); + //_req->zero = 1; + } + + /* map virtual address to hardware */ + if (_req->dma == DMA_ADDR_INVALID) { + _req->dma = dma_map_single(ep->pcd->gadget.dev.parent, + _req->buf, + _req->length, + ep->dwc_ep.is_in + ? DMA_TO_DEVICE : + DMA_FROM_DEVICE); + req->mapped = 1; + } else { + dma_sync_single_for_device(ep->pcd->gadget.dev.parent, + _req->dma, _req->length, + ep->dwc_ep.is_in + ? DMA_TO_DEVICE : + DMA_FROM_DEVICE); + req->mapped = 0; + } + + /* Start the transfer */ + if (list_empty(&ep->queue) && !ep->stopped) { + /* EP0 Transfer? */ + if (ep->dwc_ep.num == 0) { + switch (pcd->ep0state) { + case EP0_IN_DATA_PHASE: + DWC_DEBUGPL(DBG_PCD, "%s ep0: EP0_IN_DATA_PHASE\n", + __func__); + break; + case EP0_OUT_DATA_PHASE: + DWC_DEBUGPL(DBG_PCD, "%s ep0: EP0_OUT_DATA_PHASE\n", + __func__); + if (pcd->request_config) { + /* Complete STATUS PHASE */ + ep->dwc_ep.is_in = 1; + pcd->ep0state = EP0_STATUS; + } + break; + default: + DWC_DEBUGPL(DBG_ANY, "ep0: odd state %d\n", + pcd->ep0state); + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags); + return -EL2HLT; + } + ep->dwc_ep.dma_addr = _req->dma; + ep->dwc_ep.start_xfer_buff = _req->buf; + ep->dwc_ep.xfer_buff = _req->buf; + ep->dwc_ep.xfer_len = _req->length; + ep->dwc_ep.xfer_count = 0; + ep->dwc_ep.sent_zlp = 0; + ep->dwc_ep.total_len = ep->dwc_ep.xfer_len; + dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), + &ep->dwc_ep); + } else { + /* Setup and start the Transfer */ + ep->dwc_ep.dma_addr = _req->dma; + ep->dwc_ep.start_xfer_buff = _req->buf; + ep->dwc_ep.xfer_buff = _req->buf; + ep->dwc_ep.xfer_len = _req->length; + ep->dwc_ep.xfer_count = 0; + ep->dwc_ep.sent_zlp = 0; + ep->dwc_ep.total_len = ep->dwc_ep.xfer_len; + dwc_otg_ep_start_transfer(GET_CORE_IF(pcd), + &ep->dwc_ep); + } + } + if ((req != 0) || prevented) { + ++pcd->request_pending; + list_add_tail(&req->queue, &ep->queue); + if (ep->dwc_ep.is_in && ep->stopped + && !(GET_CORE_IF(pcd)->dma_enable)) { + /** @todo NGS Create a function for this. */ + diepmsk_data_t diepmsk = {.d32 = 0}; + diepmsk.b.intktxfemp = 1; + dwc_modify_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->diepmsk, 0, + diepmsk.d32); + } + } + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags); + return 0; +} + +/** + * This function cancels an I/O request from an EP. + */ +static int dwc_otg_pcd_ep_dequeue(struct usb_ep *_ep, + struct usb_request *_req) +{ + dwc_otg_pcd_request_t * req; + dwc_otg_pcd_ep_t * ep; + dwc_otg_pcd_t * pcd; + unsigned long flags; + DWC_DEBUGPL(DBG_PCDV, "%s(%p,%p)\n", __func__, _ep, _req); + ep = container_of(_ep, dwc_otg_pcd_ep_t, ep); + if (!_ep || !_req || (!ep->desc && ep->dwc_ep.num != 0)) { + DWC_WARN("%s, bad argument\n", __func__); + return -EINVAL; + } + pcd = ep->pcd; + if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) { + DWC_WARN("%s, bogus device state\n", __func__); + return -ESHUTDOWN; + } + SPIN_LOCK_IRQSAVE(&pcd->lock, flags); + DWC_DEBUGPL(DBG_PCDV, "%s %s %s %p\n", __func__, _ep->name, + ep->dwc_ep.is_in ? "IN" : "OUT", _req); + + /* make sure it's actually queued on this endpoint */ + list_for_each_entry(req, &ep->queue, queue) { + if (&req->req == _req) { + break; + } + } + if (&req->req != _req) { + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags); + return -EINVAL; + } + if (!list_empty(&req->queue)) { + request_done(ep, req, -ECONNRESET); + } else { + req = 0; + } + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags); + return req ? 0 : -EOPNOTSUPP; +} + +/** + * usb_ep_set_halt stalls an endpoint. + * + * usb_ep_clear_halt clears an endpoint halt and resets its data + * toggle. + * + * Both of these functions are implemented with the same underlying + * function. The behavior depends on the value argument. + * + * @param[in] _ep the Endpoint to halt or clear halt. + * @param[in] _value + * - 0 means clear_halt. + * - 1 means set_halt, + * - 2 means clear stall lock flag. + * - 3 means set stall lock flag. + */ +static int dwc_otg_pcd_ep_set_halt(struct usb_ep *_ep, int _value) +{ + int retval = 0; + unsigned long flags; + dwc_otg_pcd_ep_t * ep = 0; + DWC_DEBUGPL(DBG_PCD, "HALT %s %d\n", _ep->name, _value); + ep = container_of(_ep, dwc_otg_pcd_ep_t, ep); + if (!_ep || (!ep->desc && ep != &ep->pcd->ep0) + || ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) { + DWC_WARN("%s, bad ep\n", __func__); + return -EINVAL; + } + SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags); + if (ep->dwc_ep.is_in && !list_empty(&ep->queue)) { + DWC_WARN("%s() %s XFer In process\n", __func__, _ep->name); + retval = -EAGAIN; + } else if (_value == 0) { + dwc_otg_ep_clear_stall(ep->pcd->otg_dev->core_if,&ep->dwc_ep); + } else if (_value == 1) { + if (ep->dwc_ep.num == 0) { + ep->pcd->ep0state = EP0_STALL; + } + ep->stopped = 1; + dwc_otg_ep_set_stall(ep->pcd->otg_dev->core_if, &ep->dwc_ep); + } else if (_value == 2) { + ep->dwc_ep.stall_clear_flag = 0; + } else if (_value == 3) { + ep->dwc_ep.stall_clear_flag = 1; + } + SPIN_UNLOCK_IRQRESTORE(&ep->pcd->lock, flags); + return retval; +} + +static struct usb_ep_ops dwc_otg_pcd_ep_ops = +{ + .enable = dwc_otg_pcd_ep_enable, + .disable = dwc_otg_pcd_ep_disable, + .alloc_request = dwc_otg_pcd_alloc_request, + .free_request = dwc_otg_pcd_free_request, + .queue = dwc_otg_pcd_ep_queue, + .dequeue = dwc_otg_pcd_ep_dequeue, + .set_halt = dwc_otg_pcd_ep_set_halt, + .fifo_status = 0, + .fifo_flush = 0, +}; + +/* Gadget Operations */ +/** + * The following gadget operations will be implemented in the DWC_otg + * PCD. Functions in the API that are not described below are not + * implemented. + * + * The Gadget API provides wrapper functions for each of the function + * pointers defined in usb_gadget_ops. The Gadget Driver calls the + * wrapper function, which then calls the underlying PCD function. The + * following sections are named according to the wrapper functions + * (except for ioctl, which doesn't have a wrapper function). Within + * each section, the corresponding DWC_otg PCD function name is + * specified. + * + */ + +/** + *Gets the USB Frame number of the last SOF. + */ +static int dwc_otg_pcd_get_frame(struct usb_gadget *_gadget) +{ + dwc_otg_pcd_t * pcd; + DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _gadget); + if (_gadget == 0) { + return -ENODEV; + } else { + pcd = container_of(_gadget, dwc_otg_pcd_t, gadget); + dwc_otg_get_frame_number(GET_CORE_IF(pcd)); + } + return 0; +} +void dwc_otg_pcd_initiate_srp(dwc_otg_pcd_t * _pcd) +{ + uint32_t * addr = (uint32_t *) &(GET_CORE_IF(_pcd)->core_global_regs->gotgctl); + gotgctl_data_t mem; + gotgctl_data_t val; + val.d32 = dwc_read_reg32(addr); + if (val.b.sesreq) { + DWC_ERROR("Session Request Already active!\n"); + return; + } + DWC_NOTICE("Session Request Initated\n"); + mem.d32 = dwc_read_reg32(addr); + mem.b.sesreq = 1; + dwc_write_reg32(addr, mem.d32); + + /* Start the SRP timer */ + dwc_otg_pcd_start_srp_timer(_pcd); + return; +} +void dwc_otg_pcd_remote_wakeup(dwc_otg_pcd_t * _pcd, int set) +{ + dctl_data_t dctl = {.d32 = 0}; + volatile uint32_t *addr = &(GET_CORE_IF(_pcd)->dev_if->dev_global_regs->dctl); + if (dwc_otg_is_device_mode(GET_CORE_IF(_pcd))) { + if (_pcd->remote_wakeup_enable) { + if (set) { + dctl.b.rmtwkupsig = 1; + dwc_modify_reg32(addr, 0, dctl.d32); + DWC_DEBUGPL(DBG_PCD, "Set Remote Wakeup\n"); + mdelay(1); + dwc_modify_reg32(addr, dctl.d32, 0); + DWC_DEBUGPL(DBG_PCD, "Clear Remote Wakeup\n"); + } else { + } + } else { + DWC_DEBUGPL(DBG_PCD, "Remote Wakeup is disabled\n"); + } + } + return; +} + + +/** + * Initiates Session Request Protocol (SRP) to wakeup the host if no + * session is in progress. If a session is already in progress, but + * the device is suspended, remote wakeup signaling is started. + * + */ +static int dwc_otg_pcd_wakeup(struct usb_gadget *_gadget) +{ + unsigned long flags; + dwc_otg_pcd_t * pcd; + dsts_data_t dsts; + gotgctl_data_t gotgctl; + DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _gadget); + if (_gadget == 0) { + return -ENODEV; + } else { + pcd = container_of(_gadget, dwc_otg_pcd_t, gadget); + } + SPIN_LOCK_IRQSAVE(&pcd->lock, flags); + + /* + * This function starts the Protocol if no session is in progress. If + * a session is already in progress, but the device is suspended, + * remote wakeup signaling is started. + */ + + /* Check if valid session */ + gotgctl.d32 = dwc_read_reg32(&(GET_CORE_IF(pcd)->core_global_regs->gotgctl)); + if (gotgctl.b.bsesvld) { + + /* Check if suspend state */ + dsts.d32 = dwc_read_reg32(&(GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts)); + if (dsts.b.suspsts) { + dwc_otg_pcd_remote_wakeup(pcd, 1); + } + } else { + dwc_otg_pcd_initiate_srp(pcd); + } + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags); + return 0; +} + +static const struct usb_gadget_ops dwc_otg_pcd_ops = +{ + .get_frame = dwc_otg_pcd_get_frame, + .wakeup = dwc_otg_pcd_wakeup, + // current versions must always be self-powered +}; + +/** + * This function updates the otg values in the gadget structure. + */ +void dwc_otg_pcd_update_otg(dwc_otg_pcd_t * _pcd, const unsigned _reset) +{ + if (!_pcd->gadget.is_otg) + return; + if (_reset) { + _pcd->b_hnp_enable = 0; + _pcd->a_hnp_support = 0; + _pcd->a_alt_hnp_support = 0; + } + _pcd->gadget.b_hnp_enable = _pcd->b_hnp_enable; + _pcd->gadget.a_hnp_support = _pcd->a_hnp_support; + _pcd->gadget.a_alt_hnp_support = _pcd->a_alt_hnp_support; +} + +/** + * This function is the top level PCD interrupt handler. + */ +static irqreturn_t dwc_otg_pcd_irq(int _irq, void *_dev) +{ + dwc_otg_pcd_t * pcd = _dev; + int32_t retval = IRQ_NONE; + retval = dwc_otg_pcd_handle_intr(pcd); + return IRQ_RETVAL(retval); +} + +/** + * PCD Callback function for initializing the PCD when switching to + * device mode. + * + * @param _p void pointer to the <code>dwc_otg_pcd_t</code> + */ +static int32_t dwc_otg_pcd_start_cb(void *_p) +{ + dwc_otg_pcd_t * pcd = (dwc_otg_pcd_t *) _p; + + /* + * Initialized the Core for Device mode. + */ + if (dwc_otg_is_device_mode(GET_CORE_IF(pcd))) { + dwc_otg_core_dev_init(GET_CORE_IF(pcd)); + } + return 1; +} + +/** + * PCD Callback function for stopping the PCD when switching to Host + * mode. + * + * @param _p void pointer to the <code>dwc_otg_pcd_t</code> + */ +static int32_t dwc_otg_pcd_stop_cb(void *_p) +{ + dwc_otg_pcd_t * pcd = (dwc_otg_pcd_t *) _p; + extern void dwc_otg_pcd_stop(dwc_otg_pcd_t * _pcd); + dwc_otg_pcd_stop(pcd); + return 1; +} + +/** + * PCD Callback function for notifying the PCD when resuming from + * suspend. + * + * @param _p void pointer to the <code>dwc_otg_pcd_t</code> + */ +static int32_t dwc_otg_pcd_suspend_cb(void *_p) +{ + dwc_otg_pcd_t * pcd = (dwc_otg_pcd_t *) _p; + if (pcd->driver && pcd->driver->resume) { + SPIN_UNLOCK(&pcd->lock); + pcd->driver->suspend(&pcd->gadget); + SPIN_LOCK(&pcd->lock); + } + return 1; +} + + +/** + * PCD Callback function for notifying the PCD when resuming from + * suspend. + * + * @param _p void pointer to the <code>dwc_otg_pcd_t</code> + */ +static int32_t dwc_otg_pcd_resume_cb(void *_p) +{ + dwc_otg_pcd_t * pcd = (dwc_otg_pcd_t *) _p; + if (pcd->driver && pcd->driver->resume) { + SPIN_UNLOCK(&pcd->lock); + pcd->driver->resume(&pcd->gadget); + SPIN_LOCK(&pcd->lock); + } + + /* Stop the SRP timeout timer. */ + if ((GET_CORE_IF(pcd)->core_params->phy_type != + DWC_PHY_TYPE_PARAM_FS) || (!GET_CORE_IF(pcd)->core_params->i2c_enable)) { + if (GET_CORE_IF(pcd)->srp_timer_started) { + GET_CORE_IF(pcd)->srp_timer_started = 0; + del_timer(&pcd->srp_timer); + } + } + return 1; +} + +/** + * PCD Callback structure for handling mode switching. + */ +static dwc_otg_cil_callbacks_t pcd_callbacks = +{ + .start = dwc_otg_pcd_start_cb, + .stop = dwc_otg_pcd_stop_cb, + .suspend = dwc_otg_pcd_suspend_cb, + .resume_wakeup = dwc_otg_pcd_resume_cb, + .p = 0, /* Set at registration */ +}; + +/** + * This function is called when the SRP timer expires. The SRP should + * complete within 6 seconds. + */ +static void srp_timeout(unsigned long _ptr) +{ + gotgctl_data_t gotgctl; + dwc_otg_core_if_t * core_if = (dwc_otg_core_if_t *) _ptr; + volatile uint32_t *addr = &core_if->core_global_regs->gotgctl; + gotgctl.d32 = dwc_read_reg32(addr); + core_if->srp_timer_started = 0; + if ((core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS) && + (core_if->core_params->i2c_enable)) { + DWC_PRINT("SRP Timeout\n"); + if ((core_if->srp_success) && (gotgctl.b.bsesvld)) { + if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) { + core_if->pcd_cb->resume_wakeup(core_if-> + pcd_cb->p); + } + + /* Clear Session Request */ + gotgctl.d32 = 0; + gotgctl.b.sesreq = 1; + dwc_modify_reg32(&core_if->core_global_regs->gotgctl,gotgctl.d32, 0); + core_if->srp_success = 0; + } else { + DWC_ERROR("Device not connected/responding\n"); + gotgctl.b.sesreq = 0; + dwc_write_reg32(addr, gotgctl.d32); + } + } else if (gotgctl.b.sesreq) { + DWC_PRINT("SRP Timeout\n"); + DWC_ERROR("Device not connected/responding\n"); + gotgctl.b.sesreq = 0; + dwc_write_reg32(addr, gotgctl.d32); + } else { + DWC_PRINT(" SRP GOTGCTL=%0x\n", gotgctl.d32); + } +} + +/** + * Start the SRP timer to detect when the SRP does not complete within + * 6 seconds. + * + * @param _pcd the pcd structure. + */ +void dwc_otg_pcd_start_srp_timer(dwc_otg_pcd_t * _pcd) +{ + struct timer_list *srp_timer = &_pcd->srp_timer; + GET_CORE_IF(_pcd)->srp_timer_started = 1; + init_timer(srp_timer); + srp_timer->function = srp_timeout; + srp_timer->data = (unsigned long)GET_CORE_IF(_pcd); + srp_timer->expires = jiffies + (HZ * 6); + add_timer(srp_timer); +} + +/** + * Tasklet + * + */ +extern void start_next_request(dwc_otg_pcd_ep_t * _ep); + +static void start_xfer_tasklet_func(unsigned long data) +{ + dwc_otg_pcd_t * pcd = (dwc_otg_pcd_t *) data; + dwc_otg_core_if_t * core_if = pcd->otg_dev->core_if; + int i; + depctl_data_t diepctl; + DWC_DEBUGPL(DBG_PCDV, "Start xfer tasklet\n"); + diepctl.d32 = + dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->diepctl); + if (pcd->ep0.queue_sof) { + pcd->ep0.queue_sof = 0; + start_next_request(&pcd->ep0); + // break; + } + for (i = 0; i < core_if->dev_if->num_in_eps; i++) { + depctl_data_t diepctl; + diepctl.d32 = + dwc_read_reg32(&core_if->dev_if->in_ep_regs[i]->diepctl); + if (pcd->in_ep[i].queue_sof) { + pcd->in_ep[i].queue_sof = 0; + start_next_request(&pcd->in_ep[i]); + // break; + } + } + return; +} + +static struct tasklet_struct start_xfer_tasklet = +{ + .next = NULL, + .state = 0, + .count = ATOMIC_INIT(0), + .func = start_xfer_tasklet_func, + .data = 0, +}; + +/** + * This function initialized the pcd Dp structures to there default + * state. + * + * @param _pcd the pcd structure. + */ +void dwc_otg_pcd_reinit(dwc_otg_pcd_t * _pcd) +{ + static const char *names[] = + { + "ep0", "ep1in", "ep2in", "ep3in", "ep4in", "ep5in", + "ep6in", "ep7in", "ep8in", "ep9in", "ep10in", "ep11in", "ep12in", "ep13in", + "ep14in", "ep15in", "ep1out", "ep2out", "ep3out", "ep4out", "ep5out", + "ep6out", "ep7out", "ep8out", "ep9out", "ep10out", "ep11out", "ep12out", + "ep13out", "ep14out", "ep15out" + }; + + int i; + int in_ep_cntr, out_ep_cntr; + uint32_t hwcfg1; + uint32_t num_in_eps = (GET_CORE_IF(_pcd))->dev_if->num_in_eps; + uint32_t num_out_eps = (GET_CORE_IF(_pcd))->dev_if->num_out_eps; + dwc_otg_pcd_ep_t * ep; + DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _pcd); + INIT_LIST_HEAD(&_pcd->gadget.ep_list); + _pcd->gadget.ep0 = &_pcd->ep0.ep; + _pcd->gadget.speed = USB_SPEED_UNKNOWN; + INIT_LIST_HEAD(&_pcd->gadget.ep0->ep_list); + + /** + * Initialize the EP0 structure. + */ + ep = &_pcd->ep0; + + /* Init EP structure */ + ep->desc = 0; + ep->pcd = _pcd; + ep->stopped = 1; + + /* Init DWC ep structure */ + ep->dwc_ep.num = 0; + ep->dwc_ep.active = 0; + ep->dwc_ep.tx_fifo_num = 0; + + /* Control until ep is actvated */ + ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL; + ep->dwc_ep.maxpacket = MAX_PACKET_SIZE; + ep->dwc_ep.dma_addr = 0; + ep->dwc_ep.start_xfer_buff = 0; + ep->dwc_ep.xfer_buff = 0; + ep->dwc_ep.xfer_len = 0; + ep->dwc_ep.xfer_count = 0; + ep->dwc_ep.sent_zlp = 0; + ep->dwc_ep.total_len = 0; + ep->queue_sof = 0; + + /* Init the usb_ep structure. */ + ep->ep.name = names[0]; + ep->ep.ops = &dwc_otg_pcd_ep_ops; + + /** + * @todo NGS: What should the max packet size be set to + * here? Before EP type is set? + */ + ep->ep.maxpacket = MAX_PACKET_SIZE; + list_add_tail(&ep->ep.ep_list, &_pcd->gadget.ep_list); + INIT_LIST_HEAD(&ep->queue); + + /** + * Initialize the EP structures. + */ + in_ep_cntr = 0; + hwcfg1 = (GET_CORE_IF(_pcd))->hwcfg1.d32 >> 3; + for (i = 1; in_ep_cntr < num_in_eps; i++) { + if ((hwcfg1 & 0x1) == 0) { + dwc_otg_pcd_ep_t * ep = &_pcd->in_ep[in_ep_cntr]; + in_ep_cntr++; + + /* Init EP structure */ + ep->desc = 0; + ep->pcd = _pcd; + ep->stopped = 1; + + /* Init DWC ep structure */ + ep->dwc_ep.is_in = 1; + ep->dwc_ep.num = i; + ep->dwc_ep.active = 0; + ep->dwc_ep.tx_fifo_num = 0; + + /* Control until ep is actvated */ + ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL; + ep->dwc_ep.maxpacket = MAX_PACKET_SIZE; + ep->dwc_ep.dma_addr = 0; + ep->dwc_ep.start_xfer_buff = 0; + ep->dwc_ep.xfer_buff = 0; + ep->dwc_ep.xfer_len = 0; + ep->dwc_ep.xfer_count = 0; + ep->dwc_ep.sent_zlp = 0; + ep->dwc_ep.total_len = 0; + ep->queue_sof = 0; + + /* Init the usb_ep structure. */ + /** + * @todo NGS: Add direction to EP, based on contents + * of HWCFG1. Need a copy of HWCFG1 in pcd structure? + * sprintf( ";r + */ + ep->ep.name = names[i]; + ep->ep.ops = &dwc_otg_pcd_ep_ops; + + /** + * @todo NGS: What should the max packet size be set to + * here? Before EP type is set? + */ + ep->ep.maxpacket = MAX_PACKET_SIZE; + list_add_tail(&ep->ep.ep_list, &_pcd->gadget.ep_list); + INIT_LIST_HEAD(&ep->queue); + } + hwcfg1 >>= 2; + } + out_ep_cntr = 0; + hwcfg1 = (GET_CORE_IF(_pcd))->hwcfg1.d32 >> 2; + for (i = 1; out_ep_cntr < num_out_eps; i++) { + if ((hwcfg1 & 0x1) == 0) { + dwc_otg_pcd_ep_t * ep = &_pcd->out_ep[out_ep_cntr]; + out_ep_cntr++; + + /* Init EP structure */ + ep->desc = 0; + ep->pcd = _pcd; + ep->stopped = 1; + + /* Init DWC ep structure */ + ep->dwc_ep.is_in = 0; + ep->dwc_ep.num = i; + ep->dwc_ep.active = 0; + ep->dwc_ep.tx_fifo_num = 0; + + /* Control until ep is actvated */ + ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL; + ep->dwc_ep.maxpacket = MAX_PACKET_SIZE; + ep->dwc_ep.dma_addr = 0; + ep->dwc_ep.start_xfer_buff = 0; + ep->dwc_ep.xfer_buff = 0; + ep->dwc_ep.xfer_len = 0; + ep->dwc_ep.xfer_count = 0; + ep->dwc_ep.sent_zlp = 0; + ep->dwc_ep.total_len = 0; + ep->queue_sof = 0; + + /* Init the usb_ep structure. */ + /** + * @todo NGS: Add direction to EP, based on contents + * of HWCFG1. Need a copy of HWCFG1 in pcd structure? + * sprintf( ";r + */ + ep->ep.name = names[15 + i]; + ep->ep.ops = &dwc_otg_pcd_ep_ops; + + /** + * @todo NGS: What should the max packet size be set to + * here? Before EP type is set? + */ + ep->ep.maxpacket = MAX_PACKET_SIZE; + list_add_tail(&ep->ep.ep_list, &_pcd->gadget.ep_list); + INIT_LIST_HEAD(&ep->queue); + } + hwcfg1 >>= 2; + } + + /* remove ep0 from the list. There is a ep0 pointer. */ + list_del_init(&_pcd->ep0.ep.ep_list); + _pcd->ep0state = EP0_DISCONNECT; + _pcd->ep0.ep.maxpacket = MAX_EP0_SIZE; + _pcd->ep0.dwc_ep.maxpacket = MAX_EP0_SIZE; + _pcd->ep0.dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL; +} + +/** + * This function releases the Gadget device. + * required by device_unregister(). + * + * @todo Should this do something? Should it free the PCD? + */ +static void dwc_otg_pcd_gadget_release(struct device *_dev) +{ + DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _dev); +} + +/** + * This function initialized the PCD portion of the driver. + * + */ +int __init dwc_otg_pcd_init(struct device *_dev) +{ + static char pcd_name[] = "dwc_otg_pcd"; + dwc_otg_pcd_t * pcd; + dwc_otg_device_t * otg_dev = dev_get_drvdata(_dev); + int retval = 0; + DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _dev); + + /* + * Allocate PCD structure + */ + pcd = kmalloc(sizeof(dwc_otg_pcd_t), GFP_KERNEL); + if (pcd == 0) { + return -ENOMEM; + } + memset(pcd, 0, sizeof(dwc_otg_pcd_t)); + spin_lock_init(&pcd->lock); + otg_dev->pcd = pcd; + s_pcd = pcd; + pcd->gadget.name = pcd_name; + dev_set_name(&pcd->gadget.dev, "gadget"); + pcd->otg_dev = dev_get_drvdata(_dev); + pcd->gadget.dev.parent = _dev; + pcd->gadget.dev.release = dwc_otg_pcd_gadget_release; + pcd->gadget.ops = &dwc_otg_pcd_ops; + if (GET_CORE_IF(pcd)->hwcfg4.b.ded_fifo_en) { + DWC_PRINT("Dedicated Tx FIFOs mode\n"); + } else { + DWC_PRINT("Shared Tx FIFO mode\n"); + } + + /* If the module is set to FS or if the PHY_TYPE is FS then the gadget + * should not report as dual-speed capable. replace the following line + * with the block of code below it once the software is debugged for + * this. If is_dualspeed = 0 then the gadget driver should not report + * a device qualifier descriptor when queried. */ + if ((GET_CORE_IF(pcd)->core_params->speed == DWC_SPEED_PARAM_FULL) + || ((GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == 2) + && (GET_CORE_IF(pcd)->hwcfg2.b.fs_phy_type == 1) + && (GET_CORE_IF(pcd)->core_params->ulpi_fs_ls))) { + pcd->gadget.is_dualspeed = 0; + } else { + pcd->gadget.is_dualspeed = 1; + } + if ((otg_dev->core_if->hwcfg2.b.op_mode == + DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE) + || (otg_dev->core_if->hwcfg2.b.op_mode == + DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST) + || (otg_dev->core_if->hwcfg2.b.op_mode == + DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) + || (otg_dev->core_if->hwcfg2.b.op_mode == + DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) { + pcd->gadget.is_otg = 0; + } else { + pcd->gadget.is_otg = 1; + } + pcd->driver = 0; + + /* Register the gadget device */ + retval = device_register(&pcd->gadget.dev); + + /* + * Initialized the Core for Device mode. + */ + if (dwc_otg_is_device_mode(GET_CORE_IF(pcd))) { + dwc_otg_core_dev_init(GET_CORE_IF(pcd)); + } + + /* + * Initialize EP structures + */ + dwc_otg_pcd_reinit(pcd); + + /* + * Register the PCD Callbacks. + */ + dwc_otg_cil_register_pcd_callbacks(otg_dev->core_if, &pcd_callbacks,pcd); + + /* + * Setup interupt handler + */ + DWC_DEBUGPL(DBG_ANY, "registering handler for irq%d\n",otg_dev->irq); + retval = request_irq(otg_dev->irq, dwc_otg_pcd_irq, IRQF_SHARED, + pcd->gadget.name, pcd); + if (retval != 0) { + DWC_ERROR("request of irq%d failed\n", otg_dev->irq); + kfree(pcd); + return -EBUSY; + } + + /* + * Initialize the DMA buffer for SETUP packets + */ + if (GET_CORE_IF(pcd)->dma_enable) { + pcd->setup_pkt = dma_alloc_coherent(_dev, sizeof(*pcd->setup_pkt) * 5, + &pcd->setup_pkt_dma_handle, 0); + pcd->status_buf = dma_alloc_coherent(_dev, sizeof(uint16_t), + &pcd->status_buf_dma_handle, 0); + } else { + pcd->setup_pkt = kmalloc(sizeof(*pcd->setup_pkt) * 5, GFP_KERNEL); + pcd->status_buf = kmalloc(sizeof(uint16_t), GFP_KERNEL); + } + if (pcd->setup_pkt == 0) { + kfree(pcd); + return -ENOMEM; + } + + /* Initialize tasklet */ + start_xfer_tasklet.data = (unsigned long)pcd; + pcd->start_xfer_tasklet = &start_xfer_tasklet; + return 0; +} + +/** + * Cleanup the PCD. + */ +void dwc_otg_pcd_remove(struct device *_dev) +{ + dwc_otg_device_t * otg_dev = dev_get_drvdata(_dev); + dwc_otg_pcd_t * pcd = otg_dev->pcd; + DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _dev); + + /* + * Free the IRQ + */ + free_irq(otg_dev->irq, pcd); + + /* start with the driver above us */ + if (pcd->driver) { + + /* should have been done already by driver model core */ + DWC_WARN("driver '%s' is still registered\n",pcd->driver->driver.name); + usb_gadget_unregister_driver(pcd->driver); + } + device_unregister(&pcd->gadget.dev); + if (GET_CORE_IF(pcd)->dma_enable) { + dma_free_coherent(NULL, sizeof(*pcd->setup_pkt) * 5, + pcd->setup_pkt, pcd->setup_pkt_dma_handle); + dma_free_coherent(NULL, sizeof(uint16_t), pcd->status_buf, + pcd->status_buf_dma_handle); + } else { + kfree(pcd->setup_pkt); + kfree(pcd->status_buf); + } + kfree(pcd); + otg_dev->pcd = 0; +} + + +/** + * This function registers a gadget driver with the PCD. + * + * When a driver is successfully registered, it will receive control + * requests including set_configuration(), which enables non-control + * requests. then usb traffic follows until a disconnect is reported. + * then a host may connect again, or the driver might get unbound. + * + * @param _driver The driver being registered + */ +int usb_gadget_register_driver(struct usb_gadget_driver *_driver) +{ + int retval; + DWC_DEBUGPL(DBG_PCD, "registering gadget driver '%s'\n", + _driver->driver.name); + if (!_driver || _driver->speed == USB_SPEED_UNKNOWN || !_driver->bind + || !_driver->disconnect || !_driver->setup) { + DWC_DEBUGPL(DBG_PCDV, "EINVAL\n"); +#if 1 + printk("_driver=0x%p speed=0x%x bind=0x%p unbind=0x%p disconnect=0x%p setup=0x%p\n", _driver, _driver->speed, _driver->bind, _driver->unbind, _driver->disconnect, _driver->setup); +#endif + return -EINVAL; + } + if (s_pcd == 0) { + DWC_DEBUGPL(DBG_PCDV, "ENODEV\n"); + return -ENODEV; + } + if (s_pcd->driver != 0) { + DWC_DEBUGPL(DBG_PCDV, "EBUSY (%p)\n", s_pcd->driver); + return -EBUSY; + } + + /* hook up the driver */ + s_pcd->driver = _driver; + s_pcd->gadget.dev.driver = &_driver->driver; + { + dwc_otg_core_if_t *_core_if = s_pcd->otg_dev->core_if; + if(_core_if) { + dwc_otg_disable_global_interrupts(_core_if); + dwc_otg_core_init(_core_if); + dwc_otg_pcd_reinit(s_pcd); + dwc_otg_enable_global_interrupts(_core_if); + if (_core_if->pcd_cb) + dwc_otg_pcd_start_cb(_core_if->pcd_cb->p); + } + + } + DWC_DEBUGPL(DBG_PCD, "bind to driver %s\n", _driver->driver.name); + retval = _driver->bind(&s_pcd->gadget); + if (retval) { + DWC_ERROR("bind to driver %s --> error %d\n", + _driver->driver.name, retval); + s_pcd->driver = 0; + s_pcd->gadget.dev.driver = 0; + return retval; + } + DWC_DEBUGPL(DBG_ANY, "registered gadget driver '%s'\n", + _driver->driver.name); + return 0; +} +EXPORT_SYMBOL(usb_gadget_register_driver); + +/** + * This function unregisters a gadget driver + * + * @param _driver The driver being unregistered + */ +int usb_gadget_unregister_driver(struct usb_gadget_driver *_driver) +{ + + //DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, _driver); + if (s_pcd == 0) { + DWC_DEBUGPL(DBG_ANY, "%s Return(%d): s_pcd==0\n", __func__,-ENODEV); + return -ENODEV; + } + if (_driver == 0 || _driver != s_pcd->driver) { + DWC_DEBUGPL(DBG_ANY, "%s Return(%d): driver?\n", __func__,-EINVAL); + return -EINVAL; + } + _driver->unbind(&s_pcd->gadget); + s_pcd->driver = 0; + DWC_DEBUGPL(DBG_ANY, "unregistered driver '%s'\n", + _driver->driver.name); + return 0; +} +EXPORT_SYMBOL(usb_gadget_unregister_driver); + +#endif /* DWC_HOST_ONLY */ diff --git a/drivers/usb/gadget/dwc_otg/dwc_otg_pcd.h b/drivers/usb/gadget/dwc_otg/dwc_otg_pcd.h new file mode 100644 index 00000000000..a252dc01ed1 --- /dev/null +++ b/drivers/usb/gadget/dwc_otg/dwc_otg_pcd.h @@ -0,0 +1,209 @@ +/* ========================================================================== + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_pcd.h $ + * $Revision: #6 $ + * $Date: 2007/02/07 $ + * $Change: 791271 $ + * + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ +#ifndef CONFIG_DWC_HOST_ONLY +#if !defined(__DWC_PCD_H__) +#define __DWC_PCD_H__ + +#include <linux/types.h> +#include <linux/list.h> +#include <linux/errno.h> +#include <linux/device.h> +#include <linux/usb/ch9.h> +#include <linux/usb/gadget.h> +#include <linux/interrupt.h> +#include <linux/dma-mapping.h> + +struct lm_device; +struct dwc_otg_device; + +#include "dwc_otg_cil.h" + +/** + * @file + * + * This file contains the structures, constants, and interfaces for + * the Perpherial Contoller Driver (PCD). + * + * The Peripheral Controller Driver (PCD) for Linux will implement the + * Gadget API, so that the existing Gadget drivers can be used. For + * the Mass Storage Function driver the File-backed USB Storage Gadget + * (FBS) driver will be used. The FBS driver supports the + * Control-Bulk (CB), Control-Bulk-Interrupt (CBI), and Bulk-Only + * transports. + * + */ + +/** Invalid DMA Address */ +#define DMA_ADDR_INVALID (~(dma_addr_t)0) +/** Maxpacket size for EP0 */ +#define MAX_EP0_SIZE 64 +/** Maxpacket size for any EP */ +#define MAX_PACKET_SIZE 1024 + +/** + * Get the pointer to the core_if from the pcd pointer. + */ +#define GET_CORE_IF( _pcd ) (_pcd->otg_dev->core_if) + +/** + * States of EP0. + */ +typedef enum ep0_state { + EP0_DISCONNECT = 0, /* no host */ + EP0_IDLE = 1, + EP0_IN_DATA_PHASE = 2, + EP0_OUT_DATA_PHASE = 3, + EP0_STATUS = 4, + EP0_STALL = 5, +} ep0state_e; + +/** Fordward declaration.*/ +struct dwc_otg_pcd; + +/** PCD EP structure. + * This structure describes an EP, there is an array of EPs in the PCD + * structure. + */ +typedef struct dwc_otg_pcd_ep { + /** USB EP data */ + struct usb_ep ep; + /** USB EP Descriptor */ + const struct usb_endpoint_descriptor *desc; + + /** queue of dwc_otg_pcd_requests. */ + struct list_head queue; + unsigned stopped : 1; + unsigned disabling : 1; + unsigned dma : 1; + unsigned queue_sof : 1; + + /** DWC_otg ep data. */ + dwc_ep_t dwc_ep; + + /** Pointer to PCD */ + struct dwc_otg_pcd *pcd; +}dwc_otg_pcd_ep_t; + + + +/** DWC_otg PCD Structure. + * This structure encapsulates the data for the dwc_otg PCD. + */ +typedef struct dwc_otg_pcd { + /** USB gadget */ + struct usb_gadget gadget; + /** USB gadget driver pointer*/ + struct usb_gadget_driver *driver; + /** The DWC otg device pointer. */ + struct dwc_otg_device *otg_dev; + + /** State of EP0 */ + ep0state_e ep0state; + /** EP0 Request is pending */ + unsigned ep0_pending : 1; + /** Indicates when SET CONFIGURATION Request is in process */ + unsigned request_config : 1; + /** The state of the Remote Wakeup Enable. */ + unsigned remote_wakeup_enable : 1; + /** The state of the B-Device HNP Enable. */ + unsigned b_hnp_enable : 1; + /** The state of A-Device HNP Support. */ + unsigned a_hnp_support : 1; + /** The state of the A-Device Alt HNP support. */ + unsigned a_alt_hnp_support : 1; + /** Count of pending Requests */ + unsigned request_pending; + + /** SETUP packet for EP0 + * This structure is allocated as a DMA buffer on PCD initialization + * with enough space for up to 3 setup packets. + */ + union { + struct usb_ctrlrequest req; + uint32_t d32[2]; + } *setup_pkt; + + dma_addr_t setup_pkt_dma_handle; + + /** 2-byte dma buffer used to return status from GET_STATUS */ + uint16_t *status_buf; + dma_addr_t status_buf_dma_handle; + + /** Array of EPs. */ + dwc_otg_pcd_ep_t ep0; + /** Array of IN EPs. */ + dwc_otg_pcd_ep_t in_ep[ MAX_EPS_CHANNELS - 1]; + /** Array of OUT EPs. */ + dwc_otg_pcd_ep_t out_ep[ MAX_EPS_CHANNELS - 1]; + /** number of valid EPs in the above array. */ +// unsigned num_eps : 4; + spinlock_t lock; + /** Timer for SRP. If it expires before SRP is successful + * clear the SRP. */ + struct timer_list srp_timer; + + /** Tasklet to defer starting of TEST mode transmissions until + * Status Phase has been completed. + */ + struct tasklet_struct test_mode_tasklet; + + /** Tasklet to delay starting of xfer in DMA mode */ + struct tasklet_struct *start_xfer_tasklet; + + /** The test mode to enter when the tasklet is executed. */ + unsigned test_mode; + +} dwc_otg_pcd_t; + + +/** DWC_otg request structure. + * This structure is a list of requests. + */ +typedef struct dwc_otg_pcd_request { + struct usb_request req; /**< USB Request. */ + struct list_head queue; /**< queue of these requests. */ + unsigned mapped:1; +} dwc_otg_pcd_request_t; + + +extern int __init dwc_otg_pcd_init(struct device *_dev); + +extern void dwc_otg_pcd_remove( struct device *_dev ); +extern int32_t dwc_otg_pcd_handle_intr( dwc_otg_pcd_t *_pcd ); +extern void dwc_otg_pcd_start_srp_timer(dwc_otg_pcd_t *_pcd ); + +extern void dwc_otg_pcd_initiate_srp(dwc_otg_pcd_t *_pcd); +extern void dwc_otg_pcd_remote_wakeup(dwc_otg_pcd_t *_pcd, int set); + +#endif +#endif /* DWC_HOST_ONLY */ diff --git a/drivers/usb/gadget/dwc_otg/dwc_otg_pcd_intr.c b/drivers/usb/gadget/dwc_otg/dwc_otg_pcd_intr.c new file mode 100644 index 00000000000..5d7b2b39239 --- /dev/null +++ b/drivers/usb/gadget/dwc_otg/dwc_otg_pcd_intr.c @@ -0,0 +1,2519 @@ +/* ========================================================================== + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_pcd_intr.c $ + * $Revision: #18 $ + * $Date: 2007/02/07 $ + * $Change: 791271 $ + * + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ + +#ifndef CONFIG_DWC_HOST_ONLY +#include <linux/interrupt.h> +#include <linux/dma-mapping.h> + +#include "dwc_otg_driver.h" +#include "dwc_otg_pcd.h" + +//#define VERBOSE +#define DEBUG_EP0 + +/* request functions defined in "dwc_otg_pcd.c" */ +extern void request_done(dwc_otg_pcd_ep_t * _ep, dwc_otg_pcd_request_t * _req, + int _status); +extern void request_nuke(dwc_otg_pcd_ep_t * _ep); +extern void dwc_otg_pcd_update_otg(dwc_otg_pcd_t * _pcd, + const unsigned _reset); + +/** @file + * This file contains the implementation of the PCD Interrupt handlers. + * + * The PCD handles the device interrupts. Many conditions can cause a + * device interrupt. When an interrupt occurs, the device interrupt + * service routine determines the cause of the interrupt and + * dispatches handling to the appropriate function. These interrupt + * handling functions are described below. + * All interrupt registers are processed from LSB to MSB. + */ + +/** + * This function prints the ep0 state for debug purposes. + */ +static inline void print_ep0_state(dwc_otg_pcd_t * _pcd) +{ +#ifdef CONFIG_DWC_DEBUG + char str[40]; + switch (_pcd->ep0state) { + case EP0_DISCONNECT: + strcpy(str, "EP0_DISCONNECT"); + break; + case EP0_IDLE: + strcpy(str, "EP0_IDLE"); + break; + case EP0_IN_DATA_PHASE: + strcpy(str, "EP0_IN_DATA_PHASE"); + break; + case EP0_OUT_DATA_PHASE: + strcpy(str, "EP0_OUT_DATA_PHASE"); + break; + case EP0_STATUS: + strcpy(str, "EP0_STATUS"); + break; + case EP0_STALL: + strcpy(str, "EP0_STALL"); + break; + default: + strcpy(str, "EP0_INVALID"); + } + DWC_DEBUGPL(DBG_ANY, "%s(%d)\n", str, _pcd->ep0state); +#endif /* */ +} + +/** + * This function returns pointer to in ep struct with number ep_num + */ +static inline dwc_otg_pcd_ep_t *get_in_ep(dwc_otg_pcd_t * _pcd, + uint32_t ep_num) +{ + int i; + int num_in_eps = GET_CORE_IF(_pcd)->dev_if->num_in_eps; + if (ep_num == 0) { + return &_pcd->ep0; + } else { + for (i = 0; i < num_in_eps; ++i) { + if (_pcd->in_ep[i].dwc_ep.num == ep_num) + return &_pcd->in_ep[i]; + } + return 0; + } + +} + +/** + * This function returns pointer to out ep struct with number ep_num + */ +static inline dwc_otg_pcd_ep_t *get_out_ep(dwc_otg_pcd_t * _pcd, + uint32_t ep_num) +{ + int i; + int num_out_eps = GET_CORE_IF(_pcd)->dev_if->num_out_eps; + if (ep_num == 0) { + return &_pcd->ep0; + } else { + for (i = 0; i < num_out_eps; ++i) { + if (_pcd->out_ep[i].dwc_ep.num == ep_num) + return &_pcd->out_ep[i]; + } + return 0; + } + +} + +/** + * This functions gets a pointer to an EP from the wIndex address + * value of the control request. + */ +static dwc_otg_pcd_ep_t *get_ep_by_addr(dwc_otg_pcd_t * _pcd, u16 _wIndex) +{ + dwc_otg_pcd_ep_t * ep; + if ((_wIndex & USB_ENDPOINT_NUMBER_MASK) == 0) + return &_pcd->ep0; + list_for_each_entry(ep, &_pcd->gadget.ep_list, ep.ep_list) { + u8 bEndpointAddress; + if (!ep->desc) + continue; + bEndpointAddress = ep->desc->bEndpointAddress; + if ((_wIndex ^ bEndpointAddress) & USB_DIR_IN) + continue; + if ((_wIndex & 0x0f) == (bEndpointAddress & 0x0f)) + return ep; + } + return NULL; +} + + +/** + * This function checks the EP request queue, if the queue is not + * empty the next request is started. + */ +void start_next_request(dwc_otg_pcd_ep_t * _ep) +{ + dwc_otg_pcd_request_t * req = 0; + if (!list_empty(&_ep->queue)) { + req = list_entry(_ep->queue.next, dwc_otg_pcd_request_t, queue); + + /* Setup and start the Transfer */ + _ep->dwc_ep.start_xfer_buff = req->req.buf; + _ep->dwc_ep.xfer_buff = req->req.buf; + _ep->dwc_ep.xfer_len = req->req.length; + _ep->dwc_ep.xfer_count = 0; + _ep->dwc_ep.dma_addr = req->req.dma; + _ep->dwc_ep.sent_zlp = 0; + _ep->dwc_ep.total_len = _ep->dwc_ep.xfer_len; + + //DWC_ERROR(" -> starting transfer (start_next_req) %s %s\n", + //_ep->ep.name, _ep->dwc_ep.is_in?"IN":"OUT"); +#ifdef CONFIG_405EZ + /* + * Added-sr: 2007-07-26 + * + * When a new transfer will be started, mark this + * endpoint as active. This way it will be blocked + * for further transfers, until the current transfer + * is finished. + */ + _ep->dwc_ep.active = 1; +#endif + dwc_otg_ep_start_transfer(GET_CORE_IF(_ep->pcd), &_ep->dwc_ep); + } +} + +/** + * This function handles the SOF Interrupts. At this time the SOF + * Interrupt is disabled. + */ +int32_t dwc_otg_pcd_handle_sof_intr(dwc_otg_pcd_t * _pcd) +{ + dwc_otg_core_if_t * core_if = GET_CORE_IF(_pcd); + gintsts_data_t gintsts; + + //DWC_DEBUGPL(DBG_PCD, "SOF\n"); + + /* Clear interrupt */ + gintsts.d32 = 0; + gintsts.b.sofintr = 1; + dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32); + return 1; +} + +/** + * This function handles the Rx Status Queue Level Interrupt, which + * indicates that there is a least one packet in the Rx FIFO. The + * packets are moved from the FIFO to memory, where they will be + * processed when the Endpoint Interrupt Register indicates Transfer + * Complete or SETUP Phase Done. + * + * Repeat the following until the Rx Status Queue is empty: + * -# Read the Receive Status Pop Register (GRXSTSP) to get Packet + * info + * -# If Receive FIFO is empty then skip to step Clear the interrupt + * and exit + * -# If SETUP Packet call dwc_otg_read_setup_packet to copy the + * SETUP data to the buffer + * -# If OUT Data Packet call dwc_otg_read_packet to copy the data + * to the destination buffer + */ +int32_t dwc_otg_pcd_handle_rx_status_q_level_intr(dwc_otg_pcd_t * _pcd) +{ + dwc_otg_core_if_t * core_if = GET_CORE_IF(_pcd); + dwc_otg_core_global_regs_t * global_regs = core_if->core_global_regs; + gintmsk_data_t gintmask = {.d32 = 0}; + device_grxsts_data_t status; + dwc_otg_pcd_ep_t * ep; +#ifndef CONFIG_OTG_PLB_DMA_TASKLET + gintsts_data_t gintsts; +#endif + +#ifdef CONFIG_DWC_DEBUG + static char *dpid_str[] = { "D0", "D2", "D1", "MDATA" }; + +#endif /* */ + DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _pcd); + + /* Disable the Rx Status Queue Level interrupt */ + gintmask.b.rxstsqlvl = 1; + dwc_modify_reg32(&global_regs->gintmsk, gintmask.d32, 0); + + /* Get the Status from the top of the FIFO */ + status.d32 = dwc_read_reg32(&global_regs->grxstsp); + DWC_DEBUGPL(DBG_PCD, "EP:%d BCnt:%d DPID:%s " + "pktsts:%x Frame:%d(0x%0x)\n", status.b.epnum, + status.b.bcnt, dpid_str[status.b.dpid], status.b.pktsts, + status.b.fn, status.b.fn); + + /* Get pointer to EP structure */ + ep = get_out_ep(_pcd, status.b.epnum); + +// ep = &_pcd->out_ep[ status.b.epnum - 1]; + switch (status.b.pktsts) { + case DWC_DSTS_GOUT_NAK: + DWC_DEBUGPL(DBG_PCDV, "Global OUT NAK\n"); + break; + case DWC_STS_DATA_UPDT: + DWC_DEBUGPL(DBG_PCDV, "OUT Data Packet\n"); + if (status.b.bcnt && ep->dwc_ep.xfer_buff) { +#ifdef CONFIG_OTG_PLB_DMA_TASKLET + /* Enable the Rx Status Queue Level interrupt */ + dwc_modify_reg32(&global_regs->gintmsk, 0, gintmask.d32); +#endif + /** @todo NGS Check for buffer overflow? */ + dwc_otg_read_packet(core_if, ep->dwc_ep.xfer_buff, + status.b.bcnt); + ep->dwc_ep.xfer_count += status.b.bcnt; + ep->dwc_ep.xfer_buff += status.b.bcnt; + } + break; + case DWC_STS_XFER_COMP: + DWC_DEBUGPL(DBG_PCDV, "OUT Complete\n"); + break; + case DWC_DSTS_SETUP_COMP: +#ifdef DEBUG_EP0 + DWC_DEBUGPL(DBG_PCDV, "Setup Complete\n"); +#endif /* */ + break; + case DWC_DSTS_SETUP_UPDT: + dwc_otg_read_setup_packet(core_if, _pcd->setup_pkt->d32); +#ifdef DEBUG_EP0 + DWC_DEBUGPL(DBG_PCD, + "SETUP PKT: %02x.%02x v%04x i%04x l%04x\n", + _pcd->setup_pkt->req.bRequestType, + _pcd->setup_pkt->req.bRequest, + __le16_to_cpu(_pcd->setup_pkt->req.wValue), + __le16_to_cpu(_pcd->setup_pkt->req.wIndex), + __le16_to_cpu(_pcd->setup_pkt->req.wLength)); + +#endif /* */ + + ep->dwc_ep.xfer_count += status.b.bcnt; + break; + default: + DWC_DEBUGPL(DBG_PCDV, "Invalid Packet Status (0x%0x)\n", + status.b.pktsts); + break; + } +#ifdef CONFIG_OTG_PLB_DMA_TASKLET /* Can't access registers */ + if (!atomic_read(&release_later)) +#endif + /* Enable the Rx Status Queue Level interrupt */ + dwc_modify_reg32(&global_regs->gintmsk, 0, gintmask.d32); +#ifndef CONFIG_OTG_PLB_DMA_TASKLET /* why do this? */ + /* Clear interrupt */ + gintsts.d32 = 0; + gintsts.b.rxstsqlvl = 1; + dwc_write_reg32(&global_regs->gintsts, gintsts.d32); +#endif + //DWC_DEBUGPL(DBG_PCDV, "EXIT: %s\n", __func__); + return 1; +} + +/** + * This function examines the Device IN Token Learning Queue to + * determine the EP number of the last IN token received. This + * implementation is for the Mass Storage device where there are only + * 2 IN EPs (Control-IN and BULK-IN). + * + * The EP numbers for the first six IN Tokens are in DTKNQR1 and there + * are 8 EP Numbers in each of the other possible DTKNQ Registers. + * + * @param _core_if Programming view of DWC_otg controller. + * + */ +static inline int get_ep_of_last_in_token(dwc_otg_core_if_t * _core_if) +{ + dwc_otg_device_global_regs_t * dev_global_regs = + _core_if->dev_if->dev_global_regs; + const uint32_t TOKEN_Q_DEPTH = _core_if->hwcfg2.b.dev_token_q_depth; + + /* Number of Token Queue Registers */ + const int DTKNQ_REG_CNT = (TOKEN_Q_DEPTH + 7) / 8; + dtknq1_data_t dtknqr1; + uint32_t in_tkn_epnums[4]; + int ndx = 0; + int i = 0; + volatile uint32_t *addr = &dev_global_regs->dtknqr1; + int epnum = 0; + + //DWC_DEBUGPL(DBG_PCD,"dev_token_q_depth=%d\n",TOKEN_Q_DEPTH); + + /* Read the DTKNQ Registers */ + for (i = 0; i <= DTKNQ_REG_CNT; i++) { + in_tkn_epnums[i] = dwc_read_reg32(addr); + DWC_DEBUGPL(DBG_PCDV, "DTKNQR%d=0x%08x\n", i + 1, + in_tkn_epnums[i]); + if (addr == &dev_global_regs->dvbusdis) { + addr = &dev_global_regs->dtknqr3_dthrctl; + } else { + ++addr; + } + } + + /* Copy the DTKNQR1 data to the bit field. */ + dtknqr1.d32 = in_tkn_epnums[0]; + + /* Get the EP numbers */ + in_tkn_epnums[0] = dtknqr1.b.epnums0_5; + ndx = dtknqr1.b.intknwptr - 1; + + //DWC_DEBUGPL(DBG_PCDV,"ndx=%d\n",ndx); + if (ndx == -1) { + /** @todo Find a simpler way to calculate the max + * queue position.*/ + int cnt = TOKEN_Q_DEPTH; + if (TOKEN_Q_DEPTH <= 6) { + cnt = TOKEN_Q_DEPTH - 1; + } else if (TOKEN_Q_DEPTH <= 14) { + cnt = TOKEN_Q_DEPTH - 7; + } else if (TOKEN_Q_DEPTH <= 22) { + cnt = TOKEN_Q_DEPTH - 15; + } else { + cnt = TOKEN_Q_DEPTH - 23; + } + epnum = (in_tkn_epnums[DTKNQ_REG_CNT - 1] >> (cnt * 4)) & 0xF; + } else { + if (ndx <= 5) { + epnum = (in_tkn_epnums[0] >> (ndx * 4)) & 0xF; + } else if (ndx <= 13) { + ndx -= 6; + epnum = (in_tkn_epnums[1] >> (ndx * 4)) & 0xF; + } else if (ndx <= 21) { + ndx -= 14; + epnum = (in_tkn_epnums[2] >> (ndx * 4)) & 0xF; + } else if (ndx <= 29) { + ndx -= 22; + epnum = (in_tkn_epnums[3] >> (ndx * 4)) & 0xF; + } + } + //DWC_DEBUGPL(DBG_PCD,"epnum=%d\n",epnum); + return epnum; +} + +/** + * This interrupt occurs when the non-periodic Tx FIFO is half-empty. + * The active request is checked for the next packet to be loaded into + * the non-periodic Tx FIFO. + */ +int32_t dwc_otg_pcd_handle_np_tx_fifo_empty_intr(dwc_otg_pcd_t * _pcd) +{ + dwc_otg_core_if_t * core_if = GET_CORE_IF(_pcd); + dwc_otg_core_global_regs_t * global_regs = core_if->core_global_regs; + dwc_otg_dev_in_ep_regs_t * ep_regs; + volatile gnptxsts_data_t txstatus = {.d32 = 0 }; +#ifndef CONFIG_OTG_PLB_DMA + gintsts_data_t gintsts; +#endif + int epnum = 0; + dwc_otg_pcd_ep_t * ep = 0; + uint32_t len = 0; + int dwords; + + /* Get the epnum from the IN Token Learning Queue. */ + epnum = get_ep_of_last_in_token(core_if); + ep = get_in_ep(_pcd, epnum); + +/* + if(epnum != 0) + ep = &_pcd->in_ep[epnum-1]; + else + ep = &_pcd->ep0; +*/ + DWC_DEBUGPL(DBG_PCD, "NP TxFifo Empty: %s(%d) \n", ep->ep.name,epnum); + ep_regs = core_if->dev_if->in_ep_regs[epnum]; + len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count; + if (len > ep->dwc_ep.maxpacket) { + len = ep->dwc_ep.maxpacket; + } + dwords = (len + 3) / 4; + + /* While there is space in the queue and space in the FIFO and + * More data to tranfer, Write packets to the Tx FIFO + */ + txstatus.d32 = dwc_read_reg32(&global_regs->gnptxsts); + DWC_DEBUGPL(DBG_PCDV, "b4 GNPTXSTS=0x%08x\n", txstatus.d32); + while (txstatus.b.nptxqspcavail > 0 + && txstatus.b.nptxfspcavail > dwords + && ep->dwc_ep.xfer_count < ep->dwc_ep.xfer_len) { + + /* Write the FIFO */ +#ifdef CONFIG_405EZ + /* + * Added-sr: 2007-07-26 + * + * When a new transfer will be started, mark this + * endpoint as active. This way it will be blocked + * for further transfers, until the current transfer + * is finished. + */ + ep->dwc_ep.active = 1; +#endif + dwc_otg_ep_write_packet(core_if, &ep->dwc_ep, 0); + len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count; + if (len > ep->dwc_ep.maxpacket) { + len = ep->dwc_ep.maxpacket; + } +#ifdef CONFIG_OTG_PLB_DMA_TASKLET + if (atomic_read(&release_later)) { + break; + } +#endif + dwords = (len + 3) / 4; + txstatus.d32 = dwc_read_reg32(&global_regs->gnptxsts); + DWC_DEBUGPL(DBG_PCDV, "GNPTXSTS=0x%08x\n", txstatus.d32); + } + DWC_DEBUGPL(DBG_PCDV, "GNPTXSTS=0x%08x\n", + dwc_read_reg32(&global_regs->gnptxsts)); +#ifndef CONFIG_OTG_PLB_DMA /* why do this? */ + /* Clear interrupt */ + gintsts.d32 = 0; + gintsts.b.nptxfempty = 1; + dwc_write_reg32(&global_regs->gintsts, gintsts.d32); + + /* + * Re-enable tx-fifo empty interrupt, if packets are still + * pending + */ + if (len) + dwc_modify_reg32(&global_regs->gintmsk, 0, gintsts.d32); +#endif + + return 1; +} + +/** + * This function is called when dedicated Tx FIFO Empty interrupt occurs. + * The active request is checked for the next packet to be loaded into + * apropriate Tx FIFO. + */ +static int32_t write_empty_tx_fifo(dwc_otg_pcd_t * _pcd, uint32_t epnum) +{ + dwc_otg_core_if_t * core_if = GET_CORE_IF(_pcd); + dwc_otg_dev_if_t * dev_if = core_if->dev_if; + dwc_otg_dev_in_ep_regs_t * ep_regs; + dtxfsts_data_t txstatus = {.d32 = 0}; + dwc_otg_pcd_ep_t * ep = 0; + uint32_t len = 0; + int dwords; + ep = get_in_ep(_pcd, epnum); + +/* + if(epnum != 0) + ep = &_pcd->in_ep[epnum-1]; + else + ep = &_pcd->ep0; +*/ + DWC_DEBUGPL(DBG_PCD, "Dedicated TxFifo Empty: %s(%d) \n",ep->ep.name, epnum); + ep_regs = core_if->dev_if->in_ep_regs[epnum]; + len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count; + if (len > ep->dwc_ep.maxpacket) { + len = ep->dwc_ep.maxpacket; + } + dwords = (len + 3) / 4; + + /* While there is space in the queue and space in the FIFO and + * More data to tranfer, Write packets to the Tx FIFO */ + txstatus.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts); + DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n", epnum, txstatus.d32); + while (txstatus.b.txfspcavail > dwords + && ep->dwc_ep.xfer_count < ep->dwc_ep.xfer_len + && ep->dwc_ep.xfer_len != 0) { + + /* Write the FIFO */ + dwc_otg_ep_write_packet(core_if, &ep->dwc_ep, 0); + len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count; + if (len > ep->dwc_ep.maxpacket) { + len = ep->dwc_ep.maxpacket; + } + dwords = (len + 3) / 4; + txstatus.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts); + DWC_DEBUGPL(DBG_PCDV, "dtxfsts[%d]=0x%08x\n", epnum, + txstatus.d32); + } + DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n", epnum, + dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts)); + return 1; +} + +/** + * This function is called when the Device is disconnected. It stops + * any active requests and informs the Gadget driver of the + * disconnect. + */ +void dwc_otg_pcd_stop(dwc_otg_pcd_t * _pcd) +{ + int i, num_in_eps, num_out_eps; + dwc_otg_pcd_ep_t * ep; + gintmsk_data_t intr_mask = {.d32 = 0}; + num_in_eps = GET_CORE_IF(_pcd)->dev_if->num_in_eps; + num_out_eps = GET_CORE_IF(_pcd)->dev_if->num_out_eps; + DWC_DEBUGPL(DBG_PCDV, "%s() \n", __func__); + + /* don't disconnect drivers more than once */ + if (_pcd->ep0state == EP0_DISCONNECT) { + DWC_DEBUGPL(DBG_ANY, "%s() Already Disconnected\n", __func__); + return; + } + _pcd->ep0state = EP0_DISCONNECT; + + /* Reset the OTG state. */ + dwc_otg_pcd_update_otg(_pcd, 1); + + /* Disable the NP Tx Fifo Empty Interrupt. */ + intr_mask.b.nptxfempty = 1; + dwc_modify_reg32(&GET_CORE_IF(_pcd)->core_global_regs->gintmsk, + intr_mask.d32, 0); + + /* Flush the FIFOs */ + /**@todo NGS Flush Periodic FIFOs */ + dwc_otg_flush_tx_fifo(GET_CORE_IF(_pcd), 0); + dwc_otg_flush_rx_fifo(GET_CORE_IF(_pcd)); + + /* prevent new request submissions, kill any outstanding requests */ + ep = &_pcd->ep0; + request_nuke(ep); + + /* prevent new request submissions, kill any outstanding requests */ + for (i = 0; i < num_in_eps; i++) { + dwc_otg_pcd_ep_t * ep = &_pcd->in_ep[i]; + request_nuke(ep); + } + + /* prevent new request submissions, kill any outstanding requests */ + for (i = 0; i < num_out_eps; i++) { + dwc_otg_pcd_ep_t * ep = &_pcd->out_ep[i]; + request_nuke(ep); + } + + /* report disconnect; the driver is already quiesced */ + if (_pcd->driver && _pcd->driver->disconnect) { + SPIN_UNLOCK(&_pcd->lock); + _pcd->driver->disconnect(&_pcd->gadget); + SPIN_LOCK(&_pcd->lock); + } +} + +/** + * This interrupt indicates that ... + */ +int32_t dwc_otg_pcd_handle_i2c_intr(dwc_otg_pcd_t * _pcd) +{ + gintmsk_data_t intr_mask = {.d32 = 0}; + gintsts_data_t gintsts; + DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "i2cintr"); + intr_mask.b.i2cintr = 1; + dwc_modify_reg32(&GET_CORE_IF(_pcd)->core_global_regs->gintmsk, + intr_mask.d32, 0); + + /* Clear interrupt */ + gintsts.d32 = 0; + gintsts.b.i2cintr = 1; + dwc_write_reg32(&GET_CORE_IF(_pcd)->core_global_regs->gintsts, + gintsts.d32); + return 1; +} + +/** + * This interrupt indicates that ... + */ +int32_t dwc_otg_pcd_handle_early_suspend_intr(dwc_otg_pcd_t * _pcd) +{ + gintsts_data_t gintsts; + +#if defined(VERBOSE) + DWC_PRINT("Early Suspend Detected\n"); +#endif /* */ + /* Clear interrupt */ + gintsts.d32 = 0; + gintsts.b.erlysuspend = 1; + dwc_write_reg32(&GET_CORE_IF(_pcd)->core_global_regs->gintsts, + gintsts.d32); + return 1; +} + +/** + * This function configures EPO to receive SETUP packets. + * + * @todo NGS: Update the comments from the HW FS. + * + * -# Program the following fields in the endpoint specific registers + * for Control OUT EP 0, in order to receive a setup packet + * - DOEPTSIZ0.Packet Count = 3 (To receive up to 3 back to back + * setup packets) + * - DOEPTSIZE0.Transfer Size = 24 Bytes (To receive up to 3 back + * to back setup packets) + * - In DMA mode, DOEPDMA0 Register with a memory address to + * store any setup packets received + * + * @param _core_if Programming view of DWC_otg controller. + * @param _pcd Programming view of the PCD. + */ +static inline void ep0_out_start(dwc_otg_core_if_t * _core_if, + dwc_otg_pcd_t * _pcd) +{ + dwc_otg_dev_if_t * dev_if = _core_if->dev_if; + deptsiz0_data_t doeptsize0 = {.d32 = 0}; + +#ifdef VERBOSE + DWC_DEBUGPL(DBG_PCDV, "%s() doepctl0=%0x\n", __func__, + dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl)); + +#endif /* */ + doeptsize0.b.supcnt = 3; + doeptsize0.b.pktcnt = 1; + doeptsize0.b.xfersize = 8 * 3; + dwc_write_reg32(&dev_if->out_ep_regs[0]->doeptsiz, doeptsize0.d32); + if (_core_if->dma_enable) { + depctl_data_t doepctl = {.d32 = 0}; + + /** @todo dma needs to handle multiple setup packets (up to 3) */ + dwc_write_reg32(&dev_if->out_ep_regs[0]->doepdma, + _pcd->setup_pkt_dma_handle); + + // EP enable + doepctl.d32 = + dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl); + doepctl.b.epena = 1; + doepctl.d32 = 0x80008000; + dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, + doepctl.d32); + } + +#ifdef VERBOSE + DWC_DEBUGPL(DBG_PCDV, "doepctl0=%0x\n", + dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl)); + DWC_DEBUGPL(DBG_PCDV, "diepctl0=%0x\n", + dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl)); +#endif /* */ +} + +/** + * This interrupt occurs when a USB Reset is detected. When the USB + * Reset Interrupt occurs the device state is set to DEFAULT and the + * EP0 state is set to IDLE. + * -# Set the NAK bit for all OUT endpoints (DOEPCTLn.SNAK = 1) + * -# Unmask the following interrupt bits + * - DAINTMSK.INEP0 = 1 (Control 0 IN endpoint) + * - DAINTMSK.OUTEP0 = 1 (Control 0 OUT endpoint) + * - DOEPMSK.SETUP = 1 + * - DOEPMSK.XferCompl = 1 + * - DIEPMSK.XferCompl = 1 + * - DIEPMSK.TimeOut = 1 + * -# Program the following fields in the endpoint specific registers + * for Control OUT EP 0, in order to receive a setup packet + * - DOEPTSIZ0.Packet Count = 3 (To receive up to 3 back to back + * setup packets) + * - DOEPTSIZE0.Transfer Size = 24 Bytes (To receive up to 3 back + * to back setup packets) + * - In DMA mode, DOEPDMA0 Register with a memory address to + * store any setup packets received + * At this point, all the required initialization, except for enabling + * the control 0 OUT endpoint is done, for receiving SETUP packets. + */ +int32_t dwc_otg_pcd_handle_usb_reset_intr(dwc_otg_pcd_t * _pcd) +{ + dwc_otg_core_if_t * core_if = GET_CORE_IF(_pcd); + dwc_otg_dev_if_t * dev_if = core_if->dev_if; + depctl_data_t doepctl = {.d32 = 0}; + daint_data_t daintmsk = {.d32 = 0}; + doepmsk_data_t doepmsk = {.d32 = 0}; + diepmsk_data_t diepmsk = {.d32 = 0}; + dcfg_data_t dcfg = {.d32 = 0}; + grstctl_t resetctl = {.d32 = 0}; + dctl_data_t dctl = {.d32 = 0}; + int i = 0; + volatile gintsts_data_t gintsts = {.d32 = 0 }; + DWC_PRINT("USB RESET\n"); + + /* reset the HNP settings */ + dwc_otg_pcd_update_otg(_pcd, 1); + + /* Clear the Remote Wakeup Signalling */ + dctl.b.rmtwkupsig = 1; + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl, dctl.d32,0); + + /* Set NAK for all OUT EPs */ + doepctl.b.snak = 1; + for (i = 0; i <= dev_if->num_out_eps; i++) { + dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl, + doepctl.d32); + } + + /* Flush the NP Tx FIFO */ + dwc_otg_flush_tx_fifo(core_if, 0); + + /* Flush the Learning Queue */ + resetctl.b.intknqflsh = 1; + dwc_write_reg32(&core_if->core_global_regs->grstctl, resetctl.d32); + daintmsk.b.inep0 = 1; + daintmsk.b.outep0 = 1; + dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, daintmsk.d32); + doepmsk.b.setup = 1; + doepmsk.b.xfercompl = 1; + doepmsk.b.ahberr = 1; + doepmsk.b.epdisabled = 1; + dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, doepmsk.d32); + diepmsk.b.xfercompl = 1; + diepmsk.b.timeout = 1; + diepmsk.b.epdisabled = 1; + diepmsk.b.ahberr = 1; + diepmsk.b.intknepmis = 1; + dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, diepmsk.d32); + + /* Reset Device Address */ + dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg); + dcfg.b.devaddr = 0; + dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32); + + /* setup EP0 to receive SETUP packets */ + ep0_out_start(core_if, _pcd); + + /* Clear interrupt */ + gintsts.d32 = 0; + gintsts.b.usbreset = 1; + dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32); + return 1; +} + +/** + * Get the device speed from the device status register and convert it + * to USB speed constant. + * + * @param _core_if Programming view of DWC_otg controller. + */ +static int get_device_speed(dwc_otg_core_if_t * _core_if) +{ + dsts_data_t dsts; + enum usb_device_speed speed = USB_SPEED_UNKNOWN; + dsts.d32 = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->dsts); + switch (dsts.b.enumspd) { + case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ: + speed = USB_SPEED_HIGH; + break; + case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ: + case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ: + speed = USB_SPEED_FULL; + break; + case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ: + speed = USB_SPEED_LOW; + break; + } + return speed; +} + +/** + * Read the device status register and set the device speed in the + * data structure. + * Set up EP0 to receive SETUP packets by calling dwc_ep0_activate. + */ +int32_t dwc_otg_pcd_handle_enum_done_intr(dwc_otg_pcd_t * _pcd) +{ + dwc_otg_pcd_ep_t * ep0 = &_pcd->ep0; + gintsts_data_t gintsts; + gusbcfg_data_t gusbcfg; + dwc_otg_core_global_regs_t * global_regs = + GET_CORE_IF(_pcd)->core_global_regs; + uint32_t gsnpsid = global_regs->gsnpsid; + uint8_t utmi16b, utmi8b; + DWC_DEBUGPL(DBG_PCD, "SPEED ENUM\n"); + if (gsnpsid >= (uint32_t) 0x4f54260a) { + utmi16b = 5; + utmi8b = 9; + } else { + utmi16b = 4; + utmi8b = 8; + } + dwc_otg_ep0_activate(GET_CORE_IF(_pcd), &ep0->dwc_ep); + +#ifdef DEBUG_EP0 + print_ep0_state(_pcd); +#endif /* */ + _pcd->ep0state = EP0_IDLE; + ep0->stopped = 0; + _pcd->gadget.speed = get_device_speed(GET_CORE_IF(_pcd)); + + /* Set USB turnaround time based on device speed and PHY interface. */ + gusbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); + if (_pcd->gadget.speed == USB_SPEED_HIGH) { + if (GET_CORE_IF(_pcd)->hwcfg2.b.hs_phy_type == + DWC_HWCFG2_HS_PHY_TYPE_ULPI) { + + /* ULPI interface */ + gusbcfg.b.usbtrdtim = 9; + } + if (GET_CORE_IF(_pcd)->hwcfg2.b.hs_phy_type == + DWC_HWCFG2_HS_PHY_TYPE_UTMI) { + +///// + /* UTMI+ interface */ + if (GET_CORE_IF(_pcd)->hwcfg4.b. + utmi_phy_data_width == 0) { + gusbcfg.b.usbtrdtim = utmi8b; + } else if (GET_CORE_IF(_pcd)->hwcfg4.b. + utmi_phy_data_width == 1) { + gusbcfg.b.usbtrdtim = utmi16b; + } else if (GET_CORE_IF(_pcd)->core_params-> + phy_utmi_width == 8) { + gusbcfg.b.usbtrdtim = utmi8b; + } else { + gusbcfg.b.usbtrdtim = utmi16b; + } + } + if (GET_CORE_IF(_pcd)->hwcfg2.b.hs_phy_type == + DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI) { + /* UTMI+ OR ULPI interface */ + if (gusbcfg.b.ulpi_utmi_sel == 1) { + /* ULPI interface */ + gusbcfg.b.usbtrdtim = 9; + } else { + /* UTMI+ interface */ + if (GET_CORE_IF(_pcd)->core_params-> + phy_utmi_width == 16) { + gusbcfg.b.usbtrdtim = utmi16b; + } else { + gusbcfg.b.usbtrdtim = utmi8b; + } + } + } + } else { + /* Full or low speed */ + gusbcfg.b.usbtrdtim = 9; + } + dwc_write_reg32(&global_regs->gusbcfg, gusbcfg.d32); + + /* Clear interrupt */ + gintsts.d32 = 0; + gintsts.b.enumdone = 1; + dwc_write_reg32(&GET_CORE_IF(_pcd)->core_global_regs->gintsts, + gintsts.d32); + return 1; +} + +/** + * This interrupt indicates that the ISO OUT Packet was dropped due to + * Rx FIFO full or Rx Status Queue Full. If this interrupt occurs + * read all the data from the Rx FIFO. + */ +int32_t dwc_otg_pcd_handle_isoc_out_packet_dropped_intr(dwc_otg_pcd_t * + _pcd) +{ + gintmsk_data_t intr_mask = {.d32 = 0}; + gintsts_data_t gintsts; + DWC_PRINT("INTERRUPT Handler not implemented for %s\n", + "ISOC Out Dropped"); + intr_mask.b.isooutdrop = 1; + dwc_modify_reg32(&GET_CORE_IF(_pcd)->core_global_regs->gintmsk, + intr_mask.d32, 0); + + /* Clear interrupt */ + gintsts.d32 = 0; + gintsts.b.isooutdrop = 1; + dwc_write_reg32(&GET_CORE_IF(_pcd)->core_global_regs->gintsts, + gintsts.d32); + return 1; +} + +/** + * This interrupt indicates the end of the portion of the micro-frame + * for periodic transactions. If there is a periodic transaction for + * the next frame, load the packets into the EP periodic Tx FIFO. + */ +int32_t dwc_otg_pcd_handle_end_periodic_frame_intr(dwc_otg_pcd_t * _pcd) +{ + gintmsk_data_t intr_mask = {.d32 = 0}; + gintsts_data_t gintsts; + DWC_PRINT("INTERRUPT Handler not implemented for %s\n", + "End of Periodic Portion of Micro-Frame Interrupt"); + intr_mask.b.eopframe = 1; + dwc_modify_reg32(&GET_CORE_IF(_pcd)->core_global_regs->gintmsk, + intr_mask.d32, 0); + + /* Clear interrupt */ + gintsts.d32 = 0; + gintsts.b.eopframe = 1; + dwc_write_reg32(&GET_CORE_IF(_pcd)->core_global_regs->gintsts, + gintsts.d32); + return 1; +} + +/** + * This interrupt indicates that EP of the packet on the top of the + * non-periodic Tx FIFO does not match EP of the IN Token received. + * + * The "Device IN Token Queue" Registers are read to determine the + * order the IN Tokens have been received. The non-periodic Tx FIFO + * is flushed, so it can be reloaded in the order seen in the IN Token + * Queue. + */ +int32_t dwc_otg_pcd_handle_ep_mismatch_intr(dwc_otg_core_if_t * _core_if) +{ + gintsts_data_t gintsts; + DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _core_if); + + /* Clear interrupt */ + gintsts.d32 = 0; + gintsts.b.epmismatch = 1; + dwc_write_reg32(&_core_if->core_global_regs->gintsts, gintsts.d32); + return 1; +} + +/** + * This funcion stalls EP0. + */ +static inline void ep0_do_stall(dwc_otg_pcd_t * _pcd, const int err_val) +{ + dwc_otg_pcd_ep_t * ep0 = &_pcd->ep0; + struct usb_ctrlrequest *ctrl = &_pcd->setup_pkt->req; + DWC_WARN("req %02x.%02x protocol STALL; err %d\n", ctrl->bRequestType, + ctrl->bRequest, err_val); + ep0->dwc_ep.is_in = 1; + dwc_otg_ep_set_stall(_pcd->otg_dev->core_if, &ep0->dwc_ep); + _pcd->ep0.stopped = 1; + _pcd->ep0state = EP0_IDLE; + ep0_out_start(GET_CORE_IF(_pcd), _pcd); +} + +/** + * This functions delegates the setup command to the gadget driver. + */ +static inline void do_gadget_setup(dwc_otg_pcd_t * _pcd, + struct usb_ctrlrequest *_ctrl) +{ + int ret = 0; + if (_pcd->driver && _pcd->driver->setup) { + SPIN_UNLOCK(&_pcd->lock); + ret = _pcd->driver->setup(&_pcd->gadget, _ctrl); + SPIN_LOCK(&_pcd->lock); + if (ret < 0) { + ep0_do_stall(_pcd, ret); + } + + /** @todo This is a g_file_storage gadget driver specific + * workaround: a DELAYED_STATUS result from the fsg_setup + * routine will result in the gadget queueing a EP0 IN status + * phase for a two-stage control transfer. Exactly the same as + * a SET_CONFIGURATION/SET_INTERFACE except that this is a class + * specific request. Need a generic way to know when the gadget + * driver will queue the status phase. Can we assume when we + * call the gadget driver setup() function that it will always + * queue and require the following flag? Need to look into + * this. + */ + if (ret == 256 + 999) { + _pcd->request_config = 1; + } + } +} + +/** + * This function starts the Zero-Length Packet for the IN status phase + * of a 2 stage control transfer. + */ +static inline void do_setup_in_status_phase(dwc_otg_pcd_t * _pcd) +{ + dwc_otg_pcd_ep_t * ep0 = &_pcd->ep0; + if (_pcd->ep0state == EP0_STALL) { + return; + } + _pcd->ep0state = EP0_STATUS; + + /* Prepare for more SETUP Packets */ + DWC_DEBUGPL(DBG_PCD, "EP0 IN ZLP\n"); + ep0->dwc_ep.xfer_len = 0; + ep0->dwc_ep.xfer_count = 0; + ep0->dwc_ep.is_in = 1; + ep0->dwc_ep.dma_addr = _pcd->setup_pkt_dma_handle; + dwc_otg_ep0_start_transfer(GET_CORE_IF(_pcd), &ep0->dwc_ep); + + /* Prepare for more SETUP Packets */ + ep0_out_start(GET_CORE_IF(_pcd), _pcd); +} + +/** + * This function starts the Zero-Length Packet for the OUT status phase + * of a 2 stage control transfer. + */ +static inline void do_setup_out_status_phase(dwc_otg_pcd_t * _pcd) +{ + dwc_otg_pcd_ep_t * ep0 = &_pcd->ep0; + if (_pcd->ep0state == EP0_STALL) { + DWC_DEBUGPL(DBG_PCD, "EP0 STALLED\n"); + return; + } + _pcd->ep0state = EP0_STATUS; + + /* Prepare for more SETUP Packets */ + //ep0_out_start( GET_CORE_IF(_pcd), _pcd ); + DWC_DEBUGPL(DBG_PCD, "EP0 OUT ZLP\n"); + ep0->dwc_ep.xfer_len = 0; + ep0->dwc_ep.xfer_count = 0; + ep0->dwc_ep.is_in = 0; + + //ep0->dwc_ep.dma_addr = 0xffffffff; + ep0->dwc_ep.dma_addr = _pcd->setup_pkt_dma_handle; + dwc_otg_ep0_start_transfer(GET_CORE_IF(_pcd), &ep0->dwc_ep); + + /* Prepare for more SETUP Packets */ + ep0_out_start(GET_CORE_IF(_pcd), _pcd); +} + +/** + * Clear the EP halt (STALL) and if pending requests start the + * transfer. + */ +static inline void pcd_clear_halt(dwc_otg_pcd_t * _pcd, + dwc_otg_pcd_ep_t * _ep) +{ + if (_ep->dwc_ep.stall_clear_flag == 0) + dwc_otg_ep_clear_stall(GET_CORE_IF(_pcd), &_ep->dwc_ep); + + /* Reactive the EP */ + dwc_otg_ep_activate(GET_CORE_IF(_pcd), &_ep->dwc_ep); + if (_ep->stopped) { + _ep->stopped = 0; + + /* If there is a request in the EP queue start it */ + + /** @todo FIXME: this causes an EP mismatch in DMA mode. + * epmismatch not yet implemented. */ + + /* + * Above fixme is solved by implmenting a tasklet to call the + * start_next_request(), outside of interrupt context at some + * time after the current time, after a clear-halt setup packet. + * Still need to implement ep mismatch in the future if a gadget + * ever uses more than one endpoint at once + */ + if (GET_CORE_IF(_pcd)->dma_enable) { + _ep->queue_sof = 1; + tasklet_schedule(_pcd->start_xfer_tasklet); + } else { +#ifdef CONFIG_405EZ + /* + * Added-sr: 2007-07-26 + * + * To re-enable this endpoint it's important to + * set this next_ep number. Otherwise the endpoint + * will not get active again after stalling. + */ +//test-only _ep->pcd->next_ep = _ep->dwc_ep.num; + start_next_request( _ep ); +#endif +#if 0 + _ep->queue_sof = 1; + DWC_ERROR("tasklet schedule\n"); + tasklet_schedule(_pcd->start_xfer_tasklet); + if (GET_CORE_IF(_pcd)->core_params->opt) + { + start_next_request(_ep); + } + +#endif /* */ + } + } + + /* Start Control Status Phase */ + do_setup_in_status_phase(_pcd); +} + +/** + * This function is called when the SET_FEATURE TEST_MODE Setup packet + * is sent from the host. The Device Control register is written with + * the Test Mode bits set to the specified Test Mode. This is done as + * a tasklet so that the "Status" phase of the control transfer + * completes before transmitting the TEST packets. + * + * @todo This has not been tested since the tasklet struct was put + * into the PCD struct! + * + */ +static void do_test_mode(unsigned long _data) +{ + dctl_data_t dctl; + dwc_otg_pcd_t * pcd = (dwc_otg_pcd_t *) _data; + dwc_otg_core_if_t * core_if = GET_CORE_IF(pcd); + int test_mode = pcd->test_mode; + +// DWC_WARN("%s() has not been tested since being rewritten!\n", __func__); + dctl.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dctl); + switch (test_mode) { + case 1: // TEST_J + dctl.b.tstctl = 1; + break; + case 2: // TEST_K + dctl.b.tstctl = 2; + break; + case 3: // TEST_SE0_NAK + dctl.b.tstctl = 3; + break; + case 4: // TEST_PACKET + dctl.b.tstctl = 4; + break; + case 5: // TEST_FORCE_ENABLE + dctl.b.tstctl = 5; + break; + } + dwc_write_reg32(&core_if->dev_if->dev_global_regs->dctl, dctl.d32); +} + +/** + * This function process the SET_FEATURE Setup Commands. + */ +static inline void do_set_feature(dwc_otg_pcd_t * _pcd) +{ + dwc_otg_core_if_t * core_if = GET_CORE_IF(_pcd); + dwc_otg_core_global_regs_t * global_regs = core_if->core_global_regs; + struct usb_ctrlrequest ctrl = _pcd->setup_pkt->req; + dwc_otg_pcd_ep_t * ep = 0; + int32_t otg_cap_param = core_if->core_params->otg_cap; + gotgctl_data_t gotgctl = {.d32 = 0}; + DWC_DEBUGPL(DBG_PCD, "SET_FEATURE:%02x.%02x v%04x i%04x l%04x\n", + ctrl.bRequestType, ctrl.bRequest, + __le16_to_cpu(ctrl.wValue), __le16_to_cpu(ctrl.wIndex), + __le16_to_cpu(ctrl.wLength)); + + DWC_DEBUGPL(DBG_PCD, "otg_cap=%d\n", otg_cap_param); + switch (ctrl.bRequestType & USB_RECIP_MASK) { + case USB_RECIP_DEVICE: + switch (__le16_to_cpu(ctrl.wValue)) { + case USB_DEVICE_REMOTE_WAKEUP: + _pcd->remote_wakeup_enable = 1; + break; + case USB_DEVICE_TEST_MODE: + + /* Setup the Test Mode tasklet to do the Test + * Packet generation after the SETUP Status + * phase has completed. */ + + /** @todo This has not been tested since the + * tasklet struct was put into the PCD + * struct! */ + _pcd->test_mode_tasklet.next = 0; + _pcd->test_mode_tasklet.state = 0; + atomic_set(&_pcd->test_mode_tasklet.count, 0); + _pcd->test_mode_tasklet.func = do_test_mode; + _pcd->test_mode_tasklet.data = (unsigned long)_pcd; + _pcd->test_mode = __le16_to_cpu(ctrl.wIndex) >> 8; + tasklet_schedule(&_pcd->test_mode_tasklet); + break; + case USB_DEVICE_B_HNP_ENABLE: + DWC_DEBUGPL(DBG_PCDV, + "SET_FEATURE: USB_DEVICE_B_HNP_ENABLE\n"); + + /* dev may initiate HNP */ + if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) { + _pcd->b_hnp_enable = 1; + dwc_otg_pcd_update_otg(_pcd, 0); + DWC_DEBUGPL(DBG_PCD, "Request B HNP\n"); + + /**@todo Is the gotgctl.devhnpen cleared + * by a USB Reset? */ + gotgctl.b.devhnpen = 1; + gotgctl.b.hnpreq = 1; + dwc_write_reg32(&global_regs->gotgctl,gotgctl.d32); + } else { + ep0_do_stall(_pcd, -EOPNOTSUPP); + } + break; + case USB_DEVICE_A_HNP_SUPPORT: + /* RH port supports HNP */ + DWC_DEBUGPL(DBG_PCDV, + "SET_FEATURE: USB_DEVICE_A_HNP_SUPPORT\n"); + if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) { + _pcd->a_hnp_support = 1; + dwc_otg_pcd_update_otg(_pcd, 0); + } else { + ep0_do_stall(_pcd, -EOPNOTSUPP); + } + break; + case USB_DEVICE_A_ALT_HNP_SUPPORT: + /* other RH port does */ + DWC_DEBUGPL(DBG_PCDV, + "SET_FEATURE: USB_DEVICE_A_ALT_HNP_SUPPORT\n"); + if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) { + _pcd->a_alt_hnp_support = 1; + dwc_otg_pcd_update_otg(_pcd, 0); + } else { + ep0_do_stall(_pcd, -EOPNOTSUPP); + } + break; + } + do_setup_in_status_phase(_pcd); + break; + case USB_RECIP_INTERFACE: + do_gadget_setup(_pcd, &ctrl); + break; + case USB_RECIP_ENDPOINT: + if (__le16_to_cpu(ctrl.wValue) == USB_ENDPOINT_HALT) { + ep = get_ep_by_addr(_pcd, __le16_to_cpu(ctrl.wIndex)); + if (ep == 0) { + ep0_do_stall(_pcd, -EOPNOTSUPP); + return; + } + ep->stopped = 1; + dwc_otg_ep_set_stall(core_if, &ep->dwc_ep); + } + do_setup_in_status_phase(_pcd); + break; + } +} + +/** + * This function process the CLEAR_FEATURE Setup Commands. + */ +static inline void do_clear_feature(dwc_otg_pcd_t * _pcd) +{ + struct usb_ctrlrequest ctrl = _pcd->setup_pkt->req; + dwc_otg_pcd_ep_t * ep = 0; + DWC_DEBUGPL(DBG_PCD, "CLEAR_FEATURE:%02x.%02x v%04x i%04x l%04x\n", + ctrl.bRequestType, ctrl.bRequest, + __le16_to_cpu(ctrl.wValue), __le16_to_cpu(ctrl.wIndex), + __le16_to_cpu(ctrl.wLength)); + + switch (ctrl.bRequestType & USB_RECIP_MASK) { + case USB_RECIP_DEVICE: + switch (__le16_to_cpu(ctrl.wValue)) { + case USB_DEVICE_REMOTE_WAKEUP: + _pcd->remote_wakeup_enable = 0; + break; + case USB_DEVICE_TEST_MODE: + /** @todo Add CLEAR_FEATURE for TEST modes. */ + break; + } + do_setup_in_status_phase(_pcd); + break; + case USB_RECIP_ENDPOINT: + ep = get_ep_by_addr(_pcd,__le16_to_cpu(ctrl.wIndex)); + if (ep == 0) { + ep0_do_stall(_pcd, -EOPNOTSUPP); + return; + } + pcd_clear_halt(_pcd, ep); + DWC_DEBUGPL(DBG_PCD, "%s halt cleared by host\n", + ep->ep.name); + break; + } +} + +/** + * This function processes SETUP commands. In Linux, the USB Command + * processing is done in two places - the first being the PCD and the + * second in the Gadget Driver (for example, the File-Backed Storage + * Gadget Driver). + * + * <table> + * <tr><td>Command </td><td>Driver </td><td>Description</td></tr> + * + * <tr><td>GET_STATUS </td><td>PCD </td><td>Command is processed as + * defined in chapter 9 of the USB 2.0 Specification chapter 9 + * </td></tr> + * + * <tr><td>CLEAR_FEATURE </td><td>PCD </td><td>The Device and Endpoint + * requests are the ENDPOINT_HALT feature is procesed, all others the + * interface requests are ignored.</td></tr> + * + * <tr><td>SET_FEATURE </td><td>PCD </td><td>The Device and Endpoint + * requests are processed by the PCD. Interface requests are passed + * to the Gadget Driver.</td></tr> + * + * <tr><td>SET_ADDRESS </td><td>PCD </td><td>Program the DCFG reg, + * with device address received </td></tr> + * + * <tr><td>GET_DESCRIPTOR </td><td>Gadget Driver </td><td>Return the + * requested descriptor</td></tr> + * + * <tr><td>SET_DESCRIPTOR </td><td>Gadget Driver </td><td>Optional - + * not implemented by any of the existing Gadget Drivers.</td></tr> + * + * <tr><td>SET_CONFIGURATION </td><td>Gadget Driver </td><td>Disable + * all EPs and enable EPs for new configuration.</td></tr> + * + * <tr><td>GET_CONFIGURATION </td><td>Gadget Driver </td><td>Return + * the current configuration</td></tr> + * + * <tr><td>SET_INTERFACE </td><td>Gadget Driver </td><td>Disable all + * EPs and enable EPs for new configuration.</td></tr> + * + * <tr><td>GET_INTERFACE </td><td>Gadget Driver </td><td>Return the + * current interface.</td></tr> + * + * <tr><td>SYNC_FRAME </td><td>PCD </td><td>Display debug + * message.</td></tr> + * </table> + * + * When the SETUP Phase Done interrupt occurs, the PCD SETUP commands are + * processed by pcd_setup. Calling the Function Driver's setup function from + * pcd_setup processes the gadget SETUP commands. + */ +static inline void pcd_setup(dwc_otg_pcd_t * _pcd) +{ + dwc_otg_core_if_t * core_if = GET_CORE_IF(_pcd); + dwc_otg_dev_if_t * dev_if = core_if->dev_if; + struct usb_ctrlrequest ctrl = _pcd->setup_pkt->req; + dwc_otg_pcd_ep_t * ep; + dwc_otg_pcd_ep_t * ep0 = &_pcd->ep0; + uint16_t * status = _pcd->status_buf; + deptsiz0_data_t doeptsize0 = {.d32 = 0}; + +#ifdef DEBUG_EP0 + DWC_DEBUGPL(DBG_PCD, "SETUP %02x.%02x v%04x i%04x l%04x\n", + ctrl.bRequestType, ctrl.bRequest, __le16_to_cpu(ctrl.wValue), + __le16_to_cpu(ctrl.wIndex), __le16_to_cpu(ctrl.wLength)); + +#endif /* */ + doeptsize0.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doeptsiz); + + /** @todo handle > 1 setup packet , assert error for now */ + if (core_if->dma_enable && (doeptsize0.b.supcnt < 2)) { + DWC_ERROR("\n\n CANNOT handle > 1 setup packet in DMA mode\n\n"); + } + + /* Clean up the request queue */ + request_nuke(ep0); + ep0->stopped = 0; + if (ctrl.bRequestType & USB_DIR_IN) { + ep0->dwc_ep.is_in = 1; + _pcd->ep0state = EP0_IN_DATA_PHASE; + } else { + ep0->dwc_ep.is_in = 0; + _pcd->ep0state = EP0_OUT_DATA_PHASE; + } + if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD) { + /* handle non-standard (class/vendor) requests in the gadget driver */ + do_gadget_setup(_pcd, &ctrl); + return; + } + + /** @todo NGS: Handle bad setup packet? */ + switch (ctrl.bRequest) { + case USB_REQ_GET_STATUS: +#ifdef DEBUG_EP0 + DWC_DEBUGPL(DBG_PCD, + "GET_STATUS %02x.%02x v%04x i%04x l%04x\n", + ctrl.bRequestType, ctrl.bRequest, __le16_to_cpu( ctrl.wValue), + __le16_to_cpu(ctrl.wIndex), __le16_to_cpu(ctrl.wLength)); + +#endif /* */ + switch (ctrl.bRequestType & USB_RECIP_MASK) { + case USB_RECIP_DEVICE: + *status = 0x1; /* Self powered */ + *status |= _pcd->remote_wakeup_enable << 1; + break; + case USB_RECIP_INTERFACE: + *status = 0; + break; + case USB_RECIP_ENDPOINT: + ep = get_ep_by_addr(_pcd, __le16_to_cpu(ctrl.wIndex)); + if (ep == 0 || __le16_to_cpu(ctrl.wLength) > 2) { + ep0_do_stall(_pcd, -EOPNOTSUPP); + return; + } + /** @todo check for EP stall */ + *status = ep->stopped; + break; + } + *status = __cpu_to_le16(*status); + _pcd->ep0_pending = 1; + ep0->dwc_ep.start_xfer_buff = (uint8_t *) status; + ep0->dwc_ep.xfer_buff = (uint8_t *) status; + ep0->dwc_ep.dma_addr = _pcd->status_buf_dma_handle; + ep0->dwc_ep.xfer_len = 2; + ep0->dwc_ep.xfer_count = 0; + ep0->dwc_ep.total_len = ep0->dwc_ep.xfer_len; + dwc_otg_ep0_start_transfer(GET_CORE_IF(_pcd), &ep0->dwc_ep); + break; + case USB_REQ_CLEAR_FEATURE: + do_clear_feature(_pcd); + break; + case USB_REQ_SET_FEATURE: + do_set_feature(_pcd); + break; + case USB_REQ_SET_ADDRESS: + if (ctrl.bRequestType == USB_RECIP_DEVICE) { + dcfg_data_t dcfg = { + .d32 = 0}; + +#ifdef DEBUG_EP0 + DWC_DEBUGPL(DBG_PCDV, "SET_ADDRESS:%d\n", + __le16_to_cpu(ctrl.wValue)); + +#endif /* */ + dcfg.b.devaddr = __le16_to_cpu(ctrl.wValue); + dwc_modify_reg32(&dev_if->dev_global_regs->dcfg, 0, + dcfg.d32); +#ifdef DEBUG_EP0 + + DWC_DEBUGPL(DBG_PCDV, "dcfg(after updating address :0x%x, dcfg.b.devaddr:%d\n", + dwc_read_reg32(&dev_if->dev_global_regs->dcfg), dcfg.b.devaddr); +#endif + + do_setup_in_status_phase(_pcd); + return; + } + break; + case USB_REQ_SET_INTERFACE: + case USB_REQ_SET_CONFIGURATION: + + //DWC_DEBUGPL(DBG_PCD, "SET_CONFIGURATION\n"); + _pcd->request_config = 1; /* Configuration changed */ + do_gadget_setup(_pcd, &ctrl); + break; + case USB_REQ_SYNCH_FRAME: + do_gadget_setup(_pcd, &ctrl); + break; + default: + /* Call the Gadget Driver's setup functions */ + do_gadget_setup(_pcd, &ctrl); + break; + } +} + +/** + * This function completes the ep0 control transfer. + */ +static int32_t ep0_complete_request( dwc_otg_pcd_ep_t *_ep ) +{ + dwc_otg_core_if_t *core_if = GET_CORE_IF(_ep->pcd); + dwc_otg_dev_if_t *dev_if = core_if->dev_if; + dwc_otg_dev_in_ep_regs_t *in_ep_regs = + dev_if->in_ep_regs[_ep->dwc_ep.num]; +#ifdef DEBUG_EP0 + dwc_otg_dev_out_ep_regs_t *out_ep_regs = + dev_if->out_ep_regs[_ep->dwc_ep.num]; +#endif + deptsiz0_data_t deptsiz; + dwc_otg_pcd_request_t *req; + int is_last = 0; + dwc_otg_pcd_t *pcd = _ep->pcd; + static int counter = 0; /*DFX added*/ + counter++; + DWC_DEBUGPL(DBG_PCDV, "%s() %s\n", __func__, _ep->ep.name); + /* + if ( in_set_config == 1 ) { + printk(KERN_ERR "DFX ep0_complete_request in_set_config. ep0 pending: %d list empty:" + " %d ep.is_in: %d ep0State: %d counter: %d\n", + pcd->ep0_pending, list_empty(&_ep->queue), _ep->dwc_ep.is_in, + pcd->ep0state, counter); + } + if ( in_set_config == 2 ) { + printk(KERN_ERR "DFX ep0_complete_request in_set_ADDRESS. ep0 pending: %d list empty:" + " %d ep.is_in: %d ep0State: %d counter: %d\n", + pcd->ep0_pending, list_empty(&_ep->queue), _ep->dwc_ep.is_in, + pcd->ep0state, counter); + } + */ + if ((pcd->ep0_pending && list_empty(&_ep->queue)) /*|| counter == 1*/) { + if (_ep->dwc_ep.is_in) { +#ifdef DEBUG_EP0 + DWC_DEBUGPL(DBG_PCDV, "Do setup OUT status phase\n"); +#endif + do_setup_out_status_phase(pcd); + } else { +#ifdef DEBUG_EP0 + DWC_DEBUGPL(DBG_PCDV, "Do setup IN status phase\n"); +#endif + do_setup_in_status_phase(pcd); + } + pcd->ep0_pending = 0; + pcd->ep0state = EP0_STATUS; + return 1; + } + + + if (list_empty(&_ep->queue)) { + return 0; + } + req = list_entry(_ep->queue.next, dwc_otg_pcd_request_t, queue); + //printk(KERN_ERR "DFX compelete request req.zero: %d\n", req->req.zero); + + if (pcd->ep0state == EP0_STATUS) { + is_last = 1; + } + /* DFX TODO Gadget zero sets req.zero to true when the data it is sending + * to the host is shorter than the length specified by the host. In this + * case, if we also send a ZLP, we also somehow need to come back and + * do_setup_out_status_phase() Which apparently is not done. + */ + /* else if (req->req.zero) { + req->req.actual = _ep->dwc_ep.xfer_count; + //do_setup_in_status_phase (pcd); + req->req.zero = 0; + _ep->dwc_ep.xfer_len = 0; + _ep->dwc_ep.xfer_count = 0; + _ep->dwc_ep.sent_zlp = 1; + dwc_otg_ep0_start_transfer( GET_CORE_IF(pcd), &_ep->dwc_ep ); + return 1; + }*/ + else if (_ep->dwc_ep.is_in) { + //printk(KERN_ERR "DFX complete request counter: %d\n", counter); + deptsiz.d32 = dwc_read_reg32( &in_ep_regs->dieptsiz); +#ifdef DEBUG_EP0 + DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n", + _ep->ep.name, _ep->dwc_ep.xfer_len, + deptsiz.b.xfersize, deptsiz.b.pktcnt); +#endif + if (deptsiz.b.xfersize == 0) { + req->req.actual = _ep->dwc_ep.xfer_count; + /* Is a Zero Len Packet needed? */ + //if (req->req.zero) { +#ifdef DEBUG_EP0 + DWC_DEBUGPL(DBG_PCD, "Setup Rx ZLP\n"); +#endif + do_setup_out_status_phase(pcd); + } + } else { + /* ep0-OUT */ +#ifdef DEBUG_EP0 + deptsiz.d32 = dwc_read_reg32( &out_ep_regs->doeptsiz); + DWC_DEBUGPL(DBG_PCDV, "%s len=%d xsize=%d pktcnt=%d\n", + _ep->ep.name, _ep->dwc_ep.xfer_len, + deptsiz.b.xfersize, + deptsiz.b.pktcnt); +#endif + req->req.actual = _ep->dwc_ep.xfer_count; + + /* Is a Zero Len Packet needed? */ + //if (req->req.zero) { +#ifdef DEBUG_EP0 + DWC_DEBUGPL(DBG_PCDV, "Setup Tx ZLP\n"); +#endif + do_setup_in_status_phase(pcd); + } + + /* Complete the request */ + if (is_last) { + request_done(_ep, req, 0); + _ep->dwc_ep.start_xfer_buff = 0; + _ep->dwc_ep.xfer_buff = 0; + _ep->dwc_ep.xfer_len = 0; + return 1; + } + return 0; +} + +/** + * This function completes the request for the EP. If there are + * additional requests for the EP in the queue they will be started. + */ +static void complete_ep(dwc_otg_pcd_ep_t * _ep) +{ + dwc_otg_core_if_t * core_if = GET_CORE_IF(_ep->pcd); + dwc_otg_dev_if_t * dev_if = core_if->dev_if; + dwc_otg_dev_in_ep_regs_t * in_ep_regs = + dev_if->in_ep_regs[_ep->dwc_ep.num]; + deptsiz_data_t deptsiz; + dwc_otg_pcd_request_t * req = 0; + int is_last = 0; + DWC_DEBUGPL(DBG_PCDV, "%s() %s-%s\n", __func__, _ep->ep.name, + (_ep->dwc_ep.is_in ? "IN" : "OUT")); + + /* Get any pending requests */ + if (!list_empty(&_ep->queue)) { + req = list_entry(_ep->queue.next, dwc_otg_pcd_request_t, queue); + } + DWC_DEBUGPL(DBG_PCD, "Requests %d\n", _ep->pcd->request_pending); + if (_ep->dwc_ep.is_in) { + deptsiz.d32 = dwc_read_reg32(&in_ep_regs->dieptsiz); + if (core_if->dma_enable) { + if (deptsiz.b.xfersize == 0) + _ep->dwc_ep.xfer_count = _ep->dwc_ep.xfer_len; + } + DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n", + _ep->ep.name, _ep->dwc_ep.xfer_len, + deptsiz.b.xfersize, deptsiz.b.pktcnt); + if (deptsiz.b.xfersize == 0 && deptsiz.b.pktcnt == 0 + && _ep->dwc_ep.xfer_count == _ep->dwc_ep.xfer_len) { + is_last = 1; + } else { + DWC_WARN("Incomplete transfer (%s-%s [siz=%d pkt=%d])\n", + _ep->ep.name, (_ep->dwc_ep.is_in ? "IN" : "OUT"), + deptsiz.b.xfersize, deptsiz.b.pktcnt); + } + } else { + dwc_otg_dev_out_ep_regs_t * out_ep_regs = + dev_if->out_ep_regs[_ep->dwc_ep.num]; + deptsiz.d32 = 0; + deptsiz.d32 = dwc_read_reg32(&out_ep_regs->doeptsiz); +#ifdef CONFIG_DEBUG + DWC_DEBUGPL(DBG_PCDV, + "addr %p, %s len=%d cnt=%d xsize=%d pktcnt=%d\n", + &out_ep_regs->doeptsiz, _ep->ep.name, + _ep->dwc_ep.xfer_len, + _ep->dwc_ep.xfer_count, + deptsiz.b.xfersize, deptsiz.b.pktcnt); + +#endif /* */ + is_last = 1; + } + + /* Complete the request */ + if (is_last) { +#ifdef CONFIG_405EZ + /* + * Added-sr: 2007-07-26 + * + * Since the 405EZ (Ultra) only support 2047 bytes as + * max transfer size, we have to split up bigger transfers + * into multiple transfers of 1024 bytes sized messages. + * I happens often, that transfers of 4096 bytes are + * required (zero-gadget, file_storage-gadget). + */ + if (_ep->dwc_ep.bytes_pending) { + dwc_otg_dev_in_ep_regs_t *in_regs = + core_if->dev_if->in_ep_regs[_ep->dwc_ep.num]; + gintmsk_data_t intr_mask = { .d32 = 0}; + + _ep->dwc_ep.xfer_len = _ep->dwc_ep.bytes_pending; + if (_ep->dwc_ep.xfer_len > MAX_XFER_LEN) { + _ep->dwc_ep.bytes_pending = _ep->dwc_ep.xfer_len - + MAX_XFER_LEN; + _ep->dwc_ep.xfer_len = MAX_XFER_LEN; + } else { + _ep->dwc_ep.bytes_pending = 0; + } + + /* + * Restart the current transfer with the next "chunk" + * of data. + */ + _ep->dwc_ep.xfer_count = 0; + deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz)); + deptsiz.b.xfersize = _ep->dwc_ep.xfer_len; + deptsiz.b.pktcnt = (_ep->dwc_ep.xfer_len - 1 + + _ep->dwc_ep.maxpacket) / _ep->dwc_ep.maxpacket; + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); + + intr_mask.b.nptxfempty = 1; + dwc_modify_reg32( &core_if->core_global_regs->gintsts, + intr_mask.d32, 0); + dwc_modify_reg32( &core_if->core_global_regs->gintmsk, + intr_mask.d32, intr_mask.d32); + + /* + * Just return here if message was not completely + * transferred. + */ + return; + } +#endif + if (core_if->dma_enable) { + req->req.actual = + _ep->dwc_ep.xfer_len - deptsiz.b.xfersize; + } else { + req->req.actual = _ep->dwc_ep.xfer_count; + } + request_done(_ep, req, 0); + _ep->dwc_ep.start_xfer_buff = 0; + _ep->dwc_ep.xfer_buff = 0; + _ep->dwc_ep.xfer_len = 0; + + /* If there is a request in the queue start it. */ + start_next_request(_ep); + } +} + +/** + * This function handles EP0 Control transfers. + * + * The state of the control tranfers are tracked in + * <code>ep0state</code>. + */ +static void handle_ep0(dwc_otg_pcd_t * _pcd) +{ + dwc_otg_core_if_t * core_if = GET_CORE_IF(_pcd); + dwc_otg_pcd_ep_t * ep0 = &_pcd->ep0; + +#ifdef DEBUG_EP0 + DWC_DEBUGPL(DBG_PCDV, "%s()\n", __func__); + print_ep0_state(_pcd); + +#endif /* */ + switch (_pcd->ep0state) { + case EP0_DISCONNECT: + break; + case EP0_IDLE: + _pcd->request_config = 0; + pcd_setup(_pcd); + break; + case EP0_IN_DATA_PHASE: + +#ifdef DEBUG_EP0 + DWC_DEBUGPL(DBG_PCD, "DATA_IN EP%d-%s: type=%d, mps=%d\n", + ep0->dwc_ep.num, + (ep0->dwc_ep.is_in ? "IN" : "OUT"), + ep0->dwc_ep.type, ep0->dwc_ep.maxpacket); + +#endif /* */ + if (core_if->dma_enable) { + /* + * For EP0 we can only program 1 packet at a time so we + * need to do the make calculations after each complete. + * Call write_packet to make the calculations, as in + * slave mode, and use those values to determine if we + * can complete. + */ + dwc_otg_ep_write_packet(core_if, &ep0->dwc_ep, 1); + } +#ifdef CONFIG_DWC_SLAVE + else { + dwc_otg_ep_write_packet(core_if, &ep0->dwc_ep, 0); + } +#endif + + if (ep0->dwc_ep.xfer_count < ep0->dwc_ep.total_len) { + dwc_otg_ep0_continue_transfer(GET_CORE_IF(_pcd), + &ep0->dwc_ep); + DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n"); + } else { + ep0_complete_request(ep0); + DWC_DEBUGPL(DBG_PCD, "COMPLETE TRANSFER\n"); + } + break; + case EP0_OUT_DATA_PHASE: +#ifdef DEBUG_EP0 + DWC_DEBUGPL(DBG_PCD, "DATA_OUT EP%d-%s: type=%d, mps=%d\n", + ep0->dwc_ep.num, + (ep0->dwc_ep.is_in ? "IN" : "OUT"), + ep0->dwc_ep.type, ep0->dwc_ep.maxpacket); + +#endif /* */ + ep0_complete_request(ep0); + break; + case EP0_STATUS: + DWC_DEBUGPL(DBG_PCD, "CASE: EP0_STATUS\n"); + ep0_complete_request(ep0); + _pcd->ep0state = EP0_IDLE; + ep0->stopped = 1; + ep0->dwc_ep.is_in = 0; /* OUT for next SETUP */ + + /* Prepare for more SETUP Packets */ + if (core_if->dma_enable) { + ep0_out_start(core_if, _pcd); + } + if (!GET_CORE_IF(_pcd)->dma_enable) { + int i; + depctl_data_t diepctl; + diepctl.d32 =dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->diepctl); + if (_pcd->ep0.queue_sof) { + _pcd->ep0.queue_sof = 0; + start_next_request(&_pcd->ep0); + } + diepctl.d32 =dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->diepctl); + if (_pcd->ep0.queue_sof) { + _pcd->ep0.queue_sof = 0; + start_next_request(&_pcd->ep0); + } + for (i = 0; i < core_if->dev_if->num_in_eps; i++) { + diepctl.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[i + 1]->diepctl); + if (_pcd->in_ep[i].queue_sof) { + _pcd->in_ep[i].queue_sof = 0; + start_next_request(&_pcd->in_ep[i]); + } + } + } + break; + case EP0_STALL: + DWC_ERROR("EP0 STALLed, should not get here pcd_setup()\n"); + break; + } + +#ifdef DEBUG_EP0 + print_ep0_state(_pcd); +#endif /* */ +} + +/** + * Restart transfer + */ +static void restart_transfer(dwc_otg_pcd_t * _pcd, const uint32_t _epnum) +{ + dwc_otg_core_if_t * core_if = GET_CORE_IF(_pcd); + dwc_otg_dev_if_t * dev_if = core_if->dev_if; + deptsiz_data_t dieptsiz = {.d32 = 0}; + + //depctl_data_t diepctl = {.d32=0}; + dwc_otg_pcd_ep_t * ep; + dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[_epnum]->dieptsiz); + ep = get_in_ep(_pcd, _epnum); + +/* + if(_epnum != 0) + ep = &_pcd->in_ep[ _epnum - 1]; + else + ep = &_pcd->ep0; +*/ + DWC_DEBUGPL(DBG_PCD, "xfer_buff=%p xfer_count=%0x xfer_len=%0x" + " stopped=%d\n", ep->dwc_ep.xfer_buff, + ep->dwc_ep.xfer_count, ep->dwc_ep.xfer_len, + ep->stopped); + + /* + * If xfersize is 0 and pktcnt in not 0, resend the last packet. + */ + if (dieptsiz.b.pktcnt && dieptsiz.b.xfersize == 0 + && ep->dwc_ep.start_xfer_buff != 0) { + if (ep->dwc_ep.xfer_len <= ep->dwc_ep.maxpacket) { + ep->dwc_ep.xfer_count = 0; + ep->dwc_ep.xfer_buff = ep->dwc_ep.start_xfer_buff; + } else { + ep->dwc_ep.xfer_count -= ep->dwc_ep.maxpacket; + + /* convert packet size to dwords. */ + ep->dwc_ep.xfer_buff -= ep->dwc_ep.maxpacket; + } + ep->stopped = 0; + DWC_DEBUGPL(DBG_PCD, "xfer_buff=%p xfer_count=%0x " + "xfer_len=%0x stopped=%d\n", ep->dwc_ep.xfer_buff, + ep->dwc_ep.xfer_count, ep->dwc_ep.xfer_len, + ep->stopped ); + if (_epnum == 0) { + dwc_otg_ep0_start_transfer(core_if, &ep->dwc_ep); + } else { + dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep); + } + } +} + +/** + * handle the IN EP disable interrupt. + */ +static inline void handle_in_ep_disable_intr(dwc_otg_pcd_t * _pcd, + const uint32_t _epnum) +{ + dwc_otg_core_if_t * core_if = GET_CORE_IF(_pcd); + dwc_otg_dev_if_t * dev_if = core_if->dev_if; + deptsiz_data_t dieptsiz = {.d32 = 0}; + dctl_data_t dctl = {.d32 = 0}; + dwc_otg_pcd_ep_t * ep; + dwc_ep_t * dwc_ep; + ep = get_in_ep(_pcd, _epnum); + dwc_ep = &ep->dwc_ep; +/* + if(_epnum != 0) + { + ep = &_pcd->in_ep[ _epnum - 1]; + dwc_ep = &_pcd->in_ep[ _epnum - 1].dwc_ep; + } + else + { + ep = &_pcd->ep0; + dwc_ep = &_pcd->ep0.dwc_ep; + } +*/ + DWC_DEBUGPL(DBG_PCD, "diepctl%d=%0x\n", _epnum, + dwc_read_reg32(&dev_if->in_ep_regs[_epnum]->diepctl)); + dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[_epnum]->dieptsiz); + DWC_DEBUGPL(DBG_ANY, "pktcnt=%d size=%d\n", dieptsiz.b.pktcnt, + dieptsiz.b.xfersize); + if (ep->stopped) { + + /* Flush the Tx FIFO */ + /** @todo NGS: This is not the correct FIFO */ + dwc_otg_flush_tx_fifo(core_if, 0); + + /* Clear the Global IN NP NAK */ + dctl.d32 = 0; + dctl.b.cgnpinnak = 1; + dwc_modify_reg32(&dev_if->dev_global_regs->dctl, dctl.d32, 0); + + /* Restart the transaction */ + if (dieptsiz.b.pktcnt != 0 || dieptsiz.b.xfersize != 0) { + restart_transfer(_pcd, _epnum); + } + } else { + + /* Restart the transaction */ + if (dieptsiz.b.pktcnt != 0 || dieptsiz.b.xfersize != 0) { + restart_transfer(_pcd, _epnum); + } + DWC_DEBUGPL(DBG_ANY, "STOPPED!!!\n"); + } +} + +/** + * Handler for the IN EP timeout handshake interrupt. + */ +static inline void handle_in_ep_timeout_intr(dwc_otg_pcd_t * _pcd, + const uint32_t _epnum) +{ + dwc_otg_core_if_t * core_if = GET_CORE_IF(_pcd); + dwc_otg_dev_if_t * dev_if = core_if->dev_if; + +#ifdef CONFIG_DWC_DEBUG + deptsiz_data_t dieptsiz = {.d32 = 0}; + uint32_t epnum = 0; + +#endif /* */ + dctl_data_t dctl = { + .d32 = 0}; + dwc_otg_pcd_ep_t * ep; + gintmsk_data_t intr_mask = {.d32 = 0}; + ep = get_in_ep(_pcd, _epnum); + +/* + if(_epnum != 0) + ep = &_pcd->in_ep[ _epnum - 1]; + else + ep = &_pcd->ep0; +*/ + + /* Disable the NP Tx Fifo Empty Interrrupt */ + if (!core_if->dma_enable) { + intr_mask.b.nptxfempty = 1; + dwc_modify_reg32(&core_if->core_global_regs->gintmsk, + intr_mask.d32, 0); + } + + /** @todo NGS Check EP type. + * Implement for Periodic EPs */ + /* + * Non-periodic EP + */ + /* Enable the Global IN NAK Effective Interrupt */ + intr_mask.d32 = 0; /* Bug fixed - clear mask b4 reusing */ + intr_mask.b.ginnakeff = 1; + dwc_modify_reg32(&core_if->core_global_regs->gintmsk, 0, + intr_mask.d32); + + /* Set Global IN NAK */ + dctl.b.sgnpinnak = 1; + dwc_modify_reg32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32); + ep->stopped = 1; + +#ifdef CONFIG_DWC_DEBUG + dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dieptsiz); + DWC_DEBUGPL(DBG_ANY, "pktcnt=%d size=%d\n", dieptsiz.b.pktcnt, + dieptsiz.b.xfersize); + +#endif /* */ + +#ifdef DISABLE_PERIODIC_EP + /* + * Set the NAK bit for this EP to + * start the disable process. + */ + diepctl.d32 = 0; + diepctl.b.snak = 1; + dwc_modify_reg32(&dev_if->in_ep_regs[epnum]->diepctl, diepctl.d32, + diepctl.d32); + ep->disabling = 1; + ep->stopped = 1; + +#endif /* */ +} + +/** + * This interrupt indicates that an IN EP has a pending Interrupt. + * The sequence for handling the IN EP interrupt is shown below: + * -# Read the Device All Endpoint Interrupt register + * -# Repeat the following for each IN EP interrupt bit set (from + * LSB to MSB). + * -# Read the Device Endpoint Interrupt (DIEPINTn) register + * -# If "Transfer Complete" call the request complete function + * -# If "Endpoint Disabled" complete the EP disable procedure. + * -# If "AHB Error Interrupt" log error + * -# If "Time-out Handshake" log error + * -# If "IN Token Received when TxFIFO Empty" write packet to Tx + * FIFO. + * -# If "IN Token EP Mismatch" (disable, this is handled by EP + * Mismatch Interrupt) + */ +static int32_t dwc_otg_pcd_handle_in_ep_intr(dwc_otg_pcd_t * _pcd) +{ + +#define CLEAR_IN_EP_INTR(__core_if,__epnum,__intr) \ + do { \ + diepint_data_t diepint = {.d32 = 0}; \ + diepint.b.__intr = 1; \ + dwc_write_reg32(&__core_if->dev_if->in_ep_regs[__epnum]->diepint, \ + diepint.d32); \ + } while (0) + + dwc_otg_core_if_t * core_if = GET_CORE_IF(_pcd); + dwc_otg_dev_if_t * dev_if = core_if->dev_if; + diepint_data_t diepint = {.d32 = 0}; + depctl_data_t diepctl = {.d32 = 0}; + uint32_t ep_intr; + uint32_t epnum = 0; + dwc_otg_pcd_ep_t * ep; + dwc_ep_t * dwc_ep; + uint32_t _empty_msk, _diepctl; + gintmsk_data_t intr_mask = {.d32 = 0}; + DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _pcd); + + /* Read in the device interrupt bits */ + ep_intr = dwc_otg_read_dev_all_in_ep_intr(core_if); + + /* Service the Device IN interrupts for each endpoint */ + while (ep_intr) { + if (ep_intr & 0x1) { + /* Get EP pointer */ + ep = get_in_ep(_pcd, epnum); + dwc_ep = &ep->dwc_ep; + _diepctl = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl); + _empty_msk = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk); + DWC_DEBUGPL(DBG_PCDV, + "IN EP INTERRUPT - %d\nepmty_msk - %8x diepctl - %8x\n", + epnum, _empty_msk, _diepctl); + DWC_DEBUGPL(DBG_PCD, "EP%d-%s: type=%d, mps=%d\n", + dwc_ep->num,(dwc_ep->is_in ? "IN" : "OUT"), + dwc_ep->type, dwc_ep->maxpacket); + diepint.d32 = dwc_otg_read_dev_in_ep_intr(core_if, dwc_ep); + DWC_DEBUGPL(DBG_PCDV, "EP %d Interrupt Register - 0x%x\n", + epnum, diepint.d32); + + /* Transfer complete */ + if (diepint.b.xfercompl) { + DWC_DEBUGPL(DBG_PCD, + "EP%d IN Xfer Complete\n", epnum); + + /* Disable the NP Tx FIFO Empty + * Interrrupt */ + if (core_if->en_multiple_tx_fifo == 0) { + intr_mask.b.nptxfempty = 1; + dwc_modify_reg32(&core_if->core_global_regs->gintmsk, + intr_mask.d32, 0); + } else { + /* Disable the Tx FIFO Empty Interrupt for this EP */ + uint32_t fifoemptymsk = 0x1 << dwc_ep->num; + dwc_modify_reg32(&core_if->dev_if->dev_global_regs-> + dtknqr4_fifoemptymsk,fifoemptymsk, 0); + } + + /* Clear the bit in DIEPINTn for this interrupt */ + CLEAR_IN_EP_INTR(core_if, epnum, xfercompl); + + /* Complete the transfer */ + if (epnum == 0) { + handle_ep0(_pcd); + } else { + complete_ep(ep); + } + } + + /* Endpoint disable */ + if (diepint.b.epdisabled) { + DWC_DEBUGPL(DBG_ANY, "EP%d IN disabled\n", epnum); + handle_in_ep_disable_intr(_pcd, epnum); + + /* Clear the bit in DIEPINTn for this interrupt */ + CLEAR_IN_EP_INTR(core_if, epnum, epdisabled); + } + + /* AHB Error */ + if (diepint.b.ahberr) { + DWC_DEBUGPL(DBG_ANY, "EP%d IN AHB Error\n", epnum); + + /* Clear the bit in DIEPINTn for this interrupt */ + CLEAR_IN_EP_INTR(core_if, epnum, ahberr); + } + + /* TimeOUT Handshake (non-ISOC IN EPs) */ + if (diepint.b.timeout) { + DWC_DEBUGPL(DBG_ANY, "EP%d IN Time-out\n", epnum); + handle_in_ep_timeout_intr(_pcd, epnum); + CLEAR_IN_EP_INTR(core_if, epnum, timeout); + } + + /** IN Token received with TxF Empty */ + if (diepint.b.intktxfemp) { + DWC_DEBUGPL(DBG_ANY,"EP%d IN TKN TxFifo Empty\n",epnum); + if (!ep->stopped && epnum != 0) { + diepmsk_data_t diepmsk = {.d32 = 0}; + diepmsk.b.intktxfemp = 1; + dwc_modify_reg32(&dev_if-> dev_global_regs-> + diepmsk, diepmsk.d32, 0); +#ifdef CONFIG_405EZ + /* + * Added-sr: 2007-07-26 + * + * Only start the next transfer, when currently + * no other transfer is active on this endpoint. + */ + if (dwc_ep->active == 0) + start_next_request(ep); +#else + start_next_request(ep); +#endif + } + CLEAR_IN_EP_INTR(core_if, epnum, intktxfemp); + } + + /** IN Token Received with EP mismatch */ + if (diepint.b.intknepmis) { + DWC_DEBUGPL(DBG_ANY,"EP%d IN TKN EP Mismatch\n", + epnum); + CLEAR_IN_EP_INTR(core_if, epnum, intknepmis); + } + + /** IN Endpoint NAK Effective */ + if (diepint.b.inepnakeff) { + DWC_DEBUGPL(DBG_ANY, "EP%d IN EP NAK Effective\n",epnum); + + /* Periodic EP */ + if (ep->disabling) { + diepctl.d32 = 0; + diepctl.b.snak = 1; + diepctl.b.epdis = 1; + dwc_modify_reg32(&dev_if->in_ep_regs[epnum]-> + diepctl, diepctl.d32,diepctl.d32); + } + CLEAR_IN_EP_INTR(core_if, epnum, inepnakeff); + } + + /** IN EP Tx FIFO Empty Intr */ + if (diepint.b.emptyintr) { + DWC_DEBUGPL(DBG_ANY,"EP%d Tx FIFO Empty Intr \n",epnum); + write_empty_tx_fifo(_pcd, epnum); + /* VJ updated based on v2.65a */ + // CLEAR_IN_EP_INTR(core_if, epnum, emptyintr); + } + } + epnum++; + ep_intr >>= 1; + } + return 1; +#undef CLEAR_IN_EP_INTR +} + +/** + * This interrupt indicates that an OUT EP has a pending Interrupt. + * The sequence for handling the OUT EP interrupt is shown below: + * -# Read the Device All Endpoint Interrupt register + * -# Repeat the following for each OUT EP interrupt bit set (from + * LSB to MSB). + * -# Read the Device Endpoint Interrupt (DOEPINTn) register + * -# If "Transfer Complete" call the request complete function + * -# If "Endpoint Disabled" complete the EP disable procedure. + * -# If "AHB Error Interrupt" log error + * -# If "Setup Phase Done" process Setup Packet (See Standard USB + * Command Processing) + */ +static int32_t dwc_otg_pcd_handle_out_ep_intr(dwc_otg_pcd_t * _pcd) +{ + +#define CLEAR_OUT_EP_INTR(__core_if,__epnum,__intr) \ + do { \ + doepint_data_t doepint = { .d32 = 0}; \ + doepint.b.__intr = 1; \ + dwc_write_reg32(&__core_if->dev_if->out_ep_regs[__epnum]->doepint, \ + doepint.d32); \ + } while (0) + + dwc_otg_core_if_t * core_if = GET_CORE_IF(_pcd); + uint32_t ep_intr; + doepint_data_t doepint = {.d32 = 0}; + uint32_t epnum = 0; + dwc_ep_t * dwc_ep; + DWC_DEBUGPL(DBG_PCDV, "%s()\n", __func__); + + /* Read in the device interrupt bits */ + ep_intr = dwc_otg_read_dev_all_out_ep_intr(core_if); + while (ep_intr) { + if (ep_intr & 0x1) { + /* Get EP pointer */ + dwc_ep = &((get_out_ep(_pcd, epnum))->dwc_ep); +// dwc_ep = &_pcd->out_ep[ epnum - 1].dwc_ep; +#ifdef VERBOSE + DWC_DEBUGPL(DBG_PCDV, "EP%d-%s: type=%d, mps=%d\n", + dwc_ep->num, + (dwc_ep->is_in ? "IN" : "OUT"), + dwc_ep->type, dwc_ep->maxpacket); + +#endif /* */ + doepint.d32 = dwc_otg_read_dev_out_ep_intr(core_if, dwc_ep); + + /* Transfer complete */ + if (doepint.b.xfercompl) { + DWC_DEBUGPL(DBG_PCD,"EP%d OUT Xfer Complete\n",epnum); + + /* Clear the bit in DOEPINTn for this interrupt */ + CLEAR_OUT_EP_INTR(core_if, epnum,xfercompl); + if (epnum == 0) { + handle_ep0(_pcd); + } else { + complete_ep(get_out_ep(_pcd, epnum)); + // complete_ep( &_pcd->out_ep[ epnum - 1] ); + } + } + + /* Endpoint disable */ + if (doepint.b.epdisabled) { + DWC_DEBUGPL(DBG_PCD, "EP%d OUT disabled\n",epnum); + + /* Clear the bit in DOEPINTn for this interrupt */ + CLEAR_OUT_EP_INTR(core_if, epnum,epdisabled); + } + + /* AHB Error */ + if (doepint.b.ahberr) { + DWC_DEBUGPL(DBG_PCD, "EP%d OUT AHB Error\n", + epnum); + DWC_DEBUGPL(DBG_PCD, "EP DMA REG %d \n", + core_if->dev_if->out_ep_regs[epnum]->doepdma); + CLEAR_OUT_EP_INTR(core_if, epnum, ahberr); + } + + /* Setup Phase Done (contorl EPs) */ + if (doepint.b.setup) { +#ifdef DEBUG_EP0 + DWC_DEBUGPL(DBG_PCD, "EP%d SETUP Done\n",epnum); + +#endif /* */ + handle_ep0(_pcd); + CLEAR_OUT_EP_INTR(core_if, epnum, setup); + } + } + epnum++; + ep_intr >>= 1; + } + return 1; + +#undef CLEAR_OUT_EP_INTR +} + +/** + * Incomplete ISO IN Transfer Interrupt. + * This interrupt indicates one of the following conditions occurred + * while transmitting an ISOC transaction. + * - Corrupted IN Token for ISOC EP. + * - Packet not complete in FIFO. + * The follow actions will be taken: + * -# Determine the EP + * -# Set incomplete flag in dwc_ep structure + * -# Disable EP; when "Endpoint Disabled" interrupt is received + * Flush FIFO + */ +int32_t dwc_otg_pcd_handle_incomplete_isoc_in_intr(dwc_otg_pcd_t * _pcd) +{ + gintmsk_data_t intr_mask = {.d32 = 0}; + gintsts_data_t gintsts; + DWC_PRINT("INTERRUPT Handler not implemented for %s\n", + "IN ISOC Incomplete"); + intr_mask.b.incomplisoin = 1; + dwc_modify_reg32(&GET_CORE_IF(_pcd)->core_global_regs->gintmsk, + intr_mask.d32, 0); + + /* Clear interrupt */ + gintsts.d32 = 0; + gintsts.b.incomplisoin = 1; + dwc_write_reg32(&GET_CORE_IF(_pcd)->core_global_regs->gintsts, + gintsts.d32); + return 1; +} + +/** + * Incomplete ISO OUT Transfer Interrupt. + * + * This interrupt indicates that the core has dropped an ISO OUT + * packet. The following conditions can be the cause: + * - FIFO Full, the entire packet would not fit in the FIFO. + * - CRC Error + * - Corrupted Token + * The follow actions will be taken: + * -# Determine the EP + * -# Set incomplete flag in dwc_ep structure + * -# Read any data from the FIFO + * -# Disable EP. when "Endpoint Disabled" interrupt is received + * re-enable EP. + */ +int32_t dwc_otg_pcd_handle_incomplete_isoc_out_intr(dwc_otg_pcd_t * _pcd) +{ + + /** @todo implement ISR */ + gintmsk_data_t intr_mask = {.d32 = 0}; + gintsts_data_t gintsts; + DWC_PRINT("INTERRUPT Handler not implemented for %s\n", + "OUT ISOC Incomplete"); + intr_mask.b.incomplisoout = 1; + dwc_modify_reg32(&GET_CORE_IF(_pcd)->core_global_regs->gintmsk, + intr_mask.d32, 0); + + /* Clear interrupt */ + gintsts.d32 = 0; + gintsts.b.incomplisoout = 1; + dwc_write_reg32(&GET_CORE_IF(_pcd)->core_global_regs->gintsts, + gintsts.d32); + return 1; +} + +/** + * This function handles the Global IN NAK Effective interrupt. + * + */ +int32_t dwc_otg_pcd_handle_in_nak_effective(dwc_otg_pcd_t * _pcd) +{ + dwc_otg_dev_if_t * dev_if = GET_CORE_IF(_pcd)->dev_if; + depctl_data_t diepctl = {.d32 = 0}; + depctl_data_t diepctl_rd = {.d32 = 0}; + gintmsk_data_t intr_mask = {.d32 = 0}; + gintsts_data_t gintsts; + int i; + DWC_DEBUGPL(DBG_PCD, "Global IN NAK Effective\n"); + + /* Disable all active IN EPs */ + diepctl.b.epdis = 1; + diepctl.b.snak = 1; + for (i = 0; i <= dev_if->num_in_eps; i++) { + diepctl_rd.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl); + if (diepctl_rd.b.epena) { + dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl, diepctl.d32); + } + } + + /* Disable the Global IN NAK Effective Interrupt */ + intr_mask.b.ginnakeff = 1; + dwc_modify_reg32(&GET_CORE_IF(_pcd)->core_global_regs->gintmsk, + intr_mask.d32, 0); + + /* Clear interrupt */ + gintsts.d32 = 0; + gintsts.b.ginnakeff = 1; + dwc_write_reg32(&GET_CORE_IF(_pcd)->core_global_regs->gintsts, + gintsts.d32); + return 1; +} + +/** + * OUT NAK Effective. + * + */ +int32_t dwc_otg_pcd_handle_out_nak_effective(dwc_otg_pcd_t * _pcd) +{ + gintmsk_data_t intr_mask = {.d32 = 0}; + gintsts_data_t gintsts; + DWC_PRINT("INTERRUPT Handler not implemented for %s\n", + "Global IN NAK Effective\n"); + + /* Disable the Global IN NAK Effective Interrupt */ + intr_mask.b.goutnakeff = 1; + dwc_modify_reg32(&GET_CORE_IF(_pcd)->core_global_regs->gintmsk, + intr_mask.d32, 0); + + /* Clear interrupt */ + gintsts.d32 = 0; + gintsts.b.goutnakeff = 1; + dwc_write_reg32(&GET_CORE_IF(_pcd)->core_global_regs->gintsts, + gintsts.d32); + return 1; +} + +/** + * PCD interrupt handler. + * + * The PCD handles the device interrupts. Many conditions can cause a + * device interrupt. When an interrupt occurs, the device interrupt + * service routine determines the cause of the interrupt and + * dispatches handling to the appropriate function. These interrupt + * handling functions are described below. + * + * All interrupt registers are processed from LSB to MSB. + * + */ +int32_t dwc_otg_pcd_handle_intr(dwc_otg_pcd_t * _pcd) +{ + dwc_otg_core_if_t * core_if = GET_CORE_IF(_pcd); + +#ifdef VERBOSE + dwc_otg_core_global_regs_t * global_regs = + core_if->core_global_regs; +#endif /* */ + gintsts_data_t gintr_status; + int32_t retval = 0; + + if (dwc_otg_is_device_mode(core_if)) { + SPIN_LOCK(&_pcd->lock); + +#ifdef VERBOSE + DWC_DEBUGPL(DBG_PCDV, "%s() gintsts=%08x gintmsk=%08x\n", + __func__, + dwc_read_reg32(&global_regs->gintsts), + dwc_read_reg32(&global_regs->gintmsk)); + +#endif /* */ + gintr_status.d32 = dwc_otg_read_core_intr(core_if); + if (!gintr_status.d32) { + return 0; + } + DWC_DEBUGPL(DBG_PCDV, "%s: gintsts&gintmsk=%08x\n", __func__, + gintr_status.d32); + if (gintr_status.b.sofintr) { + retval |= dwc_otg_pcd_handle_sof_intr(_pcd); + } +#ifndef CONFIG_OTG_PLB_DMA_TASKLET + if (gintr_status.b.rxstsqlvl) { + retval |= dwc_otg_pcd_handle_rx_status_q_level_intr(_pcd); + } + if (gintr_status.b.nptxfempty) { + retval |= dwc_otg_pcd_handle_np_tx_fifo_empty_intr(_pcd); + } +#endif + if (gintr_status.b.ginnakeff) { + retval |= dwc_otg_pcd_handle_in_nak_effective(_pcd); + } + if (gintr_status.b.goutnakeff) { + retval |= dwc_otg_pcd_handle_out_nak_effective(_pcd); + } + if (gintr_status.b.i2cintr) { + retval |= dwc_otg_pcd_handle_i2c_intr(_pcd); + } + if (gintr_status.b.erlysuspend) { + retval |= dwc_otg_pcd_handle_early_suspend_intr(_pcd); + } + if (gintr_status.b.usbreset) { + retval |= dwc_otg_pcd_handle_usb_reset_intr(_pcd); + } + if (gintr_status.b.enumdone) { + retval |= dwc_otg_pcd_handle_enum_done_intr(_pcd); + } + if (gintr_status.b.isooutdrop) { + retval |= dwc_otg_pcd_handle_isoc_out_packet_dropped_intr(_pcd); + } + if (gintr_status.b.eopframe) { + retval |= dwc_otg_pcd_handle_end_periodic_frame_intr(_pcd); + } + if (gintr_status.b.epmismatch) { + retval |= dwc_otg_pcd_handle_ep_mismatch_intr(core_if); + } + if (gintr_status.b.inepint) { + retval |= dwc_otg_pcd_handle_in_ep_intr(_pcd); + } + if (gintr_status.b.outepintr) { + retval |= dwc_otg_pcd_handle_out_ep_intr(_pcd); + } + if (gintr_status.b.incomplisoin) { + retval |= dwc_otg_pcd_handle_incomplete_isoc_in_intr(_pcd); + } + if (gintr_status.b.incomplisoout) { + retval |= dwc_otg_pcd_handle_incomplete_isoc_out_intr(_pcd); + } +#ifdef VERBOSE + DWC_DEBUGPL(DBG_PCDV, "%s() gintsts=%0x\n", __func__, + dwc_read_reg32(&global_regs->gintsts)); + +#endif /* */ +#ifdef CONFIG_OTG_PLB_DMA_TASKLET + if (gintr_status.b.rxstsqlvl) { + retval |= dwc_otg_pcd_handle_rx_status_q_level_intr(_pcd); + } + if (!atomic_read(&release_later) && gintr_status.b.nptxfempty) { + retval |= dwc_otg_pcd_handle_np_tx_fifo_empty_intr(_pcd); + } +#endif + SPIN_UNLOCK(&_pcd->lock); + } + return retval; +} + + +#endif /* DWC_HOST_ONLY */ diff --git a/drivers/usb/gadget/dwc_otg/dwc_otg_regs.h b/drivers/usb/gadget/dwc_otg/dwc_otg_regs.h new file mode 100644 index 00000000000..e6fc661d762 --- /dev/null +++ b/drivers/usb/gadget/dwc_otg/dwc_otg_regs.h @@ -0,0 +1,3606 @@ +/* ========================================================================== + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_regs.h $ + * $Revision: #8 $ + * $Date: 2007/02/07 $ + * $Change: 791271 $ + * + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ + +#ifndef __DWC_OTG_REGS_H__ +#define __DWC_OTG_REGS_H__ + +/** + * @file + * + * This file contains the data structures for accessing the DWC_otg core registers. + * + * The application interfaces with the HS OTG core by reading from and + * writing to the Control and Status Register (CSR) space through the + * AHB Slave interface. These registers are 32 bits wide, and the + * addresses are 32-bit-block aligned. + * CSRs are classified as follows: + * - Core Global Registers + * - Device Mode Registers + * - Device Global Registers + * - Device Endpoint Specific Registers + * - Host Mode Registers + * - Host Global Registers + * - Host Port CSRs + * - Host Channel Specific Registers + * + * Only the Core Global registers can be accessed in both Device and + * Host modes. When the HS OTG core is operating in one mode, either + * Device or Host, the application must not access registers from the + * other mode. When the core switches from one mode to another, the + * registers in the new mode of operation must be reprogrammed as they + * would be after a power-on reset. + */ + +/****************************************************************************/ +/** DWC_otg Core registers . + * The dwc_otg_core_global_regs structure defines the size + * and relative field offsets for the Core Global registers. + */ +typedef struct dwc_otg_core_global_regs +{ + /** OTG Control and Status Register. <i>Offset: 000h</i> */ + volatile uint32_t gotgctl; + /** OTG Interrupt Register. <i>Offset: 004h</i> */ + volatile uint32_t gotgint; + /**Core AHB Configuration Register. <i>Offset: 008h</i> */ + volatile uint32_t gahbcfg; + +#define DWC_GLBINTRMASK 0x0001 +#define DWC_DMAENABLE 0x0020 +#define DWC_NPTXEMPTYLVL_EMPTY 0x0080 +#define DWC_NPTXEMPTYLVL_HALFEMPTY 0x0000 +#define DWC_PTXEMPTYLVL_EMPTY 0x0100 +#define DWC_PTXEMPTYLVL_HALFEMPTY 0x0000 + + /**Core USB Configuration Register. <i>Offset: 00Ch</i> */ + volatile uint32_t gusbcfg; + /**Core Reset Register. <i>Offset: 010h</i> */ + volatile uint32_t grstctl; + /**Core Interrupt Register. <i>Offset: 014h</i> */ + volatile uint32_t gintsts; + /**Core Interrupt Mask Register. <i>Offset: 018h</i> */ + volatile uint32_t gintmsk; + /**Receive Status Queue Read Register (Read Only). <i>Offset: 01Ch</i> */ + volatile uint32_t grxstsr; + /**Receive Status Queue Read & POP Register (Read Only). <i>Offset: 020h</i>*/ + volatile uint32_t grxstsp; + /**Receive FIFO Size Register. <i>Offset: 024h</i> */ + volatile uint32_t grxfsiz; + /**Non Periodic Transmit FIFO Size Register. <i>Offset: 028h</i> */ + volatile uint32_t gnptxfsiz; + /**Non Periodic Transmit FIFO/Queue Status Register (Read + * Only). <i>Offset: 02Ch</i> */ + volatile uint32_t gnptxsts; + /**I2C Access Register. <i>Offset: 030h</i> */ + volatile uint32_t gi2cctl; + /**PHY Vendor Control Register. <i>Offset: 034h</i> */ + volatile uint32_t gpvndctl; + /**General Purpose Input/Output Register. <i>Offset: 038h</i> */ + volatile uint32_t ggpio; + /**User ID Register. <i>Offset: 03Ch</i> */ + volatile uint32_t guid; + /**Synopsys ID Register (Read Only). <i>Offset: 040h</i> */ + volatile uint32_t gsnpsid; + /**User HW Config1 Register (Read Only). <i>Offset: 044h</i> */ + volatile uint32_t ghwcfg1; + /**User HW Config2 Register (Read Only). <i>Offset: 048h</i> */ + volatile uint32_t ghwcfg2; +#define DWC_SLAVE_ONLY_ARCH 0 +#define DWC_EXT_DMA_ARCH 1 +#define DWC_INT_DMA_ARCH 2 + +#define DWC_MODE_HNP_SRP_CAPABLE 0 +#define DWC_MODE_SRP_ONLY_CAPABLE 1 +#define DWC_MODE_NO_HNP_SRP_CAPABLE 2 +#define DWC_MODE_SRP_CAPABLE_DEVICE 3 +#define DWC_MODE_NO_SRP_CAPABLE_DEVICE 4 +#define DWC_MODE_SRP_CAPABLE_HOST 5 +#define DWC_MODE_NO_SRP_CAPABLE_HOST 6 + + /**User HW Config3 Register (Read Only). <i>Offset: 04Ch</i> */ + volatile uint32_t ghwcfg3; + /**User HW Config4 Register (Read Only). <i>Offset: 050h</i>*/ + volatile uint32_t ghwcfg4; + /** Reserved <i>Offset: 054h-0FFh</i> */ + uint32_t reserved[43]; + /** Host Periodic Transmit FIFO Size Register. <i>Offset: 100h</i> */ + volatile uint32_t hptxfsiz; + /** Device Periodic Transmit FIFO#n Register if dedicated fifos are disabled, + otherwise Device Transmit FIFO#n Register. + * <i>Offset: 104h + (FIFO_Number-1)*04h, 1 <= FIFO Number <= 15 (1<=n<=15).</i> */ + volatile uint32_t dptxfsiz_dieptxf[15]; +} dwc_otg_core_global_regs_t; + + +#if defined(CONFIG_4xx) +/** + * This union represents the bit fields of the Core OTG Control + * and Status Register (GOTGCTL). Set the bits using the bit + * fields then write the <i>d32</i> value to the register. + */ +typedef union gotgctl_data //* +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct + { + unsigned reserved31_21 : 11; + unsigned currmod : 1; + unsigned bsesvld : 1; + unsigned asesvld : 1; + unsigned reserved17 : 1; + unsigned conidsts : 1; + unsigned reserved1_12 : 4; + unsigned devhnpen : 1; + unsigned hstsethnpen : 1; + unsigned hnpreq : 1; + unsigned hstnegscs : 1; + unsigned reserved07_02 : 6; + unsigned sesreq : 1; + unsigned sesreqscs : 1; + } b; +} gotgctl_data_t; + +/** + * This union represents the bit fields of the Core OTG Interrupt Register + * (GOTGINT). Set/clear the bits using the bit fields then write the <i>d32</i> + * value to the register. + */ +typedef union gotgint_data //* +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct + { + /** Current Mode */ + unsigned reserved31_20 : 12; + /** Debounce Done */ + unsigned debdone : 1; + /** A-Device Timeout Change */ + unsigned adevtoutchng : 1; + /** Host Negotiation Detected */ + unsigned hstnegdet : 1; + unsigned reserver16_10 : 7; + /** Host Negotiation Success Status Change */ + unsigned hstnegsucstschng : 1; + /** Session Request Success Status Change */ + unsigned sesreqsucstschng : 1; + unsigned reserved3_7 : 5; + /** Session End Detected */ + unsigned sesenddet : 1; + unsigned reserved01_00 : 2; + } b; +} gotgint_data_t; + + +/** + * This union represents the bit fields of the Core AHB Configuration + * Register (GAHBCFG). Set/clear the bits using the bit fields then + * write the <i>d32</i> value to the register. + */ +typedef union gahbcfg_data //* +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct + { + unsigned reserved9_31 : 23; + unsigned ptxfemplvl : 1; +#define DWC_GAHBCFG_TXFEMPTYLVL_EMPTY 1 +#define DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY 0 + unsigned nptxfemplvl_txfemplvl : 1; /*fscz*/ + unsigned reserved : 1; + + unsigned dmaenable : 1; +#define DWC_GAHBCFG_DMAENABLE 1 + + unsigned hburstlen : 4; +#define DWC_GAHBCFG_INT_DMA_BURST_SINGLE 0 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR 1 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR4 3 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR8 5 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR16 7 + + unsigned glblintrmsk : 1; +#define DWC_GAHBCFG_GLBINT_ENABLE 1 + } b; +} gahbcfg_data_t; + +/** + * This union represents the bit fields of the Core USB Configuration + * Register (GUSBCFG). Set the bits using the bit fields then write + * the <i>d32</i> value to the register. + */ +typedef union gusbcfg_data //* +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct + { + unsigned corrupt_tx_packet: 1; /*fscz*/ + unsigned force_device_mode: 1; + unsigned force_host_mode: 1; + unsigned reserved23_28 : 6; + unsigned term_sel_dl_pulse : 1; + unsigned ulpi_int_vbus_indicator : 1; + unsigned ulpi_ext_vbus_drv : 1; + unsigned ulpi_clk_sus_m : 1; + unsigned ulpi_auto_res : 1; + unsigned ulpi_fsls : 1; + + unsigned otgutmifssel : 1; + unsigned phylpwrclksel : 1; + unsigned nptxfrwnden : 1; + unsigned usbtrdtim : 4; + unsigned hnpcap : 1; + unsigned srpcap : 1; + unsigned ddrsel : 1; + unsigned physel : 1; + unsigned fsintf : 1; + unsigned ulpi_utmi_sel : 1; + unsigned phyif : 1; + unsigned toutcal : 3; + } b; +} gusbcfg_data_t; + +/** + * This union represents the bit fields of the Core Reset Register + * (GRSTCTL). Set/clear the bits using the bit fields then write the + * <i>d32</i> value to the register. + */ +typedef union grstctl_data //* +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct + { + /** AHB Master Idle. Indicates the AHB Master State + * Machine is in IDLE condition. */ + unsigned ahbidle : 1; + + /** DMA Request Signal. Indicated DMA request is in + * probress. Used for debug purpose. */ + unsigned dmareq : 1; + + /** Reserved */ + unsigned reserved29_11 : 19; + + /** TxFIFO Number (TxFNum) (Device and Host). + * + * This is the FIFO number which needs to be flushed, + * using the TxFIFO Flush bit. This field should not + * be changed until the TxFIFO Flush bit is cleared by + * the core. + * - 0x0 : Non Periodic TxFIFO Flush + * - 0x1 : Periodic TxFIFO #1 Flush in device mode + * or Periodic TxFIFO in host mode + * - 0x2 : Periodic TxFIFO #2 Flush in device mode. + * - ... + * - 0xF : Periodic TxFIFO #15 Flush in device mode + * - 0x10: Flush all the Transmit NonPeriodic and + * Transmit Periodic FIFOs in the core + */ + unsigned txfnum : 5; + + /** TxFIFO Flush (TxFFlsh) (Device and Host). + * + * This bit is used to selectively flush a single or + * all transmit FIFOs. The application must first + * ensure that the core is not in the middle of a + * transaction. <p>The application should write into + * this bit, only after making sure that neither the + * DMA engine is writing into the TxFIFO nor the MAC + * is reading the data out of the FIFO. <p>The + * application should wait until the core clears this + * bit, before performing any operations. This bit + * will takes 8 clocks (slowest of PHY or AHB clock) + * to clear. + */ + unsigned txfflsh : 1; + + /** RxFIFO Flush (RxFFlsh) (Device and Host) + * + * The application can flush the entire Receive FIFO + * using this bit. <p>The application must first + * ensure that the core is not in the middle of a + * transaction. <p>The application should write into + * this bit, only after making sure that neither the + * DMA engine is reading from the RxFIFO nor the MAC + * is writing the data in to the FIFO. <p>The + * application should wait until the bit is cleared + * before performing any other operations. This bit + * will takes 8 clocks (slowest of PHY or AHB clock) + * to clear. + */ + unsigned rxfflsh : 1; + + /** In Token Sequence Learning Queue Flush + * (INTknQFlsh) (Device Only) + */ + unsigned intknqflsh : 1; + + /** Host Frame Counter Reset (Host Only)<br> + * + * The application can reset the (micro)frame number + * counter inside the core, using this bit. When the + * (micro)frame counter is reset, the subsequent SOF + * sent out by the core, will have a (micro)frame + * number of 0. + */ + unsigned hstfrm : 1; + + /** Hclk Soft Reset + * + * The application uses this bit to reset the control logic in + * the AHB clock domain. Only AHB clock domain pipelines are + * reset. + */ + unsigned hsftrst : 1; + + /** Core Soft Reset (CSftRst) (Device and Host) + * + * The application can flush the control logic in the + * entire core using this bit. This bit resets the + * pipelines in the AHB Clock domain as well as the + * PHY Clock domain. + * + * The state machines are reset to an IDLE state, the + * control bits in the CSRs are cleared, all the + * transmit FIFOs and the receive FIFO are flushed. + * + * The status mask bits that control the generation of + * the interrupt, are cleared, to clear the + * interrupt. The interrupt status bits are not + * cleared, so the application can get the status of + * any events that occurred in the core after it has + * set this bit. + * + * Any transactions on the AHB are terminated as soon + * as possible following the protocol. Any + * transactions on the USB are terminated immediately. + * + * The configuration settings in the CSRs are + * unchanged, so the software doesn't have to + * reprogram these registers (Device + * Configuration/Host Configuration/Core System + * Configuration/Core PHY Configuration). + * + * The application can write to this bit, any time it + * wants to reset the core. This is a self clearing + * bit and the core clears this bit after all the + * necessary logic is reset in the core, which may + * take several clocks, depending on the current state + * of the core. + */ + unsigned csftrst : 1; + } b; +} grstctl_t; + +/** + * This union represents the bit fields of the Core Interrupt Mask + * Register (GINTMSK). Set/clear the bits using the bit fields then + * write the <i>d32</i> value to the register. + */ +typedef union gintmsk_data //* +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct + { + unsigned wkupintr : 1; + unsigned sessreqintr : 1; + unsigned disconnect : 1; + unsigned conidstschng : 1; + unsigned reserved27 : 1; + unsigned ptxfempty : 1; + unsigned hcintr : 1; + unsigned portintr : 1; + unsigned reserved22_23 : 2; + unsigned incomplisoout : 1; + unsigned incomplisoin : 1; + unsigned outepintr : 1; + unsigned inepintr : 1; + unsigned epmismatch : 1; + unsigned reserved16 : 1; + unsigned eopframe : 1; + unsigned isooutdrop : 1; + unsigned enumdone : 1; + unsigned usbreset : 1; + unsigned usbsuspend : 1; + unsigned erlysuspend : 1; + unsigned i2cintr : 1; + unsigned reserved08 : 1; + unsigned goutnakeff : 1; + unsigned ginnakeff : 1; + unsigned nptxfempty : 1; + unsigned rxstsqlvl : 1; + unsigned sofintr : 1; + unsigned otgintr : 1; + unsigned modemismatch : 1; + unsigned reserved00 : 1; + } b; +} gintmsk_data_t; +/** + * This union represents the bit fields of the Core Interrupt Register + * (GINTSTS). Set/clear the bits using the bit fields then write the + * <i>d32</i> value to the register. + */ +typedef union gintsts_data //* +{ + /** raw register data */ + uint32_t d32; +#define DWC_SOF_INTR_MASK 0x0008 + /** register bits */ + struct + { +#define DWC_HOST_MODE 1 + unsigned wkupintr : 1; + unsigned sessreqintr : 1; + unsigned disconnect : 1; + unsigned conidstschng : 1; + unsigned reserved27 : 1; + unsigned ptxfempty : 1; + unsigned hcintr : 1; + unsigned portintr : 1; + unsigned reserved22_23 : 2; + unsigned incomplisoout : 1; + unsigned incomplisoin : 1; + unsigned outepintr : 1; + unsigned inepint: 1; + unsigned epmismatch : 1; + unsigned intokenrx : 1; + unsigned eopframe : 1; + unsigned isooutdrop : 1; + unsigned enumdone : 1; + unsigned usbreset : 1; + unsigned usbsuspend : 1; + unsigned erlysuspend : 1; + unsigned i2cintr : 1; + unsigned reserved8 : 1; + unsigned goutnakeff : 1; + unsigned ginnakeff : 1; + unsigned nptxfempty : 1; + unsigned rxstsqlvl : 1; + unsigned sofintr : 1; + unsigned otgintr : 1; + unsigned modemismatch : 1; + unsigned curmode : 1; + } b; +} gintsts_data_t; + + +/** + * This union represents the bit fields in the Device Receive Status Read and + * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i> + * element then read out the bits using the <i>b</i>it elements. + */ +typedef union device_grxsts_data { //* + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned reserved : 7; + unsigned fn : 4; + unsigned pktsts : 4; +#define DWC_STS_DATA_UPDT 0x2 // OUT Data Packet +#define DWC_STS_XFER_COMP 0x3 // OUT Data Transfer Complete + +#define DWC_DSTS_GOUT_NAK 0x1 // Global OUT NAK +#define DWC_DSTS_SETUP_COMP 0x4 // Setup Phase Complete +#define DWC_DSTS_SETUP_UPDT 0x6 // SETUP Packet + + unsigned dpid : 2; + unsigned bcnt : 11; + unsigned epnum : 4; + } b; +} device_grxsts_data_t; + +/** + * This union represents the bit fields in the Host Receive Status Read and + * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i> + * element then read out the bits using the <i>b</i>it elements. + */ +typedef union host_grxsts_data { //* + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned reserved31_21 : 11; + unsigned pktsts : 4; +#define DWC_GRXSTS_PKTSTS_IN 0x2 +#define DWC_GRXSTS_PKTSTS_IN_XFER_COMP 0x3 +#define DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR 0x5 +#define DWC_GRXSTS_PKTSTS_CH_HALTED 0x7 + + unsigned dpid : 2; + unsigned bcnt : 11; + unsigned chnum : 4; + } b; +} host_grxsts_data_t; + +/** + * This union represents the bit fields in the FIFO Size Registers (HPTXFSIZ, + * GNPTXFSIZ, DPTXFSIZn). Read the register into the <i>d32</i> element then + * read out the bits using the <i>b</i>it elements. + */ +typedef union fifosize_data { //* + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned depth : 16; + unsigned startaddr : 16; + } b; +} fifosize_data_t; + +/** + * This union represents the bit fields in the Non-Periodic Transmit + * FIFO/Queue Status Register (GNPTXSTS). Read the register into the + * <i>d32</i> element then read out the bits using the <i>b</i>it + * elements. + */ +typedef union gnptxsts_data { //* + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned reserved : 1; + /** Top of the Non-Periodic Transmit Request Queue + * - bits 30:27 - Channel/EP Number + * - bits 26:25 - Token Type + * - 2'b00 - IN/OUT + * - 2'b01 - Zero Length OUT + * - 2'b10 - PING/Complete Split + * - 2'b11 - Channel Halt + * - bit 24 - Terminate (Last entry for the selected + * channel/EP) + */ + unsigned nptxqtop_chnep : 4; + unsigned nptxqtop_token : 2; + unsigned nptxqtop_terminate : 1; + unsigned nptxqspcavail : 8; + unsigned nptxfspcavail : 16; + } b; +} gnptxsts_data_t; + +/** + * This union represents the bit fields in the Transmit + * FIFO Status Register (DTXFSTS). Read the register into the + * <i>d32</i> element then read out the bits using the <i>b</i>it + * elements. + */ +typedef union dtxfsts_data /* fscz */ //* +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned reserved : 16; + unsigned txfspcavail : 16; + } b; +} dtxfsts_data_t; + + +/** + * This union represents the bit fields in the I2C Control Register + * (I2CCTL). Read the register into the <i>d32</i> element then read out the + * bits using the <i>b</i>it elements. + */ +typedef union gi2cctl_data { //* + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned bsydne : 1; + unsigned rw : 1; + unsigned reserved : 2; + unsigned i2cdevaddr : 2; + unsigned i2csuspctl : 1; + unsigned ack : 1; + unsigned i2cen : 1; + unsigned addr : 7; + unsigned regaddr : 8; + unsigned rwdata : 8; + } b; +} gi2cctl_data_t; + +/** + * This union represents the bit fields in the User HW Config1 + * Register. Read the register into the <i>d32</i> element then read + * out the bits using the <i>b</i>it elements. + */ +typedef union hwcfg1_data { //* + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned ep_dir15 : 2; + unsigned ep_dir14 : 2; + unsigned ep_dir13 : 2; + unsigned ep_dir12 : 2; + unsigned ep_dir11 : 2; + unsigned ep_dir10 : 2; + unsigned ep_dir9 : 2; + unsigned ep_dir8 : 2; + unsigned ep_dir7 : 2; + unsigned ep_dir6 : 2; + unsigned ep_dir5 : 2; + unsigned ep_dir4 : 2; + unsigned ep_dir3 : 2; + unsigned ep_dir2 : 2; + unsigned ep_dir1 : 2; + unsigned ep_dir0 : 2; + } b; +} hwcfg1_data_t; + +/** + * This union represents the bit fields in the User HW Config2 + * Register. Read the register into the <i>d32</i> element then read + * out the bits using the <i>b</i>it elements. + */ +typedef union hwcfg2_data //* +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + /* GHWCFG2 */ + unsigned reserved31 : 1; + unsigned dev_token_q_depth : 5; + unsigned host_perio_tx_q_depth : 2; + unsigned nonperio_tx_q_depth : 2; + unsigned rx_status_q_depth : 2; + unsigned dynamic_fifo : 1; + unsigned perio_ep_supported : 1; + unsigned num_host_chan : 4; + unsigned num_dev_ep : 4; + unsigned fs_phy_type : 2; + unsigned hs_phy_type : 2; +#define DWC_HWCFG2_HS_PHY_TYPE_NOT_SUPPORTED 0 +#define DWC_HWCFG2_HS_PHY_TYPE_UTMI 1 +#define DWC_HWCFG2_HS_PHY_TYPE_ULPI 2 +#define DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI 3 + + unsigned point2point : 1; + unsigned architecture : 2; + unsigned op_mode : 3; +#define DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG 0 +#define DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG 1 +#define DWC_HWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE_OTG 2 +#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE 3 +#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE 4 +#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST 5 +#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST 6 + } b; +} hwcfg2_data_t; + +/** + * This union represents the bit fields in the User HW Config3 + * Register. Read the register into the <i>d32</i> element then read + * out the bits using the <i>b</i>it elements. + */ +typedef union hwcfg3_data //* +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + /* GHWCFG3 */ + unsigned dfifo_depth : 16; + unsigned reserved15_13 : 3; + unsigned ahb_phy_clock_synch : 1; + unsigned synch_reset_type : 1; + unsigned optional_features : 1; + unsigned vendor_ctrl_if : 1; + unsigned i2c : 1; + unsigned otg_func : 1; + unsigned packet_size_cntr_width : 3; + unsigned xfer_size_cntr_width : 4; + } b; +} hwcfg3_data_t; + +/** + * This union represents the bit fields in the User HW Config4 + * Register. Read the register into the <i>d32</i> element then read + * out the bits using the <i>b</i>it elements. + */ +typedef union hwcfg4_data //* +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + + unsigned reserved31_30 : 2; /* fscz */ + unsigned num_in_eps : 4; + unsigned ded_fifo_en : 1; + + unsigned session_end_filt_en : 1; + unsigned b_valid_filt_en : 1; + unsigned a_valid_filt_en : 1; + unsigned vbus_valid_filt_en : 1; + unsigned iddig_filt_en : 1; + unsigned num_dev_mode_ctrl_ep : 4; + unsigned utmi_phy_data_width : 2; + unsigned min_ahb_freq : 9; + unsigned power_optimiz : 1; + unsigned num_dev_perio_in_ep : 4; + } b; +} hwcfg4_data_t; + + +//////////////////////////////////////////// +// Device Registers +/** + * Device Global Registers. <i>Offsets 800h-BFFh</i> + * + * The following structures define the size and relative field offsets + * for the Device Mode Registers. + * + * <i>These registers are visible only in Device mode and must not be + * accessed in Host mode, as the results are unknown.</i> + */ +typedef struct dwc_otg_dev_global_regs +{ + /** Device Configuration Register. <i>Offset 800h</i> */ + volatile uint32_t dcfg; + /** Device Control Register. <i>Offset: 804h</i> */ + volatile uint32_t dctl; + /** Device Status Register (Read Only). <i>Offset: 808h</i> */ + volatile uint32_t dsts; + /** Reserved. <i>Offset: 80Ch</i> */ + uint32_t unused; + /** Device IN Endpoint Common Interrupt Mask + * Register. <i>Offset: 810h</i> */ + volatile uint32_t diepmsk; + /** Device OUT Endpoint Common Interrupt Mask + * Register. <i>Offset: 814h</i> */ + volatile uint32_t doepmsk; + /** Device All Endpoints Interrupt Register. <i>Offset: 818h</i> */ + volatile uint32_t daint; + /** Device All Endpoints Interrupt Mask Register. <i>Offset: + * 81Ch</i> */ + volatile uint32_t daintmsk; + /** Device IN Token Queue Read Register-1 (Read Only). + * <i>Offset: 820h</i> */ + volatile uint32_t dtknqr1; + /** Device IN Token Queue Read Register-2 (Read Only). + * <i>Offset: 824h</i> */ + volatile uint32_t dtknqr2; + /** Device VBUS discharge Register. <i>Offset: 828h</i> */ + volatile uint32_t dvbusdis; + /** Device VBUS Pulse Register. <i>Offset: 82Ch</i> */ + volatile uint32_t dvbuspulse; + /** Device IN Token Queue Read Register-3 (Read Only). + * <i>Offset: 830h</i> */ + /*fscz*/ + /** Device IN Token Queue Read Register-3 (Read Only). / + * Device Thresholding control register (Read/Write) + * <i>Offset: 830h</i> */ + volatile uint32_t dtknqr3_dthrctl; + /** Device IN Token Queue Read Register-4 (Read Only). / + * Device IN EPs empty Inr. Mask Register (Read/Write) + * <i>Offset: 834h</i> */ + volatile uint32_t dtknqr4_fifoemptymsk; +} dwc_otg_device_global_regs_t; + +/** + * This union represents the bit fields in the Device Configuration + * Register. Read the register into the <i>d32</i> member then + * set/clear the bits using the <i>b</i>it elements. Write the + * <i>d32</i> member to the dcfg register. + */ +typedef union dcfg_data //* +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned reserved0_8 : 9; /*fsczzzz correct*/ + unsigned epmscnt : 5; + /** In Endpoint Mis-match count */ + unsigned reserved17_13 : 5; + /** Periodic Frame Interval */ + unsigned perfrint : 2; +#define DWC_DCFG_FRAME_INTERVAL_80 0 +#define DWC_DCFG_FRAME_INTERVAL_85 1 +#define DWC_DCFG_FRAME_INTERVAL_90 2 +#define DWC_DCFG_FRAME_INTERVAL_95 3 + + /** Device Addresses */ + unsigned devaddr : 7; + unsigned reserved3 : 1; + /** Non Zero Length Status OUT Handshake */ + unsigned nzstsouthshk : 1; +#define DWC_DCFG_SEND_STALL 1 + + /** Device Speed */ + unsigned devspd : 2; + } b; +} dcfg_data_t; + +/** + * This union represents the bit fields in the Device Control + * Register. Read the register into the <i>d32</i> member then + * set/clear the bits using the <i>b</i>it elements. + */ +typedef union dctl_data //* +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned reserved31_12 : 21; + /** Clear Global OUT NAK */ + unsigned cgoutnak : 1; + /** Set Global OUT NAK */ + unsigned sgoutnak : 1; + /** Clear Global Non-Periodic IN NAK */ + unsigned cgnpinnak : 1; + /** Set Global Non-Periodic IN NAK */ + unsigned sgnpinnak : 1; + /** Test Control */ + unsigned tstctl : 3; + /** Global OUT NAK Status */ + unsigned goutnaksts : 1; + /** Global Non-Periodic IN NAK Status */ + unsigned gnpinnaksts : 1; + /** Soft Disconnect */ + unsigned sftdiscon : 1; + /** Remote Wakeup */ + unsigned rmtwkupsig : 1; + } b; +} dctl_data_t; + +/** + * This union represents the bit fields in the Device Status + * Register. Read the register into the <i>d32</i> member then + * set/clear the bits using the <i>b</i>it elements. + */ +typedef union dsts_data //* +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned reserved31_22 : 10; + /** Frame or Microframe Number of the received SOF */ + unsigned soffn : 14; + unsigned reserved07_04 : 4; + /** Erratic Error */ + unsigned errticerr : 1; + /** Enumerated Speed */ + unsigned enumspd : 2; +#define DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ 0 +#define DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ 1 +#define DWC_DSTS_ENUMSPD_LS_PHY_6MHZ 2 +#define DWC_DSTS_ENUMSPD_FS_PHY_48MHZ 3 + /** Suspend Status */ + unsigned suspsts : 1; + } b; +} dsts_data_t; + + +/** + * This union represents the bit fields in the Device IN EP Interrupt + * Register and the Device IN EP Common Mask Register. + * + * - Read the register into the <i>d32</i> member then set/clear the + * bits using the <i>b</i>it elements. + */ +typedef union diepint_data //* +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned reserved31_08 : 23; + unsigned txfifoundrn : 1; + /** IN Endpoint HAK Effective mask */ + unsigned emptyintr : 1; + /** IN Endpoint NAK Effective mask */ + unsigned inepnakeff : 1; + /** IN Token Received with EP mismatch mask */ + unsigned intknepmis : 1; + /** IN Token received with TxF Empty mask */ + unsigned intktxfemp : 1; + /** TimeOUT Handshake mask (non-ISOC EPs) */ + unsigned timeout : 1; + /** AHB Error mask */ + unsigned ahberr : 1; + /** Endpoint disable mask */ + unsigned epdisabled : 1; + /** Transfer complete mask */ + unsigned xfercompl : 1; + } b; +} diepint_data_t; +/** + * This union represents the bit fields in the Device IN EP Common + * Interrupt Mask Register. + */ +typedef union diepint_data diepmsk_data_t; //*-* + +/** + * This union represents the bit fields in the Device OUT EP + * Interrupt Register and Device OUT EP Common Interrupt Mask + * Register. + * + * - Read the register into the <i>d32</i> member then set/clear the + * bits using the <i>b</i>it elements. + */ +typedef union doepint_data //* +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned reserved31_04 : 28; // Docs say reserved is 27 bits + + // There is 1 bit missing here, not used? + + /** Setup Phase Done (control EPs) */ + unsigned setup : 1; + /** AHB Error */ + unsigned ahberr : 1; + /** Endpoint disable */ + unsigned epdisabled : 1; + /** Transfer complete */ + unsigned xfercompl : 1; + } b; +} doepint_data_t; +/** + * This union represents the bit fields in the Device OUT EP Common + * Interrupt Mask Register. + */ +typedef union doepint_data doepmsk_data_t; //*-* + + +/** + * This union represents the bit fields in the Device All EP Interrupt + * and Mask Registers. + * - Read the register into the <i>d32</i> member then set/clear the + * bits using the <i>b</i>it elements. + */ +typedef union daint_data //* +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + /** OUT Endpoint bits */ + unsigned out : 16; + /** IN Endpoint bits */ + unsigned in : 16; + } ep; + struct { + /** OUT Endpoint bits */ + unsigned outep15 : 1; + unsigned outep14 : 1; + unsigned outep13 : 1; + unsigned outep12 : 1; + unsigned outep11 : 1; + unsigned outep10 : 1; + unsigned outep9 : 1; + unsigned outep8 : 1; + unsigned outep7 : 1; + unsigned outep6 : 1; + unsigned outep5 : 1; + unsigned outep4 : 1; + unsigned outep3 : 1; + unsigned outep2 : 1; + unsigned outep1 : 1; + unsigned outep0 : 1; + /** IN Endpoint bits */ + unsigned inep15 : 1; + unsigned inep14 : 1; + unsigned inep13 : 1; + unsigned inep12 : 1; + unsigned inep11 : 1; + unsigned inep10 : 1; + unsigned inep9 : 1; + unsigned inep8 : 1; + unsigned inep7 : 1; + unsigned inep6 : 1; + unsigned inep5 : 1; + unsigned inep4 : 1; + unsigned inep3 : 1; + unsigned inep2 : 1; + unsigned inep1 : 1; + unsigned inep0 : 1; + } b; +} daint_data_t; + +/** + * This union represents the bit fields in the Device IN Token Queue + * Read Registers. + * - Read the register into the <i>d32</i> member. + * - READ-ONLY Register + */ +typedef union dtknq1_data //* +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + /** EP Numbers of IN Tokens 0 ... 4 */ + unsigned epnums0_5 : 24; + /** write pointer has wrapped. */ + unsigned wrap_bit : 1; + /** Reserved */ + unsigned reserved05_06 : 2; + /** In Token Queue Write Pointer */ + unsigned intknwptr : 5; + }b; +} dtknq1_data_t; + +/** + * This union represents Threshold control Register + * - Read and write the register into the <i>d32</i> member. + * - READ-WRITABLE Register + */ +typedef union dthrctl_data //* /*fscz */ +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + /** Reserved */ + unsigned reserved26_31 : 6; + /** Rx Thr. Length */ + unsigned rx_thr_len : 9; + /** Rx Thr. Enable */ + unsigned rx_thr_en : 1; + /** Reserved */ + unsigned reserved11_15 : 5; + /** Tx Thr. Length */ + unsigned tx_thr_len : 9; + /** ISO Tx Thr. Enable */ + unsigned iso_thr_en : 1; + /** non ISO Tx Thr. Enable */ + unsigned non_iso_thr_en : 1; + + }b; +} dthrctl_data_t; + + +/** + * Device Logical IN Endpoint-Specific Registers. <i>Offsets + * 900h-AFCh</i> + * + * There will be one set of endpoint registers per logical endpoint + * implemented. + * + * <i>These registers are visible only in Device mode and must not be + * accessed in Host mode, as the results are unknown.</i> + */ +typedef struct dwc_otg_dev_in_ep_regs +{ + /** Device IN Endpoint Control Register. <i>Offset:900h + + * (ep_num * 20h) + 00h</i> */ + volatile uint32_t diepctl; + /** Reserved. <i>Offset:900h + (ep_num * 20h) + 04h</i> */ + uint32_t reserved04; + /** Device IN Endpoint Interrupt Register. <i>Offset:900h + + * (ep_num * 20h) + 08h</i> */ + volatile uint32_t diepint; + /** Reserved. <i>Offset:900h + (ep_num * 20h) + 0Ch</i> */ + uint32_t reserved0C; + /** Device IN Endpoint Transfer Size + * Register. <i>Offset:900h + (ep_num * 20h) + 10h</i> */ + volatile uint32_t dieptsiz; + /** Device IN Endpoint DMA Address Register. <i>Offset:900h + + * (ep_num * 20h) + 14h</i> */ + volatile uint32_t diepdma; + /** Reserved. <i>Offset:900h + (ep_num * 20h) + 18h - 900h + + * (ep_num * 20h) + 1Ch</i>*/ + volatile uint32_t dtxfsts; + /** Reserved. <i>Offset:900h + (ep_num * 20h) + 1Ch - 900h + + * (ep_num * 20h) + 1Ch</i>*/ + uint32_t reserved18; +} dwc_otg_dev_in_ep_regs_t; + +/** + * Device Logical OUT Endpoint-Specific Registers. <i>Offsets: + * B00h-CFCh</i> + * + * There will be one set of endpoint registers per logical endpoint + * implemented. + * + * <i>These registers are visible only in Device mode and must not be + * accessed in Host mode, as the results are unknown.</i> + */ +typedef struct dwc_otg_dev_out_ep_regs +{ + /** Device OUT Endpoint Control Register. <i>Offset:B00h + + * (ep_num * 20h) + 00h</i> */ + volatile uint32_t doepctl; + /** Device OUT Endpoint Frame number Register. <i>Offset: + * B00h + (ep_num * 20h) + 04h</i> */ + volatile uint32_t doepfn; + /** Device OUT Endpoint Interrupt Register. <i>Offset:B00h + + * (ep_num * 20h) + 08h</i> */ + volatile uint32_t doepint; + /** Reserved. <i>Offset:B00h + (ep_num * 20h) + 0Ch</i> */ + uint32_t reserved0C; + /** Device OUT Endpoint Transfer Size Register. <i>Offset: + * B00h + (ep_num * 20h) + 10h</i> */ + volatile uint32_t doeptsiz; + /** Device OUT Endpoint DMA Address Register. <i>Offset:B00h + * + (ep_num * 20h) + 14h</i> */ + volatile uint32_t doepdma; + /** Reserved. <i>Offset:B00h + (ep_num * 20h) + 18h - B00h + + * (ep_num * 20h) + 1Ch</i> */ + uint32_t unused[2]; +} dwc_otg_dev_out_ep_regs_t; + +/** + * This union represents the bit fields in the Device EP Control + * Register. Read the register into the <i>d32</i> member then + * set/clear the bits using the <i>b</i>it elements. + */ +typedef union depctl_data //* +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + /** Endpoint Enable */ + unsigned epena : 1; + /** Endpoint Disable */ + unsigned epdis : 1; + + /** Set DATA1 PID (INTR/Bulk IN and OUT endpoints) + * Writing to this field sets the Endpoint DPID (DPID) + * field in this register to DATA1 Set Odd + * (micro)frame (SetOddFr) (ISO IN and OUT Endpoints) + * Writing to this field sets the Even/Odd + * (micro)frame (EO_FrNum) field to odd (micro) frame. + */ + unsigned setd1pid : 1; + /** Set DATA0 PID (INTR/Bulk IN and OUT endpoints) + * Writing to this field sets the Endpoint DPID (DPID) + * field in this register to DATA0. Set Even + * (micro)frame (SetEvenFr) (ISO IN and OUT Endpoints) + * Writing to this field sets the Even/Odd + * (micro)frame (EO_FrNum) field to even (micro) + * frame. + */ + unsigned setd0pid : 1; + + /** Set NAK */ + unsigned snak : 1; + /** Clear NAK */ + unsigned cnak : 1; + + /** Tx Fifo Number + * IN EPn/IN EP0 + * OUT EPn/OUT EP0 - reserved */ + unsigned txfnum : 4; + + /** Stall Handshake */ + unsigned stall : 1; + + /** Snoop Mode + * OUT EPn/OUT EP0 + * IN EPn/IN EP0 - reserved */ + unsigned snp : 1; + + /** Endpoint Type + * 2'b00: Control + * 2'b01: Isochronous + * 2'b10: Bulk + * 2'b11: Interrupt */ + unsigned eptype : 2; + + /** NAK Status */ + unsigned naksts : 1; + + /** Endpoint DPID (INTR/Bulk IN and OUT endpoints) + * This field contains the PID of the packet going to + * be received or transmitted on this endpoint. The + * application should program the PID of the first + * packet going to be received or transmitted on this + * endpoint , after the endpoint is + * activated. Application use the SetD1PID and + * SetD0PID fields of this register to program either + * D0 or D1 PID. + * + * The encoding for this field is + * - 0: D0 + * - 1: D1 + */ + unsigned dpid : 1; + + /** USB Active Endpoint */ + unsigned usbactep : 1; + + /** Next Endpoint + * IN EPn/IN EP0 + * OUT EPn/OUT EP0 - reserved */ + unsigned nextep : 4; + + /** Maximum Packet Size + * IN/OUT EPn + * IN/OUT EP0 - 2 bits + * 2'b00: 64 Bytes + * 2'b01: 32 + * 2'b10: 16 + * 2'b11: 8 */ + unsigned mps : 11; +#define DWC_DEP0CTL_MPS_64 0 +#define DWC_DEP0CTL_MPS_32 1 +#define DWC_DEP0CTL_MPS_16 2 +#define DWC_DEP0CTL_MPS_8 3 + } b; +} depctl_data_t; + +/** + * This union represents the bit fields in the Device EP Transfer + * Size Register. Read the register into the <i>d32</i> member then + * set/clear the bits using the <i>b</i>it elements. + */ +typedef union deptsiz_data //* +{ + /** raw register data */ + uint32_t d32; + + /* + * Added-sr: 2007-07-26 + * + * Correct ther register layout for the 405EZ Ultra + * USB device implementation. + */ +#ifdef CONFIG_405EZ + /** register bits */ + struct { + unsigned reserved : 1; + /** Multi Count - Periodic IN endpoints */ + unsigned mc : 2; + unsigned reserved1 : 5; + /** Packet Count */ + unsigned pktcnt : 5; + unsigned reserved2 : 8; + /** Transfer size */ + unsigned xfersize : 11; + } b; +#else + /** register bits */ + struct { + unsigned reserved : 1; + /** Multi Count - Periodic IN endpoints */ + unsigned mc : 2; + /** Packet Count */ + unsigned pktcnt : 10; + /** Transfer size */ + unsigned xfersize : 19; + } b; +#endif +} deptsiz_data_t; + +/** + * This union represents the bit fields in the Device EP 0 Transfer + * Size Register. Read the register into the <i>d32</i> member then + * set/clear the bits using the <i>b</i>it elements. + */ +typedef union deptsiz0_data //* +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned reserved31 : 1; /*fsczzzz device*/ + /**Setup Packet Count (DOEPTSIZ0 Only) */ + unsigned supcnt : 2; + /** Reserved */ + unsigned reserved28_20 : 9; + /** Packet Count */ + unsigned pktcnt : 1; + /** Reserved */ + unsigned reserved18_7 : 12; + /** Transfer size */ + unsigned xfersize : 7; + } b; +} deptsiz0_data_t; + + +/** Maximum number of Periodic FIFOs */ +#define MAX_PERIO_FIFOS 15 +/** Maximum number of Periodic FIFOs */ +#define MAX_TX_FIFOS 15 + +/** Maximum number of Endpoints/HostChannels */ +#if defined(CONFIG_460EX) || defined(CONFIG_APM82181) +#define MAX_EPS_CHANNELS 12 +#else +#define MAX_EPS_CHANNELS 4 +#endif + +/** + * The dwc_otg_dev_if structure contains information needed to manage + * the DWC_otg controller acting in device mode. It represents the + * programming view of the device-specific aspects of the controller. + */ +typedef struct dwc_otg_dev_if { + /** Pointer to device Global registers. + * Device Global Registers starting at offset 800h + */ + dwc_otg_device_global_regs_t *dev_global_regs; +#define DWC_DEV_GLOBAL_REG_OFFSET 0x800 + + /** + * Device Logical IN Endpoint-Specific Registers 900h-AFCh + */ + dwc_otg_dev_in_ep_regs_t *in_ep_regs[MAX_EPS_CHANNELS]; /*fscz divide 2 */ +#define DWC_DEV_IN_EP_REG_OFFSET 0x900 +#define DWC_EP_REG_OFFSET 0x20 + + /** Device Logical OUT Endpoint-Specific Registers B00h-CFCh */ + dwc_otg_dev_out_ep_regs_t *out_ep_regs[MAX_EPS_CHANNELS]; /*fscz divide 2 */ +#define DWC_DEV_OUT_EP_REG_OFFSET 0xB00 + + /* Device configuration information*/ + uint8_t speed; /**< Device Speed 0: Unknown, 1: LS, 2:FS, 3: HS */ + /*fscz */ + uint8_t num_in_eps; /**< Number # of Tx EP range: 0-15 exept ep0 */ + uint8_t num_out_eps; /**< Number # of Rx EP range: 0-15 exept ep 0*/ + + + /** Size of periodic FIFOs (Bytes) */ + uint16_t perio_tx_fifo_size[MAX_PERIO_FIFOS]; + + /*fscz */ + /** Size of Tx FIFOs (Bytes) */ + uint16_t tx_fifo_size[MAX_TX_FIFOS]; + + /** Thresholding enable flags and length varaiables **/ + uint16_t rx_thr_en; + uint16_t iso_tx_thr_en; + uint16_t non_iso_tx_thr_en; + + uint16_t rx_thr_length; + uint16_t tx_thr_length; +} dwc_otg_dev_if_t; + +/** + * This union represents the bit fields in the Power and Clock Gating Control + * Register. Read the register into the <i>d32</i> member then set/clear the + * bits using the <i>b</i>it elements. + */ +typedef union pcgcctl_data /*fsczzzz */ +{ + /** raw register data */ + uint32_t d32; + + /** register bits */ + struct { + unsigned reserved31_05 : 27; + /** PHY Suspended */ + unsigned physuspended : 1; + /** Reset Power Down Modules */ + unsigned rstpdwnmodule : 1; + /** Power Clamp */ + unsigned pwrclmp : 1; + /** Gate Hclk */ + unsigned gatehclk : 1; + /** Stop Pclk */ + unsigned stoppclk : 1; + } b; +} pcgcctl_data_t; + +///////////////////////////////////////////////// +// Host Mode Register Structures +// +/** + * The Host Global Registers structure defines the size and relative + * field offsets for the Host Mode Global Registers. Host Global + * Registers offsets 400h-7FFh. +*/ +typedef struct dwc_otg_host_global_regs +{ + /** Host Configuration Register. <i>Offset: 400h</i> */ + volatile uint32_t hcfg; + /** Host Frame Interval Register. <i>Offset: 404h</i> */ + volatile uint32_t hfir; + /** Host Frame Number / Frame Remaining Register. <i>Offset: 408h</i> */ + volatile uint32_t hfnum; + /** Reserved. <i>Offset: 40Ch</i> */ + uint32_t reserved40C; + /** Host Periodic Transmit FIFO/ Queue Status Register. <i>Offset: 410h</i> */ + volatile uint32_t hptxsts; + /** Host All Channels Interrupt Register. <i>Offset: 414h</i> */ + volatile uint32_t haint; + /** Host All Channels Interrupt Mask Register. <i>Offset: 418h</i> */ + volatile uint32_t haintmsk; +} dwc_otg_host_global_regs_t; + +/** + * This union represents the bit fields in the Host Configuration Register. + * Read the register into the <i>d32</i> member then set/clear the bits using + * the <i>b</i>it elements. Write the <i>d32</i> member to the hcfg register. + */ +typedef union hcfg_data //* +{ + /** raw register data */ + uint32_t d32; + + /** register bits */ + struct { + +#define DWC_HCFG_30_60_MHZ 0 +#define DWC_HCFG_48_MHZ 1 +#define DWC_HCFG_6_MHZ 2 + /** FS/LS Only Support */ + unsigned fslssupp : 1; + /** FS/LS Phy Clock Select */ + unsigned fslspclksel : 2; + } b; +} hcfg_data_t; + +/** + * This union represents the bit fields in the Host Frame Remaing/Number + * Register. + */ +typedef union hfir_data //* +{ + /** raw register data */ + uint32_t d32; + + /** register bits */ + struct { + unsigned reserved : 16; + unsigned frint : 16; + } b; +} hfir_data_t; + +/** + * This union represents the bit fields in the Host Frame Remaing/Number + * Register. + */ +typedef union hfnum_data //* +{ + /** raw register data */ + uint32_t d32; + + /** register bits */ + struct { +#define DWC_HFNUM_MAX_FRNUM 0x3FFF + unsigned frrem : 16; + unsigned frnum : 16; + } b; +} hfnum_data_t; + +typedef union hptxsts_data //* +{ + /** raw register data */ + uint32_t d32; + + /** register bits */ + struct { + unsigned ptxqtop_odd : 1; + unsigned ptxqtop_chnum : 4; + unsigned ptxqtop_token : 2; + unsigned ptxqtop_terminate : 1; + unsigned ptxqspcavail : 8; + unsigned ptxfspcavail : 16; + /** Top of the Periodic Transmit Request Queue + * - bit 24 - Terminate (last entry for the selected channel) + * - bits 26:25 - Token Type + * - 2'b00 - Zero length + * - 2'b01 - Ping + * - 2'b10 - Disable + * - bits 30:27 - Channel Number + * - bit 31 - Odd/even microframe + */ + } b; +} hptxsts_data_t; + +/** + * This union represents the bit fields in the Host Port Control and Status + * Register. Read the register into the <i>d32</i> member then set/clear the + * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the + * hprt0 register. + */ +typedef union hprt0_data //* +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + +#define DWC_HPRT0_PRTSPD_HIGH_SPEED 0 +#define DWC_HPRT0_PRTSPD_FULL_SPEED 1 +#define DWC_HPRT0_PRTSPD_LOW_SPEED 2 + unsigned reserved19_31 : 13; + unsigned prtspd : 2; + unsigned prttstctl : 4; + unsigned prtpwr : 1; + unsigned prtlnsts : 2; + unsigned reserved9 : 1; + unsigned prtrst : 1; + unsigned prtsusp : 1; + unsigned prtres : 1; + unsigned prtovrcurrchng : 1; + unsigned prtovrcurract : 1; + unsigned prtenchng : 1; + unsigned prtena : 1; + unsigned prtconndet : 1; + unsigned prtconnsts : 1; + } b; +} hprt0_data_t; + +/** + * This union represents the bit fields in the Host All Interrupt + * Register. + */ +typedef union haint_data //* +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned reserved : 16; + unsigned ch15 : 1; + unsigned ch14 : 1; + unsigned ch13 : 1; + unsigned ch12 : 1; + unsigned ch11 : 1; + unsigned ch10 : 1; + unsigned ch9 : 1; + unsigned ch8 : 1; + unsigned ch7 : 1; + unsigned ch6 : 1; + unsigned ch5 : 1; + unsigned ch4 : 1; + unsigned ch3 : 1; + unsigned ch2 : 1; + unsigned ch1 : 1; + unsigned ch0 : 1; + } b; + struct { + unsigned reserved : 16; + unsigned chint : 16; + } b2; +} haint_data_t; + +/** + * This union represents the bit fields in the Host All Interrupt + * Register. + */ +typedef union haintmsk_data //* +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned reserved : 16; + unsigned ch15 : 1; + unsigned ch14 : 1; + unsigned ch13 : 1; + unsigned ch12 : 1; + unsigned ch11 : 1; + unsigned ch10 : 1; + unsigned ch9 : 1; + unsigned ch8 : 1; + unsigned ch7 : 1; + unsigned ch6 : 1; + unsigned ch5 : 1; + unsigned ch4 : 1; + unsigned ch3 : 1; + unsigned ch2 : 1; + unsigned ch1 : 1; + unsigned ch0 : 1; + } b; + struct { + unsigned reserved : 16; + unsigned chint : 16; + } b2; +} haintmsk_data_t; + +/** + * Host Channel Specific Registers. <i>500h-5FCh</i> + */ +typedef struct dwc_otg_hc_regs +{ + /** Host Channel 0 Characteristic Register. <i>Offset: 500h + (chan_num * 20h) + 00h</i> */ + volatile uint32_t hcchar; + /** Host Channel 0 Split Control Register. <i>Offset: 500h + (chan_num * 20h) + 04h</i> */ + volatile uint32_t hcsplt; + /** Host Channel 0 Interrupt Register. <i>Offset: 500h + (chan_num * 20h) + 08h</i> */ + volatile uint32_t hcint; + /** Host Channel 0 Interrupt Mask Register. <i>Offset: 500h + (chan_num * 20h) + 0Ch</i> */ + volatile uint32_t hcintmsk; + /** Host Channel 0 Transfer Size Register. <i>Offset: 500h + (chan_num * 20h) + 10h</i> */ + volatile uint32_t hctsiz; + /** Host Channel 0 DMA Address Register. <i>Offset: 500h + (chan_num * 20h) + 14h</i> */ + volatile uint32_t hcdma; + /** Reserved. <i>Offset: 500h + (chan_num * 20h) + 18h - 500h + (chan_num * 20h) + 1Ch</i> */ + uint32_t reserved[2]; +} dwc_otg_hc_regs_t; + +/** + * This union represents the bit fields in the Host Channel Characteristics + * Register. Read the register into the <i>d32</i> member then set/clear the + * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the + * hcchar register. + */ +typedef union hcchar_data //* +{ + /** raw register data */ + uint32_t d32; + + /** register bits */ + struct { + /** Channel enable */ + unsigned chen : 1; + + /** Channel disable */ + unsigned chdis : 1; + + /** + * Frame to transmit periodic transaction. + * 0: even, 1: odd + */ + unsigned oddfrm : 1; + + /** Device address */ + unsigned devaddr : 7; + + /** Packets per frame for periodic transfers. 0 is reserved. */ + unsigned multicnt : 2; + + /** 0: Control, 1: Isoc, 2: Bulk, 3: Intr */ + unsigned eptype : 2; + + /** 0: Full/high speed device, 1: Low speed device */ + unsigned lspddev : 1; + + unsigned reserved : 1; + + /** 0: OUT, 1: IN */ + unsigned epdir : 1; + + /** Endpoint number */ + unsigned epnum : 4; + + /** Maximum packet size in bytes */ + unsigned mps : 11; + } b; +} hcchar_data_t; + +typedef union hcsplt_data //* +{ + /** raw register data */ + uint32_t d32; + + /** register bits */ + struct { + /** Split Enble */ + unsigned spltena : 1; + + /** Reserved */ + unsigned reserved : 14; + + /** Do Complete Split */ + unsigned compsplt : 1; + + + /** Transaction Position */ + unsigned xactpos : 2; +#define DWC_HCSPLIT_XACTPOS_MID 0 +#define DWC_HCSPLIT_XACTPOS_END 1 +#define DWC_HCSPLIT_XACTPOS_BEGIN 2 +#define DWC_HCSPLIT_XACTPOS_ALL 3 + + /** Hub Address */ + unsigned hubaddr : 7; + + /** Port Address */ + unsigned prtaddr : 7; + + } b; +} hcsplt_data_t; + + +/** + * This union represents the bit fields in the Host All Interrupt + * Register. + */ +typedef union hcint_data //* +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + /** Reserved */ + unsigned reserved : 21; + /** Data Toggle Error */ + unsigned datatglerr : 1; + /** Frame Overrun */ + unsigned frmovrun : 1; + /** Babble Error */ + unsigned bblerr : 1; + /** Transaction Err */ + unsigned xacterr : 1; + /** NYET Response Received */ + unsigned nyet : 1; + /** ACK Response Received */ + unsigned ack : 1; + /** NAK Response Received */ + unsigned nak : 1; + /** STALL Response Received */ + unsigned stall : 1; + /** AHB Error */ + unsigned ahberr : 1; + /** Channel Halted */ + unsigned chhltd : 1; + /** Transfer Complete */ + unsigned xfercomp : 1; + } b; +} hcint_data_t; + +/** + * This union represents the bit fields in the Host Channel Transfer Size + * Register. Read the register into the <i>d32</i> member then set/clear the + * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the + * hcchar register. + */ +typedef union hctsiz_data //* +{ + /** raw register data */ + uint32_t d32; + + /** register bits */ + struct { +#define DWC_HCTSIZ_DATA0 0 +#define DWC_HCTSIZ_DATA1 2 +#define DWC_HCTSIZ_DATA2 1 +#define DWC_HCTSIZ_MDATA 3 +#define DWC_HCTSIZ_SETUP 3 + + /** Do PING protocol when 1 */ + unsigned dopng : 1; + + /** + * Packet ID for next data packet + * 0: DATA0 + * 1: DATA2 + * 2: DATA1 + * 3: MDATA (non-Control), SETUP (Control) + */ + unsigned pid : 2; + + /** Data packets to transfer */ + unsigned pktcnt : 10; + + /** Total transfer size in bytes */ + unsigned xfersize : 19; + } b; +} hctsiz_data_t; + +/** + * This union represents the bit fields in the Host Channel Interrupt Mask + * Register. Read the register into the <i>d32</i> member then set/clear the + * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the + * hcintmsk register. + */ +typedef union hcintmsk_data //* +{ + /** raw register data */ + uint32_t d32; + + /** register bits */ + struct { + unsigned reserved : 21; + unsigned datatglerr : 1; + unsigned frmovrun : 1; + unsigned bblerr : 1; + unsigned xacterr : 1; + unsigned nyet : 1; + unsigned ack : 1; + unsigned nak : 1; + unsigned stall : 1; + unsigned ahberr : 1; + unsigned chhltd : 1; + unsigned xfercompl : 1; + } b; +} hcintmsk_data_t; + +/** OTG Host Interface Structure. + * + * The OTG Host Interface Structure structure contains information + * needed to manage the DWC_otg controller acting in host mode. It + * represents the programming view of the host-specific aspects of the + * controller. + */ +typedef struct dwc_otg_host_if { + /** Host Global Registers starting at offset 400h.*/ + dwc_otg_host_global_regs_t *host_global_regs; +#define DWC_OTG_HOST_GLOBAL_REG_OFFSET 0x400 + + /** Host Port 0 Control and Status Register */ + volatile uint32_t *hprt0; +#define DWC_OTG_HOST_PORT_REGS_OFFSET 0x440 + + + /** Host Channel Specific Registers at offsets 500h-5FCh. */ + dwc_otg_hc_regs_t *hc_regs[MAX_EPS_CHANNELS]; +#define DWC_OTG_HOST_CHAN_REGS_OFFSET 0x500 +#define DWC_OTG_CHAN_REGS_OFFSET 0x20 + + + /* Host configuration information */ + /** Number of Host Channels (range: 1-16) */ + uint8_t num_host_channels; + /** Periodic EPs supported (0: no, 1: yes) */ + uint8_t perio_eps_supported; + /** Periodic Tx FIFO Size (Only 1 host periodic Tx FIFO) */ + uint16_t perio_tx_fifo_size; + +} dwc_otg_host_if_t; + + +#else /* CONFIG_4xx not defined */ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +/** + * This union represents the bit fields of the Core OTG Control + * and Status Register (GOTGCTL). Set the bits using the bit + * fields then write the <i>d32</i> value to the register. + */ +typedef union gotgctl_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned sesreqscs : 1; + unsigned sesreq : 1; + unsigned reserved2_7 : 6; + unsigned hstnegscs : 1; + unsigned hnpreq : 1; + unsigned hstsethnpen : 1; + unsigned devhnpen : 1; + unsigned reserved12_15 : 4; + unsigned conidsts : 1; + unsigned reserved17 : 1; + unsigned asesvld : 1; + unsigned bsesvld : 1; + unsigned currmod : 1; + unsigned reserved21_31 : 11; + } b; +} gotgctl_data_t; + +/** + * This union represents the bit fields of the Core OTG Interrupt Register + * (GOTGINT). Set/clear the bits using the bit fields then write the <i>d32</i> + * value to the register. + */ +typedef union gotgint_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + /** Current Mode */ + unsigned reserved0_1 : 2; + + /** Session End Detected */ + unsigned sesenddet : 1; + + unsigned reserved3_7 : 5; + + /** Session Request Success Status Change */ + unsigned sesreqsucstschng : 1; + /** Host Negotiation Success Status Change */ + unsigned hstnegsucstschng : 1; + + unsigned reserver10_16 : 7; + + /** Host Negotiation Detected */ + unsigned hstnegdet : 1; + /** A-Device Timeout Change */ + unsigned adevtoutchng : 1; + /** Debounce Done */ + unsigned debdone : 1; + + unsigned reserved31_20 : 12; + + } b; +} gotgint_data_t; + + +/** + * This union represents the bit fields of the Core AHB Configuration + * Register (GAHBCFG). Set/clear the bits using the bit fields then + * write the <i>d32</i> value to the register. + */ +typedef union gahbcfg_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned glblintrmsk : 1; +#define DWC_GAHBCFG_GLBINT_ENABLE 1 + + unsigned hburstlen : 4; +#define DWC_GAHBCFG_INT_DMA_BURST_SINGLE 0 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR 1 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR4 3 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR8 5 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR16 7 + + unsigned dmaenable : 1; +#define DWC_GAHBCFG_DMAENABLE 1 + unsigned reserved : 1; + unsigned nptxfemplvl_txfemplvl : 1; + unsigned ptxfemplvl : 1; +#define DWC_GAHBCFG_TXFEMPTYLVL_EMPTY 1 +#define DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY 0 + unsigned reserved9_31 : 23; + } b; +} gahbcfg_data_t; + +/** + * This union represents the bit fields of the Core USB Configuration + * Register (GUSBCFG). Set the bits using the bit fields then write + * the <i>d32</i> value to the register. + */ +typedef union gusbcfg_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned toutcal : 3; + unsigned phyif : 1; + unsigned ulpi_utmi_sel : 1; + unsigned fsintf : 1; + unsigned physel : 1; + unsigned ddrsel : 1; + unsigned srpcap : 1; + unsigned hnpcap : 1; + unsigned usbtrdtim : 4; + unsigned nptxfrwnden : 1; + unsigned phylpwrclksel : 1; + unsigned otgutmifssel : 1; + unsigned ulpi_fsls : 1; + unsigned ulpi_auto_res : 1; + unsigned ulpi_clk_sus_m : 1; + unsigned ulpi_ext_vbus_drv : 1; + unsigned ulpi_int_vbus_indicator : 1; + unsigned term_sel_dl_pulse : 1; + unsigned reserved23_28 : 6; + unsigned force_host_mode: 1; + unsigned force_device_mode: 1; + unsigned corrupt_tx_packet: 1; + } b; +} gusbcfg_data_t; + +/** + * This union represents the bit fields of the Core Reset Register + * (GRSTCTL). Set/clear the bits using the bit fields then write the + * <i>d32</i> value to the register. + */ +typedef union grstctl_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + /** Core Soft Reset (CSftRst) (Device and Host) + * + * The application can flush the control logic in the + * entire core using this bit. This bit resets the + * pipelines in the AHB Clock domain as well as the + * PHY Clock domain. + * + * The state machines are reset to an IDLE state, the + * control bits in the CSRs are cleared, all the + * transmit FIFOs and the receive FIFO are flushed. + * + * The status mask bits that control the generation of + * the interrupt, are cleared, to clear the + * interrupt. The interrupt status bits are not + * cleared, so the application can get the status of + * any events that occurred in the core after it has + * set this bit. + * + * Any transactions on the AHB are terminated as soon + * as possible following the protocol. Any + * transactions on the USB are terminated immediately. + * + * The configuration settings in the CSRs are + * unchanged, so the software doesn't have to + * reprogram these registers (Device + * Configuration/Host Configuration/Core System + * Configuration/Core PHY Configuration). + * + * The application can write to this bit, any time it + * wants to reset the core. This is a self clearing + * bit and the core clears this bit after all the + * necessary logic is reset in the core, which may + * take several clocks, depending on the current state + * of the core. + */ + unsigned csftrst : 1; + /** Hclk Soft Reset + * + * The application uses this bit to reset the control logic in + * the AHB clock domain. Only AHB clock domain pipelines are + * reset. + */ + unsigned hsftrst : 1; + /** Host Frame Counter Reset (Host Only)<br> + * + * The application can reset the (micro)frame number + * counter inside the core, using this bit. When the + * (micro)frame counter is reset, the subsequent SOF + * sent out by the core, will have a (micro)frame + * number of 0. + */ + unsigned hstfrm : 1; + /** In Token Sequence Learning Queue Flush + * (INTknQFlsh) (Device Only) + */ + unsigned intknqflsh : 1; + /** RxFIFO Flush (RxFFlsh) (Device and Host) + * + * The application can flush the entire Receive FIFO + * using this bit. <p>The application must first + * ensure that the core is not in the middle of a + * transaction. <p>The application should write into + * this bit, only after making sure that neither the + * DMA engine is reading from the RxFIFO nor the MAC + * is writing the data in to the FIFO. <p>The + * application should wait until the bit is cleared + * before performing any other operations. This bit + * will takes 8 clocks (slowest of PHY or AHB clock) + * to clear. + */ + unsigned rxfflsh : 1; + /** TxFIFO Flush (TxFFlsh) (Device and Host). + * + * This bit is used to selectively flush a single or + * all transmit FIFOs. The application must first + * ensure that the core is not in the middle of a + * transaction. <p>The application should write into + * this bit, only after making sure that neither the + * DMA engine is writing into the TxFIFO nor the MAC + * is reading the data out of the FIFO. <p>The + * application should wait until the core clears this + * bit, before performing any operations. This bit + * will takes 8 clocks (slowest of PHY or AHB clock) + * to clear. + */ + unsigned txfflsh : 1; + + /** TxFIFO Number (TxFNum) (Device and Host). + * + * This is the FIFO number which needs to be flushed, + * using the TxFIFO Flush bit. This field should not + * be changed until the TxFIFO Flush bit is cleared by + * the core. + * - 0x0 : Non Periodic TxFIFO Flush + * - 0x1 : Periodic TxFIFO #1 Flush in device mode + * or Periodic TxFIFO in host mode + * - 0x2 : Periodic TxFIFO #2 Flush in device mode. + * - ... + * - 0xF : Periodic TxFIFO #15 Flush in device mode + * - 0x10: Flush all the Transmit NonPeriodic and + * Transmit Periodic FIFOs in the core + */ + unsigned txfnum : 5; + /** Reserved */ + unsigned reserved11_29 : 19; + /** DMA Request Signal. Indicated DMA request is in + * probress. Used for debug purpose. */ + unsigned dmareq : 1; + /** AHB Master Idle. Indicates the AHB Master State + * Machine is in IDLE condition. */ + unsigned ahbidle : 1; + } b; +} grstctl_t; + + +/** + * This union represents the bit fields of the Core Interrupt Mask + * Register (GINTMSK). Set/clear the bits using the bit fields then + * write the <i>d32</i> value to the register. + */ +typedef union gintmsk_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned reserved0 : 1; + unsigned modemismatch : 1; + unsigned otgintr : 1; + unsigned sofintr : 1; + unsigned rxstsqlvl : 1; + unsigned nptxfempty : 1; + unsigned ginnakeff : 1; + unsigned goutnakeff : 1; + unsigned reserved8 : 1; + unsigned i2cintr : 1; + unsigned erlysuspend : 1; + unsigned usbsuspend : 1; + unsigned usbreset : 1; + unsigned enumdone : 1; + unsigned isooutdrop : 1; + unsigned eopframe : 1; + unsigned reserved16 : 1; + unsigned epmismatch : 1; + unsigned inepintr : 1; + unsigned outepintr : 1; + unsigned incomplisoin : 1; + unsigned incomplisoout : 1; + unsigned reserved22_23 : 2; + unsigned portintr : 1; + unsigned hcintr : 1; + unsigned ptxfempty : 1; + unsigned reserved27 : 1; + unsigned conidstschng : 1; + unsigned disconnect : 1; + unsigned sessreqintr : 1; + unsigned wkupintr : 1; + } b; +} gintmsk_data_t; +/** + * This union represents the bit fields of the Core Interrupt Register + * (GINTSTS). Set/clear the bits using the bit fields then write the + * <i>d32</i> value to the register. + */ +typedef union gintsts_data +{ + /** raw register data */ + uint32_t d32; +#define DWC_SOF_INTR_MASK 0x0008 + /** register bits */ + struct { +#define DWC_HOST_MODE 1 + unsigned curmode : 1; + unsigned modemismatch : 1; + unsigned otgintr : 1; + unsigned sofintr : 1; + unsigned rxstsqlvl : 1; + unsigned nptxfempty : 1; + unsigned ginnakeff : 1; + unsigned goutnakeff : 1; + unsigned reserved8 : 1; + unsigned i2cintr : 1; + unsigned erlysuspend : 1; + unsigned usbsuspend : 1; + unsigned usbreset : 1; + unsigned enumdone : 1; + unsigned isooutdrop : 1; + unsigned eopframe : 1; + unsigned intokenrx : 1; + unsigned epmismatch : 1; + unsigned inepint: 1; + unsigned outepintr : 1; + unsigned incomplisoin : 1; + unsigned incomplisoout : 1; + unsigned reserved22_23 : 2; + unsigned portintr : 1; + unsigned hcintr : 1; + unsigned ptxfempty : 1; + unsigned reserved27 : 1; + unsigned conidstschng : 1; + unsigned disconnect : 1; + unsigned sessreqintr : 1; + unsigned wkupintr : 1; + } b; +} gintsts_data_t; + + +/** + * This union represents the bit fields in the Device Receive Status Read and + * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i> + * element then read out the bits using the <i>b</i>it elements. + */ +typedef union device_grxsts_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned epnum : 4; + unsigned bcnt : 11; + unsigned dpid : 2; + +#define DWC_STS_DATA_UPDT 0x2 // OUT Data Packet +#define DWC_STS_XFER_COMP 0x3 // OUT Data Transfer Complete + +#define DWC_DSTS_GOUT_NAK 0x1 // Global OUT NAK +#define DWC_DSTS_SETUP_COMP 0x4 // Setup Phase Complete +#define DWC_DSTS_SETUP_UPDT 0x6 // SETUP Packet + unsigned pktsts : 4; + unsigned fn : 4; + unsigned reserved : 7; + } b; +} device_grxsts_data_t; + +/** + * This union represents the bit fields in the Host Receive Status Read and + * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i> + * element then read out the bits using the <i>b</i>it elements. + */ +typedef union host_grxsts_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned chnum : 4; + unsigned bcnt : 11; + unsigned dpid : 2; + + unsigned pktsts : 4; +#define DWC_GRXSTS_PKTSTS_IN 0x2 +#define DWC_GRXSTS_PKTSTS_IN_XFER_COMP 0x3 +#define DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR 0x5 +#define DWC_GRXSTS_PKTSTS_CH_HALTED 0x7 + + unsigned reserved : 11; + } b; +} host_grxsts_data_t; + +/** + * This union represents the bit fields in the FIFO Size Registers (HPTXFSIZ, + * GNPTXFSIZ, DPTXFSIZn, DIEPTXFn). Read the register into the <i>d32</i> element then + * read out the bits using the <i>b</i>it elements. + */ +typedef union fifosize_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned startaddr : 16; + unsigned depth : 16; + } b; +} fifosize_data_t; + +/** + * This union represents the bit fields in the Non-Periodic Transmit + * FIFO/Queue Status Register (GNPTXSTS). Read the register into the + * <i>d32</i> element then read out the bits using the <i>b</i>it + * elements. + */ +typedef union gnptxsts_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned nptxfspcavail : 16; + unsigned nptxqspcavail : 8; + /** Top of the Non-Periodic Transmit Request Queue + * - bit 24 - Terminate (Last entry for the selected + * channel/EP) + * - bits 26:25 - Token Type + * - 2'b00 - IN/OUT + * - 2'b01 - Zero Length OUT + * - 2'b10 - PING/Complete Split + * - 2'b11 - Channel Halt + * - bits 30:27 - Channel/EP Number + */ + unsigned nptxqtop_terminate : 1; + unsigned nptxqtop_token : 2; + unsigned nptxqtop_chnep : 4; + unsigned reserved : 1; + } b; +} gnptxsts_data_t; + +/** + * This union represents the bit fields in the Transmit + * FIFO Status Register (DTXFSTS). Read the register into the + * <i>d32</i> element then read out the bits using the <i>b</i>it + * elements. + */ +typedef union dtxfsts_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned txfspcavail : 16; + unsigned reserved : 16; + } b; +} dtxfsts_data_t; + +/** + * This union represents the bit fields in the I2C Control Register + * (I2CCTL). Read the register into the <i>d32</i> element then read out the + * bits using the <i>b</i>it elements. + */ +typedef union gi2cctl_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned rwdata : 8; + unsigned regaddr : 8; + unsigned addr : 7; + unsigned i2cen : 1; + unsigned ack : 1; + unsigned i2csuspctl : 1; + unsigned i2cdevaddr : 2; + unsigned reserved : 2; + unsigned rw : 1; + unsigned bsydne : 1; + } b; +} gi2cctl_data_t; + +/** + * This union represents the bit fields in the User HW Config1 + * Register. Read the register into the <i>d32</i> element then read + * out the bits using the <i>b</i>it elements. + */ +typedef union hwcfg1_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned ep_dir0 : 2; + unsigned ep_dir1 : 2; + unsigned ep_dir2 : 2; + unsigned ep_dir3 : 2; + unsigned ep_dir4 : 2; + unsigned ep_dir5 : 2; + unsigned ep_dir6 : 2; + unsigned ep_dir7 : 2; + unsigned ep_dir8 : 2; + unsigned ep_dir9 : 2; + unsigned ep_dir10 : 2; + unsigned ep_dir11 : 2; + unsigned ep_dir12 : 2; + unsigned ep_dir13 : 2; + unsigned ep_dir14 : 2; + unsigned ep_dir15 : 2; + } b; +} hwcfg1_data_t; + +/** + * This union represents the bit fields in the User HW Config2 + * Register. Read the register into the <i>d32</i> element then read + * out the bits using the <i>b</i>it elements. + */ +typedef union hwcfg2_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + /* GHWCFG2 */ + unsigned op_mode : 3; +#define DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG 0 +#define DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG 1 +#define DWC_HWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE_OTG 2 +#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE 3 +#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE 4 +#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST 5 +#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST 6 + + unsigned architecture : 2; + unsigned point2point : 1; + unsigned hs_phy_type : 2; +#define DWC_HWCFG2_HS_PHY_TYPE_NOT_SUPPORTED 0 +#define DWC_HWCFG2_HS_PHY_TYPE_UTMI 1 +#define DWC_HWCFG2_HS_PHY_TYPE_ULPI 2 +#define DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI 3 + + unsigned fs_phy_type : 2; + unsigned num_dev_ep : 4; + unsigned num_host_chan : 4; + unsigned perio_ep_supported : 1; + unsigned dynamic_fifo : 1; + unsigned rx_status_q_depth : 2; + unsigned nonperio_tx_q_depth : 2; + unsigned host_perio_tx_q_depth : 2; + unsigned dev_token_q_depth : 5; + unsigned reserved31 : 1; + } b; +} hwcfg2_data_t; + +/** + * This union represents the bit fields in the User HW Config3 + * Register. Read the register into the <i>d32</i> element then read + * out the bits using the <i>b</i>it elements. + */ +typedef union hwcfg3_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + /* GHWCFG3 */ + unsigned xfer_size_cntr_width : 4; + unsigned packet_size_cntr_width : 3; + unsigned otg_func : 1; + unsigned i2c : 1; + unsigned vendor_ctrl_if : 1; + unsigned optional_features : 1; + unsigned synch_reset_type : 1; + unsigned reserved15_12 : 4; + unsigned dfifo_depth : 16; + } b; +} hwcfg3_data_t; + +/** + * This union represents the bit fields in the User HW Config4 + * Register. Read the register into the <i>d32</i> element then read + * out the bits using the <i>b</i>it elements. + */ +typedef union hwcfg4_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned num_dev_perio_in_ep : 4; + unsigned power_optimiz : 1; + unsigned min_ahb_freq : 9; + unsigned utmi_phy_data_width : 2; + unsigned num_dev_mode_ctrl_ep : 4; + unsigned iddig_filt_en : 1; + unsigned vbus_valid_filt_en : 1; + unsigned a_valid_filt_en : 1; + unsigned b_valid_filt_en : 1; + unsigned session_end_filt_en : 1; + unsigned ded_fifo_en : 1; + unsigned num_in_eps : 4; + unsigned reserved31_30 : 2; + } b; +} hwcfg4_data_t; + +//////////////////////////////////////////// +// Device Registers +/** + * Device Global Registers. <i>Offsets 800h-BFFh</i> + * + * The following structures define the size and relative field offsets + * for the Device Mode Registers. + * + * <i>These registers are visible only in Device mode and must not be + * accessed in Host mode, as the results are unknown.</i> + */ +typedef struct dwc_otg_dev_global_regs +{ + /** Device Configuration Register. <i>Offset 800h</i> */ + volatile uint32_t dcfg; + /** Device Control Register. <i>Offset: 804h</i> */ + volatile uint32_t dctl; + /** Device Status Register (Read Only). <i>Offset: 808h</i> */ + volatile uint32_t dsts; + /** Reserved. <i>Offset: 80Ch</i> */ + uint32_t unused; + /** Device IN Endpoint Common Interrupt Mask + * Register. <i>Offset: 810h</i> */ + volatile uint32_t diepmsk; + /** Device OUT Endpoint Common Interrupt Mask + * Register. <i>Offset: 814h</i> */ + volatile uint32_t doepmsk; + /** Device All Endpoints Interrupt Register. <i>Offset: 818h</i> */ + volatile uint32_t daint; + /** Device All Endpoints Interrupt Mask Register. <i>Offset: + * 81Ch</i> */ + volatile uint32_t daintmsk; + /** Device IN Token Queue Read Register-1 (Read Only). + * <i>Offset: 820h</i> */ + volatile uint32_t dtknqr1; + /** Device IN Token Queue Read Register-2 (Read Only). + * <i>Offset: 824h</i> */ + volatile uint32_t dtknqr2; + /** Device VBUS discharge Register. <i>Offset: 828h</i> */ + volatile uint32_t dvbusdis; + /** Device VBUS Pulse Register. <i>Offset: 82Ch</i> */ + volatile uint32_t dvbuspulse; + /** Device IN Token Queue Read Register-3 (Read Only). / + * Device Thresholding control register (Read/Write) + * <i>Offset: 830h</i> */ + volatile uint32_t dtknqr3_dthrctl; + /** Device IN Token Queue Read Register-4 (Read Only). / + * Device IN EPs empty Inr. Mask Register (Read/Write) + * <i>Offset: 834h</i> */ + volatile uint32_t dtknqr4_fifoemptymsk; +} dwc_otg_device_global_regs_t; + +/** + * This union represents the bit fields in the Device Configuration + * Register. Read the register into the <i>d32</i> member then + * set/clear the bits using the <i>b</i>it elements. Write the + * <i>d32</i> member to the dcfg register. + */ +typedef union dcfg_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + /** Device Speed */ + unsigned devspd : 2; + /** Non Zero Length Status OUT Handshake */ + unsigned nzstsouthshk : 1; +#define DWC_DCFG_SEND_STALL 1 + + unsigned reserved3 : 1; + /** Device Addresses */ + unsigned devaddr : 7; + /** Periodic Frame Interval */ + unsigned perfrint : 2; +#define DWC_DCFG_FRAME_INTERVAL_80 0 +#define DWC_DCFG_FRAME_INTERVAL_85 1 +#define DWC_DCFG_FRAME_INTERVAL_90 2 +#define DWC_DCFG_FRAME_INTERVAL_95 3 + + unsigned reserved13_17 : 5; + /** In Endpoint Mis-match count */ + unsigned epmscnt : 4; + } b; +} dcfg_data_t; + +/** + * This union represents the bit fields in the Device Control + * Register. Read the register into the <i>d32</i> member then + * set/clear the bits using the <i>b</i>it elements. + */ +typedef union dctl_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + /** Remote Wakeup */ + unsigned rmtwkupsig : 1; + /** Soft Disconnect */ + unsigned sftdiscon : 1; + /** Global Non-Periodic IN NAK Status */ + unsigned gnpinnaksts : 1; + /** Global OUT NAK Status */ + unsigned goutnaksts : 1; + /** Test Control */ + unsigned tstctl : 3; + /** Set Global Non-Periodic IN NAK */ + unsigned sgnpinnak : 1; + /** Clear Global Non-Periodic IN NAK */ + unsigned cgnpinnak : 1; + /** Set Global OUT NAK */ + unsigned sgoutnak : 1; + /** Clear Global OUT NAK */ + unsigned cgoutnak : 1; + + unsigned reserved : 21; + } b; +} dctl_data_t; + +/** + * This union represents the bit fields in the Device Status + * Register. Read the register into the <i>d32</i> member then + * set/clear the bits using the <i>b</i>it elements. + */ +typedef union dsts_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + /** Suspend Status */ + unsigned suspsts : 1; + /** Enumerated Speed */ + unsigned enumspd : 2; +#define DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ 0 +#define DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ 1 +#define DWC_DSTS_ENUMSPD_LS_PHY_6MHZ 2 +#define DWC_DSTS_ENUMSPD_FS_PHY_48MHZ 3 + /** Erratic Error */ + unsigned errticerr : 1; + unsigned reserved4_7: 4; + /** Frame or Microframe Number of the received SOF */ + unsigned soffn : 14; + unsigned reserved22_31 : 10; + } b; +} dsts_data_t; + + +/** + * This union represents the bit fields in the Device IN EP Interrupt + * Register and the Device IN EP Common Mask Register. + * + * - Read the register into the <i>d32</i> member then set/clear the + * bits using the <i>b</i>it elements. + */ +typedef union diepint_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + /** Transfer complete mask */ + unsigned xfercompl : 1; + /** Endpoint disable mask */ + unsigned epdisabled : 1; + /** AHB Error mask */ + unsigned ahberr : 1; + /** TimeOUT Handshake mask (non-ISOC EPs) */ + unsigned timeout : 1; + /** IN Token received with TxF Empty mask */ + unsigned intktxfemp : 1; + /** IN Token Received with EP mismatch mask */ + unsigned intknepmis : 1; + /** IN Endpoint HAK Effective mask */ + unsigned inepnakeff : 1; + /** IN Endpoint HAK Effective mask */ + unsigned emptyintr : 1; + + unsigned txfifoundrn : 1; + + unsigned reserved08_31 : 23; + } b; +} diepint_data_t; +/** + * This union represents the bit fields in the Device IN EP Common + * Interrupt Mask Register. + */ +typedef union diepint_data diepmsk_data_t; + +/** + * This union represents the bit fields in the Device OUT EP Interrupt + * Registerand Device OUT EP Common Interrupt Mask Register. + * + * - Read the register into the <i>d32</i> member then set/clear the + * bits using the <i>b</i>it elements. + */ +typedef union doepint_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + /** Transfer complete */ + unsigned xfercompl : 1; + /** Endpoint disable */ + unsigned epdisabled : 1; + /** AHB Error */ + unsigned ahberr : 1; + /** Setup Phase Done (contorl EPs) */ + unsigned setup : 1; + unsigned reserved04_31 : 28; + } b; +} doepint_data_t; +/** + * This union represents the bit fields in the Device OUT EP Common + * Interrupt Mask Register. + */ +typedef union doepint_data doepmsk_data_t; + + +/** + * This union represents the bit fields in the Device All EP Interrupt + * and Mask Registers. + * - Read the register into the <i>d32</i> member then set/clear the + * bits using the <i>b</i>it elements. + */ +typedef union daint_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + /** IN Endpoint bits */ + unsigned in : 16; + /** OUT Endpoint bits */ + unsigned out : 16; + } ep; + struct { + /** IN Endpoint bits */ + unsigned inep0 : 1; + unsigned inep1 : 1; + unsigned inep2 : 1; + unsigned inep3 : 1; + unsigned inep4 : 1; + unsigned inep5 : 1; + unsigned inep6 : 1; + unsigned inep7 : 1; + unsigned inep8 : 1; + unsigned inep9 : 1; + unsigned inep10 : 1; + unsigned inep11 : 1; + unsigned inep12 : 1; + unsigned inep13 : 1; + unsigned inep14 : 1; + unsigned inep15 : 1; + /** OUT Endpoint bits */ + unsigned outep0 : 1; + unsigned outep1 : 1; + unsigned outep2 : 1; + unsigned outep3 : 1; + unsigned outep4 : 1; + unsigned outep5 : 1; + unsigned outep6 : 1; + unsigned outep7 : 1; + unsigned outep8 : 1; + unsigned outep9 : 1; + unsigned outep10 : 1; + unsigned outep11 : 1; + unsigned outep12 : 1; + unsigned outep13 : 1; + unsigned outep14 : 1; + unsigned outep15 : 1; + } b; +} daint_data_t; + +/** + * This union represents the bit fields in the Device IN Token Queue + * Read Registers. + * - Read the register into the <i>d32</i> member. + * - READ-ONLY Register + */ +typedef union dtknq1_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + /** In Token Queue Write Pointer */ + unsigned intknwptr : 5; + /** Reserved */ + unsigned reserved05_06 : 2; + /** write pointer has wrapped. */ + unsigned wrap_bit : 1; + /** EP Numbers of IN Tokens 0 ... 4 */ + unsigned epnums0_5 : 24; + }b; +} dtknq1_data_t; + +/** + * This union represents Threshold control Register + * - Read and write the register into the <i>d32</i> member. + * - READ-WRITABLE Register + */ +typedef union dthrctl_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + /** non ISO Tx Thr. Enable */ + unsigned non_iso_thr_en : 1; + /** ISO Tx Thr. Enable */ + unsigned iso_thr_en : 1; + /** Tx Thr. Length */ + unsigned tx_thr_len : 9; + /** Reserved */ + unsigned reserved11_15 : 5; + /** Rx Thr. Enable */ + unsigned rx_thr_en : 1; + /** Rx Thr. Length */ + unsigned rx_thr_len : 9; + /** Reserved */ + unsigned reserved26_31 : 6; + }b; +} dthrctl_data_t; + + +/** + * Device Logical IN Endpoint-Specific Registers. <i>Offsets + * 900h-AFCh</i> + * + * There will be one set of endpoint registers per logical endpoint + * implemented. + * + * <i>These registers are visible only in Device mode and must not be + * accessed in Host mode, as the results are unknown.</i> + */ +typedef struct dwc_otg_dev_in_ep_regs +{ + /** Device IN Endpoint Control Register. <i>Offset:900h + + * (ep_num * 20h) + 00h</i> */ + volatile uint32_t diepctl; + /** Reserved. <i>Offset:900h + (ep_num * 20h) + 04h</i> */ + uint32_t reserved04; + /** Device IN Endpoint Interrupt Register. <i>Offset:900h + + * (ep_num * 20h) + 08h</i> */ + volatile uint32_t diepint; + /** Reserved. <i>Offset:900h + (ep_num * 20h) + 0Ch</i> */ + uint32_t reserved0C; + /** Device IN Endpoint Transfer Size + * Register. <i>Offset:900h + (ep_num * 20h) + 10h</i> */ + volatile uint32_t dieptsiz; + /** Device IN Endpoint DMA Address Register. <i>Offset:900h + + * (ep_num * 20h) + 14h</i> */ + volatile uint32_t diepdma; + /** Device IN Endpoint Transmit FIFO Status Register. <i>Offset:900h + + * (ep_num * 20h) + 18h</i> */ + volatile uint32_t dtxfsts; + /** Reserved. <i>Offset:900h + (ep_num * 20h) + 1Ch - 900h + + * (ep_num * 20h) + 1Ch</i>*/ + uint32_t reserved18; +} dwc_otg_dev_in_ep_regs_t; + +/** + * Device Logical OUT Endpoint-Specific Registers. <i>Offsets: + * B00h-CFCh</i> + * + * There will be one set of endpoint registers per logical endpoint + * implemented. + * + * <i>These registers are visible only in Device mode and must not be + * accessed in Host mode, as the results are unknown.</i> + */ +typedef struct dwc_otg_dev_out_ep_regs +{ + /** Device OUT Endpoint Control Register. <i>Offset:B00h + + * (ep_num * 20h) + 00h</i> */ + volatile uint32_t doepctl; + /** Device OUT Endpoint Frame number Register. <i>Offset: + * B00h + (ep_num * 20h) + 04h</i> */ + volatile uint32_t doepfn; + /** Device OUT Endpoint Interrupt Register. <i>Offset:B00h + + * (ep_num * 20h) + 08h</i> */ + volatile uint32_t doepint; + /** Reserved. <i>Offset:B00h + (ep_num * 20h) + 0Ch</i> */ + uint32_t reserved0C; + /** Device OUT Endpoint Transfer Size Register. <i>Offset: + * B00h + (ep_num * 20h) + 10h</i> */ + volatile uint32_t doeptsiz; + /** Device OUT Endpoint DMA Address Register. <i>Offset:B00h + * + (ep_num * 20h) + 14h</i> */ + volatile uint32_t doepdma; + /** Reserved. <i>Offset:B00h + (ep_num * 20h) + 18h - B00h + + * (ep_num * 20h) + 1Ch</i> */ + uint32_t unused[2]; +} dwc_otg_dev_out_ep_regs_t; + +/** + * This union represents the bit fields in the Device EP Control + * Register. Read the register into the <i>d32</i> member then + * set/clear the bits using the <i>b</i>it elements. + */ +typedef union depctl_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + /** Maximum Packet Size + * IN/OUT EPn + * IN/OUT EP0 - 2 bits + * 2'b00: 64 Bytes + * 2'b01: 32 + * 2'b10: 16 + * 2'b11: 8 */ + unsigned mps : 11; +#define DWC_DEP0CTL_MPS_64 0 +#define DWC_DEP0CTL_MPS_32 1 +#define DWC_DEP0CTL_MPS_16 2 +#define DWC_DEP0CTL_MPS_8 3 + + /** Next Endpoint + * IN EPn/IN EP0 + * OUT EPn/OUT EP0 - reserved */ + unsigned nextep : 4; + + /** USB Active Endpoint */ + unsigned usbactep : 1; + + /** Endpoint DPID (INTR/Bulk IN and OUT endpoints) + * This field contains the PID of the packet going to + * be received or transmitted on this endpoint. The + * application should program the PID of the first + * packet going to be received or transmitted on this + * endpoint , after the endpoint is + * activated. Application use the SetD1PID and + * SetD0PID fields of this register to program either + * D0 or D1 PID. + * + * The encoding for this field is + * - 0: D0 + * - 1: D1 + */ + unsigned dpid : 1; + + /** NAK Status */ + unsigned naksts : 1; + + /** Endpoint Type + * 2'b00: Control + * 2'b01: Isochronous + * 2'b10: Bulk + * 2'b11: Interrupt */ + unsigned eptype : 2; + + /** Snoop Mode + * OUT EPn/OUT EP0 + * IN EPn/IN EP0 - reserved */ + unsigned snp : 1; + + /** Stall Handshake */ + unsigned stall : 1; + + /** Tx Fifo Number + * IN EPn/IN EP0 + * OUT EPn/OUT EP0 - reserved */ + unsigned txfnum : 4; + + /** Clear NAK */ + unsigned cnak : 1; + /** Set NAK */ + unsigned snak : 1; + /** Set DATA0 PID (INTR/Bulk IN and OUT endpoints) + * Writing to this field sets the Endpoint DPID (DPID) + * field in this register to DATA0. Set Even + * (micro)frame (SetEvenFr) (ISO IN and OUT Endpoints) + * Writing to this field sets the Even/Odd + * (micro)frame (EO_FrNum) field to even (micro) + * frame. + */ + unsigned setd0pid : 1; + /** Set DATA1 PID (INTR/Bulk IN and OUT endpoints) + * Writing to this field sets the Endpoint DPID (DPID) + * field in this register to DATA1 Set Odd + * (micro)frame (SetOddFr) (ISO IN and OUT Endpoints) + * Writing to this field sets the Even/Odd + * (micro)frame (EO_FrNum) field to odd (micro) frame. + */ + unsigned setd1pid : 1; + + /** Endpoint Disable */ + unsigned epdis : 1; + /** Endpoint Enable */ + unsigned epena : 1; + } b; +} depctl_data_t; + +/** + * This union represents the bit fields in the Device EP Transfer + * Size Register. Read the register into the <i>d32</i> member then + * set/clear the bits using the <i>b</i>it elements. + */ +typedef union deptsiz_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + /** Transfer size */ + unsigned xfersize : 19; + /** Packet Count */ + unsigned pktcnt : 10; + /** Multi Count - Periodic IN endpoints */ + unsigned mc : 2; + unsigned reserved : 1; + } b; +} deptsiz_data_t; + +/** + * This union represents the bit fields in the Device EP 0 Transfer + * Size Register. Read the register into the <i>d32</i> member then + * set/clear the bits using the <i>b</i>it elements. + */ +typedef union deptsiz0_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + /** Transfer size */ + unsigned xfersize : 7; + /** Reserved */ + unsigned reserved7_18 : 12; + /** Packet Count */ + unsigned pktcnt : 2; + /** Reserved */ + unsigned reserved21_28 : 9; + /**Setup Packet Count (DOEPTSIZ0 Only) */ + unsigned supcnt : 2; + unsigned reserved31; + } b; +} deptsiz0_data_t; + + +/** Maximum number of Periodic FIFOs */ +#define MAX_PERIO_FIFOS 15 +/** Maximum number of Periodic FIFOs */ +#define MAX_TX_FIFOS 15 + +/** Maximum number of Endpoints/HostChannels */ +#define MAX_EPS_CHANNELS 4 + +/** + * The dwc_otg_dev_if structure contains information needed to manage + * the DWC_otg controller acting in device mode. It represents the + * programming view of the device-specific aspects of the controller. + */ +typedef struct dwc_otg_dev_if +{ + /** Pointer to device Global registers. + * Device Global Registers starting at offset 800h + */ + dwc_otg_device_global_regs_t *dev_global_regs; +#define DWC_DEV_GLOBAL_REG_OFFSET 0x800 + + /** + * Device Logical IN Endpoint-Specific Registers 900h-AFCh + */ + dwc_otg_dev_in_ep_regs_t *in_ep_regs[MAX_EPS_CHANNELS/2]; +#define DWC_DEV_IN_EP_REG_OFFSET 0x900 +#define DWC_EP_REG_OFFSET 0x20 + + /** Device Logical OUT Endpoint-Specific Registers B00h-CFCh */ + dwc_otg_dev_out_ep_regs_t *out_ep_regs[MAX_EPS_CHANNELS/2]; +#define DWC_DEV_OUT_EP_REG_OFFSET 0xB00 + + /* Device configuration information*/ + uint8_t speed; /**< Device Speed 0: Unknown, 1: LS, 2:FS, 3: HS */ + uint8_t num_in_eps; /**< Number # of Tx EP range: 0-15 exept ep0 */ + uint8_t num_out_eps; /**< Number # of Rx EP range: 0-15 exept ep 0*/ + + /** Size of periodic FIFOs (Bytes) */ + uint16_t perio_tx_fifo_size[MAX_PERIO_FIFOS]; + + /** Size of Tx FIFOs (Bytes) */ + uint16_t tx_fifo_size[MAX_TX_FIFOS]; + + /** Thresholding enable flags and length varaiables **/ + uint16_t rx_thr_en; + uint16_t iso_tx_thr_en; + uint16_t non_iso_tx_thr_en; + + uint16_t rx_thr_length; + uint16_t tx_thr_length; + +} dwc_otg_dev_if_t; + + +///////////////////////////////////////////////// +// Host Mode Register Structures +// +/** + * The Host Global Registers structure defines the size and relative + * field offsets for the Host Mode Global Registers. Host Global + * Registers offsets 400h-7FFh. +*/ +typedef struct dwc_otg_host_global_regs +{ + /** Host Configuration Register. <i>Offset: 400h</i> */ + volatile uint32_t hcfg; + /** Host Frame Interval Register. <i>Offset: 404h</i> */ + volatile uint32_t hfir; + /** Host Frame Number / Frame Remaining Register. <i>Offset: 408h</i> */ + volatile uint32_t hfnum; + /** Reserved. <i>Offset: 40Ch</i> */ + uint32_t reserved40C; + /** Host Periodic Transmit FIFO/ Queue Status Register. <i>Offset: 410h</i> */ + volatile uint32_t hptxsts; + /** Host All Channels Interrupt Register. <i>Offset: 414h</i> */ + volatile uint32_t haint; + /** Host All Channels Interrupt Mask Register. <i>Offset: 418h</i> */ + volatile uint32_t haintmsk; +} dwc_otg_host_global_regs_t; + +/** + * This union represents the bit fields in the Host Configuration Register. + * Read the register into the <i>d32</i> member then set/clear the bits using + * the <i>b</i>it elements. Write the <i>d32</i> member to the hcfg register. + */ +typedef union hcfg_data +{ + /** raw register data */ + uint32_t d32; + + /** register bits */ + struct { + /** FS/LS Phy Clock Select */ + unsigned fslspclksel : 2; +#define DWC_HCFG_30_60_MHZ 0 +#define DWC_HCFG_48_MHZ 1 +#define DWC_HCFG_6_MHZ 2 + + /** FS/LS Only Support */ + unsigned fslssupp : 1; + } b; +} hcfg_data_t; + +/** + * This union represents the bit fields in the Host Frame Remaing/Number + * Register. + */ +typedef union hfir_data +{ + /** raw register data */ + uint32_t d32; + + /** register bits */ + struct { + unsigned frint : 16; + unsigned reserved : 16; + } b; +} hfir_data_t; + +/** + * This union represents the bit fields in the Host Frame Remaing/Number + * Register. + */ +typedef union hfnum_data +{ + /** raw register data */ + uint32_t d32; + + /** register bits */ + struct { + unsigned frnum : 16; +#define DWC_HFNUM_MAX_FRNUM 0x3FFF + unsigned frrem : 16; + } b; +} hfnum_data_t; + +typedef union hptxsts_data +{ + /** raw register data */ + uint32_t d32; + + /** register bits */ + struct { + unsigned ptxfspcavail : 16; + unsigned ptxqspcavail : 8; + /** Top of the Periodic Transmit Request Queue + * - bit 24 - Terminate (last entry for the selected channel) + * - bits 26:25 - Token Type + * - 2'b00 - Zero length + * - 2'b01 - Ping + * - 2'b10 - Disable + * - bits 30:27 - Channel Number + * - bit 31 - Odd/even microframe + */ + unsigned ptxqtop_terminate : 1; + unsigned ptxqtop_token : 2; + unsigned ptxqtop_chnum : 4; + unsigned ptxqtop_odd : 1; + } b; +} hptxsts_data_t; + +/** + * This union represents the bit fields in the Host Port Control and Status + * Register. Read the register into the <i>d32</i> member then set/clear the + * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the + * hprt0 register. + */ +typedef union hprt0_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned prtconnsts : 1; + unsigned prtconndet : 1; + unsigned prtena : 1; + unsigned prtenchng : 1; + unsigned prtovrcurract : 1; + unsigned prtovrcurrchng : 1; + unsigned prtres : 1; + unsigned prtsusp : 1; + unsigned prtrst : 1; + unsigned reserved9 : 1; + unsigned prtlnsts : 2; + unsigned prtpwr : 1; + unsigned prttstctl : 4; + unsigned prtspd : 2; +#define DWC_HPRT0_PRTSPD_HIGH_SPEED 0 +#define DWC_HPRT0_PRTSPD_FULL_SPEED 1 +#define DWC_HPRT0_PRTSPD_LOW_SPEED 2 + unsigned reserved19_31 : 13; + } b; +} hprt0_data_t; + +/** + * This union represents the bit fields in the Host All Interrupt + * Register. + */ +typedef union haint_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned ch0 : 1; + unsigned ch1 : 1; + unsigned ch2 : 1; + unsigned ch3 : 1; + unsigned ch4 : 1; + unsigned ch5 : 1; + unsigned ch6 : 1; + unsigned ch7 : 1; + unsigned ch8 : 1; + unsigned ch9 : 1; + unsigned ch10 : 1; + unsigned ch11 : 1; + unsigned ch12 : 1; + unsigned ch13 : 1; + unsigned ch14 : 1; + unsigned ch15 : 1; + unsigned reserved : 16; + } b; + + struct { + unsigned chint : 16; + unsigned reserved : 16; + } b2; +} haint_data_t; + +/** + * This union represents the bit fields in the Host All Interrupt + * Register. + */ +typedef union haintmsk_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + unsigned ch0 : 1; + unsigned ch1 : 1; + unsigned ch2 : 1; + unsigned ch3 : 1; + unsigned ch4 : 1; + unsigned ch5 : 1; + unsigned ch6 : 1; + unsigned ch7 : 1; + unsigned ch8 : 1; + unsigned ch9 : 1; + unsigned ch10 : 1; + unsigned ch11 : 1; + unsigned ch12 : 1; + unsigned ch13 : 1; + unsigned ch14 : 1; + unsigned ch15 : 1; + unsigned reserved : 16; + } b; + + struct { + unsigned chint : 16; + unsigned reserved : 16; + } b2; +} haintmsk_data_t; + +/** + * Host Channel Specific Registers. <i>500h-5FCh</i> + */ +typedef struct dwc_otg_hc_regs +{ + /** Host Channel 0 Characteristic Register. <i>Offset: 500h + (chan_num * 20h) + 00h</i> */ + volatile uint32_t hcchar; + /** Host Channel 0 Split Control Register. <i>Offset: 500h + (chan_num * 20h) + 04h</i> */ + volatile uint32_t hcsplt; + /** Host Channel 0 Interrupt Register. <i>Offset: 500h + (chan_num * 20h) + 08h</i> */ + volatile uint32_t hcint; + /** Host Channel 0 Interrupt Mask Register. <i>Offset: 500h + (chan_num * 20h) + 0Ch</i> */ + volatile uint32_t hcintmsk; + /** Host Channel 0 Transfer Size Register. <i>Offset: 500h + (chan_num * 20h) + 10h</i> */ + volatile uint32_t hctsiz; + /** Host Channel 0 DMA Address Register. <i>Offset: 500h + (chan_num * 20h) + 14h</i> */ + volatile uint32_t hcdma; + /** Reserved. <i>Offset: 500h + (chan_num * 20h) + 18h - 500h + (chan_num * 20h) + 1Ch</i> */ + uint32_t reserved[2]; +} dwc_otg_hc_regs_t; + +/** + * This union represents the bit fields in the Host Channel Characteristics + * Register. Read the register into the <i>d32</i> member then set/clear the + * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the + * hcchar register. + */ +typedef union hcchar_data +{ + /** raw register data */ + uint32_t d32; + + /** register bits */ + struct { + /** Maximum packet size in bytes */ + unsigned mps : 11; + + /** Endpoint number */ + unsigned epnum : 4; + + /** 0: OUT, 1: IN */ + unsigned epdir : 1; + + unsigned reserved : 1; + + /** 0: Full/high speed device, 1: Low speed device */ + unsigned lspddev : 1; + + /** 0: Control, 1: Isoc, 2: Bulk, 3: Intr */ + unsigned eptype : 2; + + /** Packets per frame for periodic transfers. 0 is reserved. */ + unsigned multicnt : 2; + + /** Device address */ + unsigned devaddr : 7; + + /** + * Frame to transmit periodic transaction. + * 0: even, 1: odd + */ + unsigned oddfrm : 1; + + /** Channel disable */ + unsigned chdis : 1; + + /** Channel enable */ + unsigned chen : 1; + } b; +} hcchar_data_t; + +typedef union hcsplt_data +{ + /** raw register data */ + uint32_t d32; + + /** register bits */ + struct { + /** Port Address */ + unsigned prtaddr : 7; + + /** Hub Address */ + unsigned hubaddr : 7; + + /** Transaction Position */ + unsigned xactpos : 2; +#define DWC_HCSPLIT_XACTPOS_MID 0 +#define DWC_HCSPLIT_XACTPOS_END 1 +#define DWC_HCSPLIT_XACTPOS_BEGIN 2 +#define DWC_HCSPLIT_XACTPOS_ALL 3 + + /** Do Complete Split */ + unsigned compsplt : 1; + + /** Reserved */ + unsigned reserved : 14; + + /** Split Enble */ + unsigned spltena : 1; + } b; +} hcsplt_data_t; + + +/** + * This union represents the bit fields in the Host All Interrupt + * Register. + */ +typedef union hcint_data +{ + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { + /** Transfer Complete */ + unsigned xfercomp : 1; + /** Channel Halted */ + unsigned chhltd : 1; + /** AHB Error */ + unsigned ahberr : 1; + /** STALL Response Received */ + unsigned stall : 1; + /** NAK Response Received */ + unsigned nak : 1; + /** ACK Response Received */ + unsigned ack : 1; + /** NYET Response Received */ + unsigned nyet : 1; + /** Transaction Err */ + unsigned xacterr : 1; + /** Babble Error */ + unsigned bblerr : 1; + /** Frame Overrun */ + unsigned frmovrun : 1; + /** Data Toggle Error */ + unsigned datatglerr : 1; + /** Reserved */ + unsigned reserved : 21; + } b; +} hcint_data_t; + +/** + * This union represents the bit fields in the Host Channel Transfer Size + * Register. Read the register into the <i>d32</i> member then set/clear the + * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the + * hcchar register. + */ +typedef union hctsiz_data +{ + /** raw register data */ + uint32_t d32; + + /** register bits */ + struct { + /** Total transfer size in bytes */ + unsigned xfersize : 19; + + /** Data packets to transfer */ + unsigned pktcnt : 10; + + /** + * Packet ID for next data packet + * 0: DATA0 + * 1: DATA2 + * 2: DATA1 + * 3: MDATA (non-Control), SETUP (Control) + */ + unsigned pid : 2; +#define DWC_HCTSIZ_DATA0 0 +#define DWC_HCTSIZ_DATA1 2 +#define DWC_HCTSIZ_DATA2 1 +#define DWC_HCTSIZ_MDATA 3 +#define DWC_HCTSIZ_SETUP 3 + + /** Do PING protocol when 1 */ + unsigned dopng : 1; + } b; +} hctsiz_data_t; + +/** + * This union represents the bit fields in the Host Channel Interrupt Mask + * Register. Read the register into the <i>d32</i> member then set/clear the + * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the + * hcintmsk register. + */ +typedef union hcintmsk_data +{ + /** raw register data */ + uint32_t d32; + + /** register bits */ + struct { + unsigned xfercompl : 1; + unsigned chhltd : 1; + unsigned ahberr : 1; + unsigned stall : 1; + unsigned nak : 1; + unsigned ack : 1; + unsigned nyet : 1; + unsigned xacterr : 1; + unsigned bblerr : 1; + unsigned frmovrun : 1; + unsigned datatglerr : 1; + unsigned reserved : 21; + } b; +} hcintmsk_data_t; + +/** OTG Host Interface Structure. + * + * The OTG Host Interface Structure structure contains information + * needed to manage the DWC_otg controller acting in host mode. It + * represents the programming view of the host-specific aspects of the + * controller. + */ +typedef struct dwc_otg_host_if +{ + /** Host Global Registers starting at offset 400h.*/ + dwc_otg_host_global_regs_t *host_global_regs; +#define DWC_OTG_HOST_GLOBAL_REG_OFFSET 0x400 + + /** Host Port 0 Control and Status Register */ + volatile uint32_t *hprt0; +#define DWC_OTG_HOST_PORT_REGS_OFFSET 0x440 + + + /** Host Channel Specific Registers at offsets 500h-5FCh. */ + dwc_otg_hc_regs_t *hc_regs[MAX_EPS_CHANNELS]; +#define DWC_OTG_HOST_CHAN_REGS_OFFSET 0x500 +#define DWC_OTG_CHAN_REGS_OFFSET 0x20 + + + /* Host configuration information */ + /** Number of Host Channels (range: 1-16) */ + uint8_t num_host_channels; + /** Periodic EPs supported (0: no, 1: yes) */ + uint8_t perio_eps_supported; + /** Periodic Tx FIFO Size (Only 1 host periodic Tx FIFO) */ + uint16_t perio_tx_fifo_size; + +} dwc_otg_host_if_t; + +/** + * This union represents the bit fields in the Power and Clock Gating Control + * Register. Read the register into the <i>d32</i> member then set/clear the + * bits using the <i>b</i>it elements. + */ +typedef union pcgcctl_data +{ + /** raw register data */ + uint32_t d32; + + /** register bits */ + struct { + /** Stop Pclk */ + unsigned stoppclk : 1; + /** Gate Hclk */ + unsigned gatehclk : 1; + /** Power Clamp */ + unsigned pwrclmp : 1; + /** Reset Power Down Modules */ + unsigned rstpdwnmodule : 1; + /** PHY Suspended */ + unsigned physuspended : 1; + + unsigned reserved : 27; + } b; +} pcgcctl_data_t; + +#endif /* CONFIG_4xx */ +#endif diff --git a/drivers/usb/gadget/dwc_otg/linux/dwc_otg_plat.h b/drivers/usb/gadget/dwc_otg/linux/dwc_otg_plat.h new file mode 100644 index 00000000000..c2fe8caecf6 --- /dev/null +++ b/drivers/usb/gadget/dwc_otg/linux/dwc_otg_plat.h @@ -0,0 +1,304 @@ +/* ========================================================================== + * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/platform/dwc_otg_plat.h $ + * $Revision: #1 $ + * $Date: 2005/07/07 $ + * $Change: 510301 $ + * + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ + +#if !defined(__DWC_OTG_PLAT_H__) +#define __DWC_OTG_PLAT_H__ + +#include <linux/types.h> +#include <linux/slab.h> +#include <linux/list.h> +#include <linux/delay.h> +#include <asm/io.h> + +/** + * @file + * + * This file contains the Platform Specific constants, interfaces + * (functions and macros) for Linux. + * + */ +#if !defined(CONFIG_4xx) +#error "The contents of this file are AMCC 44x processor specific!!!" +#endif + +#if defined(CONFIG_405EX) || defined(CONFIG_460EX) || \ + defined(CONFIG_APM82181) +#define CONFIG_DWC_OTG_REG_LE +#endif + +#if defined(CONFIG_405EZ) +#define CONFIG_DWC_OTG_FIFO_LE +#endif + +#define SZ_256K 0x00040000 +/** + * Reads the content of a register. + * + * @param _reg address of register to read. + * @return contents of the register. + * + + * Usage:<br> + * <code>uint32_t dev_ctl = dwc_read_reg32(&dev_regs->dctl);</code> + */ +static __inline__ uint32_t dwc_read_reg32( volatile uint32_t *_reg) +{ +#ifdef CONFIG_DWC_OTG_REG_LE + return in_le32(_reg); +#else + return in_be32(_reg); +#endif +}; + +/** + * Writes a register with a 32 bit value. + * + * @param _reg address of register to read. + * @param _value to write to _reg. + * + * Usage:<br> + * <code>dwc_write_reg32(&dev_regs->dctl, 0); </code> + */ +static __inline__ void dwc_write_reg32( volatile uint32_t *_reg, const uint32_t _value) +{ +#ifdef CONFIG_DWC_OTG_REG_LE + out_le32(_reg, _value); +#else + out_be32(_reg, _value); +#endif +}; + +/** + * This function modifies bit values in a register. Using the + * algorithm: (reg_contents & ~clear_mask) | set_mask. + * + * @param _reg address of register to read. + * @param _clear_mask bit mask to be cleared. + * @param _set_mask bit mask to be set. + * + * Usage:<br> + * <code> // Clear the SOF Interrupt Mask bit and <br> + * // set the OTG Interrupt mask bit, leaving all others as they were. + * dwc_modify_reg32(&dev_regs->gintmsk, DWC_SOF_INT, DWC_OTG_INT);</code> + */ +static __inline__ +void dwc_modify_reg32( volatile uint32_t *_reg, const uint32_t _clear_mask, const uint32_t _set_mask) +{ +#ifdef CONFIG_DWC_OTG_REG_LE + out_le32( _reg, (in_le32(_reg) & ~_clear_mask) | _set_mask ); +#else + out_be32( _reg, (in_be32(_reg) & ~_clear_mask) | _set_mask ); +#endif +}; + +static __inline__ void dwc_write_datafifo32( volatile uint32_t *_reg, const uint32_t _value) +{ +#ifdef CONFIG_DWC_OTG_FIFO_LE + out_le32(_reg, _value); +#else + out_be32(_reg, _value); +#endif +}; + +static __inline__ uint32_t dwc_read_datafifo32( volatile uint32_t *_reg) +{ +#ifdef CONFIG_DWC_OTG_FIFO_LE + return in_le32(_reg); +#else + return in_be32(_reg); +#endif +}; + + +/** + * Wrapper for the OS micro-second delay function. + * @param[in] _usecs Microseconds of delay + */ +static __inline__ void UDELAY( const uint32_t _usecs ) +{ + udelay( _usecs ); +} + +/** + * Wrapper for the OS milli-second delay function. + * @param[in] _msecs milliseconds of delay + */ +static __inline__ void MDELAY( const uint32_t _msecs ) +{ + mdelay( _msecs ); +} + +/** + * Wrapper for the Linux spin_lock. On the ARM (Integrator) + * spin_lock() is a nop. + * + * @param _lock Pointer to the spinlock. + */ +static __inline__ void SPIN_LOCK( spinlock_t *_lock ) +{ + spin_lock(_lock); +} + +/** + * Wrapper for the Linux spin_unlock. On the ARM (Integrator) + * spin_lock() is a nop. + * + * @param _lock Pointer to the spinlock. + */ +static __inline__ void SPIN_UNLOCK( spinlock_t *_lock ) +{ + spin_unlock(_lock); +} + +/** + * Wrapper (macro) for the Linux spin_lock_irqsave. On the ARM + * (Integrator) spin_lock() is a nop. + * + * @param _l Pointer to the spinlock. + * @param _f unsigned long for irq flags storage. + */ +#define SPIN_LOCK_IRQSAVE( _l, _f ) { \ + spin_lock_irqsave(_l,_f); \ + } + +/** + * Wrapper (macro) for the Linux spin_unlock_irqrestore. On the ARM + * (Integrator) spin_lock() is a nop. + * + * @param _l Pointer to the spinlock. + * @param _f unsigned long for irq flags storage. + */ +#define SPIN_UNLOCK_IRQRESTORE( _l,_f ) {\ + spin_unlock_irqrestore(_l,_f); \ + } + + +/* + * Debugging support vanishes in non-debug builds. + */ + + +/** + * The Debug Level bit-mask variable. + */ +extern uint32_t g_dbg_lvl; +/** + * Set the Debug Level variable. + */ +static inline uint32_t SET_DEBUG_LEVEL( const uint32_t _new ) +{ + uint32_t old = g_dbg_lvl; + g_dbg_lvl = _new; + return old; +} + +/** When debug level has the DBG_CIL bit set, display CIL Debug messages. */ +#define DBG_CIL (0x2) +/** When debug level has the DBG_CILV bit set, display CIL Verbose debug + * messages */ +#define DBG_CILV (0x20) +/** When debug level has the DBG_PCD bit set, display PCD (Device) debug + * messages */ +#define DBG_PCD (0x4) +/** When debug level has the DBG_PCDV set, display PCD (Device) Verbose debug + * messages */ +#define DBG_PCDV (0x40) +/** When debug level has the DBG_HCD bit set, display Host debug messages */ +#define DBG_HCD (0x8) +/** When debug level has the DBG_HCDV bit set, display Verbose Host debug + * messages */ +#define DBG_HCDV (0x80) +/** When debug level has the DBG_HCD_URB bit set, display enqueued URBs in host + * mode. */ +#define DBG_HCD_URB (0x800) + +/** When debug level has any bit set, display debug messages */ +#define DBG_ANY (0xFF) + +/** All debug messages off */ +#define DBG_OFF 0 + +/** Prefix string for DWC_DEBUG print macros. */ +#define USB_DWC "dwc_otg: " + +/** + * Print a debug message when the Global debug level variable contains + * the bit defined in <code>lvl</code>. + * + * @param[in] lvl - Debug level, use one of the DBG_ constants above. + * @param[in] x - like printf + * + * Example:<p> + * <code> + * DWC_DEBUGPL( DBG_ANY, "%s(%p)\n", __func__, _reg_base_addr); + * </code> + * <br> + * results in:<br> + * <code> + * usb-DWC_otg: dwc_otg_cil_init(ca867000) + * </code> + */ +#ifdef DEBUG +# define DWC_DEBUGPL(lvl, x...) do{ if ((lvl)&g_dbg_lvl)printk( KERN_ERR USB_DWC x ); }while(0) +# define DWC_DEBUGP(x...) DWC_DEBUGPL(DBG_ANY, x ) + +# define CHK_DEBUG_LEVEL(level) ((level) & g_dbg_lvl) + +#else + +# define DWC_DEBUGPL(lvl, x...) do{}while(0) +# define DWC_DEBUGP(x...) + +# define CHK_DEBUG_LEVEL(level) (0) + +#endif /*DEBUG*/ + +/** + * Print an Error message. + */ +#define DWC_ERROR(x...) printk( KERN_ERR USB_DWC x ) +/** + * Print a Warning message. + */ +#define DWC_WARN(x...) printk( KERN_WARNING USB_DWC x ) +/** + * Print a notice (normal but significant message). + */ +#define DWC_NOTICE(x...) printk( KERN_NOTICE USB_DWC x ) +/** + * Basic message printing. + */ +#define DWC_PRINT(x...) printk( KERN_INFO USB_DWC x ) + +#endif + diff --git a/drivers/usb/gadget/dwc_otg/ppc4xx_dma.c b/drivers/usb/gadget/dwc_otg/ppc4xx_dma.c new file mode 100644 index 00000000000..844222d21fc --- /dev/null +++ b/drivers/usb/gadget/dwc_otg/ppc4xx_dma.c @@ -0,0 +1,735 @@ +/* + * IBM PPC4xx DMA engine core library + * + * Copyright 2000-2004 MontaVista Software Inc. + * + * Cleaned up and converted to new DCR access + * Matt Porter <mporter@kernel.crashing.org> + * + * Original code by Armin Kuster <akuster@mvista.com> + * and Pete Popov <ppopov@mvista.com> + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 of the License, or (at your + * option) any later version. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 675 Mass Ave, Cambridge, MA 02139, USA. + */ + +#include <linux/kernel.h> +#include <linux/mm.h> +#include <linux/miscdevice.h> +#include <linux/init.h> +#include <linux/module.h> + +#include <asm/system.h> +#include <asm/io.h> +#include <asm/dma.h> +#include <asm/dcr.h> +#include "ppc4xx_dma.h" + +ppc_dma_ch_t dma_channels[MAX_PPC4xx_DMA_CHANNELS]; + +int +ppc4xx_get_dma_status(void) +{ + return (mfdcr(DCRN_DMASR)); +} + +void +ppc4xx_set_src_addr(int dmanr, phys_addr_t src_addr) +{ + if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { + printk("set_src_addr: bad channel: %d\n", dmanr); + return; + } + +#ifdef PPC4xx_DMA_64BIT + mtdcr(DCRN_DMASAH0 + dmanr*8, src_addr >> 32); +#endif + mtdcr(DCRN_DMASA0 + dmanr*8, (u32)src_addr); +} + +void +ppc4xx_set_dst_addr(int dmanr, phys_addr_t dst_addr) +{ + if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { + printk("set_dst_addr: bad channel: %d\n", dmanr); + return; + } + +#ifdef PPC4xx_DMA_64BIT + mtdcr(DCRN_DMADAH0 + dmanr*8, dst_addr >> 32); +#endif + mtdcr(DCRN_DMADA0 + dmanr*8, (u32)dst_addr); +} + +void +ppc4xx_enable_dma(unsigned int dmanr) +{ + unsigned int control; + ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; + unsigned int status_bits[] = { DMA_CS0 | DMA_TS0 | DMA_CH0_ERR, + DMA_CS1 | DMA_TS1 | DMA_CH1_ERR, + DMA_CS2 | DMA_TS2 | DMA_CH2_ERR, + DMA_CS3 | DMA_TS3 | DMA_CH3_ERR}; + + if (p_dma_ch->in_use) { + printk("enable_dma: channel %d in use\n", dmanr); + return; + } + + if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { + printk("enable_dma: bad channel: %d\n", dmanr); + return; + } + + if (p_dma_ch->mode == DMA_MODE_READ) { + /* peripheral to memory */ + ppc4xx_set_src_addr(dmanr, 0); + ppc4xx_set_dst_addr(dmanr, p_dma_ch->addr); + } else if (p_dma_ch->mode == DMA_MODE_WRITE) { + /* memory to peripheral */ + ppc4xx_set_src_addr(dmanr, p_dma_ch->addr); + ppc4xx_set_dst_addr(dmanr, 0); + } + + /* for other xfer modes, the addresses are already set */ + control = mfdcr(DCRN_DMACR0 + (dmanr * 0x8)); + + control &= ~(DMA_TM_MASK | DMA_TD); /* clear all mode bits */ + if (p_dma_ch->mode == DMA_MODE_MM) { + /* software initiated memory to memory */ + control |= DMA_ETD_OUTPUT | DMA_TCE_ENABLE; +#if defined(CONFIG_405EX) || defined(CONFIG_405EXr) || \ + defined(CONFIG_APM82181) + control |= DMA_MODE_MM; + if (p_dma_ch->dai) { + control |= DMA_DAI; + } + if (p_dma_ch->sai) { + control |= DMA_SAI; + } + +#endif +#if defined(CONFIG_460EX) || defined(CONFIG_460GT) || \ + defined(CONFIG_APM82181) + control |= DMA_MODE_MM | DMA_DAI | DMA_SAI; +#endif + } + + mtdcr(DCRN_DMACR0 + (dmanr * 0x8), control); + + /* + * Clear the CS, TS, RI bits for the channel from DMASR. This + * has been observed to happen correctly only after the mode and + * ETD/DCE bits in DMACRx are set above. Must do this before + * enabling the channel. + */ + + mtdcr(DCRN_DMASR, status_bits[dmanr]); + + /* + * For device-paced transfers, Terminal Count Enable apparently + * must be on, and this must be turned on after the mode, etc. + * bits are cleared above (at least on Redwood-6). + */ + + if ((p_dma_ch->mode == DMA_MODE_MM_DEVATDST) || + (p_dma_ch->mode == DMA_MODE_MM_DEVATSRC)) + control |= DMA_TCE_ENABLE; + + /* + * Now enable the channel. + */ + + control |= (p_dma_ch->mode | DMA_CE_ENABLE); + mtdcr(DCRN_DMACR0 + (dmanr * 0x8), control); + + p_dma_ch->in_use = 1; +} + +void +ppc4xx_disable_dma(unsigned int dmanr) +{ + unsigned int control; + ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; + + if (!p_dma_ch->in_use) { + printk("disable_dma: channel %d not in use\n", dmanr); + return; + } + + if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { + printk("disable_dma: bad channel: %d\n", dmanr); + return; + } + + control = mfdcr(DCRN_DMACR0 + (dmanr * 0x8)); + control &= ~DMA_CE_ENABLE; + mtdcr(DCRN_DMACR0 + (dmanr * 0x8), control); + + p_dma_ch->in_use = 0; +} + +/* + * Sets the dma mode for single DMA transfers only. + * For scatter/gather transfers, the mode is passed to the + * alloc_dma_handle() function as one of the parameters. + * + * The mode is simply saved and used later. This allows + * the driver to call set_dma_mode() and set_dma_addr() in + * any order. + * + * Valid mode values are: + * + * DMA_MODE_READ peripheral to memory + * DMA_MODE_WRITE memory to peripheral + * DMA_MODE_MM memory to memory + * DMA_MODE_MM_DEVATSRC device-paced memory to memory, device at src + * DMA_MODE_MM_DEVATDST device-paced memory to memory, device at dst + */ +int +ppc4xx_set_dma_mode(unsigned int dmanr, unsigned int mode) +{ + ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; + + if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { + printk("set_dma_mode: bad channel 0x%x\n", dmanr); + return DMA_STATUS_BAD_CHANNEL; + } + + p_dma_ch->mode = mode; + + return DMA_STATUS_GOOD; +} + +/* + * Sets the DMA Count register. Note that 'count' is in bytes. + * However, the DMA Count register counts the number of "transfers", + * where each transfer is equal to the bus width. Thus, count + * MUST be a multiple of the bus width. + */ +void +ppc4xx_set_dma_count(unsigned int dmanr, unsigned int count) +{ + ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; + +#ifdef DEBUG_4xxDMA + { + int error = 0; + switch (p_dma_ch->pwidth) { + case PW_8: + break; + case PW_16: + if (count & 0x1) + error = 1; + break; + case PW_32: + if (count & 0x3) + error = 1; + break; + case PW_64: + if (count & 0x7) + error = 1; + break; + default: + printk("set_dma_count: invalid bus width: 0x%x\n", + p_dma_ch->pwidth); + return; + } + if (error) + printk + ("Warning: set_dma_count count 0x%x bus width %d\n", + count, p_dma_ch->pwidth); + } +#endif + + count = count >> p_dma_ch->shift; + + mtdcr(DCRN_DMACT0 + (dmanr * 0x8), count); +} + +/* + * Returns the number of bytes left to be transfered. + * After a DMA transfer, this should return zero. + * Reading this while a DMA transfer is still in progress will return + * unpredictable results. + */ +int +ppc4xx_get_dma_residue(unsigned int dmanr) +{ + unsigned int count; + ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; + + if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { + printk("ppc4xx_get_dma_residue: bad channel 0x%x\n", dmanr); + return DMA_STATUS_BAD_CHANNEL; + } + + count = mfdcr(DCRN_DMACT0 + (dmanr * 0x8)); +#if defined(CONFIG_405EX) || defined(CONFIG_405EXr) || \ + defined(CONFIG_460EX) || defined(CONFIG_460GT) || \ + defined(CONFIG_APM82181) + count &= DMA_CTC_TC_MASK; +#endif + + return (count << p_dma_ch->shift); +} + +/* + * Sets the DMA address for a memory to peripheral or peripheral + * to memory transfer. The address is just saved in the channel + * structure for now and used later in enable_dma(). + */ +void +ppc4xx_set_dma_addr(unsigned int dmanr, phys_addr_t addr) +{ + ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; + + if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { + printk("ppc4xx_set_dma_addr: bad channel: %d\n", dmanr); + return; + } + +#ifdef DEBUG_4xxDMA + { + int error = 0; + switch (p_dma_ch->pwidth) { + case PW_8: + break; + case PW_16: + if ((unsigned) addr & 0x1) + error = 1; + break; + case PW_32: + if ((unsigned) addr & 0x3) + error = 1; + break; + case PW_64: + if ((unsigned) addr & 0x7) + error = 1; + break; + default: + printk("ppc4xx_set_dma_addr: invalid bus width: 0x%x\n", + p_dma_ch->pwidth); + return; + } + if (error) + printk("Warning: ppc4xx_set_dma_addr addr 0x%x bus width %d\n", + addr, p_dma_ch->pwidth); + } +#endif + + /* save dma address and program it later after we know the xfer mode */ + p_dma_ch->addr = addr; +} + +/* + * Sets both DMA addresses for a memory to memory transfer. + * For memory to peripheral or peripheral to memory transfers + * the function set_dma_addr() should be used instead. + */ +void +ppc4xx_set_dma_addr2(unsigned int dmanr, phys_addr_t src_dma_addr, + phys_addr_t dst_dma_addr) +{ + if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { + printk("ppc4xx_set_dma_addr2: bad channel: %d\n", dmanr); + return; + } + +#ifdef DEBUG_4xxDMA + { + ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; + int error = 0; + switch (p_dma_ch->pwidth) { + case PW_8: + break; + case PW_16: + if (((unsigned) src_dma_addr & 0x1) || + ((unsigned) dst_dma_addr & 0x1) + ) + error = 1; + break; + case PW_32: + if (((unsigned) src_dma_addr & 0x3) || + ((unsigned) dst_dma_addr & 0x3) + ) + error = 1; + break; + case PW_64: + if (((unsigned) src_dma_addr & 0x7) || + ((unsigned) dst_dma_addr & 0x7) + ) + error = 1; + break; + default: + printk("ppc4xx_set_dma_addr2: invalid bus width: 0x%x\n", + p_dma_ch->pwidth); + return; + } + if (error) + printk + ("Warning: ppc4xx_set_dma_addr2 src 0x%x dst 0x%x bus width %d\n", + src_dma_addr, dst_dma_addr, p_dma_ch->pwidth); + } +#endif + + ppc4xx_set_src_addr(dmanr, src_dma_addr); + ppc4xx_set_dst_addr(dmanr, dst_dma_addr); +} + +/* + * Enables the channel interrupt. + * + * If performing a scatter/gatter transfer, this function + * MUST be called before calling alloc_dma_handle() and building + * the sgl list. Otherwise, interrupts will not be enabled, if + * they were previously disabled. + */ +int +ppc4xx_enable_dma_interrupt(unsigned int dmanr) +{ + unsigned int control; + ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; + + if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { + printk("ppc4xx_enable_dma_interrupt: bad channel: %d\n", dmanr); + return DMA_STATUS_BAD_CHANNEL; + } + + p_dma_ch->int_enable = 1; + +#if defined(CONFIG_405EX) || defined (CONFIG_405EXr) || \ + defined(CONFIG_460EX) || defined (CONFIG_460GT) || \ + defined(CONFIG_APM82181) + control = mfdcr(DCRN_DMACT0 + (dmanr * 0x8)); + control |= DMA_CTC_TCIE | DMA_CTC_ETIE | DMA_CTC_EIE; + mtdcr(DCRN_DMACT0 + (dmanr * 0x8), control); +#endif + + control = mfdcr(DCRN_DMACR0 + (dmanr * 0x8)); + control |= DMA_CIE_ENABLE; /* Channel Interrupt Enable */ + mtdcr(DCRN_DMACR0 + (dmanr * 0x8), control); + + return DMA_STATUS_GOOD; +} + +/* + * Disables the channel interrupt. + * + * If performing a scatter/gatter transfer, this function + * MUST be called before calling alloc_dma_handle() and building + * the sgl list. Otherwise, interrupts will not be disabled, if + * they were previously enabled. + */ +int +ppc4xx_disable_dma_interrupt(unsigned int dmanr) +{ + unsigned int control; + ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; + + if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { + printk("ppc4xx_disable_dma_interrupt: bad channel: %d\n", dmanr); + return DMA_STATUS_BAD_CHANNEL; + } + + p_dma_ch->int_enable = 0; + + control = mfdcr(DCRN_DMACR0 + (dmanr * 0x8)); + control &= ~DMA_CIE_ENABLE; /* Channel Interrupt Enable */ + mtdcr(DCRN_DMACR0 + (dmanr * 0x8), control); + + return DMA_STATUS_GOOD; +} + +/* + * Configures a DMA channel, including the peripheral bus width, if a + * peripheral is attached to the channel, the polarity of the DMAReq and + * DMAAck signals, etc. This information should really be setup by the boot + * code, since most likely the configuration won't change dynamically. + * If the kernel has to call this function, it's recommended that it's + * called from platform specific init code. The driver should not need to + * call this function. + */ +int +ppc4xx_init_dma_channel(unsigned int dmanr, ppc_dma_ch_t * p_init) +{ + unsigned int polarity; + uint32_t control = 0; + ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; + + DMA_MODE_READ = (unsigned long) DMA_TD; /* Peripheral to Memory */ + DMA_MODE_WRITE = 0; /* Memory to Peripheral */ + + if (!p_init) { + printk("ppc4xx_init_dma_channel: NULL p_init\n"); + return DMA_STATUS_NULL_POINTER; + } + + if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { + printk("ppc4xx_init_dma_channel: bad channel %d\n", dmanr); + return DMA_STATUS_BAD_CHANNEL; + } + +#if DCRN_POL > 0 + polarity = mfdcr(DCRN_POL); +#else + polarity = 0; +#endif + + /* Setup the control register based on the values passed to + * us in p_init. Then, over-write the control register with this + * new value. + */ + control |= SET_DMA_CONTROL; + + /* clear all polarity signals and then "or" in new signal levels */ + polarity &= ~GET_DMA_POLARITY(dmanr); + polarity |= p_init->polarity; +#if DCRN_POL > 0 + mtdcr(DCRN_POL, polarity); +#endif + mtdcr(DCRN_DMACR0 + (dmanr * 0x8), control); + + /* save these values in our dma channel structure */ + memcpy(p_dma_ch, p_init, sizeof (ppc_dma_ch_t)); + + /* + * The peripheral width values written in the control register are: + * PW_8 0 + * PW_16 1 + * PW_32 2 + * PW_64 3 + * + * Since the DMA count register takes the number of "transfers", + * we need to divide the count sent to us in certain + * functions by the appropriate number. It so happens that our + * right shift value is equal to the peripheral width value. + */ + p_dma_ch->shift = p_init->pwidth; + + /* + * Save the control word for easy access. + */ + p_dma_ch->control = control; + mtdcr(DCRN_DMASR, 0xffffffff); /* clear status register */ + return DMA_STATUS_GOOD; +} + +/* + * This function returns the channel configuration. + */ +int +ppc4xx_get_channel_config(unsigned int dmanr, ppc_dma_ch_t * p_dma_ch) +{ + unsigned int polarity; + unsigned int control; + + if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { + printk("ppc4xx_get_channel_config: bad channel %d\n", dmanr); + return DMA_STATUS_BAD_CHANNEL; + } + + memcpy(p_dma_ch, &dma_channels[dmanr], sizeof (ppc_dma_ch_t)); + +#if DCRN_POL > 0 + polarity = mfdcr(DCRN_POL); +#else + polarity = 0; +#endif + + p_dma_ch->polarity = polarity & GET_DMA_POLARITY(dmanr); + control = mfdcr(DCRN_DMACR0 + (dmanr * 0x8)); + + p_dma_ch->cp = GET_DMA_PRIORITY(control); + p_dma_ch->pwidth = GET_DMA_PW(control); + p_dma_ch->psc = GET_DMA_PSC(control); + p_dma_ch->pwc = GET_DMA_PWC(control); + p_dma_ch->phc = GET_DMA_PHC(control); + p_dma_ch->ce = GET_DMA_CE_ENABLE(control); + p_dma_ch->int_enable = GET_DMA_CIE_ENABLE(control); + p_dma_ch->shift = GET_DMA_PW(control); + +#ifdef CONFIG_PPC4xx_EDMA + p_dma_ch->pf = GET_DMA_PREFETCH(control); +#else + p_dma_ch->ch_enable = GET_DMA_CH(control); + p_dma_ch->ece_enable = GET_DMA_ECE(control); + p_dma_ch->tcd_disable = GET_DMA_TCD(control); +#endif + return DMA_STATUS_GOOD; +} + +/* + * Sets the priority for the DMA channel dmanr. + * Since this is setup by the hardware init function, this function + * can be used to dynamically change the priority of a channel. + * + * Acceptable priorities: + * + * PRIORITY_LOW + * PRIORITY_MID_LOW + * PRIORITY_MID_HIGH + * PRIORITY_HIGH + * + */ +int +ppc4xx_set_channel_priority(unsigned int dmanr, unsigned int priority) +{ + unsigned int control; + + if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { + printk("ppc4xx_set_channel_priority: bad channel %d\n", dmanr); + return DMA_STATUS_BAD_CHANNEL; + } + + if ((priority != PRIORITY_LOW) && + (priority != PRIORITY_MID_LOW) && + (priority != PRIORITY_MID_HIGH) && (priority != PRIORITY_HIGH)) { + printk("ppc4xx_set_channel_priority: bad priority: 0x%x\n", priority); + } + + control = mfdcr(DCRN_DMACR0 + (dmanr * 0x8)); + control |= SET_DMA_PRIORITY(priority); + mtdcr(DCRN_DMACR0 + (dmanr * 0x8), control); + + return DMA_STATUS_GOOD; +} + +/* + * Returns the width of the peripheral attached to this channel. This assumes + * that someone who knows the hardware configuration, boot code or some other + * init code, already set the width. + * + * The return value is one of: + * PW_8 + * PW_16 + * PW_32 + * PW_64 + * + * The function returns 0 on error. + */ +unsigned int +ppc4xx_get_peripheral_width(unsigned int dmanr) +{ + unsigned int control; + + if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { + printk("ppc4xx_get_peripheral_width: bad channel %d\n", dmanr); + return DMA_STATUS_BAD_CHANNEL; + } + + control = mfdcr(DCRN_DMACR0 + (dmanr * 0x8)); + + return (GET_DMA_PW(control)); +} + +/* + * Clears the channel status bits + */ +int +ppc4xx_clr_dma_status(unsigned int dmanr) +{ + if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { + printk(KERN_ERR "ppc4xx_clr_dma_status: bad channel: %d\n", dmanr); + return DMA_STATUS_BAD_CHANNEL; + } + mtdcr(DCRN_DMASR, ((u32)DMA_CH0_ERR | (u32)DMA_CS0 | (u32)DMA_TS0) >> dmanr); + return DMA_STATUS_GOOD; +} + +#ifdef CONFIG_PPC4xx_EDMA +/* + * Enables the burst on the channel (BTEN bit in the control/count register) + * Note: + * For scatter/gather dma, this function MUST be called before the + * ppc4xx_alloc_dma_handle() func as the chan count register is copied into the + * sgl list and used as each sgl element is added. + */ +int +ppc4xx_enable_burst(unsigned int dmanr) +{ + unsigned int ctc; + if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { + printk(KERN_ERR "ppc4xx_enable_burst: bad channel: %d\n", dmanr); + return DMA_STATUS_BAD_CHANNEL; + } + ctc = mfdcr(DCRN_DMACT0 + (dmanr * 0x8)) | DMA_CTC_BTEN; + mtdcr(DCRN_DMACT0 + (dmanr * 0x8), ctc); + return DMA_STATUS_GOOD; +} +/* + * Disables the burst on the channel (BTEN bit in the control/count register) + * Note: + * For scatter/gather dma, this function MUST be called before the + * ppc4xx_alloc_dma_handle() func as the chan count register is copied into the + * sgl list and used as each sgl element is added. + */ +int +ppc4xx_disable_burst(unsigned int dmanr) +{ + unsigned int ctc; + if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { + printk(KERN_ERR "ppc4xx_disable_burst: bad channel: %d\n", dmanr); + return DMA_STATUS_BAD_CHANNEL; + } + ctc = mfdcr(DCRN_DMACT0 + (dmanr * 0x8)) &~ DMA_CTC_BTEN; + mtdcr(DCRN_DMACT0 + (dmanr * 0x8), ctc); + return DMA_STATUS_GOOD; +} +/* + * Sets the burst size (number of peripheral widths) for the channel + * (BSIZ bits in the control/count register)) + * must be one of: + * DMA_CTC_BSIZ_2 + * DMA_CTC_BSIZ_4 + * DMA_CTC_BSIZ_8 + * DMA_CTC_BSIZ_16 + * Note: + * For scatter/gather dma, this function MUST be called before the + * ppc4xx_alloc_dma_handle() func as the chan count register is copied into the + * sgl list and used as each sgl element is added. + */ +int +ppc4xx_set_burst_size(unsigned int dmanr, unsigned int bsize) +{ + unsigned int ctc; + if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { + printk(KERN_ERR "ppc4xx_set_burst_size: bad channel: %d\n", dmanr); + return DMA_STATUS_BAD_CHANNEL; + } + ctc = mfdcr(DCRN_DMACT0 + (dmanr * 0x8)) &~ DMA_CTC_BSIZ_MSK; + ctc |= (bsize & DMA_CTC_BSIZ_MSK); + mtdcr(DCRN_DMACT0 + (dmanr * 0x8), ctc); + return DMA_STATUS_GOOD; +} + +EXPORT_SYMBOL(ppc4xx_enable_burst); +EXPORT_SYMBOL(ppc4xx_disable_burst); +EXPORT_SYMBOL(ppc4xx_set_burst_size); +#endif /* CONFIG_PPC4xx_EDMA */ + +EXPORT_SYMBOL(ppc4xx_init_dma_channel); +EXPORT_SYMBOL(ppc4xx_get_channel_config); +EXPORT_SYMBOL(ppc4xx_set_channel_priority); +EXPORT_SYMBOL(ppc4xx_get_peripheral_width); +EXPORT_SYMBOL(dma_channels); +EXPORT_SYMBOL(ppc4xx_set_src_addr); +EXPORT_SYMBOL(ppc4xx_set_dst_addr); +EXPORT_SYMBOL(ppc4xx_set_dma_addr); +EXPORT_SYMBOL(ppc4xx_set_dma_addr2); +EXPORT_SYMBOL(ppc4xx_enable_dma); +EXPORT_SYMBOL(ppc4xx_disable_dma); +EXPORT_SYMBOL(ppc4xx_set_dma_mode); +EXPORT_SYMBOL(ppc4xx_set_dma_count); +EXPORT_SYMBOL(ppc4xx_get_dma_residue); +EXPORT_SYMBOL(ppc4xx_enable_dma_interrupt); +EXPORT_SYMBOL(ppc4xx_disable_dma_interrupt); +EXPORT_SYMBOL(ppc4xx_get_dma_status); +EXPORT_SYMBOL(ppc4xx_clr_dma_status); + diff --git a/drivers/usb/gadget/dwc_otg/ppc4xx_dma.h b/drivers/usb/gadget/dwc_otg/ppc4xx_dma.h new file mode 100644 index 00000000000..c4a4f2806f6 --- /dev/null +++ b/drivers/usb/gadget/dwc_otg/ppc4xx_dma.h @@ -0,0 +1,620 @@ +/* + * include/asm-ppc/ppc4xx_dma.h + * + * IBM PPC4xx DMA engine library + * + * Copyright 2000-2004 MontaVista Software Inc. + * + * Cleaned up a bit more, Matt Porter <mporter@kernel.crashing.org> + * + * Original code by Armin Kuster <akuster@mvista.com> + * and Pete Popov <ppopov@mvista.com> + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 of the License, or (at your + * option) any later version. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 675 Mass Ave, Cambridge, MA 02139, USA. + */ + +#ifdef __KERNEL__ +#ifndef __ASMPPC_PPC4xx_DMA_H +#define __ASMPPC_PPC4xx_DMA_H + +#include <linux/types.h> +#include <asm/mmu.h> + +#ifdef CONFIG_405EX +#define DCRN_DMA0_BASE 0x100 +#define DCRN_DMASR_BASE 0x120 +#endif + +#ifdef CONFIG_460EX || defined(CONFIG_APM82181) +#define DCRN_DMA0_BASE 0x200 +#define DCRN_DMASR_BASE 0x220 +#endif + +#ifndef DCRN_DMA0_BASE +#error DMA register not defined for this PPC4xx variant! +#endif + +#define DCRN_DMACR0 (DCRN_DMA0_BASE + 0x0) /* DMA Channel Control 0 */ +#define DCRN_DMACT0 (DCRN_DMA0_BASE + 0x1) /* DMA Count 0 */ +#define DCRN_DMASAH0 (DCRN_DMA0_BASE + 0x2) /* DMA Src Addr High 0 */ +#define DCRN_DMASA0 (DCRN_DMA0_BASE + 0x3) /* DMA Src Addr Low 0 */ +#define DCRN_DMADAH0 (DCRN_DMA0_BASE + 0x4) /* DMA Dest Addr High 0 */ +#define DCRN_DMADA0 (DCRN_DMA0_BASE + 0x5) /* DMA Dest Addr Low 0 */ +#define DCRN_ASGH0 (DCRN_DMA0_BASE + 0x6) /* DMA SG Desc Addr High 0 */ +#define DCRN_ASG0 (DCRN_DMA0_BASE + 0x7) /* DMA SG Desc Addr Low 0 */ + +#define DCRN_DMASR (DCRN_DMASR_BASE + 0x0) /* DMA Status Register */ +#define DCRN_ASGC (DCRN_DMASR_BASE + 0x3) /* DMA Scatter/Gather Command */ +#define DCRN_SLP (DCRN_DMASR_BASE + 0x5) /* DMA Sleep Register */ +#define DCRN_POL (DCRN_DMASR_BASE + 0x6) /* DMA Polarity Register */ + +#undef DEBUG_4xxDMA + +#define MAX_PPC4xx_DMA_CHANNELS 4 + +#define DMA_CH0 0 +#define DMA_CH1 1 +#define DMA_CH2 2 +#define DMA_CH3 3 + +/* + * Function return status codes + * These values are used to indicate whether or not the function + * call was successful, or a bad/invalid parameter was passed. + */ +#define DMA_STATUS_GOOD 0 +#define DMA_STATUS_BAD_CHANNEL 1 +#define DMA_STATUS_BAD_HANDLE 2 +#define DMA_STATUS_BAD_MODE 3 +#define DMA_STATUS_NULL_POINTER 4 +#define DMA_STATUS_OUT_OF_MEMORY 5 +#define DMA_STATUS_SGL_LIST_EMPTY 6 +#define DMA_STATUS_GENERAL_ERROR 7 +#define DMA_STATUS_CHANNEL_NOTFREE 8 + +#define DMA_CHANNEL_BUSY 0x80000000 + +/* + * These indicate status as returned from the DMA Status Register. + */ +#define DMA_STATUS_NO_ERROR 0 +#define DMA_STATUS_CS 1 /* Count Status */ +#define DMA_STATUS_TS 2 /* Transfer Status */ +#define DMA_STATUS_DMA_ERROR 3 /* DMA Error Occurred */ +#define DMA_STATUS_DMA_BUSY 4 /* The channel is busy */ + + +/* + * DMA Channel Control Registers + */ + +/* The 44x devices have 64bit DMA controllers, where the 405EX/r have 32bit */ +#if defined(CONFIG_44x) +#define PPC4xx_DMA_64BIT +#endif + +/* The 44x and 405EX/r come up big-endian with last bit reserved */ +#if defined(CONFIG_44x) || defined(CONFIG_405EX) || defined(CONFIG_405EXr) +#define DMA_CR_OFFSET 1 +#else +#define DMA_CR_OFFSET 0 +#endif + +#define DMA_CE_ENABLE (1<<31) /* DMA Channel Enable */ +#define SET_DMA_CE_ENABLE(x) (((x)&0x1)<<31) +#define GET_DMA_CE_ENABLE(x) (((x)&DMA_CE_ENABLE)>>31) + +#define DMA_CIE_ENABLE (1<<30) /* DMA Channel Interrupt Enable */ +#define SET_DMA_CIE_ENABLE(x) (((x)&0x1)<<30) +#define GET_DMA_CIE_ENABLE(x) (((x)&DMA_CIE_ENABLE)>>30) + +#define DMA_TD (1<<29) +#define SET_DMA_TD(x) (((x)&0x1)<<29) +#define GET_DMA_TD(x) (((x)&DMA_TD)>>29) + +#define DMA_PL (1<<28) /* Peripheral Location */ +#define SET_DMA_PL(x) (((x)&0x1)<<28) +#define GET_DMA_PL(x) (((x)&DMA_PL)>>28) + +#define EXTERNAL_PERIPHERAL 0 +#define INTERNAL_PERIPHERAL 1 + +#define SET_DMA_PW(x) (((x)&0x3)<<(26-DMA_CR_OFFSET)) /* Peripheral Width */ +#define DMA_PW_MASK SET_DMA_PW(3) +#define PW_8 0 +#define PW_16 1 +#define PW_32 2 +#define PW_64 3 +/* FIXME: Add PW_128 support for 440GP DMA block */ +#define GET_DMA_PW(x) (((x)&DMA_PW_MASK)>>(26-DMA_CR_OFFSET)) + +#define DMA_DAI (1<<(25-DMA_CR_OFFSET)) /* Destination Address Increment */ +#define SET_DMA_DAI(x) (((x)&0x1)<<(25-DMA_CR_OFFSET)) + +#define DMA_SAI (1<<(24-DMA_CR_OFFSET)) /* Source Address Increment */ +#define SET_DMA_SAI(x) (((x)&0x1)<<(24-DMA_CR_OFFSET)) + +#define DMA_BEN (1<<(23-DMA_CR_OFFSET)) /* Buffer Enable */ +#define SET_DMA_BEN(x) (((x)&0x1)<<(23-DMA_CR_OFFSET)) + +#define SET_DMA_TM(x) (((x)&0x3)<<(21-DMA_CR_OFFSET)) /* Transfer Mode */ +#define DMA_TM_MASK SET_DMA_TM(3) +#define TM_PERIPHERAL 0 /* Peripheral */ +#define TM_RESERVED 1 /* Reserved */ +#define TM_S_MM 2 /* Memory to Memory */ +#define TM_D_MM 3 /* Device Paced Memory to Memory */ +#define GET_DMA_TM(x) (((x)&DMA_TM_MASK)>>(21-DMA_CR_OFFSET)) + +#define SET_DMA_PSC(x) (((x)&0x3)<<(19-DMA_CR_OFFSET)) /* Peripheral Setup Cycles */ +#define DMA_PSC_MASK SET_DMA_PSC(3) +#define GET_DMA_PSC(x) (((x)&DMA_PSC_MASK)>>(19-DMA_CR_OFFSET)) + +#define SET_DMA_PWC(x) (((x)&0x3F)<<(13-DMA_CR_OFFSET)) /* Peripheral Wait Cycles */ +#define DMA_PWC_MASK SET_DMA_PWC(0x3F) +#define GET_DMA_PWC(x) (((x)&DMA_PWC_MASK)>>(13-DMA_CR_OFFSET)) + +#define SET_DMA_PHC(x) (((x)&0x7)<<(10-DMA_CR_OFFSET)) /* Peripheral Hold Cycles */ +#define DMA_PHC_MASK SET_DMA_PHC(0x7) +#define GET_DMA_PHC(x) (((x)&DMA_PHC_MASK)>>(10-DMA_CR_OFFSET)) + +#define DMA_ETD_OUTPUT (1<<(9-DMA_CR_OFFSET)) /* EOT pin is a TC output */ +#define SET_DMA_ETD(x) (((x)&0x1)<<(9-DMA_CR_OFFSET)) + +#define DMA_TCE_ENABLE (1<<(8-DMA_CR_OFFSET)) +#define SET_DMA_TCE(x) (((x)&0x1)<<(8-DMA_CR_OFFSET)) + +#define DMA_DEC (1<<(2)) /* Address Decrement */ +#define SET_DMA_DEC(x) (((x)&0x1)<<2) +#define GET_DMA_DEC(x) (((x)&DMA_DEC)>>2) + + +/* + * Transfer Modes + * These modes are defined in a way that makes it possible to + * simply "or" in the value in the control register. + */ + +#define DMA_MODE_MM (SET_DMA_TM(TM_S_MM)) /* memory to memory */ + + /* Device-paced memory to memory, */ + /* device is at source address */ +#define DMA_MODE_MM_DEVATSRC (DMA_TD | SET_DMA_TM(TM_D_MM)) + + /* Device-paced memory to memory, */ + /* device is at destination address */ +#define DMA_MODE_MM_DEVATDST (SET_DMA_TM(TM_D_MM)) + +/* 405gp/440gp */ +#define SET_DMA_PREFETCH(x) (((x)&0x3)<<(4-DMA_CR_OFFSET)) /* Memory Read Prefetch */ +#define DMA_PREFETCH_MASK SET_DMA_PREFETCH(3) +#define PREFETCH_1 0 /* Prefetch 1 Double Word */ +#define PREFETCH_2 1 +#define PREFETCH_4 2 +#define GET_DMA_PREFETCH(x) (((x)&DMA_PREFETCH_MASK)>>(4-DMA_CR_OFFSET)) + +#define DMA_PCE (1<<(3-DMA_CR_OFFSET)) /* Parity Check Enable */ +#define SET_DMA_PCE(x) (((x)&0x1)<<(3-DMA_CR_OFFSET)) +#define GET_DMA_PCE(x) (((x)&DMA_PCE)>>(3-DMA_CR_OFFSET)) + +/* stb3x */ + +#define DMA_ECE_ENABLE (1<<5) +#define SET_DMA_ECE(x) (((x)&0x1)<<5) +#define GET_DMA_ECE(x) (((x)&DMA_ECE_ENABLE)>>5) + +#define DMA_TCD_DISABLE (1<<4) +#define SET_DMA_TCD(x) (((x)&0x1)<<4) +#define GET_DMA_TCD(x) (((x)&DMA_TCD_DISABLE)>>4) + +typedef uint32_t sgl_handle_t; + +#ifdef CONFIG_PPC4xx_EDMA + +#define SGL_LIST_SIZE 4096 +#define DMA_PPC4xx_SIZE SGL_LIST_SIZE + +#define SET_DMA_PRIORITY(x) (((x)&0x3)<<(6-DMA_CR_OFFSET)) /* DMA Channel Priority */ +#define DMA_PRIORITY_MASK SET_DMA_PRIORITY(3) +#define PRIORITY_LOW 0 +#define PRIORITY_MID_LOW 1 +#define PRIORITY_MID_HIGH 2 +#define PRIORITY_HIGH 3 +#define GET_DMA_PRIORITY(x) (((x)&DMA_PRIORITY_MASK)>>(6-DMA_CR_OFFSET)) + +/* + * DMA Polarity Configuration Register + */ +#define DMAReq_ActiveLow(chan) (1<<(31-(chan*3))) +#define DMAAck_ActiveLow(chan) (1<<(30-(chan*3))) +#define EOT_ActiveLow(chan) (1<<(29-(chan*3))) /* End of Transfer */ + +/* + * DMA Sleep Mode Register + */ +#define SLEEP_MODE_ENABLE (1<<21) + +/* + * DMA Status Register + */ +#define DMA_CS0 (1<<31) /* Terminal Count has been reached */ +#define DMA_CS1 (1<<30) +#define DMA_CS2 (1<<29) +#define DMA_CS3 (1<<28) + +#define DMA_TS0 (1<<27) /* End of Transfer has been requested */ +#define DMA_TS1 (1<<26) +#define DMA_TS2 (1<<25) +#define DMA_TS3 (1<<24) + +#define DMA_CH0_ERR (1<<23) /* DMA Chanel 0 Error */ +#define DMA_CH1_ERR (1<<22) +#define DMA_CH2_ERR (1<<21) +#define DMA_CH3_ERR (1<<20) + +#define DMA_IN_DMA_REQ0 (1<<19) /* Internal DMA Request is pending */ +#define DMA_IN_DMA_REQ1 (1<<18) +#define DMA_IN_DMA_REQ2 (1<<17) +#define DMA_IN_DMA_REQ3 (1<<16) + +#define DMA_EXT_DMA_REQ0 (1<<15) /* External DMA Request is pending */ +#define DMA_EXT_DMA_REQ1 (1<<14) +#define DMA_EXT_DMA_REQ2 (1<<13) +#define DMA_EXT_DMA_REQ3 (1<<12) + +#define DMA_CH0_BUSY (1<<11) /* DMA Channel 0 Busy */ +#define DMA_CH1_BUSY (1<<10) +#define DMA_CH2_BUSY (1<<9) +#define DMA_CH3_BUSY (1<<8) + +#define DMA_SG0 (1<<7) /* DMA Channel 0 Scatter/Gather in progress */ +#define DMA_SG1 (1<<6) +#define DMA_SG2 (1<<5) +#define DMA_SG3 (1<<4) + +/* DMA Channel Count Register */ +#define DMA_CTC_TCIE (1<<29) /* Terminal Count Interrupt Enable */ +#define DMA_CTC_ETIE (1<<28) /* EOT Interupt Enable */ +#define DMA_CTC_EIE (1<<27) /* Error Interrupt Enable */ +#define DMA_CTC_BTEN (1<<23) /* Burst Enable/Disable bit */ +#define DMA_CTC_BSIZ_MSK (3<<21) /* Mask of the Burst size bits */ +#define DMA_CTC_BSIZ_2 (0) +#define DMA_CTC_BSIZ_4 (1<<21) +#define DMA_CTC_BSIZ_8 (2<<21) +#define DMA_CTC_BSIZ_16 (3<<21) +#define DMA_CTC_TC_MASK 0xFFFFF + +/* + * DMA SG Command Register + */ +#define SSG_ENABLE(chan) (1<<(31-chan)) /* Start Scatter Gather */ +#define SSG_MASK_ENABLE(chan) (1<<(15-chan)) /* Enable writing to SSG0 bit */ + +/* + * DMA Scatter/Gather Descriptor Bit fields + */ +#define SG_LINK (1<<31) /* Link */ +#define SG_TCI_ENABLE (1<<29) /* Enable Terminal Count Interrupt */ +#define SG_ETI_ENABLE (1<<28) /* Enable End of Transfer Interrupt */ +#define SG_ERI_ENABLE (1<<27) /* Enable Error Interrupt */ +#define SG_COUNT_MASK 0xFFFF /* Count Field */ + +#define SET_DMA_CONTROL \ + (SET_DMA_CIE_ENABLE(p_init->int_enable) | /* interrupt enable */ \ + SET_DMA_BEN(p_init->buffer_enable) | /* buffer enable */\ + SET_DMA_ETD(p_init->etd_output) | /* end of transfer pin */ \ + SET_DMA_TCE(p_init->tce_enable) | /* terminal count enable */ \ + SET_DMA_PL(p_init->pl) | /* peripheral location */ \ + SET_DMA_DAI(p_init->dai) | /* dest addr increment */ \ + SET_DMA_SAI(p_init->sai) | /* src addr increment */ \ + SET_DMA_PRIORITY(p_init->cp) | /* channel priority */ \ + SET_DMA_PW(p_init->pwidth) | /* peripheral/bus width */ \ + SET_DMA_PSC(p_init->psc) | /* peripheral setup cycles */ \ + SET_DMA_PWC(p_init->pwc) | /* peripheral wait cycles */ \ + SET_DMA_PHC(p_init->phc) | /* peripheral hold cycles */ \ + SET_DMA_PREFETCH(p_init->pf) /* read prefetch */) + +#define GET_DMA_POLARITY(chan) (DMAReq_ActiveLow(chan) | DMAAck_ActiveLow(chan) | EOT_ActiveLow(chan)) + +#elif defined(CONFIG_STB03xxx) /* stb03xxx */ + +#define DMA_PPC4xx_SIZE 4096 + +/* + * DMA Status Register + */ + +#define SET_DMA_PRIORITY(x) (((x)&0x00800001)) /* DMA Channel Priority */ +#define DMA_PRIORITY_MASK 0x00800001 +#define PRIORITY_LOW 0x00000000 +#define PRIORITY_MID_LOW 0x00000001 +#define PRIORITY_MID_HIGH 0x00800000 +#define PRIORITY_HIGH 0x00800001 +#define GET_DMA_PRIORITY(x) (((((x)&DMA_PRIORITY_MASK) &0x00800000) >> 22 ) | (((x)&DMA_PRIORITY_MASK) &0x00000001)) + +#define DMA_CS0 (1<<31) /* Terminal Count has been reached */ +#define DMA_CS1 (1<<30) +#define DMA_CS2 (1<<29) +#define DMA_CS3 (1<<28) + +#define DMA_TS0 (1<<27) /* End of Transfer has been requested */ +#define DMA_TS1 (1<<26) +#define DMA_TS2 (1<<25) +#define DMA_TS3 (1<<24) + +#define DMA_CH0_ERR (1<<23) /* DMA Chanel 0 Error */ +#define DMA_CH1_ERR (1<<22) +#define DMA_CH2_ERR (1<<21) +#define DMA_CH3_ERR (1<<20) + +#define DMA_CT0 (1<<19) /* Chained transfere */ + +#define DMA_IN_DMA_REQ0 (1<<18) /* Internal DMA Request is pending */ +#define DMA_IN_DMA_REQ1 (1<<17) +#define DMA_IN_DMA_REQ2 (1<<16) +#define DMA_IN_DMA_REQ3 (1<<15) + +#define DMA_EXT_DMA_REQ0 (1<<14) /* External DMA Request is pending */ +#define DMA_EXT_DMA_REQ1 (1<<13) +#define DMA_EXT_DMA_REQ2 (1<<12) +#define DMA_EXT_DMA_REQ3 (1<<11) + +#define DMA_CH0_BUSY (1<<10) /* DMA Channel 0 Busy */ +#define DMA_CH1_BUSY (1<<9) +#define DMA_CH2_BUSY (1<<8) +#define DMA_CH3_BUSY (1<<7) + +#define DMA_CT1 (1<<6) /* Chained transfere */ +#define DMA_CT2 (1<<5) +#define DMA_CT3 (1<<4) + +#define DMA_CH_ENABLE (1<<7) +#define SET_DMA_CH(x) (((x)&0x1)<<7) +#define GET_DMA_CH(x) (((x)&DMA_CH_ENABLE)>>7) + +/* STBx25xxx dma unique */ +/* enable device port on a dma channel + * example ext 0 on dma 1 + */ + +#define SSP0_RECV 15 +#define SSP0_XMIT 14 +#define EXT_DMA_0 12 +#define SC1_XMIT 11 +#define SC1_RECV 10 +#define EXT_DMA_2 9 +#define EXT_DMA_3 8 +#define SERIAL2_XMIT 7 +#define SERIAL2_RECV 6 +#define SC0_XMIT 5 +#define SC0_RECV 4 +#define SERIAL1_XMIT 3 +#define SERIAL1_RECV 2 +#define SERIAL0_XMIT 1 +#define SERIAL0_RECV 0 + +#define DMA_CHAN_0 1 +#define DMA_CHAN_1 2 +#define DMA_CHAN_2 3 +#define DMA_CHAN_3 4 + +/* end STBx25xx */ + +/* + * Bit 30 must be one for Redwoods, otherwise transfers may receive errors. + */ +#define DMA_CR_MB0 0x2 + +#define SET_DMA_CONTROL \ + (SET_DMA_CIE_ENABLE(p_init->int_enable) | /* interrupt enable */ \ + SET_DMA_ETD(p_init->etd_output) | /* end of transfer pin */ \ + SET_DMA_TCE(p_init->tce_enable) | /* terminal count enable */ \ + SET_DMA_PL(p_init->pl) | /* peripheral location */ \ + SET_DMA_DAI(p_init->dai) | /* dest addr increment */ \ + SET_DMA_SAI(p_init->sai) | /* src addr increment */ \ + SET_DMA_PRIORITY(p_init->cp) | /* channel priority */ \ + SET_DMA_PW(p_init->pwidth) | /* peripheral/bus width */ \ + SET_DMA_PSC(p_init->psc) | /* peripheral setup cycles */ \ + SET_DMA_PWC(p_init->pwc) | /* peripheral wait cycles */ \ + SET_DMA_PHC(p_init->phc) | /* peripheral hold cycles */ \ + SET_DMA_TCD(p_init->tcd_disable) | /* TC chain mode disable */ \ + SET_DMA_ECE(p_init->ece_enable) | /* ECE chanin mode enable */ \ + SET_DMA_CH(p_init->ch_enable) | /* Chain enable */ \ + DMA_CR_MB0 /* must be one */) + +#define GET_DMA_POLARITY(chan) chan + +#endif + +typedef struct { + unsigned short in_use; /* set when channel is being used, clr when + * available. + */ + /* + * Valid polarity settings: + * DMAReq_ActiveLow(n) + * DMAAck_ActiveLow(n) + * EOT_ActiveLow(n) + * + * n is 0 to max dma chans + */ + unsigned int polarity; + + char buffer_enable; /* Boolean: buffer enable */ + char tce_enable; /* Boolean: terminal count enable */ + char etd_output; /* Boolean: eot pin is a tc output */ + char pce; /* Boolean: parity check enable */ + + /* + * Peripheral location: + * INTERNAL_PERIPHERAL (UART0 on the 405GP) + * EXTERNAL_PERIPHERAL + */ + char pl; /* internal/external peripheral */ + + /* + * Valid pwidth settings: + * PW_8 + * PW_16 + * PW_32 + * PW_64 + */ + unsigned int pwidth; + + char dai; /* Boolean: dst address increment */ + char sai; /* Boolean: src address increment */ + + /* + * Valid psc settings: 0-3 + */ + unsigned int psc; /* Peripheral Setup Cycles */ + + /* + * Valid pwc settings: + * 0-63 + */ + unsigned int pwc; /* Peripheral Wait Cycles */ + + /* + * Valid phc settings: + * 0-7 + */ + unsigned int phc; /* Peripheral Hold Cycles */ + + /* + * Valid cp (channel priority) settings: + * PRIORITY_LOW + * PRIORITY_MID_LOW + * PRIORITY_MID_HIGH + * PRIORITY_HIGH + */ + unsigned int cp; /* channel priority */ + + /* + * Valid pf (memory read prefetch) settings: + * + * PREFETCH_1 + * PREFETCH_2 + * PREFETCH_4 + */ + unsigned int pf; /* memory read prefetch */ + + /* + * Boolean: channel interrupt enable + * NOTE: for sgl transfers, only the last descriptor will be setup to + * interrupt. + */ + char int_enable; + + char shift; /* easy access to byte_count shift, based on */ + /* the width of the channel */ + + uint32_t control; /* channel control word */ + + /* These variabled are used ONLY in single dma transfers */ + unsigned int mode; /* transfer mode */ + phys_addr_t addr; + char ce; /* channel enable */ +#ifdef CONFIG_STB03xxx + char ch_enable; + char tcd_disable; + char ece_enable; + char td; /* transfer direction */ +#endif + + char int_on_final_sg;/* for scatter/gather - only interrupt on last sg */ +} ppc_dma_ch_t; + +/* + * PPC44x DMA implementations have a slightly different + * descriptor layout. Probably moved about due to the + * change to 64-bit addresses and link pointer. I don't + * know why they didn't just leave control_count after + * the dst_addr. + */ +#ifdef PPC4xx_DMA_64BIT +typedef struct { + uint32_t control; + uint32_t control_count; + phys_addr_t src_addr; + phys_addr_t dst_addr; + phys_addr_t next; +} ppc_sgl_t; +#else +typedef struct { + uint32_t control; + phys_addr_t src_addr; + phys_addr_t dst_addr; + uint32_t control_count; + uint32_t next; +} ppc_sgl_t; +#endif + +typedef struct { + unsigned int dmanr; + uint32_t control; /* channel ctrl word; loaded from each descrptr */ + uint32_t sgl_control; /* LK, TCI, ETI, and ERI bits in sgl descriptor */ + dma_addr_t dma_addr; /* dma (physical) address of this list */ + ppc_sgl_t *phead; + dma_addr_t phead_dma; + ppc_sgl_t *ptail; + dma_addr_t ptail_dma; +} sgl_list_info_t; + +typedef struct { + phys_addr_t *src_addr; + phys_addr_t *dst_addr; + phys_addr_t dma_src_addr; + phys_addr_t dma_dst_addr; +} pci_alloc_desc_t; + +extern ppc_dma_ch_t dma_channels[]; + +/* + * The DMA API are in ppc4xx_dma.c and ppc4xx_sgdma.c + */ +extern int ppc4xx_init_dma_channel(unsigned int, ppc_dma_ch_t *); +extern int ppc4xx_get_channel_config(unsigned int, ppc_dma_ch_t *); +extern int ppc4xx_set_channel_priority(unsigned int, unsigned int); +extern unsigned int ppc4xx_get_peripheral_width(unsigned int); +extern void ppc4xx_set_sg_addr(int, phys_addr_t); +extern int ppc4xx_add_dma_sgl(sgl_handle_t, phys_addr_t, phys_addr_t, unsigned int); +extern void ppc4xx_enable_dma_sgl(sgl_handle_t); +extern void ppc4xx_disable_dma_sgl(sgl_handle_t); +extern int ppc4xx_get_dma_sgl_residue(sgl_handle_t, phys_addr_t *, phys_addr_t *); +extern int ppc4xx_delete_dma_sgl_element(sgl_handle_t, phys_addr_t *, phys_addr_t *); +extern int ppc4xx_alloc_dma_handle(sgl_handle_t *, unsigned int, unsigned int); +extern void ppc4xx_free_dma_handle(sgl_handle_t); +extern int ppc4xx_get_dma_status(void); +extern int ppc4xx_enable_burst(unsigned int); +extern int ppc4xx_disable_burst(unsigned int); +extern int ppc4xx_set_burst_size(unsigned int, unsigned int); +extern void ppc4xx_set_src_addr(int dmanr, phys_addr_t src_addr); +extern void ppc4xx_set_dst_addr(int dmanr, phys_addr_t dst_addr); +extern void ppc4xx_enable_dma(unsigned int dmanr); +extern void ppc4xx_disable_dma(unsigned int dmanr); +extern void ppc4xx_set_dma_count(unsigned int dmanr, unsigned int count); +extern int ppc4xx_get_dma_residue(unsigned int dmanr); +extern void ppc4xx_set_dma_addr2(unsigned int dmanr, phys_addr_t src_dma_addr, + phys_addr_t dst_dma_addr); +extern int ppc4xx_enable_dma_interrupt(unsigned int dmanr); +extern int ppc4xx_disable_dma_interrupt(unsigned int dmanr); +extern int ppc4xx_clr_dma_status(unsigned int dmanr); +extern int ppc4xx_map_dma_port(unsigned int dmanr, unsigned int ocp_dma,short dma_chan); +extern int ppc4xx_disable_dma_port(unsigned int dmanr, unsigned int ocp_dma,short dma_chan); +extern int ppc4xx_set_dma_mode(unsigned int dmanr, unsigned int mode); + +/* These are in kernel/dma.c: */ + +/* reserve a DMA channel */ +extern int request_dma(unsigned int dmanr, const char *device_id); +/* release it again */ +extern void free_dma(unsigned int dmanr); +#endif +#endif /* __KERNEL__ */ diff --git a/drivers/usb/gadget/gadget_chips.h b/drivers/usb/gadget/gadget_chips.h index f2d270b202f..ae4b2c33922 100644 --- a/drivers/usb/gadget/gadget_chips.h +++ b/drivers/usb/gadget/gadget_chips.h @@ -150,6 +150,12 @@ #define gadget_is_mpc8272(g) 0 #endif +#ifdef CONFIG_USB_GADGET_DWC_OTG +#define gadget_is_dwc_otg(g) !strcmp("dwc_otg_pcd", (g)->name) +#else +#define gadget_is_dwc_otg(g) 0 +#endif + #ifdef CONFIG_USB_GADGET_M66592 #define gadget_is_m66592(g) !strcmp("m66592_udc", (g)->name) #else @@ -235,6 +241,8 @@ static inline int usb_gadget_controller_number(struct usb_gadget *gadget) return 0x18; else if (gadget_is_fsl_usb2(gadget)) return 0x19; + else if (gadget_is_dwc_otg(gadget)) + return 0x1a; else if (gadget_is_amd5536udc(gadget)) return 0x20; else if (gadget_is_m66592(gadget)) diff --git a/drivers/usb/gadget/u_ether.c b/drivers/usb/gadget/u_ether.c index 2fc02bd9584..df2ea5b99bc 100644 --- a/drivers/usb/gadget/u_ether.c +++ b/drivers/usb/gadget/u_ether.c @@ -125,10 +125,13 @@ static inline int qlen(struct usb_gadget *gadget) #define xprintk(d, level, fmt, args...) \ printk(level "%s: " fmt , (d)->net->name , ## args) +#define DEBUG +#define VERBOSE_DEBUG + #ifdef DEBUG #undef DEBUG #define DBG(dev, fmt, args...) \ - xprintk(dev , KERN_DEBUG , fmt , ## args) + printk(fmt , ## args) #else #define DBG(dev, fmt, args...) \ do { } while (0) @@ -249,7 +252,17 @@ rx_submit(struct eth_dev *dev, struct usb_request *req, gfp_t gfp_flags) * but on at least one, checksumming fails otherwise. Note: * RNDIS headers involve variable numbers of LE32 values. */ +#if defined(CONFIG_USB_GADGET_DWC_OTG) + { + unsigned int off = 0; + off = ((unsigned long) skb->data) % 4; /* align=4 */ + if (off != 0) + skb_reserve(skb, 4 - off); + } +#else skb_reserve(skb, NET_IP_ALIGN); +#endif + req->buf = skb->data; req->length = size; @@ -573,6 +586,18 @@ static netdev_tx_t eth_start_xmit(struct sk_buff *skb, length = skb->len; } + +#if defined(CONFIG_USB_GADGET_DWC_OTG) + { + unsigned int off = 0; + off = ((unsigned long) skb->data) % 4; /* align=4 */ + if (off != 0) { + memmove(skb->data + (4 - off), skb->data, skb->len); + skb_reserve(skb, 4 - off); + } + } +#endif + req->buf = skb->data; req->context = skb; req->complete = tx_complete; diff --git a/drivers/usb/host/Kconfig b/drivers/usb/host/Kconfig index 9b43b226817..b2b904b6141 100644 --- a/drivers/usb/host/Kconfig +++ b/drivers/usb/host/Kconfig @@ -40,6 +40,7 @@ config USB_XHCI_HCD_DEBUGGING config USB_EHCI_HCD tristate "EHCI HCD (USB 2.0) support" depends on USB && USB_ARCH_HAS_EHCI + select DWC_SLAVE if 460EX ---help--- The Enhanced Host Controller Interface (EHCI) is standard for USB 2.0 "high speed" (480 Mbit/sec, 60 Mbyte/sec) host controller hardware. @@ -175,6 +176,7 @@ config USB_OHCI_HCD tristate "OHCI HCD support" depends on USB && USB_ARCH_HAS_OHCI select ISP1301_OMAP if MACH_OMAP_H2 || MACH_OMAP_H3 + select DWC_SLAVE if 460EX select USB_OTG_UTILS if ARCH_OMAP ---help--- The Open Host Controller Interface (OHCI) is a standard for accessing |