aboutsummaryrefslogtreecommitdiff
path: root/drivers
diff options
context:
space:
mode:
authorFrancois Romieu <romieu@fr.zoreil.com>2007-09-17 17:13:55 -0700
committerDavid S. Miller <davem@sunset.davemloft.net>2007-10-10 16:51:33 -0700
commit1202d6ff356cc66dc8d2b85546eb4f187f9e1f25 (patch)
tree158ddb9c96756ecc60a205ebc7243ee9c3e2e05b /drivers
parent6b2f9cb64db2d2460da17900bf54266030cc24f1 (diff)
[IPG]: add IP1000A driver to kernel tree
Signed-off-by: Jesse Huang <jesse@icplus.com.tw> Signed-off-by: Stefan Lippers-Hollmann <s.l-h@gmx.de> Signed-off-by: Francois Romieu <romieu@fr.zoreil.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'drivers')
-rw-r--r--drivers/net/Kconfig9
-rw-r--r--drivers/net/Makefile1
-rw-r--r--drivers/net/ipg.c2326
-rw-r--r--drivers/net/ipg.h856
4 files changed, 3192 insertions, 0 deletions
diff --git a/drivers/net/Kconfig b/drivers/net/Kconfig
index 76db0bc9452..63ab05b5a87 100644
--- a/drivers/net/Kconfig
+++ b/drivers/net/Kconfig
@@ -165,6 +165,15 @@ config NET_SB1000
If you don't have this card, of course say N.
+config IP1000
+ tristate "IP1000 Gigabit Ethernet support"
+ depends on PCI && EXPERIMENTAL
+ ---help---
+ This driver supports IP1000 gigabit Ethernet cards.
+
+ To compile this driver as a module, choose M here: the module
+ will be called ipg. This is recommended.
+
source "drivers/net/arcnet/Kconfig"
source "drivers/net/phy/Kconfig"
diff --git a/drivers/net/Makefile b/drivers/net/Makefile
index c23ffdbe259..2098647080a 100644
--- a/drivers/net/Makefile
+++ b/drivers/net/Makefile
@@ -7,6 +7,7 @@ obj-$(CONFIG_E1000E) += e1000e/
obj-$(CONFIG_IBM_EMAC) += ibm_emac/
obj-$(CONFIG_IXGBE) += ixgbe/
obj-$(CONFIG_IXGB) += ixgb/
+obj-$(CONFIG_IP1000) += ipg.o
obj-$(CONFIG_CHELSIO_T1) += chelsio/
obj-$(CONFIG_CHELSIO_T3) += cxgb3/
obj-$(CONFIG_EHEA) += ehea/
diff --git a/drivers/net/ipg.c b/drivers/net/ipg.c
new file mode 100644
index 00000000000..dfdc96fcade
--- /dev/null
+++ b/drivers/net/ipg.c
@@ -0,0 +1,2326 @@
+/*
+ * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
+ *
+ * Copyright (C) 2003, 2007 IC Plus Corp
+ *
+ * Original Author:
+ *
+ * Craig Rich
+ * Sundance Technology, Inc.
+ * www.sundanceti.com
+ * craig_rich@sundanceti.com
+ *
+ * Current Maintainer:
+ *
+ * Sorbica Shieh.
+ * http://www.icplus.com.tw
+ * sorbica@icplus.com.tw
+ *
+ * Jesse Huang
+ * http://www.icplus.com.tw
+ * jesse@icplus.com.tw
+ */
+#include <linux/crc32.h>
+#include <linux/ethtool.h>
+#include <linux/mii.h>
+#include <linux/mutex.h>
+
+#define IPG_RX_RING_BYTES (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
+#define IPG_TX_RING_BYTES (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
+#define IPG_RESET_MASK \
+ (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
+ IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
+ IPG_AC_AUTO_INIT)
+
+#define ipg_w32(val32,reg) iowrite32((val32), ioaddr + (reg))
+#define ipg_w16(val16,reg) iowrite16((val16), ioaddr + (reg))
+#define ipg_w8(val8,reg) iowrite8((val8), ioaddr + (reg))
+
+#define ipg_r32(reg) ioread32(ioaddr + (reg))
+#define ipg_r16(reg) ioread16(ioaddr + (reg))
+#define ipg_r8(reg) ioread8(ioaddr + (reg))
+
+#define JUMBO_FRAME_4k_ONLY
+enum {
+ netdev_io_size = 128
+};
+
+#include "ipg.h"
+#define DRV_NAME "ipg"
+
+MODULE_AUTHOR("IC Plus Corp. 2003");
+MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver "
+ DrvVer);
+MODULE_LICENSE("GPL");
+
+static const char *ipg_brand_name[] = {
+ "IC PLUS IP1000 1000/100/10 based NIC",
+ "Sundance Technology ST2021 based NIC",
+ "Tamarack Microelectronics TC9020/9021 based NIC",
+ "Tamarack Microelectronics TC9020/9021 based NIC",
+ "D-Link NIC",
+ "D-Link NIC IP1000A"
+};
+
+static struct pci_device_id ipg_pci_tbl[] __devinitdata = {
+ { PCI_VDEVICE(SUNDANCE, 0x1023), 0 },
+ { PCI_VDEVICE(SUNDANCE, 0x2021), 1 },
+ { PCI_VDEVICE(SUNDANCE, 0x1021), 2 },
+ { PCI_VDEVICE(DLINK, 0x9021), 3 },
+ { PCI_VDEVICE(DLINK, 0x4000), 4 },
+ { PCI_VDEVICE(DLINK, 0x4020), 5 },
+ { 0, }
+};
+
+MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);
+
+static inline void __iomem *ipg_ioaddr(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ return sp->ioaddr;
+}
+
+#ifdef IPG_DEBUG
+static void ipg_dump_rfdlist(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ void __iomem *ioaddr = sp->ioaddr;
+ unsigned int i;
+ u32 offset;
+
+ IPG_DEBUG_MSG("_dump_rfdlist\n");
+
+ printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current);
+ printk(KERN_INFO "rx_dirty = %2.2x\n", sp->rx_dirty);
+ printk(KERN_INFO "RFDList start address = %16.16lx\n",
+ (unsigned long) sp->rxd_map);
+ printk(KERN_INFO "RFDListPtr register = %8.8x%8.8x\n",
+ ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));
+
+ for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
+ offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
+ printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i,
+ offset, (unsigned long) sp->rxd[i].next_desc);
+ offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
+ printk(KERN_INFO "%2.2x %4.4x RFS = %16.16lx\n", i,
+ offset, (unsigned long) sp->rxd[i].rfs);
+ offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
+ printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i,
+ offset, (unsigned long) sp->rxd[i].frag_info);
+ }
+}
+
+static void ipg_dump_tfdlist(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ void __iomem *ioaddr = sp->ioaddr;
+ unsigned int i;
+ u32 offset;
+
+ IPG_DEBUG_MSG("_dump_tfdlist\n");
+
+ printk(KERN_INFO "tx_current = %2.2x\n", sp->tx_current);
+ printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty);
+ printk(KERN_INFO "TFDList start address = %16.16lx\n",
+ (unsigned long) sp->txd_map);
+ printk(KERN_INFO "TFDListPtr register = %8.8x%8.8x\n",
+ ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));
+
+ for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
+ offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
+ printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i,
+ offset, (unsigned long) sp->txd[i].next_desc);
+
+ offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
+ printk(KERN_INFO "%2.2x %4.4x TFC = %16.16lx\n", i,
+ offset, (unsigned long) sp->txd[i].tfc);
+ offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
+ printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i,
+ offset, (unsigned long) sp->txd[i].frag_info);
+ }
+}
+#endif
+
+static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
+{
+ ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
+ ndelay(IPG_PC_PHYCTRLWAIT_NS);
+}
+
+static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
+{
+ ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
+ ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
+}
+
+static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
+{
+ phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;
+
+ ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
+}
+
+static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
+{
+ ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
+ phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
+}
+
+static u16 read_phy_bit(void __iomem * ioaddr, u8 phyctrlpolarity)
+{
+ u16 bit_data;
+
+ ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);
+
+ bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;
+
+ ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);
+
+ return bit_data;
+}
+
+/*
+ * Read a register from the Physical Layer device located
+ * on the IPG NIC, using the IPG PHYCTRL register.
+ */
+static int mdio_read(struct net_device * dev, int phy_id, int phy_reg)
+{
+ void __iomem *ioaddr = ipg_ioaddr(dev);
+ /*
+ * The GMII mangement frame structure for a read is as follows:
+ *
+ * |Preamble|st|op|phyad|regad|ta| data |idle|
+ * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
+ *
+ * <32 1s> = 32 consecutive logic 1 values
+ * A = bit of Physical Layer device address (MSB first)
+ * R = bit of register address (MSB first)
+ * z = High impedance state
+ * D = bit of read data (MSB first)
+ *
+ * Transmission order is 'Preamble' field first, bits transmitted
+ * left to right (first to last).
+ */
+ struct {
+ u32 field;
+ unsigned int len;
+ } p[] = {
+ { GMII_PREAMBLE, 32 }, /* Preamble */
+ { GMII_ST, 2 }, /* ST */
+ { GMII_READ, 2 }, /* OP */
+ { phy_id, 5 }, /* PHYAD */
+ { phy_reg, 5 }, /* REGAD */
+ { 0x0000, 2 }, /* TA */
+ { 0x0000, 16 }, /* DATA */
+ { 0x0000, 1 } /* IDLE */
+ };
+ unsigned int i, j;
+ u8 polarity, data;
+
+ polarity = ipg_r8(PHY_CTRL);
+ polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
+
+ /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
+ for (j = 0; j < 5; j++) {
+ for (i = 0; i < p[j].len; i++) {
+ /* For each variable length field, the MSB must be
+ * transmitted first. Rotate through the field bits,
+ * starting with the MSB, and move each bit into the
+ * the 1st (2^1) bit position (this is the bit position
+ * corresponding to the MgmtData bit of the PhyCtrl
+ * register for the IPG).
+ *
+ * Example: ST = 01;
+ *
+ * First write a '0' to bit 1 of the PhyCtrl
+ * register, then write a '1' to bit 1 of the
+ * PhyCtrl register.
+ *
+ * To do this, right shift the MSB of ST by the value:
+ * [field length - 1 - #ST bits already written]
+ * then left shift this result by 1.
+ */
+ data = (p[j].field >> (p[j].len - 1 - i)) << 1;
+ data &= IPG_PC_MGMTDATA;
+ data |= polarity | IPG_PC_MGMTDIR;
+
+ ipg_drive_phy_ctl_low_high(ioaddr, data);
+ }
+ }
+
+ send_three_state(ioaddr, polarity);
+
+ read_phy_bit(ioaddr, polarity);
+
+ /*
+ * For a read cycle, the bits for the next two fields (TA and
+ * DATA) are driven by the PHY (the IPG reads these bits).
+ */
+ for (i = 0; i < p[6].len; i++) {
+ p[6].field |=
+ (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
+ }
+
+ send_three_state(ioaddr, polarity);
+ send_three_state(ioaddr, polarity);
+ send_three_state(ioaddr, polarity);
+ send_end(ioaddr, polarity);
+
+ /* Return the value of the DATA field. */
+ return p[6].field;
+}
+
+/*
+ * Write to a register from the Physical Layer device located
+ * on the IPG NIC, using the IPG PHYCTRL register.
+ */
+static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
+{
+ void __iomem *ioaddr = ipg_ioaddr(dev);
+ /*
+ * The GMII mangement frame structure for a read is as follows:
+ *
+ * |Preamble|st|op|phyad|regad|ta| data |idle|
+ * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
+ *
+ * <32 1s> = 32 consecutive logic 1 values
+ * A = bit of Physical Layer device address (MSB first)
+ * R = bit of register address (MSB first)
+ * z = High impedance state
+ * D = bit of write data (MSB first)
+ *
+ * Transmission order is 'Preamble' field first, bits transmitted
+ * left to right (first to last).
+ */
+ struct {
+ u32 field;
+ unsigned int len;
+ } p[] = {
+ { GMII_PREAMBLE, 32 }, /* Preamble */
+ { GMII_ST, 2 }, /* ST */
+ { GMII_WRITE, 2 }, /* OP */
+ { phy_id, 5 }, /* PHYAD */
+ { phy_reg, 5 }, /* REGAD */
+ { 0x0002, 2 }, /* TA */
+ { val & 0xffff, 16 }, /* DATA */
+ { 0x0000, 1 } /* IDLE */
+ };
+ unsigned int i, j;
+ u8 polarity, data;
+
+ polarity = ipg_r8(PHY_CTRL);
+ polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
+
+ /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
+ for (j = 0; j < 7; j++) {
+ for (i = 0; i < p[j].len; i++) {
+ /* For each variable length field, the MSB must be
+ * transmitted first. Rotate through the field bits,
+ * starting with the MSB, and move each bit into the
+ * the 1st (2^1) bit position (this is the bit position
+ * corresponding to the MgmtData bit of the PhyCtrl
+ * register for the IPG).
+ *
+ * Example: ST = 01;
+ *
+ * First write a '0' to bit 1 of the PhyCtrl
+ * register, then write a '1' to bit 1 of the
+ * PhyCtrl register.
+ *
+ * To do this, right shift the MSB of ST by the value:
+ * [field length - 1 - #ST bits already written]
+ * then left shift this result by 1.
+ */
+ data = (p[j].field >> (p[j].len - 1 - i)) << 1;
+ data &= IPG_PC_MGMTDATA;
+ data |= polarity | IPG_PC_MGMTDIR;
+
+ ipg_drive_phy_ctl_low_high(ioaddr, data);
+ }
+ }
+
+ /* The last cycle is a tri-state, so read from the PHY. */
+ for (j = 7; j < 8; j++) {
+ for (i = 0; i < p[j].len; i++) {
+ ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);
+
+ p[j].field |= ((ipg_r8(PHY_CTRL) &
+ IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i);
+
+ ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
+ }
+ }
+}
+
+/* Set LED_Mode JES20040127EEPROM */
+static void ipg_set_led_mode(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ void __iomem *ioaddr = sp->ioaddr;
+ u32 mode;
+
+ mode = ipg_r32(ASIC_CTRL);
+ mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
+
+ if ((sp->LED_Mode & 0x03) > 1)
+ mode |= IPG_AC_LED_MODE_BIT_1; /* Write Asic Control Bit 29 */
+
+ if ((sp->LED_Mode & 0x01) == 1)
+ mode |= IPG_AC_LED_MODE; /* Write Asic Control Bit 14 */
+
+ if ((sp->LED_Mode & 0x08) == 8)
+ mode |= IPG_AC_LED_SPEED; /* Write Asic Control Bit 27 */
+
+ ipg_w32(mode, ASIC_CTRL);
+}
+
+/* Set PHYSet JES20040127EEPROM */
+static void ipg_set_phy_set(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ void __iomem *ioaddr = sp->ioaddr;
+ int physet;
+
+ physet = ipg_r8(PHY_SET);
+ physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
+ physet |= ((sp->LED_Mode & 0x70) >> 4);
+ ipg_w8(physet, PHY_SET);
+}
+
+static int ipg_reset(struct net_device *dev, u32 resetflags)
+{
+ /* Assert functional resets via the IPG AsicCtrl
+ * register as specified by the 'resetflags' input
+ * parameter.
+ */
+ void __iomem *ioaddr = ipg_ioaddr(dev); //JES20040127EEPROM:
+ unsigned int timeout_count = 0;
+
+ IPG_DEBUG_MSG("_reset\n");
+
+ ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);
+
+ /* Delay added to account for problem with 10Mbps reset. */
+ mdelay(IPG_AC_RESETWAIT);
+
+ while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
+ mdelay(IPG_AC_RESETWAIT);
+ if (++timeout_count > IPG_AC_RESET_TIMEOUT)
+ return -ETIME;
+ }
+ /* Set LED Mode in Asic Control JES20040127EEPROM */
+ ipg_set_led_mode(dev);
+
+ /* Set PHYSet Register Value JES20040127EEPROM */
+ ipg_set_phy_set(dev);
+ return 0;
+}
+
+/* Find the GMII PHY address. */
+static int ipg_find_phyaddr(struct net_device *dev)
+{
+ unsigned int phyaddr, i;
+
+ for (i = 0; i < 32; i++) {
+ u32 status;
+
+ /* Search for the correct PHY address among 32 possible. */
+ phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;
+
+ /* 10/22/03 Grace change verify from GMII_PHY_STATUS to
+ GMII_PHY_ID1
+ */
+
+ status = mdio_read(dev, phyaddr, MII_BMSR);
+
+ if ((status != 0xFFFF) && (status != 0))
+ return phyaddr;
+ }
+
+ return 0x1f;
+}
+
+/*
+ * Configure IPG based on result of IEEE 802.3 PHY
+ * auto-negotiation.
+ */
+static int ipg_config_autoneg(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ void __iomem *ioaddr = sp->ioaddr;
+ unsigned int txflowcontrol;
+ unsigned int rxflowcontrol;
+ unsigned int fullduplex;
+ unsigned int gig;
+ u32 mac_ctrl_val;
+ u32 asicctrl;
+ u8 phyctrl;
+
+ IPG_DEBUG_MSG("_config_autoneg\n");
+
+ asicctrl = ipg_r32(ASIC_CTRL);
+ phyctrl = ipg_r8(PHY_CTRL);
+ mac_ctrl_val = ipg_r32(MAC_CTRL);
+
+ /* Set flags for use in resolving auto-negotation, assuming
+ * non-1000Mbps, half duplex, no flow control.
+ */
+ fullduplex = 0;
+ txflowcontrol = 0;
+ rxflowcontrol = 0;
+ gig = 0;
+
+ /* To accomodate a problem in 10Mbps operation,
+ * set a global flag if PHY running in 10Mbps mode.
+ */
+ sp->tenmbpsmode = 0;
+
+ printk(KERN_INFO "%s: Link speed = ", dev->name);
+
+ /* Determine actual speed of operation. */
+ switch (phyctrl & IPG_PC_LINK_SPEED) {
+ case IPG_PC_LINK_SPEED_10MBPS:
+ printk("10Mbps.\n");
+ printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n",
+ dev->name);
+ sp->tenmbpsmode = 1;
+ break;
+ case IPG_PC_LINK_SPEED_100MBPS:
+ printk("100Mbps.\n");
+ break;
+ case IPG_PC_LINK_SPEED_1000MBPS:
+ printk("1000Mbps.\n");
+ gig = 1;
+ break;
+ default:
+ printk("undefined!\n");
+ return 0;
+ }
+
+ if (phyctrl & IPG_PC_DUPLEX_STATUS) {
+ fullduplex = 1;
+ txflowcontrol = 1;
+ rxflowcontrol = 1;
+ }
+
+ /* Configure full duplex, and flow control. */
+ if (fullduplex == 1) {
+ /* Configure IPG for full duplex operation. */
+ printk(KERN_INFO "%s: setting full duplex, ", dev->name);
+
+ mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;
+
+ if (txflowcontrol == 1) {
+ printk("TX flow control");
+ mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
+ } else {
+ printk("no TX flow control");
+ mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
+ }
+
+ if (rxflowcontrol == 1) {
+ printk(", RX flow control.");
+ mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
+ } else {
+ printk(", no RX flow control.");
+ mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
+ }
+
+ printk("\n");
+ } else {
+ /* Configure IPG for half duplex operation. */
+ printk(KERN_INFO "%s: setting half duplex, "
+ "no TX flow control, no RX flow control.\n", dev->name);
+
+ mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD &
+ ~IPG_MC_TX_FLOW_CONTROL_ENABLE &
+ ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
+ }
+ ipg_w32(mac_ctrl_val, MAC_CTRL);
+ return 0;
+}
+
+/* Determine and configure multicast operation and set
+ * receive mode for IPG.
+ */
+static void ipg_nic_set_multicast_list(struct net_device *dev)
+{
+ void __iomem *ioaddr = ipg_ioaddr(dev);
+ struct dev_mc_list *mc_list_ptr;
+ unsigned int hashindex;
+ u32 hashtable[2];
+ u8 receivemode;
+
+ IPG_DEBUG_MSG("_nic_set_multicast_list\n");
+
+ receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;
+
+ if (dev->flags & IFF_PROMISC) {
+ /* NIC to be configured in promiscuous mode. */
+ receivemode = IPG_RM_RECEIVEALLFRAMES;
+ } else if ((dev->flags & IFF_ALLMULTI) ||
+ (dev->flags & IFF_MULTICAST &
+ (dev->mc_count > IPG_MULTICAST_HASHTABLE_SIZE))) {
+ /* NIC to be configured to receive all multicast
+ * frames. */
+ receivemode |= IPG_RM_RECEIVEMULTICAST;
+ } else if (dev->flags & IFF_MULTICAST & (dev->mc_count > 0)) {
+ /* NIC to be configured to receive selected
+ * multicast addresses. */
+ receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
+ }
+
+ /* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
+ * The IPG applies a cyclic-redundancy-check (the same CRC
+ * used to calculate the frame data FCS) to the destination
+ * address all incoming multicast frames whose destination
+ * address has the multicast bit set. The least significant
+ * 6 bits of the CRC result are used as an addressing index
+ * into the hash table. If the value of the bit addressed by
+ * this index is a 1, the frame is passed to the host system.
+ */
+
+ /* Clear hashtable. */
+ hashtable[0] = 0x00000000;
+ hashtable[1] = 0x00000000;
+
+ /* Cycle through all multicast addresses to filter. */
+ for (mc_list_ptr = dev->mc_list;
+ mc_list_ptr != NULL; mc_list_ptr = mc_list_ptr->next) {
+ /* Calculate CRC result for each multicast address. */
+ hashindex = crc32_le(0xffffffff, mc_list_ptr->dmi_addr,
+ ETH_ALEN);
+
+ /* Use only the least significant 6 bits. */
+ hashindex = hashindex & 0x3F;
+
+ /* Within "hashtable", set bit number "hashindex"
+ * to a logic 1.
+ */
+ set_bit(hashindex, (void *)hashtable);
+ }
+
+ /* Write the value of the hashtable, to the 4, 16 bit
+ * HASHTABLE IPG registers.
+ */
+ ipg_w32(hashtable[0], HASHTABLE_0);
+ ipg_w32(hashtable[1], HASHTABLE_1);
+
+ ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);
+
+ IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
+}
+
+static int ipg_io_config(struct net_device *dev)
+{
+ void __iomem *ioaddr = ipg_ioaddr(dev);
+ u32 origmacctrl;
+ u32 restoremacctrl;
+
+ IPG_DEBUG_MSG("_io_config\n");
+
+ origmacctrl = ipg_r32(MAC_CTRL);
+
+ restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;
+
+ /* Based on compilation option, determine if FCS is to be
+ * stripped on receive frames by IPG.
+ */
+ if (!IPG_STRIP_FCS_ON_RX)
+ restoremacctrl |= IPG_MC_RCV_FCS;
+
+ /* Determine if transmitter and/or receiver are
+ * enabled so we may restore MACCTRL correctly.
+ */
+ if (origmacctrl & IPG_MC_TX_ENABLED)
+ restoremacctrl |= IPG_MC_TX_ENABLE;
+
+ if (origmacctrl & IPG_MC_RX_ENABLED)
+ restoremacctrl |= IPG_MC_RX_ENABLE;
+
+ /* Transmitter and receiver must be disabled before setting
+ * IFSSelect.
+ */
+ ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
+ IPG_MC_RSVD_MASK, MAC_CTRL);
+
+ /* Now that transmitter and receiver are disabled, write
+ * to IFSSelect.
+ */
+ ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);
+
+ /* Set RECEIVEMODE register. */
+ ipg_nic_set_multicast_list(dev);
+
+ ipg_w16(IPG_MAX_RXFRAME_SIZE, MAX_FRAME_SIZE);
+
+ ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE, RX_DMA_POLL_PERIOD);
+ ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
+ ipg_w8(IPG_RXDMABURSTTHRESH_VALUE, RX_DMA_BURST_THRESH);
+ ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE, TX_DMA_POLL_PERIOD);
+ ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
+ ipg_w8(IPG_TXDMABURSTTHRESH_VALUE, TX_DMA_BURST_THRESH);
+ ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
+ IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
+ IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
+ IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
+ ipg_w16(IPG_FLOWONTHRESH_VALUE, FLOW_ON_THRESH);
+ ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);
+
+ /* IPG multi-frag frame bug workaround.
+ * Per silicon revision B3 eratta.
+ */
+ ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);
+
+ /* IPG TX poll now bug workaround.
+ * Per silicon revision B3 eratta.
+ */
+ ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);
+
+ /* IPG RX poll now bug workaround.
+ * Per silicon revision B3 eratta.
+ */
+ ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);
+
+ /* Now restore MACCTRL to original setting. */
+ ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);
+
+ /* Disable unused RMON statistics. */
+ ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);
+
+ /* Disable unused MIB statistics. */
+ ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
+ IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
+ IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
+ IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
+ IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
+ IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);
+
+ return 0;
+}
+
+/*
+ * Create a receive buffer within system memory and update
+ * NIC private structure appropriately.
+ */
+static int ipg_get_rxbuff(struct net_device *dev, int entry)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ struct ipg_rx *rxfd = sp->rxd + entry;
+ struct sk_buff *skb;
+ u64 rxfragsize;
+
+ IPG_DEBUG_MSG("_get_rxbuff\n");
+
+ skb = netdev_alloc_skb(dev, IPG_RXSUPPORT_SIZE + NET_IP_ALIGN);
+ if (!skb) {
+ sp->RxBuff[entry] = NULL;
+ return -ENOMEM;
+ }
+
+ /* Adjust the data start location within the buffer to
+ * align IP address field to a 16 byte boundary.
+ */
+ skb_reserve(skb, NET_IP_ALIGN);
+
+ /* Associate the receive buffer with the IPG NIC. */
+ skb->dev = dev;
+
+ /* Save the address of the sk_buff structure. */
+ sp->RxBuff[entry] = skb;
+
+ rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
+ sp->rx_buf_sz, PCI_DMA_FROMDEVICE));
+
+ /* Set the RFD fragment length. */
+ rxfragsize = IPG_RXFRAG_SIZE;
+ rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);
+
+ return 0;
+}
+
+static int init_rfdlist(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ void __iomem *ioaddr = sp->ioaddr;
+ unsigned int i;
+
+ IPG_DEBUG_MSG("_init_rfdlist\n");
+
+ for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
+ struct ipg_rx *rxfd = sp->rxd + i;
+
+ if (sp->RxBuff[i]) {
+ pci_unmap_single(sp->pdev,
+ le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
+ sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
+ IPG_DEV_KFREE_SKB(sp->RxBuff[i]);
+ sp->RxBuff[i] = NULL;
+ }
+
+ /* Clear out the RFS field. */
+ rxfd->rfs = 0x0000000000000000;
+
+ if (ipg_get_rxbuff(dev, i) < 0) {
+ /*
+ * A receive buffer was not ready, break the
+ * RFD list here.
+ */
+ IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n");
+
+ /* Just in case we cannot allocate a single RFD.
+ * Should not occur.
+ */
+ if (i == 0) {
+ printk(KERN_ERR "%s: No memory available"
+ " for RFD list.\n", dev->name);
+ return -ENOMEM;
+ }
+ }
+
+ rxfd->next_desc = cpu_to_le64(sp->rxd_map +
+ sizeof(struct ipg_rx)*(i + 1));
+ }
+ sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);
+
+ sp->rx_current = 0;
+ sp->rx_dirty = 0;
+
+ /* Write the location of the RFDList to the IPG. */
+ ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
+ ipg_w32(0x00000000, RFD_LIST_PTR_1);
+
+ return 0;
+}
+
+static void init_tfdlist(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ void __iomem *ioaddr = sp->ioaddr;
+ unsigned int i;
+
+ IPG_DEBUG_MSG("_init_tfdlist\n");
+
+ for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
+ struct ipg_tx *txfd = sp->txd + i;
+
+ txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
+
+ if (sp->TxBuff[i]) {
+ IPG_DEV_KFREE_SKB(sp->TxBuff[i]);
+ sp->TxBuff[i] = NULL;
+ }
+
+ txfd->next_desc = cpu_to_le64(sp->txd_map +
+ sizeof(struct ipg_tx)*(i + 1));
+ }
+ sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);
+
+ sp->tx_current = 0;
+ sp->tx_dirty = 0;
+
+ /* Write the location of the TFDList to the IPG. */
+ IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n",
+ (u32) sp->txd_map);
+ ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
+ ipg_w32(0x00000000, TFD_LIST_PTR_1);
+
+ sp->ResetCurrentTFD = 1;
+}
+
+/*
+ * Free all transmit buffers which have already been transfered
+ * via DMA to the IPG.
+ */
+static void ipg_nic_txfree(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ void __iomem *ioaddr = sp->ioaddr;
+ const unsigned int curr = ipg_r32(TFD_LIST_PTR_0) -
+ (sp->txd_map / sizeof(struct ipg_tx)) - 1;
+ unsigned int released, pending;
+
+ IPG_DEBUG_MSG("_nic_txfree\n");
+
+ pending = sp->tx_current - sp->tx_dirty;
+
+ for (released = 0; released < pending; released++) {
+ unsigned int dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;
+ struct sk_buff *skb = sp->TxBuff[dirty];
+ struct ipg_tx *txfd = sp->txd + dirty;
+
+ IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc);
+
+ /* Look at each TFD's TFC field beginning
+ * at the last freed TFD up to the current TFD.
+ * If the TFDDone bit is set, free the associated
+ * buffer.
+ */
+ if (dirty == curr)
+ break;
+
+ /* Setup TFDDONE for compatible issue. */
+ txfd->tfc |= cpu_to_le64(IPG_TFC_TFDDONE);
+
+ /* Free the transmit buffer. */
+ if (skb) {
+ pci_unmap_single(sp->pdev,
+ le64_to_cpu(txfd->frag_info & ~IPG_TFI_FRAGLEN),
+ skb->len, PCI_DMA_TODEVICE);
+
+ IPG_DEV_KFREE_SKB(skb);
+
+ sp->TxBuff[dirty] = NULL;
+ }
+ }
+
+ sp->tx_dirty += released;
+
+ if (netif_queue_stopped(dev) &&
+ (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
+ netif_wake_queue(dev);
+ }
+}
+
+static void ipg_tx_timeout(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ void __iomem *ioaddr = sp->ioaddr;
+
+ ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
+ IPG_AC_FIFO);
+
+ spin_lock_irq(&sp->lock);
+
+ /* Re-configure after DMA reset. */
+ if (ipg_io_config(dev) < 0) {
+ printk(KERN_INFO "%s: Error during re-configuration.\n",
+ dev->name);
+ }
+
+ init_tfdlist(dev);
+
+ spin_unlock_irq(&sp->lock);
+
+ ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
+ MAC_CTRL);
+}
+
+/*
+ * For TxComplete interrupts, free all transmit
+ * buffers which have already been transfered via DMA
+ * to the IPG.
+ */
+static void ipg_nic_txcleanup(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ void __iomem *ioaddr = sp->ioaddr;
+ unsigned int i;
+
+ IPG_DEBUG_MSG("_nic_txcleanup\n");
+
+ for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
+ /* Reading the TXSTATUS register clears the
+ * TX_COMPLETE interrupt.
+ */
+ u32 txstatusdword = ipg_r32(TX_STATUS);
+
+ IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword);
+
+ /* Check for Transmit errors. Error bits only valid if
+ * TX_COMPLETE bit in the TXSTATUS register is a 1.
+ */
+ if (!(txstatusdword & IPG_TS_TX_COMPLETE))
+ break;
+
+ /* If in 10Mbps mode, indicate transmit is ready. */
+ if (sp->tenmbpsmode) {
+ netif_wake_queue(dev);
+ }
+
+ /* Transmit error, increment stat counters. */
+ if (txstatusdword & IPG_TS_TX_ERROR) {
+ IPG_DEBUG_MSG("Transmit error.\n");
+ sp->stats.tx_errors++;
+ }
+
+ /* Late collision, re-enable transmitter. */
+ if (txstatusdword & IPG_TS_LATE_COLLISION) {
+ IPG_DEBUG_MSG("Late collision on transmit.\n");
+ ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
+ IPG_MC_RSVD_MASK, MAC_CTRL);
+ }
+
+ /* Maximum collisions, re-enable transmitter. */
+ if (txstatusdword & IPG_TS_TX_MAX_COLL) {
+ IPG_DEBUG_MSG("Maximum collisions on transmit.\n");
+ ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
+ IPG_MC_RSVD_MASK, MAC_CTRL);
+ }
+
+ /* Transmit underrun, reset and re-enable
+ * transmitter.
+ */
+ if (txstatusdword & IPG_TS_TX_UNDERRUN) {
+ IPG_DEBUG_MSG("Transmitter underrun.\n");
+ sp->stats.tx_fifo_errors++;
+ ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
+ IPG_AC_NETWORK | IPG_AC_FIFO);
+
+ /* Re-configure after DMA reset. */
+ if (ipg_io_config(dev) < 0) {
+ printk(KERN_INFO
+ "%s: Error during re-configuration.\n",
+ dev->name);
+ }
+ init_tfdlist(dev);
+
+ ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
+ IPG_MC_RSVD_MASK, MAC_CTRL);
+ }
+ }
+
+ ipg_nic_txfree(dev);
+}
+
+/* Provides statistical information about the IPG NIC. */
+struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ void __iomem *ioaddr = sp->ioaddr;
+ u16 temp1;
+ u16 temp2;
+
+ IPG_DEBUG_MSG("_nic_get_stats\n");
+
+ /* Check to see if the NIC has been initialized via nic_open,
+ * before trying to read statistic registers.
+ */
+ if (!test_bit(__LINK_STATE_START, &dev->state))
+ return &sp->stats;
+
+ sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
+ sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
+ sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
+ sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
+ temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
+ sp->stats.rx_errors += temp1;
+ sp->stats.rx_missed_errors += temp1;
+ temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
+ ipg_r32(IPG_LATECOLLISIONS);
+ temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
+ sp->stats.collisions += temp1;
+ sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
+ sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
+ ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
+ sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);
+
+ /* detailed tx_errors */
+ sp->stats.tx_carrier_errors += temp2;
+
+ /* detailed rx_errors */
+ sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
+ ipg_r16(IPG_FRAMETOOLONGERRRORS);
+ sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);
+
+ /* Unutilized IPG statistic registers. */
+ ipg_r32(IPG_MCSTFRAMESRCVDOK);
+
+ return &sp->stats;
+}
+
+/* Restore used receive buffers. */
+static int ipg_nic_rxrestore(struct net_device *dev)
+{
+ struct ipg_nic_private *sp = netdev_priv(dev);
+ const unsigned int curr = sp->rx_current;
+ unsigned int dirty = sp->rx_dirty;
+
+ IPG_DEBUG_MSG("_nic_rxrestore\n");
+
+ for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
+ unsigned int entry = dirty % IPG_RFDLIST_LENGTH;
+
+ /* rx_copybreak may poke hole here and there. */
+ if (sp->RxBuff[entry])
+ continue;
+
+ /* Generate a new receive buffer to replace the
+ * current buffer (which will be released by the
+ * Linux system).
+ */
+ if (ipg_get_rxbuff(dev, entry) < 0) {
+ IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n");
+
+ break;
+ }
+
+ /* Reset the RFS field. */
+ sp->rxd[entry].rfs = 0x0000000000000000;
+ }
+ sp->rx_dirty = dirty;
+
+ return 0;
+}
+
+#ifdef JUMBO_FRAME
+
+/* use jumboindex and jumbosize to control jumbo frame status
+ initial status is jumboindex=-1 and jumbosize=0
+ 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
+ 2. jumboindex != -1 and jumbosi