aboutsummaryrefslogtreecommitdiff
path: root/drivers/scsi/atari_NCR5380.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/scsi/atari_NCR5380.c
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'drivers/scsi/atari_NCR5380.c')
-rw-r--r--drivers/scsi/atari_NCR5380.c2986
1 files changed, 2986 insertions, 0 deletions
diff --git a/drivers/scsi/atari_NCR5380.c b/drivers/scsi/atari_NCR5380.c
new file mode 100644
index 00000000000..5d1e78ebed8
--- /dev/null
+++ b/drivers/scsi/atari_NCR5380.c
@@ -0,0 +1,2986 @@
+/*
+ * NCR 5380 generic driver routines. These should make it *trivial*
+ * to implement 5380 SCSI drivers under Linux with a non-trantor
+ * architecture.
+ *
+ * Note that these routines also work with NR53c400 family chips.
+ *
+ * Copyright 1993, Drew Eckhardt
+ * Visionary Computing
+ * (Unix and Linux consulting and custom programming)
+ * drew@colorado.edu
+ * +1 (303) 666-5836
+ *
+ * DISTRIBUTION RELEASE 6.
+ *
+ * For more information, please consult
+ *
+ * NCR 5380 Family
+ * SCSI Protocol Controller
+ * Databook
+ *
+ * NCR Microelectronics
+ * 1635 Aeroplaza Drive
+ * Colorado Springs, CO 80916
+ * 1+ (719) 578-3400
+ * 1+ (800) 334-5454
+ */
+
+/*
+ * ++roman: To port the 5380 driver to the Atari, I had to do some changes in
+ * this file, too:
+ *
+ * - Some of the debug statements were incorrect (undefined variables and the
+ * like). I fixed that.
+ *
+ * - In information_transfer(), I think a #ifdef was wrong. Looking at the
+ * possible DMA transfer size should also happen for REAL_DMA. I added this
+ * in the #if statement.
+ *
+ * - When using real DMA, information_transfer() should return in a DATAOUT
+ * phase after starting the DMA. It has nothing more to do.
+ *
+ * - The interrupt service routine should run main after end of DMA, too (not
+ * only after RESELECTION interrupts). Additionally, it should _not_ test
+ * for more interrupts after running main, since a DMA process may have
+ * been started and interrupts are turned on now. The new int could happen
+ * inside the execution of NCR5380_intr(), leading to recursive
+ * calls.
+ *
+ * - I've added a function merge_contiguous_buffers() that tries to
+ * merge scatter-gather buffers that are located at contiguous
+ * physical addresses and can be processed with the same DMA setup.
+ * Since most scatter-gather operations work on a page (4K) of
+ * 4 buffers (1K), in more than 90% of all cases three interrupts and
+ * DMA setup actions are saved.
+ *
+ * - I've deleted all the stuff for AUTOPROBE_IRQ, REAL_DMA_POLL, PSEUDO_DMA
+ * and USLEEP, because these were messing up readability and will never be
+ * needed for Atari SCSI.
+ *
+ * - I've revised the NCR5380_main() calling scheme (relax the 'main_running'
+ * stuff), and 'main' is executed in a bottom half if awoken by an
+ * interrupt.
+ *
+ * - The code was quite cluttered up by "#if (NDEBUG & NDEBUG_*) printk..."
+ * constructs. In my eyes, this made the source rather unreadable, so I
+ * finally replaced that by the *_PRINTK() macros.
+ *
+ */
+
+/*
+ * Further development / testing that should be done :
+ * 1. Test linked command handling code after Eric is ready with
+ * the high level code.
+ */
+
+#if (NDEBUG & NDEBUG_LISTS)
+#define LIST(x,y) \
+ { printk("LINE:%d Adding %p to %p\n", __LINE__, (void*)(x), (void*)(y)); \
+ if ((x)==(y)) udelay(5); }
+#define REMOVE(w,x,y,z) \
+ { printk("LINE:%d Removing: %p->%p %p->%p \n", __LINE__, \
+ (void*)(w), (void*)(x), (void*)(y), (void*)(z)); \
+ if ((x)==(y)) udelay(5); }
+#else
+#define LIST(x,y)
+#define REMOVE(w,x,y,z)
+#endif
+
+#ifndef notyet
+#undef LINKED
+#endif
+
+/*
+ * Design
+ * Issues :
+ *
+ * The other Linux SCSI drivers were written when Linux was Intel PC-only,
+ * and specifically for each board rather than each chip. This makes their
+ * adaptation to platforms like the Mac (Some of which use NCR5380's)
+ * more difficult than it has to be.
+ *
+ * Also, many of the SCSI drivers were written before the command queuing
+ * routines were implemented, meaning their implementations of queued
+ * commands were hacked on rather than designed in from the start.
+ *
+ * When I designed the Linux SCSI drivers I figured that
+ * while having two different SCSI boards in a system might be useful
+ * for debugging things, two of the same type wouldn't be used.
+ * Well, I was wrong and a number of users have mailed me about running
+ * multiple high-performance SCSI boards in a server.
+ *
+ * Finally, when I get questions from users, I have no idea what
+ * revision of my driver they are running.
+ *
+ * This driver attempts to address these problems :
+ * This is a generic 5380 driver. To use it on a different platform,
+ * one simply writes appropriate system specific macros (ie, data
+ * transfer - some PC's will use the I/O bus, 68K's must use
+ * memory mapped) and drops this file in their 'C' wrapper.
+ *
+ * As far as command queueing, two queues are maintained for
+ * each 5380 in the system - commands that haven't been issued yet,
+ * and commands that are currently executing. This means that an
+ * unlimited number of commands may be queued, letting
+ * more commands propagate from the higher driver levels giving higher
+ * throughput. Note that both I_T_L and I_T_L_Q nexuses are supported,
+ * allowing multiple commands to propagate all the way to a SCSI-II device
+ * while a command is already executing.
+ *
+ * To solve the multiple-boards-in-the-same-system problem,
+ * there is a separate instance structure for each instance
+ * of a 5380 in the system. So, multiple NCR5380 drivers will
+ * be able to coexist with appropriate changes to the high level
+ * SCSI code.
+ *
+ * A NCR5380_PUBLIC_REVISION macro is provided, with the release
+ * number (updated for each public release) printed by the
+ * NCR5380_print_options command, which should be called from the
+ * wrapper detect function, so that I know what release of the driver
+ * users are using.
+ *
+ * Issues specific to the NCR5380 :
+ *
+ * When used in a PIO or pseudo-dma mode, the NCR5380 is a braindead
+ * piece of hardware that requires you to sit in a loop polling for
+ * the REQ signal as long as you are connected. Some devices are
+ * brain dead (ie, many TEXEL CD ROM drives) and won't disconnect
+ * while doing long seek operations.
+ *
+ * The workaround for this is to keep track of devices that have
+ * disconnected. If the device hasn't disconnected, for commands that
+ * should disconnect, we do something like
+ *
+ * while (!REQ is asserted) { sleep for N usecs; poll for M usecs }
+ *
+ * Some tweaking of N and M needs to be done. An algorithm based
+ * on "time to data" would give the best results as long as short time
+ * to datas (ie, on the same track) were considered, however these
+ * broken devices are the exception rather than the rule and I'd rather
+ * spend my time optimizing for the normal case.
+ *
+ * Architecture :
+ *
+ * At the heart of the design is a coroutine, NCR5380_main,
+ * which is started when not running by the interrupt handler,
+ * timer, and queue command function. It attempts to establish
+ * I_T_L or I_T_L_Q nexuses by removing the commands from the
+ * issue queue and calling NCR5380_select() if a nexus
+ * is not established.
+ *
+ * Once a nexus is established, the NCR5380_information_transfer()
+ * phase goes through the various phases as instructed by the target.
+ * if the target goes into MSG IN and sends a DISCONNECT message,
+ * the command structure is placed into the per instance disconnected
+ * queue, and NCR5380_main tries to find more work. If USLEEP
+ * was defined, and the target is idle for too long, the system
+ * will try to sleep.
+ *
+ * If a command has disconnected, eventually an interrupt will trigger,
+ * calling NCR5380_intr() which will in turn call NCR5380_reselect
+ * to reestablish a nexus. This will run main if necessary.
+ *
+ * On command termination, the done function will be called as
+ * appropriate.
+ *
+ * SCSI pointers are maintained in the SCp field of SCSI command
+ * structures, being initialized after the command is connected
+ * in NCR5380_select, and set as appropriate in NCR5380_information_transfer.
+ * Note that in violation of the standard, an implicit SAVE POINTERS operation
+ * is done, since some BROKEN disks fail to issue an explicit SAVE POINTERS.
+ */
+
+/*
+ * Using this file :
+ * This file a skeleton Linux SCSI driver for the NCR 5380 series
+ * of chips. To use it, you write an architecture specific functions
+ * and macros and include this file in your driver.
+ *
+ * These macros control options :
+ * AUTOSENSE - if defined, REQUEST SENSE will be performed automatically
+ * for commands that return with a CHECK CONDITION status.
+ *
+ * LINKED - if defined, linked commands are supported.
+ *
+ * REAL_DMA - if defined, REAL DMA is used during the data transfer phases.
+ *
+ * SUPPORT_TAGS - if defined, SCSI-2 tagged queuing is used where possible
+ *
+ * These macros MUST be defined :
+ *
+ * NCR5380_read(register) - read from the specified register
+ *
+ * NCR5380_write(register, value) - write to the specific register
+ *
+ * Either real DMA *or* pseudo DMA may be implemented
+ * REAL functions :
+ * NCR5380_REAL_DMA should be defined if real DMA is to be used.
+ * Note that the DMA setup functions should return the number of bytes
+ * that they were able to program the controller for.
+ *
+ * Also note that generic i386/PC versions of these macros are
+ * available as NCR5380_i386_dma_write_setup,
+ * NCR5380_i386_dma_read_setup, and NCR5380_i386_dma_residual.
+ *
+ * NCR5380_dma_write_setup(instance, src, count) - initialize
+ * NCR5380_dma_read_setup(instance, dst, count) - initialize
+ * NCR5380_dma_residual(instance); - residual count
+ *
+ * PSEUDO functions :
+ * NCR5380_pwrite(instance, src, count)
+ * NCR5380_pread(instance, dst, count);
+ *
+ * If nothing specific to this implementation needs doing (ie, with external
+ * hardware), you must also define
+ *
+ * NCR5380_queue_command
+ * NCR5380_reset
+ * NCR5380_abort
+ * NCR5380_proc_info
+ *
+ * to be the global entry points into the specific driver, ie
+ * #define NCR5380_queue_command t128_queue_command.
+ *
+ * If this is not done, the routines will be defined as static functions
+ * with the NCR5380* names and the user must provide a globally
+ * accessible wrapper function.
+ *
+ * The generic driver is initialized by calling NCR5380_init(instance),
+ * after setting the appropriate host specific fields and ID. If the
+ * driver wishes to autoprobe for an IRQ line, the NCR5380_probe_irq(instance,
+ * possible) function may be used. Before the specific driver initialization
+ * code finishes, NCR5380_print_options should be called.
+ */
+
+static struct Scsi_Host *first_instance = NULL;
+static Scsi_Host_Template *the_template = NULL;
+
+/* Macros ease life... :-) */
+#define SETUP_HOSTDATA(in) \
+ struct NCR5380_hostdata *hostdata = \
+ (struct NCR5380_hostdata *)(in)->hostdata
+#define HOSTDATA(in) ((struct NCR5380_hostdata *)(in)->hostdata)
+
+#define NEXT(cmd) ((Scsi_Cmnd *)((cmd)->host_scribble))
+#define NEXTADDR(cmd) ((Scsi_Cmnd **)&((cmd)->host_scribble))
+
+#define HOSTNO instance->host_no
+#define H_NO(cmd) (cmd)->device->host->host_no
+
+#ifdef SUPPORT_TAGS
+
+/*
+ * Functions for handling tagged queuing
+ * =====================================
+ *
+ * ++roman (01/96): Now I've implemented SCSI-2 tagged queuing. Some notes:
+ *
+ * Using consecutive numbers for the tags is no good idea in my eyes. There
+ * could be wrong re-usings if the counter (8 bit!) wraps and some early
+ * command has been preempted for a long time. My solution: a bitfield for
+ * remembering used tags.
+ *
+ * There's also the problem that each target has a certain queue size, but we
+ * cannot know it in advance :-( We just see a QUEUE_FULL status being
+ * returned. So, in this case, the driver internal queue size assumption is
+ * reduced to the number of active tags if QUEUE_FULL is returned by the
+ * target. The command is returned to the mid-level, but with status changed
+ * to BUSY, since --as I've seen-- the mid-level can't handle QUEUE_FULL
+ * correctly.
+ *
+ * We're also not allowed running tagged commands as long as an untagged
+ * command is active. And REQUEST SENSE commands after a contingent allegiance
+ * condition _must_ be untagged. To keep track whether an untagged command has
+ * been issued, the host->busy array is still employed, as it is without
+ * support for tagged queuing.
+ *
+ * One could suspect that there are possible race conditions between
+ * is_lun_busy(), cmd_get_tag() and cmd_free_tag(). But I think this isn't the
+ * case: is_lun_busy() and cmd_get_tag() are both called from NCR5380_main(),
+ * which already guaranteed to be running at most once. It is also the only
+ * place where tags/LUNs are allocated. So no other allocation can slip
+ * between that pair, there could only happen a reselection, which can free a
+ * tag, but that doesn't hurt. Only the sequence in cmd_free_tag() becomes
+ * important: the tag bit must be cleared before 'nr_allocated' is decreased.
+ */
+
+/* -1 for TAG_NONE is not possible with unsigned char cmd->tag */
+#undef TAG_NONE
+#define TAG_NONE 0xff
+
+typedef struct {
+ DECLARE_BITMAP(allocated, MAX_TAGS);
+ int nr_allocated;
+ int queue_size;
+} TAG_ALLOC;
+
+static TAG_ALLOC TagAlloc[8][8]; /* 8 targets and 8 LUNs */
+
+
+static void __init init_tags( void )
+{
+ int target, lun;
+ TAG_ALLOC *ta;
+
+ if (!setup_use_tagged_queuing)
+ return;
+
+ for( target = 0; target < 8; ++target ) {
+ for( lun = 0; lun < 8; ++lun ) {
+ ta = &TagAlloc[target][lun];
+ bitmap_zero(ta->allocated, MAX_TAGS);
+ ta->nr_allocated = 0;
+ /* At the beginning, assume the maximum queue size we could
+ * support (MAX_TAGS). This value will be decreased if the target
+ * returns QUEUE_FULL status.
+ */
+ ta->queue_size = MAX_TAGS;
+ }
+ }
+}
+
+
+/* Check if we can issue a command to this LUN: First see if the LUN is marked
+ * busy by an untagged command. If the command should use tagged queuing, also
+ * check that there is a free tag and the target's queue won't overflow. This
+ * function should be called with interrupts disabled to avoid race
+ * conditions.
+ */
+
+static int is_lun_busy( Scsi_Cmnd *cmd, int should_be_tagged )
+{
+ SETUP_HOSTDATA(cmd->device->host);
+
+ if (hostdata->busy[cmd->device->id] & (1 << cmd->device->lun))
+ return( 1 );
+ if (!should_be_tagged ||
+ !setup_use_tagged_queuing || !cmd->device->tagged_supported)
+ return( 0 );
+ if (TagAlloc[cmd->device->id][cmd->device->lun].nr_allocated >=
+ TagAlloc[cmd->device->id][cmd->device->lun].queue_size ) {
+ TAG_PRINTK( "scsi%d: target %d lun %d: no free tags\n",
+ H_NO(cmd), cmd->device->id, cmd->device->lun );
+ return( 1 );
+ }
+ return( 0 );
+}
+
+
+/* Allocate a tag for a command (there are no checks anymore, check_lun_busy()
+ * must be called before!), or reserve the LUN in 'busy' if the command is
+ * untagged.
+ */
+
+static void cmd_get_tag( Scsi_Cmnd *cmd, int should_be_tagged )
+{
+ SETUP_HOSTDATA(cmd->device->host);
+
+ /* If we or the target don't support tagged queuing, allocate the LUN for
+ * an untagged command.
+ */
+ if (!should_be_tagged ||
+ !setup_use_tagged_queuing || !cmd->device->tagged_supported) {
+ cmd->tag = TAG_NONE;
+ hostdata->busy[cmd->device->id] |= (1 << cmd->device->lun);
+ TAG_PRINTK( "scsi%d: target %d lun %d now allocated by untagged "
+ "command\n", H_NO(cmd), cmd->device->id, cmd->device->lun );
+ }
+ else {
+ TAG_ALLOC *ta = &TagAlloc[cmd->device->id][cmd->device->lun];
+
+ cmd->tag = find_first_zero_bit( ta->allocated, MAX_TAGS );
+ set_bit( cmd->tag, ta->allocated );
+ ta->nr_allocated++;
+ TAG_PRINTK( "scsi%d: using tag %d for target %d lun %d "
+ "(now %d tags in use)\n",
+ H_NO(cmd), cmd->tag, cmd->device->id, cmd->device->lun,
+ ta->nr_allocated );
+ }
+}
+
+
+/* Mark the tag of command 'cmd' as free, or in case of an untagged command,
+ * unlock the LUN.
+ */
+
+static void cmd_free_tag( Scsi_Cmnd *cmd )
+{
+ SETUP_HOSTDATA(cmd->device->host);
+
+ if (cmd->tag == TAG_NONE) {
+ hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
+ TAG_PRINTK( "scsi%d: target %d lun %d untagged cmd finished\n",
+ H_NO(cmd), cmd->device->id, cmd->device->lun );
+ }
+ else if (cmd->tag >= MAX_TAGS) {
+ printk(KERN_NOTICE "scsi%d: trying to free bad tag %d!\n",
+ H_NO(cmd), cmd->tag );
+ }
+ else {
+ TAG_ALLOC *ta = &TagAlloc[cmd->device->id][cmd->device->lun];
+ clear_bit( cmd->tag, ta->allocated );
+ ta->nr_allocated--;
+ TAG_PRINTK( "scsi%d: freed tag %d for target %d lun %d\n",
+ H_NO(cmd), cmd->tag, cmd->device->id, cmd->device->lun );
+ }
+}
+
+
+static void free_all_tags( void )
+{
+ int target, lun;
+ TAG_ALLOC *ta;
+
+ if (!setup_use_tagged_queuing)
+ return;
+
+ for( target = 0; target < 8; ++target ) {
+ for( lun = 0; lun < 8; ++lun ) {
+ ta = &TagAlloc[target][lun];
+ bitmap_zero(ta->allocated, MAX_TAGS);
+ ta->nr_allocated = 0;
+ }
+ }
+}
+
+#endif /* SUPPORT_TAGS */
+
+
+/*
+ * Function: void merge_contiguous_buffers( Scsi_Cmnd *cmd )
+ *
+ * Purpose: Try to merge several scatter-gather requests into one DMA
+ * transfer. This is possible if the scatter buffers lie on
+ * physical contiguous addresses.
+ *
+ * Parameters: Scsi_Cmnd *cmd
+ * The command to work on. The first scatter buffer's data are
+ * assumed to be already transfered into ptr/this_residual.
+ */
+
+static void merge_contiguous_buffers( Scsi_Cmnd *cmd )
+{
+ unsigned long endaddr;
+#if (NDEBUG & NDEBUG_MERGING)
+ unsigned long oldlen = cmd->SCp.this_residual;
+ int cnt = 1;
+#endif
+
+ for (endaddr = virt_to_phys(cmd->SCp.ptr + cmd->SCp.this_residual - 1) + 1;
+ cmd->SCp.buffers_residual &&
+ virt_to_phys(page_address(cmd->SCp.buffer[1].page)+
+ cmd->SCp.buffer[1].offset) == endaddr; ) {
+ MER_PRINTK("VTOP(%p) == %08lx -> merging\n",
+ cmd->SCp.buffer[1].address, endaddr);
+#if (NDEBUG & NDEBUG_MERGING)
+ ++cnt;
+#endif
+ ++cmd->SCp.buffer;
+ --cmd->SCp.buffers_residual;
+ cmd->SCp.this_residual += cmd->SCp.buffer->length;
+ endaddr += cmd->SCp.buffer->length;
+ }
+#if (NDEBUG & NDEBUG_MERGING)
+ if (oldlen != cmd->SCp.this_residual)
+ MER_PRINTK("merged %d buffers from %p, new length %08x\n",
+ cnt, cmd->SCp.ptr, cmd->SCp.this_residual);
+#endif
+}
+
+/*
+ * Function : void initialize_SCp(Scsi_Cmnd *cmd)
+ *
+ * Purpose : initialize the saved data pointers for cmd to point to the
+ * start of the buffer.
+ *
+ * Inputs : cmd - Scsi_Cmnd structure to have pointers reset.
+ */
+
+static __inline__ void initialize_SCp(Scsi_Cmnd *cmd)
+{
+ /*
+ * Initialize the Scsi Pointer field so that all of the commands in the
+ * various queues are valid.
+ */
+
+ if (cmd->use_sg) {
+ cmd->SCp.buffer = (struct scatterlist *) cmd->buffer;
+ cmd->SCp.buffers_residual = cmd->use_sg - 1;
+ cmd->SCp.ptr = (char *)page_address(cmd->SCp.buffer->page)+
+ cmd->SCp.buffer->offset;
+ cmd->SCp.this_residual = cmd->SCp.buffer->length;
+ /* ++roman: Try to merge some scatter-buffers if they are at
+ * contiguous physical addresses.
+ */
+ merge_contiguous_buffers( cmd );
+ } else {
+ cmd->SCp.buffer = NULL;
+ cmd->SCp.buffers_residual = 0;
+ cmd->SCp.ptr = (char *) cmd->request_buffer;
+ cmd->SCp.this_residual = cmd->request_bufflen;
+ }
+}
+
+#include <linux/config.h>
+#include <linux/delay.h>
+
+#if NDEBUG
+static struct {
+ unsigned char mask;
+ const char * name;}
+signals[] = {{ SR_DBP, "PARITY"}, { SR_RST, "RST" }, { SR_BSY, "BSY" },
+ { SR_REQ, "REQ" }, { SR_MSG, "MSG" }, { SR_CD, "CD" }, { SR_IO, "IO" },
+ { SR_SEL, "SEL" }, {0, NULL}},
+basrs[] = {{BASR_ATN, "ATN"}, {BASR_ACK, "ACK"}, {0, NULL}},
+icrs[] = {{ICR_ASSERT_RST, "ASSERT RST"},{ICR_ASSERT_ACK, "ASSERT ACK"},
+ {ICR_ASSERT_BSY, "ASSERT BSY"}, {ICR_ASSERT_SEL, "ASSERT SEL"},
+ {ICR_ASSERT_ATN, "ASSERT ATN"}, {ICR_ASSERT_DATA, "ASSERT DATA"},
+ {0, NULL}},
+mrs[] = {{MR_BLOCK_DMA_MODE, "MODE BLOCK DMA"}, {MR_TARGET, "MODE TARGET"},
+ {MR_ENABLE_PAR_CHECK, "MODE PARITY CHECK"}, {MR_ENABLE_PAR_INTR,
+ "MODE PARITY INTR"}, {MR_ENABLE_EOP_INTR,"MODE EOP INTR"},
+ {MR_MONITOR_BSY, "MODE MONITOR BSY"},
+ {MR_DMA_MODE, "MODE DMA"}, {MR_ARBITRATE, "MODE ARBITRATION"},
+ {0, NULL}};
+
+/*
+ * Function : void NCR5380_print(struct Scsi_Host *instance)
+ *
+ * Purpose : print the SCSI bus signals for debugging purposes
+ *
+ * Input : instance - which NCR5380
+ */
+
+static void NCR5380_print(struct Scsi_Host *instance) {
+ unsigned char status, data, basr, mr, icr, i;
+ unsigned long flags;
+
+ local_irq_save(flags);
+ data = NCR5380_read(CURRENT_SCSI_DATA_REG);
+ status = NCR5380_read(STATUS_REG);
+ mr = NCR5380_read(MODE_REG);
+ icr = NCR5380_read(INITIATOR_COMMAND_REG);
+ basr = NCR5380_read(BUS_AND_STATUS_REG);
+ local_irq_restore(flags);
+ printk("STATUS_REG: %02x ", status);
+ for (i = 0; signals[i].mask ; ++i)
+ if (status & signals[i].mask)
+ printk(",%s", signals[i].name);
+ printk("\nBASR: %02x ", basr);
+ for (i = 0; basrs[i].mask ; ++i)
+ if (basr & basrs[i].mask)
+ printk(",%s", basrs[i].name);
+ printk("\nICR: %02x ", icr);
+ for (i = 0; icrs[i].mask; ++i)
+ if (icr & icrs[i].mask)
+ printk(",%s", icrs[i].name);
+ printk("\nMODE: %02x ", mr);
+ for (i = 0; mrs[i].mask; ++i)
+ if (mr & mrs[i].mask)
+ printk(",%s", mrs[i].name);
+ printk("\n");
+}
+
+static struct {
+ unsigned char value;
+ const char *name;
+} phases[] = {
+ {PHASE_DATAOUT, "DATAOUT"}, {PHASE_DATAIN, "DATAIN"}, {PHASE_CMDOUT, "CMDOUT"},
+ {PHASE_STATIN, "STATIN"}, {PHASE_MSGOUT, "MSGOUT"}, {PHASE_MSGIN, "MSGIN"},
+ {PHASE_UNKNOWN, "UNKNOWN"}};
+
+/*
+ * Function : void NCR5380_print_phase(struct Scsi_Host *instance)
+ *
+ * Purpose : print the current SCSI phase for debugging purposes
+ *
+ * Input : instance - which NCR5380
+ */
+
+static void NCR5380_print_phase(struct Scsi_Host *instance)
+{
+ unsigned char status;
+ int i;
+
+ status = NCR5380_read(STATUS_REG);
+ if (!(status & SR_REQ))
+ printk(KERN_DEBUG "scsi%d: REQ not asserted, phase unknown.\n", HOSTNO);
+ else {
+ for (i = 0; (phases[i].value != PHASE_UNKNOWN) &&
+ (phases[i].value != (status & PHASE_MASK)); ++i);
+ printk(KERN_DEBUG "scsi%d: phase %s\n", HOSTNO, phases[i].name);
+ }
+}
+
+#else /* !NDEBUG */
+
+/* dummies... */
+__inline__ void NCR5380_print(struct Scsi_Host *instance) { };
+__inline__ void NCR5380_print_phase(struct Scsi_Host *instance) { };
+
+#endif
+
+/*
+ * ++roman: New scheme of calling NCR5380_main()
+ *
+ * If we're not in an interrupt, we can call our main directly, it cannot be
+ * already running. Else, we queue it on a task queue, if not 'main_running'
+ * tells us that a lower level is already executing it. This way,
+ * 'main_running' needs not be protected in a special way.
+ *
+ * queue_main() is a utility function for putting our main onto the task
+ * queue, if main_running is false. It should be called only from a
+ * interrupt or bottom half.
+ */
+
+#include <linux/workqueue.h>
+#include <linux/interrupt.h>
+
+static volatile int main_running = 0;
+static DECLARE_WORK(NCR5380_tqueue, (void (*)(void*))NCR5380_main, NULL);
+
+static __inline__ void queue_main(void)
+{
+ if (!main_running) {
+ /* If in interrupt and NCR5380_main() not already running,
+ queue it on the 'immediate' task queue, to be processed
+ immediately after the current interrupt processing has
+ finished. */
+ schedule_work(&NCR5380_tqueue);
+ }
+ /* else: nothing to do: the running NCR5380_main() will pick up
+ any newly queued command. */
+}
+
+
+static inline void NCR5380_all_init (void)
+{
+ static int done = 0;
+ if (!done) {
+ INI_PRINTK("scsi : NCR5380_all_init()\n");
+ done = 1;
+ }
+}
+
+
+/*
+ * Function : void NCR58380_print_options (struct Scsi_Host *instance)
+ *
+ * Purpose : called by probe code indicating the NCR5380 driver
+ * options that were selected.
+ *
+ * Inputs : instance, pointer to this instance. Unused.
+ */
+
+static void __init NCR5380_print_options (struct Scsi_Host *instance)
+{
+ printk(" generic options"
+#ifdef AUTOSENSE
+ " AUTOSENSE"
+#endif
+#ifdef REAL_DMA
+ " REAL DMA"
+#endif
+#ifdef PARITY
+ " PARITY"
+#endif
+#ifdef SUPPORT_TAGS
+ " SCSI-2 TAGGED QUEUING"
+#endif
+ );
+ printk(" generic release=%d", NCR5380_PUBLIC_RELEASE);
+}
+
+/*
+ * Function : void NCR5380_print_status (struct Scsi_Host *instance)
+ *
+ * Purpose : print commands in the various queues, called from
+ * NCR5380_abort and NCR5380_debug to aid debugging.
+ *
+ * Inputs : instance, pointer to this instance.
+ */
+
+static void NCR5380_print_status (struct Scsi_Host *instance)
+{
+ char *pr_bfr;
+ char *start;
+ int len;
+
+ NCR_PRINT(NDEBUG_ANY);
+ NCR_PRINT_PHASE(NDEBUG_ANY);
+
+ pr_bfr = (char *) __get_free_page(GFP_ATOMIC);
+ if (!pr_bfr) {
+ printk("NCR5380_print_status: no memory for print buffer\n");
+ return;
+ }
+ len = NCR5380_proc_info(pr_bfr, &start, 0, PAGE_SIZE, HOSTNO, 0);
+ pr_bfr[len] = 0;
+ printk("\n%s\n", pr_bfr);
+ free_page((unsigned long) pr_bfr);
+}
+
+
+/******************************************/
+/*
+ * /proc/scsi/[dtc pas16 t128 generic]/[0-ASC_NUM_BOARD_SUPPORTED]
+ *
+ * *buffer: I/O buffer
+ * **start: if inout == FALSE pointer into buffer where user read should start
+ * offset: current offset
+ * length: length of buffer
+ * hostno: Scsi_Host host_no
+ * inout: TRUE - user is writing; FALSE - user is reading
+ *
+ * Return the number of bytes read from or written
+*/
+
+#undef SPRINTF
+#define SPRINTF(fmt,args...) \
+ do { if (pos + strlen(fmt) + 20 /* slop */ < buffer + length) \
+ pos += sprintf(pos, fmt , ## args); } while(0)
+static
+char *lprint_Scsi_Cmnd (Scsi_Cmnd *cmd, char *pos, char *buffer, int length);
+
+static
+int NCR5380_proc_info (struct Scsi_Host *instance, char *buffer, char **start, off_t offset,
+ int length, int inout)
+{
+ char *pos = buffer;
+ struct NCR5380_hostdata *hostdata;
+ Scsi_Cmnd *ptr;
+ unsigned long flags;
+ off_t begin = 0;
+#define check_offset() \
+ do { \
+ if (pos - buffer < offset - begin) { \
+ begin += pos - buffer; \
+ pos = buffer; \
+ } \
+ } while (0)
+
+ hostdata = (struct NCR5380_hostdata *)instance->hostdata;
+
+ if (inout) { /* Has data been written to the file ? */
+ return(-ENOSYS); /* Currently this is a no-op */
+ }
+ SPRINTF("NCR5380 core release=%d.\n", NCR5380_PUBLIC_RELEASE);
+ check_offset();
+ local_irq_save(flags);
+ SPRINTF("NCR5380: coroutine is%s running.\n", main_running ? "" : "n't");
+ check_offset();
+ if (!hostdata->connected)
+ SPRINTF("scsi%d: no currently connected command\n", HOSTNO);
+ else
+ pos = lprint_Scsi_Cmnd ((Scsi_Cmnd *) hostdata->connected,
+ pos, buffer, length);
+ SPRINTF("scsi%d: issue_queue\n", HOSTNO);
+ check_offset();
+ for (ptr = (Scsi_Cmnd *) hostdata->issue_queue; ptr; ptr = NEXT(ptr)) {
+ pos = lprint_Scsi_Cmnd (ptr, pos, buffer, length);
+ check_offset();
+ }
+
+ SPRINTF("scsi%d: disconnected_queue\n", HOSTNO);
+ check_offset();
+ for (ptr = (Scsi_Cmnd *) hostdata->disconnected_queue; ptr;
+ ptr = NEXT(ptr)) {
+ pos = lprint_Scsi_Cmnd (ptr, pos, buffer, length);
+ check_offset();
+ }
+
+ local_irq_restore(flags);
+ *start = buffer + (offset - begin);
+ if (pos - buffer < offset - begin)
+ return 0;
+ else if (pos - buffer - (offset - begin) < length)
+ return pos - buffer - (offset - begin);
+ return length;
+}
+
+static char *
+lprint_Scsi_Cmnd (Scsi_Cmnd *cmd, char *pos, char *buffer, int length)
+{
+ int i, s;
+ unsigned char *command;
+ SPRINTF("scsi%d: destination target %d, lun %d\n",
+ H_NO(cmd), cmd->device->id, cmd->device->lun);
+ SPRINTF(" command = ");
+ command = cmd->cmnd;
+ SPRINTF("%2d (0x%02x)", command[0], command[0]);
+ for (i = 1, s = COMMAND_SIZE(command[0]); i < s; ++i)
+ SPRINTF(" %02x", command[i]);
+ SPRINTF("\n");
+ return pos;
+}
+
+
+/*
+ * Function : void NCR5380_init (struct Scsi_Host *instance)
+ *
+ * Purpose : initializes *instance and corresponding 5380 chip.
+ *
+ * Inputs : instance - instantiation of the 5380 driver.
+ *
+ * Notes : I assume that the host, hostno, and id bits have been
+ * set correctly. I don't care about the irq and other fields.
+ *
+ */
+
+static int NCR5380_init (struct Scsi_Host *instance, int flags)
+{
+ int i;
+ SETUP_HOSTDATA(instance);
+
+ NCR5380_all_init();
+
+ hostdata->aborted = 0;
+ hostdata->id_mask = 1 << instance->this_id;
+ hostdata->id_higher_mask = 0;
+ for (i = hostdata->id_mask; i <= 0x80; i <<= 1)
+ if (i > hostdata->id_mask)
+ hostdata->id_higher_mask |= i;
+ for (i = 0; i < 8; ++i)
+ hostdata->busy[i] = 0;
+#ifdef SUPPORT_TAGS
+ init_tags();
+#endif
+#if defined (REAL_DMA)
+ hostdata->dma_len = 0;
+#endif
+ hostdata->targets_present = 0;
+ hostdata->connected = NULL;
+ hostdata->issue_queue = NULL;
+ hostdata->disconnected_queue = NULL;
+ hostdata->flags = FLAG_CHECK_LAST_BYTE_SENT;
+
+ if (!the_template) {
+ the_template = instance->hostt;
+ first_instance = instance;
+ }
+
+
+#ifndef AUTOSENSE
+ if ((instance->cmd_per_lun > 1) || (instance->can_queue > 1))
+ printk("scsi%d: WARNING : support for multiple outstanding commands enabled\n"
+ " without AUTOSENSE option, contingent allegiance conditions may\n"
+ " be incorrectly cleared.\n", HOSTNO);
+#endif /* def AUTOSENSE */
+
+ NCR5380_write(INITIATOR_COMMAND_REG, ICR_BASE);
+ NCR5380_write(MODE_REG, MR_BASE);
+ NCR5380_write(TARGET_COMMAND_REG, 0);
+ NCR5380_write(SELECT_ENABLE_REG, 0);
+
+ return 0;
+}
+
+/*
+ * Function : int NCR5380_queue_command (Scsi_Cmnd *cmd,
+ * void (*done)(Scsi_Cmnd *))
+ *
+ * Purpose : enqueues a SCSI command
+ *
+ * Inputs : cmd - SCSI command, done - function called on completion, with
+ * a pointer to the command descriptor.
+ *
+ * Returns : 0
+ *
+ * Side effects :
+ * cmd is added to the per instance issue_queue, with minor
+ * twiddling done to the host specific fields of cmd. If the
+ * main coroutine is not running, it is restarted.
+ *
+ */
+
+static
+int NCR5380_queue_command (Scsi_Cmnd *cmd, void (*done)(Scsi_Cmnd *))
+{
+ SETUP_HOSTDATA(cmd->device->host);
+ Scsi_Cmnd *tmp;
+ int oldto;
+ unsigned long flags;
+ extern int update_timeout(Scsi_Cmnd * SCset, int timeout);
+
+#if (NDEBUG & NDEBUG_NO_WRITE)
+ switch (cmd->cmnd[0]) {
+ case WRITE_6:
+ case WRITE_10:
+ printk(KERN_NOTICE "scsi%d: WRITE attempted with NO_WRITE debugging flag set\n",
+ H_NO(cmd));
+ cmd->result = (DID_ERROR << 16);
+ done(cmd);
+ return 0;
+ }
+#endif /* (NDEBUG & NDEBUG_NO_WRITE) */
+
+
+#ifdef NCR5380_STATS
+# if 0
+ if (!hostdata->connected && !hostdata->issue_queue &&
+ !hostdata->disconnected_queue) {
+ hostdata->timebase = jiffies;
+ }
+# endif
+# ifdef NCR5380_STAT_LIMIT
+ if (cmd->request_bufflen > NCR5380_STAT_LIMIT)
+# endif
+ switch (cmd->cmnd[0])
+ {
+ case WRITE:
+ case WRITE_6:
+ case WRITE_10:
+ hostdata->time_write[cmd->device->id] -= (jiffies - hostdata->timebase);
+ hostdata->bytes_write[cmd->device->id] += cmd->request_bufflen;
+ hostdata->pendingw++;
+ break;
+ case READ:
+ case READ_6:
+ case READ_10:
+ hostdata->time_read[cmd->device->id] -= (jiffies - hostdata->timebase);
+ hostdata->bytes_read[cmd->device->id] += cmd->request_bufflen;
+ hostdata->pendingr++;
+ break;
+ }
+#endif
+
+ /*
+ * We use the host_scribble field as a pointer to the next command
+ * in a queue
+ */
+
+ NEXT(cmd) = NULL;
+ cmd->scsi_done = done;
+
+ cmd->result = 0;
+
+
+ /*
+ * Insert the cmd into the issue queue. Note that REQUEST SENSE
+ * commands are added to the head of the queue since any command will
+ * clear the contingent allegiance condition that exists and the
+ * sense data is only guaranteed to be valid while the condition exists.
+ */
+
+ local_irq_save(flags);
+ /* ++guenther: now that the issue queue is being set up, we can lock ST-DMA.
+ * Otherwise a running NCR5380_main may steal the lock.
+ * Lock before actually inserting due to fairness reasons explained in
+ * atari_scsi.c. If we insert first, then it's impossible for this driver
+ * to release the lock.
+ * Stop timer for this command while waiting for the lock, or timeouts
+ * may happen (and they really do), and it's no good if the command doesn't
+ * appear in any of the queues.
+ * ++roman: Just disabling the NCR interrupt isn't sufficient here,
+ * because also a timer int can trigger an abort or reset, which would
+ * alter queues and touch the lock.
+ */
+ if (!IS_A_TT()) {
+ oldto = update_timeout(cmd, 0);
+ falcon_get_lock();
+ update_timeout(cmd, oldto);
+ }
+ if (!(hostdata->issue_queue) || (cmd->cmnd[0] == REQUEST_SENSE)) {
+ LIST(cmd, hostdata->issue_queue);
+ NEXT(cmd) = hostdata->issue_queue;
+ hostdata->issue_queue = cmd;
+ } else {
+ for (tmp = (Scsi_Cmnd *)hostdata->issue_queue;
+ NEXT(tmp); tmp = NEXT(tmp))
+ ;
+ LIST(cmd, tmp);
+ NEXT(tmp) = cmd;
+ }
+ local_irq_restore(flags);
+
+ QU_PRINTK("scsi%d: command added to %s of queue\n", H_NO(cmd),
+ (cmd->cmnd[0] == REQUEST_SENSE) ? "head" : "tail");
+
+ /* If queue_command() is called from an interrupt (real one or bottom
+ * half), we let queue_main() do the job of taking care about main. If it
+ * is already running, this is a no-op, else main will be queued.
+ *
+ * If we're not in an interrupt, we can call NCR5380_main()
+ * unconditionally, because it cannot be already running.
+ */
+ if (in_interrupt() || ((flags >> 8) & 7) >= 6)
+ queue_main();
+ else
+ NCR5380_main(NULL);
+ return 0;
+}
+
+/*
+ * Function : NCR5380_main (void)
+ *
+ * Purpose : NCR5380_main is a coroutine that runs as long as more work can
+ * be done on the NCR5380 host adapters in a system. Both
+ * NCR5380_queue_command() and NCR5380_intr() will try to start it
+ * in case it is not running.
+ *
+ * NOTE : NCR5380_main exits with interrupts *disabled*, the caller should
+ * reenable them. This prevents reentrancy and kernel stack overflow.
+ */
+
+static void NCR5380_main (void *bl)
+{
+ Scsi_Cmnd *tmp, *prev;
+ struct Scsi_Host *instance = first_instance;
+ struct NCR5380_hostdata *hostdata = HOSTDATA(instance);
+ int done;
+ unsigned long flags;
+
+ /*
+ * We run (with interrupts disabled) until we're sure that none of