aboutsummaryrefslogtreecommitdiff
path: root/drivers/net/fec.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/net/fec.c
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'drivers/net/fec.c')
-rw-r--r--drivers/net/fec.c2259
1 files changed, 2259 insertions, 0 deletions
diff --git a/drivers/net/fec.c b/drivers/net/fec.c
new file mode 100644
index 00000000000..2c700849137
--- /dev/null
+++ b/drivers/net/fec.c
@@ -0,0 +1,2259 @@
+/*
+ * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
+ * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
+ *
+ * This version of the driver is specific to the FADS implementation,
+ * since the board contains control registers external to the processor
+ * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
+ * describes connections using the internal parallel port I/O, which
+ * is basically all of Port D.
+ *
+ * Right now, I am very watseful with the buffers. I allocate memory
+ * pages and then divide them into 2K frame buffers. This way I know I
+ * have buffers large enough to hold one frame within one buffer descriptor.
+ * Once I get this working, I will use 64 or 128 byte CPM buffers, which
+ * will be much more memory efficient and will easily handle lots of
+ * small packets.
+ *
+ * Much better multiple PHY support by Magnus Damm.
+ * Copyright (c) 2000 Ericsson Radio Systems AB.
+ *
+ * Support for FEC controller of ColdFire/5270/5271/5272/5274/5275/5280/5282.
+ * Copyrught (c) 2001-2004 Greg Ungerer (gerg@snapgear.com)
+ */
+
+#include <linux/config.h>
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/string.h>
+#include <linux/ptrace.h>
+#include <linux/errno.h>
+#include <linux/ioport.h>
+#include <linux/slab.h>
+#include <linux/interrupt.h>
+#include <linux/pci.h>
+#include <linux/init.h>
+#include <linux/delay.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/skbuff.h>
+#include <linux/spinlock.h>
+#include <linux/workqueue.h>
+#include <linux/bitops.h>
+
+#include <asm/irq.h>
+#include <asm/uaccess.h>
+#include <asm/io.h>
+#include <asm/pgtable.h>
+
+#if defined(CONFIG_M527x) || defined(CONFIG_M5272) || defined(CONFIG_M528x)
+#include <asm/coldfire.h>
+#include <asm/mcfsim.h>
+#include "fec.h"
+#else
+#include <asm/8xx_immap.h>
+#include <asm/mpc8xx.h>
+#include "commproc.h"
+#endif
+
+#if defined(CONFIG_FEC2)
+#define FEC_MAX_PORTS 2
+#else
+#define FEC_MAX_PORTS 1
+#endif
+
+/*
+ * Define the fixed address of the FEC hardware.
+ */
+static unsigned int fec_hw[] = {
+#if defined(CONFIG_M5272)
+ (MCF_MBAR + 0x840),
+#elif defined(CONFIG_M527x)
+ (MCF_MBAR + 0x1000),
+ (MCF_MBAR + 0x1800),
+#elif defined(CONFIG_M528x)
+ (MCF_MBAR + 0x1000),
+#else
+ &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec),
+#endif
+};
+
+static unsigned char fec_mac_default[] = {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+};
+
+/*
+ * Some hardware gets it MAC address out of local flash memory.
+ * if this is non-zero then assume it is the address to get MAC from.
+ */
+#if defined(CONFIG_NETtel)
+#define FEC_FLASHMAC 0xf0006006
+#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
+#define FEC_FLASHMAC 0xf0006000
+#elif defined (CONFIG_MTD_KeyTechnology)
+#define FEC_FLASHMAC 0xffe04000
+#elif defined(CONFIG_CANCam)
+#define FEC_FLASHMAC 0xf0020000
+#else
+#define FEC_FLASHMAC 0
+#endif
+
+unsigned char *fec_flashmac = (unsigned char *) FEC_FLASHMAC;
+
+/* Forward declarations of some structures to support different PHYs
+*/
+
+typedef struct {
+ uint mii_data;
+ void (*funct)(uint mii_reg, struct net_device *dev);
+} phy_cmd_t;
+
+typedef struct {
+ uint id;
+ char *name;
+
+ const phy_cmd_t *config;
+ const phy_cmd_t *startup;
+ const phy_cmd_t *ack_int;
+ const phy_cmd_t *shutdown;
+} phy_info_t;
+
+/* The number of Tx and Rx buffers. These are allocated from the page
+ * pool. The code may assume these are power of two, so it it best
+ * to keep them that size.
+ * We don't need to allocate pages for the transmitter. We just use
+ * the skbuffer directly.
+ */
+#define FEC_ENET_RX_PAGES 8
+#define FEC_ENET_RX_FRSIZE 2048
+#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
+#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
+#define FEC_ENET_TX_FRSIZE 2048
+#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
+#define TX_RING_SIZE 16 /* Must be power of two */
+#define TX_RING_MOD_MASK 15 /* for this to work */
+
+/* Interrupt events/masks.
+*/
+#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
+#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
+#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
+#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
+#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
+#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
+#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
+#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
+#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
+#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
+
+/* The FEC stores dest/src/type, data, and checksum for receive packets.
+ */
+#define PKT_MAXBUF_SIZE 1518
+#define PKT_MINBUF_SIZE 64
+#define PKT_MAXBLR_SIZE 1520
+
+
+/*
+ * The 5270/5271/5280/5282 RX control register also contains maximum frame
+ * size bits. Other FEC hardware does not, so we need to take that into
+ * account when setting it.
+ */
+#if defined(CONFIG_M527x) || defined(CONFIG_M528x)
+#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
+#else
+#define OPT_FRAME_SIZE 0
+#endif
+
+/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
+ * tx_bd_base always point to the base of the buffer descriptors. The
+ * cur_rx and cur_tx point to the currently available buffer.
+ * The dirty_tx tracks the current buffer that is being sent by the
+ * controller. The cur_tx and dirty_tx are equal under both completely
+ * empty and completely full conditions. The empty/ready indicator in
+ * the buffer descriptor determines the actual condition.
+ */
+struct fec_enet_private {
+ /* Hardware registers of the FEC device */
+ volatile fec_t *hwp;
+
+ /* The saved address of a sent-in-place packet/buffer, for skfree(). */
+ unsigned char *tx_bounce[TX_RING_SIZE];
+ struct sk_buff* tx_skbuff[TX_RING_SIZE];
+ ushort skb_cur;
+ ushort skb_dirty;
+
+ /* CPM dual port RAM relative addresses.
+ */
+ cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
+ cbd_t *tx_bd_base;
+ cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
+ cbd_t *dirty_tx; /* The ring entries to be free()ed. */
+ struct net_device_stats stats;
+ uint tx_full;
+ spinlock_t lock;
+
+ uint phy_id;
+ uint phy_id_done;
+ uint phy_status;
+ uint phy_speed;
+ phy_info_t *phy;
+ struct work_struct phy_task;
+
+ uint sequence_done;
+ uint mii_phy_task_queued;
+
+ uint phy_addr;
+
+ int index;
+ int opened;
+ int link;
+ int old_link;
+ int full_duplex;
+ unsigned char mac_addr[ETH_ALEN];
+};
+
+static int fec_enet_open(struct net_device *dev);
+static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
+static void fec_enet_mii(struct net_device *dev);
+static irqreturn_t fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs);
+static void fec_enet_tx(struct net_device *dev);
+static void fec_enet_rx(struct net_device *dev);
+static int fec_enet_close(struct net_device *dev);
+static struct net_device_stats *fec_enet_get_stats(struct net_device *dev);
+static void set_multicast_list(struct net_device *dev);
+static void fec_restart(struct net_device *dev, int duplex);
+static void fec_stop(struct net_device *dev);
+static void fec_set_mac_address(struct net_device *dev);
+
+
+/* MII processing. We keep this as simple as possible. Requests are
+ * placed on the list (if there is room). When the request is finished
+ * by the MII, an optional function may be called.
+ */
+typedef struct mii_list {
+ uint mii_regval;
+ void (*mii_func)(uint val, struct net_device *dev);
+ struct mii_list *mii_next;
+} mii_list_t;
+
+#define NMII 20
+mii_list_t mii_cmds[NMII];
+mii_list_t *mii_free;
+mii_list_t *mii_head;
+mii_list_t *mii_tail;
+
+static int mii_queue(struct net_device *dev, int request,
+ void (*func)(uint, struct net_device *));
+
+/* Make MII read/write commands for the FEC.
+*/
+#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
+#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
+ (VAL & 0xffff))
+#define mk_mii_end 0
+
+/* Transmitter timeout.
+*/
+#define TX_TIMEOUT (2*HZ)
+
+/* Register definitions for the PHY.
+*/
+
+#define MII_REG_CR 0 /* Control Register */
+#define MII_REG_SR 1 /* Status Register */
+#define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
+#define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
+#define MII_REG_ANAR 4 /* A-N Advertisement Register */
+#define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
+#define MII_REG_ANER 6 /* A-N Expansion Register */
+#define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
+#define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
+
+/* values for phy_status */
+
+#define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
+#define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
+#define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
+#define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
+#define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
+#define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
+#define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
+
+#define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
+#define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
+#define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
+#define PHY_STAT_SPMASK 0xf000 /* mask for speed */
+#define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
+#define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
+#define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
+#define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
+
+
+static int
+fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
+{
+ struct fec_enet_private *fep;
+ volatile fec_t *fecp;
+ volatile cbd_t *bdp;
+
+ fep = netdev_priv(dev);
+ fecp = (volatile fec_t*)dev->base_addr;
+
+ if (!fep->link) {
+ /* Link is down or autonegotiation is in progress. */
+ return 1;
+ }
+
+ /* Fill in a Tx ring entry */
+ bdp = fep->cur_tx;
+
+#ifndef final_version
+ if (bdp->cbd_sc & BD_ENET_TX_READY) {
+ /* Ooops. All transmit buffers are full. Bail out.
+ * This should not happen, since dev->tbusy should be set.
+ */
+ printk("%s: tx queue full!.\n", dev->name);
+ return 1;
+ }
+#endif
+
+ /* Clear all of the status flags.
+ */
+ bdp->cbd_sc &= ~BD_ENET_TX_STATS;
+
+ /* Set buffer length and buffer pointer.
+ */
+ bdp->cbd_bufaddr = __pa(skb->data);
+ bdp->cbd_datlen = skb->len;
+
+ /*
+ * On some FEC implementations data must be aligned on
+ * 4-byte boundaries. Use bounce buffers to copy data
+ * and get it aligned. Ugh.
+ */
+ if (bdp->cbd_bufaddr & 0x3) {
+ unsigned int index;
+ index = bdp - fep->tx_bd_base;
+ memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen);
+ bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
+ }
+
+ /* Save skb pointer.
+ */
+ fep->tx_skbuff[fep->skb_cur] = skb;
+
+ fep->stats.tx_bytes += skb->len;
+ fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
+
+ /* Push the data cache so the CPM does not get stale memory
+ * data.
+ */
+ flush_dcache_range((unsigned long)skb->data,
+ (unsigned long)skb->data + skb->len);
+
+ spin_lock_irq(&fep->lock);
+
+ /* Send it on its way. Tell FEC its ready, interrupt when done,
+ * its the last BD of the frame, and to put the CRC on the end.
+ */
+
+ bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
+ | BD_ENET_TX_LAST | BD_ENET_TX_TC);
+
+ dev->trans_start = jiffies;
+
+ /* Trigger transmission start */
+ fecp->fec_x_des_active = 0x01000000;
+
+ /* If this was the last BD in the ring, start at the beginning again.
+ */
+ if (bdp->cbd_sc & BD_ENET_TX_WRAP) {
+ bdp = fep->tx_bd_base;
+ } else {
+ bdp++;
+ }
+
+ if (bdp == fep->dirty_tx) {
+ fep->tx_full = 1;
+ netif_stop_queue(dev);
+ }
+
+ fep->cur_tx = (cbd_t *)bdp;
+
+ spin_unlock_irq(&fep->lock);
+
+ return 0;
+}
+
+static void
+fec_timeout(struct net_device *dev)
+{
+ struct fec_enet_private *fep = netdev_priv(dev);
+
+ printk("%s: transmit timed out.\n", dev->name);
+ fep->stats.tx_errors++;
+#ifndef final_version
+ {
+ int i;
+ cbd_t *bdp;
+
+ printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
+ (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
+ (unsigned long)fep->dirty_tx,
+ (unsigned long)fep->cur_rx);
+
+ bdp = fep->tx_bd_base;
+ printk(" tx: %u buffers\n", TX_RING_SIZE);
+ for (i = 0 ; i < TX_RING_SIZE; i++) {
+ printk(" %08x: %04x %04x %08x\n",
+ (uint) bdp,
+ bdp->cbd_sc,
+ bdp->cbd_datlen,
+ (int) bdp->cbd_bufaddr);
+ bdp++;
+ }
+
+ bdp = fep->rx_bd_base;
+ printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE);
+ for (i = 0 ; i < RX_RING_SIZE; i++) {
+ printk(" %08x: %04x %04x %08x\n",
+ (uint) bdp,
+ bdp->cbd_sc,
+ bdp->cbd_datlen,
+ (int) bdp->cbd_bufaddr);
+ bdp++;
+ }
+ }
+#endif
+ fec_restart(dev, 0);
+ netif_wake_queue(dev);
+}
+
+/* The interrupt handler.
+ * This is called from the MPC core interrupt.
+ */
+static irqreturn_t
+fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs)
+{
+ struct net_device *dev = dev_id;
+ volatile fec_t *fecp;
+ uint int_events;
+ int handled = 0;
+
+ fecp = (volatile fec_t*)dev->base_addr;
+
+ /* Get the interrupt events that caused us to be here.
+ */
+ while ((int_events = fecp->fec_ievent) != 0) {
+ fecp->fec_ievent = int_events;
+
+ /* Handle receive event in its own function.
+ */
+ if (int_events & FEC_ENET_RXF) {
+ handled = 1;
+ fec_enet_rx(dev);
+ }
+
+ /* Transmit OK, or non-fatal error. Update the buffer
+ descriptors. FEC handles all errors, we just discover
+ them as part of the transmit process.
+ */
+ if (int_events & FEC_ENET_TXF) {
+ handled = 1;
+ fec_enet_tx(dev);
+ }
+
+ if (int_events & FEC_ENET_MII) {
+ handled = 1;
+ fec_enet_mii(dev);
+ }
+
+ }
+ return IRQ_RETVAL(handled);
+}
+
+
+static void
+fec_enet_tx(struct net_device *dev)
+{
+ struct fec_enet_private *fep;
+ volatile cbd_t *bdp;
+ struct sk_buff *skb;
+
+ fep = netdev_priv(dev);
+ spin_lock(&fep->lock);
+ bdp = fep->dirty_tx;
+
+ while ((bdp->cbd_sc&BD_ENET_TX_READY) == 0) {
+ if (bdp == fep->cur_tx && fep->tx_full == 0) break;
+
+ skb = fep->tx_skbuff[fep->skb_dirty];
+ /* Check for errors. */
+ if (bdp->cbd_sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
+ BD_ENET_TX_RL | BD_ENET_TX_UN |
+ BD_ENET_TX_CSL)) {
+ fep->stats.tx_errors++;
+ if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
+ fep->stats.tx_heartbeat_errors++;
+ if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
+ fep->stats.tx_window_errors++;
+ if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
+ fep->stats.tx_aborted_errors++;
+ if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
+ fep->stats.tx_fifo_errors++;
+ if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
+ fep->stats.tx_carrier_errors++;
+ } else {
+ fep->stats.tx_packets++;
+ }
+
+#ifndef final_version
+ if (bdp->cbd_sc & BD_ENET_TX_READY)
+ printk("HEY! Enet xmit interrupt and TX_READY.\n");
+#endif
+ /* Deferred means some collisions occurred during transmit,
+ * but we eventually sent the packet OK.
+ */
+ if (bdp->cbd_sc & BD_ENET_TX_DEF)
+ fep->stats.collisions++;
+
+ /* Free the sk buffer associated with this last transmit.
+ */
+ dev_kfree_skb_any(skb);
+ fep->tx_skbuff[fep->skb_dirty] = NULL;
+ fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
+
+ /* Update pointer to next buffer descriptor to be transmitted.
+ */
+ if (bdp->cbd_sc & BD_ENET_TX_WRAP)
+ bdp = fep->tx_bd_base;
+ else
+ bdp++;
+
+ /* Since we have freed up a buffer, the ring is no longer
+ * full.
+ */
+ if (fep->tx_full) {
+ fep->tx_full = 0;
+ if (netif_queue_stopped(dev))
+ netif_wake_queue(dev);
+ }
+ }
+ fep->dirty_tx = (cbd_t *)bdp;
+ spin_unlock(&fep->lock);
+}
+
+
+/* During a receive, the cur_rx points to the current incoming buffer.
+ * When we update through the ring, if the next incoming buffer has
+ * not been given to the system, we just set the empty indicator,
+ * effectively tossing the packet.
+ */
+static void
+fec_enet_rx(struct net_device *dev)
+{
+ struct fec_enet_private *fep;
+ volatile fec_t *fecp;
+ volatile cbd_t *bdp;
+ struct sk_buff *skb;
+ ushort pkt_len;
+ __u8 *data;
+
+ fep = netdev_priv(dev);
+ fecp = (volatile fec_t*)dev->base_addr;
+
+ /* First, grab all of the stats for the incoming packet.
+ * These get messed up if we get called due to a busy condition.
+ */
+ bdp = fep->cur_rx;
+
+while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) {
+
+#ifndef final_version
+ /* Since we have allocated space to hold a complete frame,
+ * the last indicator should be set.
+ */
+ if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0)
+ printk("FEC ENET: rcv is not +last\n");
+#endif
+
+ if (!fep->opened)
+ goto rx_processing_done;
+
+ /* Check for errors. */
+ if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
+ BD_ENET_RX_CR | BD_ENET_RX_OV)) {
+ fep->stats.rx_errors++;
+ if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
+ /* Frame too long or too short. */
+ fep->stats.rx_length_errors++;
+ }
+ if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
+ fep->stats.rx_frame_errors++;
+ if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
+ fep->stats.rx_crc_errors++;
+ if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
+ fep->stats.rx_crc_errors++;
+ }
+
+ /* Report late collisions as a frame error.
+ * On this error, the BD is closed, but we don't know what we
+ * have in the buffer. So, just drop this frame on the floor.
+ */
+ if (bdp->cbd_sc & BD_ENET_RX_CL) {
+ fep->stats.rx_errors++;
+ fep->stats.rx_frame_errors++;
+ goto rx_processing_done;
+ }
+
+ /* Process the incoming frame.
+ */
+ fep->stats.rx_packets++;
+ pkt_len = bdp->cbd_datlen;
+ fep->stats.rx_bytes += pkt_len;
+ data = (__u8*)__va(bdp->cbd_bufaddr);
+
+ /* This does 16 byte alignment, exactly what we need.
+ * The packet length includes FCS, but we don't want to
+ * include that when passing upstream as it messes up
+ * bridging applications.
+ */
+ skb = dev_alloc_skb(pkt_len-4);
+
+ if (skb == NULL) {
+ printk("%s: Memory squeeze, dropping packet.\n", dev->name);
+ fep->stats.rx_dropped++;
+ } else {
+ skb->dev = dev;
+ skb_put(skb,pkt_len-4); /* Make room */
+ eth_copy_and_sum(skb,
+ (unsigned char *)__va(bdp->cbd_bufaddr),
+ pkt_len-4, 0);
+ skb->protocol=eth_type_trans(skb,dev);
+ netif_rx(skb);
+ }
+ rx_processing_done:
+
+ /* Clear the status flags for this buffer.
+ */
+ bdp->cbd_sc &= ~BD_ENET_RX_STATS;
+
+ /* Mark the buffer empty.
+ */
+ bdp->cbd_sc |= BD_ENET_RX_EMPTY;
+
+ /* Update BD pointer to next entry.
+ */
+ if (bdp->cbd_sc & BD_ENET_RX_WRAP)
+ bdp = fep->rx_bd_base;
+ else
+ bdp++;
+
+#if 1
+ /* Doing this here will keep the FEC running while we process
+ * incoming frames. On a heavily loaded network, we should be
+ * able to keep up at the expense of system resources.
+ */
+ fecp->fec_r_des_active = 0x01000000;
+#endif
+ } /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */
+ fep->cur_rx = (cbd_t *)bdp;
+
+#if 0
+ /* Doing this here will allow us to process all frames in the
+ * ring before the FEC is allowed to put more there. On a heavily
+ * loaded network, some frames may be lost. Unfortunately, this
+ * increases the interrupt overhead since we can potentially work
+ * our way back to the interrupt return only to come right back
+ * here.
+ */
+ fecp->fec_r_des_active = 0x01000000;
+#endif
+}
+
+
+static void
+fec_enet_mii(struct net_device *dev)
+{
+ struct fec_enet_private *fep;
+ volatile fec_t *ep;
+ mii_list_t *mip;
+ uint mii_reg;
+
+ fep = netdev_priv(dev);
+ ep = fep->hwp;
+ mii_reg = ep->fec_mii_data;
+
+ if ((mip = mii_head) == NULL) {
+ printk("MII and no head!\n");
+ return;
+ }
+
+ if (mip->mii_func != NULL)
+ (*(mip->mii_func))(mii_reg, dev);
+
+ mii_head = mip->mii_next;
+ mip->mii_next = mii_free;
+ mii_free = mip;
+
+ if ((mip = mii_head) != NULL)
+ ep->fec_mii_data = mip->mii_regval;
+}
+
+static int
+mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
+{
+ struct fec_enet_private *fep;
+ unsigned long flags;
+ mii_list_t *mip;
+ int retval;
+
+ /* Add PHY address to register command.
+ */
+ fep = netdev_priv(dev);
+ regval |= fep->phy_addr << 23;
+
+ retval = 0;
+
+ save_flags(flags);
+ cli();
+
+ if ((mip = mii_free) != NULL) {
+ mii_free = mip->mii_next;
+ mip->mii_regval = regval;
+ mip->mii_func = func;
+ mip->mii_next = NULL;
+ if (mii_head) {
+ mii_tail->mii_next = mip;
+ mii_tail = mip;
+ }
+ else {
+ mii_head = mii_tail = mip;
+ fep->hwp->fec_mii_data = regval;
+ }
+ }
+ else {
+ retval = 1;
+ }
+
+ restore_flags(flags);
+
+ return(retval);
+}
+
+static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
+{
+ int k;
+
+ if(!c)
+ return;
+
+ for(k = 0; (c+k)->mii_data != mk_mii_end; k++) {
+ mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
+ }
+}
+
+static void mii_parse_sr(uint mii_reg, struct net_device *dev)
+{
+ struct fec_enet_private *fep = netdev_priv(dev);
+ volatile uint *s = &(fep->phy_status);
+
+ *s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
+
+ if (mii_reg & 0x0004)
+ *s |= PHY_STAT_LINK;
+ if (mii_reg & 0x0010)
+ *s |= PHY_STAT_FAULT;
+ if (mii_reg & 0x0020)
+ *s |= PHY_STAT_ANC;
+}
+
+static void mii_parse_cr(uint mii_reg, struct net_device *dev)
+{
+ struct fec_enet_private *fep = netdev_priv(dev);
+ volatile uint *s = &(fep->phy_status);
+
+ *s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP);
+
+ if (mii_reg & 0x1000)
+ *s |= PHY_CONF_ANE;
+ if (mii_reg & 0x4000)
+ *s |= PHY_CONF_LOOP;
+}
+
+static void mii_parse_anar(uint mii_reg, struct net_device *dev)
+{
+ struct fec_enet_private *fep = netdev_priv(dev);
+ volatile uint *s = &(fep->phy_status);
+
+ *s &= ~(PHY_CONF_SPMASK);
+
+ if (mii_reg & 0x0020)
+ *s |= PHY_CONF_10HDX;
+ if (mii_reg & 0x0040)
+ *s |= PHY_CONF_10FDX;
+ if (mii_reg & 0x0080)
+ *s |= PHY_CONF_100HDX;
+ if (mii_reg & 0x00100)
+ *s |= PHY_CONF_100FDX;
+}
+
+/* ------------------------------------------------------------------------- */
+/* The Level one LXT970 is used by many boards */
+
+#define MII_LXT970_MIRROR 16 /* Mirror register */
+#define MII_LXT970_IER 17 /* Interrupt Enable Register */
+#define MII_LXT970_ISR 18 /* Interrupt Status Register */
+#define MII_LXT970_CONFIG 19 /* Configuration Register */
+#define MII_LXT970_CSR 20 /* Chip Status Register */
+
+static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
+{
+ struct fec_enet_private *fep = netdev_priv(dev);
+ volatile uint *s = &(fep->phy_status);
+
+ *s &= ~(PHY_STAT_SPMASK);
+
+ if (mii_reg & 0x0800) {
+ if (mii_reg & 0x1000)
+ *s |= PHY_STAT_100FDX;
+ else
+ *s |= PHY_STAT_100HDX;
+ } else {
+ if (mii_reg & 0x1000)
+ *s |= PHY_STAT_10FDX;
+ else
+ *s |= PHY_STAT_10HDX;
+ }
+}
+
+static phy_info_t phy_info_lxt970 = {
+ 0x07810000,
+ "LXT970",
+
+ (const phy_cmd_t []) { /* config */
+ { mk_mii_read(MII_REG_CR), mii_parse_cr },
+ { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
+ { mk_mii_end, }
+ },
+ (const phy_cmd_t []) { /* startup - enable interrupts */
+ { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
+ { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
+ { mk_mii_end, }
+ },
+ (const phy_cmd_t []) { /* ack_int */
+ /* read SR and ISR to acknowledge */
+ { mk_mii_read(MII_REG_SR), mii_parse_sr },
+ { mk_mii_read(MII_LXT970_ISR), NULL },
+
+ /* find out the current status */
+ { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
+ { mk_mii_end, }
+ },
+ (const phy_cmd_t []) { /* shutdown - disable interrupts */
+ { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
+ { mk_mii_end, }
+ },
+};
+
+/* ------------------------------------------------------------------------- */
+/* The Level one LXT971 is used on some of my custom boards */
+
+/* register definitions for the 971 */
+
+#define MII_LXT971_PCR 16 /* Port Control Register */
+#define MII_LXT971_SR2 17 /* Status Register 2 */
+#define MII_LXT971_IER 18 /* Interrupt Enable Register */
+#define MII_LXT971_ISR 19 /* Interrupt Status Register */
+#define MII_LXT971_LCR 20 /* LED Control Register */
+#define MII_LXT971_TCR 30 /* Transmit Control Register */
+
+/*
+ * I had some nice ideas of running the MDIO faster...
+ * The 971 should support 8MHz and I tried it, but things acted really
+ * weird, so 2.5 MHz ought to be enough for anyone...
+ */
+
+static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
+{
+ struct fec_enet_private *fep = netdev_priv(dev);
+ volatile uint *s = &(fep->phy_status);
+
+ *s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
+
+ if (mii_reg & 0x0400) {
+ fep->link = 1;
+ *s |= PHY_STAT_LINK;
+ } else {
+ fep->link = 0;
+ }
+ if (mii_reg & 0x0080)
+ *s |= PHY_STAT_ANC;
+ if (mii_reg & 0x4000) {
+ if (mii_reg & 0x0200)
+ *s |= PHY_STAT_100FDX;
+ else
+ *s |= PHY_STAT_100HDX;
+ } else {
+ if (mii_reg & 0x0200)
+ *s |= PHY_STAT_10FDX;
+ else
+ *s |= PHY_STAT_10HDX;
+ }
+ if (mii_reg & 0x0008)
+ *s |= PHY_STAT_FAULT;
+}
+
+static phy_info_t phy_info_lxt971 = {
+ 0x0001378e,
+ "LXT971",
+
+ (const phy_cmd_t []) { /* config */
+ /* limit to 10MBit because my protorype board
+ * doesn't work with 100. */
+ { mk_mii_read(MII_REG_CR), mii_parse_cr },
+ { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
+ { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
+ { mk_mii_end, }
+ },
+ (const phy_cmd_t []) { /* startup - enable interrupts */
+ { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
+ { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
+ { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
+ /* Somehow does the 971 tell me that the link is down
+ * the first read after power-up.
+ * read here to get a valid value in ack_int */
+ { mk_mii_read(MII_REG_SR), mii_parse_sr },
+ { mk_mii_end, }
+ },
+ (const phy_cmd_t []) { /* ack_int */
+ /* find out the current status */
+ { mk_mii_read(MII_REG_SR), mii_parse_sr },
+ { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
+ /* we only need to read ISR to acknowledge */
+ { mk_mii_read(MII_LXT971_ISR), NULL },
+ { mk_mii_end, }
+ },
+ (const phy_cmd_t []) { /* shutdown - disable interrupts */
+ { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
+ { mk_mii_end, }
+ },
+};
+
+/* ------------------------------------------------------------------------- */
+/* The Quality Semiconductor QS6612 is used on the RPX CLLF */
+
+/* register definitions */
+
+#define MII_QS6612_MCR 17 /* Mode Control Register */
+#define MII_QS6612_FTR 27 /* Factory Test Register */
+#define MII_QS6612_MCO 28 /* Misc. Control Register */
+#define MII_QS6612_ISR 29 /* Interrupt Source Register */
+#define MII_QS6612_IMR 30 /* Interrupt Mask Register */
+#define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
+
+static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
+{
+ struct fec_enet_private *fep = netdev_priv(dev);
+ volatile uint *s = &(fep->phy_status);
+
+ *s &= ~(PHY_STAT_SPMASK);
+
+ switch((mii_reg >> 2) & 7) {
+ case 1: *s |= PHY_STAT_10HDX; break;
+ case 2: *s |= PHY_STAT_100HDX; break;
+ case 5: *s |= PHY_STAT_10FDX; break;
+ case 6: *s |= PHY_STAT_100FDX; break;
+ }
+}
+
+static phy_info_t phy_info_qs6612 = {
+ 0x00181440,
+ "QS6612",
+
+ (const phy_cmd_t []) { /* config */
+ /* The PHY powers up isolated on the RPX,
+ * so send a command to allow operation.
+ */
+ { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
+
+ /* parse cr and anar to get some info */
+ { mk_mii_read(MII_REG_CR), mii_parse_cr },
+ { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
+ { mk_mii_end, }
+ },
+ (const phy_cmd_t []) { /* startup - enable interrupts */
+ { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
+ { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
+ { mk_mii_end, }
+ },
+ (const phy_cmd_t []) { /* ack_int */
+ /* we need to read ISR, SR and ANER to acknowledge */
+ { mk_mii_read(MII_QS6612_ISR), NULL },
+ { mk_mii_read(MII_REG_SR), mii_parse_sr },
+ { mk_mii_read(MII_REG_ANER), NULL },
+
+ /* read pcr to get info */
+ { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
+ { mk_mii_end, }
+ },
+ (const phy_cmd_t []) { /* shutdown - disable interrupts */
+ { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
+ { mk_mii_end, }
+ },
+};
+
+/* ------------------------------------------------------------------------- */
+/* AMD AM79C874 phy */
+
+/* register definitions for the 874 */
+
+#define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
+#define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
+#define MII_AM79C874_DR 18 /* Diagnostic Register */
+#define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
+#define MII_AM79C874_MCR 21 /* ModeControl Register */
+#define MII_AM79C874_DC 23 /* Disconnect Counter */
+#define MII_AM79C874_REC 24 /* Recieve Error Counter */
+
+static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
+{
+ struct fec_enet_private *fep = netdev_priv(dev);
+ volatile uint *s = &(fep->phy_status);
+
+ *s &= ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
+
+ if (mii_reg & 0x0080)
+ *s |= PHY_STAT_ANC;
+ if (mii_reg & 0x0400)
+ *s |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
+ else
+ *s |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
+}
+
+static phy_info_t phy_info_am79c874 = {
+ 0x00022561,
+ "AM79C874",
+
+ (const phy_cmd_t []) { /* config */
+ /* limit to 10MBit because my protorype board
+ * doesn't work with 100. */
+ { mk_mii_read(MII_REG_CR), mii_parse_cr },
+ { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
+ { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
+ { mk_mii_end, }
+ },
+ (const phy_cmd_t []) { /* startup - enable interrupts */
+ { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
+ { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
+ { mk_mii_read(MII_REG_SR), mii_parse_sr },
+ { mk_mii_end, }
+ },
+ (const phy_cmd_t []) { /* ack_int */
+ /* find out the current status */
+ { mk_mii_read(MII_REG_SR), mii_parse_sr },
+ { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
+ /* we only need to read ISR to acknowledge */
+ { mk_mii_read(MII_AM79C874_ICSR), NULL },
+ { mk_mii_end, }
+ },
+ (const phy_cmd_t []) { /* shutdown - disable interrupts */
+ { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
+ { mk_mii_end, }
+ },
+};
+
+/* ------------------------------------------------------------------------- */
+/* Kendin KS8721BL phy */
+
+/* register definitions for the 8721 */
+
+#define MII_KS8721BL_RXERCR 21
+#define MII_KS8721BL_ICSR 22
+#define MII_KS8721BL_PHYCR 31
+
+static phy_info_t phy_info_ks8721bl = {
+ 0x00022161,
+ "KS8721BL",
+
+ (const phy_cmd_t []) { /* config */
+ { mk_mii_read(MII_REG_CR), mii_parse_cr },
+ { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
+ { mk_mii_end, }
+ },
+ (const phy_cmd_t []) { /* startup */
+ { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
+ { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
+ { mk_mii_read(MII_REG_SR), mii_parse_sr },
+ { mk_mii_end, }
+ },
+ (const phy_cmd_t []) { /* ack_int */
+ /* find out the current status */
+ { mk_mii_read(MII_REG_SR), mii_parse_sr },
+ /* we only need to read ISR to acknowledge */
+ { mk_mii_read(MII_KS8721BL_ICSR), NULL },
+ { mk_mii_end, }
+ },
+ (const phy_cmd_t []) { /* shutdown */
+ { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
+ { mk_mii_end, }
+ },
+};
+
+/* ------------------------------------------------------------------------- */
+
+static phy_info_t *phy_info[] = {
+ &phy_info_lxt970,
+ &phy_info_lxt971,
+ &phy_info_qs6612,
+ &phy_info_am79c874,
+ &phy_info_ks8721bl,
+ NULL
+};
+
+/* ------------------------------------------------------------------------- */
+
+#ifdef CONFIG_RPXCLASSIC
+static void
+mii_link_interrupt(void *dev_id);
+#else
+static irqreturn_t
+mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs);
+#endif
+
+#if defined(CONFIG_M5272)
+
+/*
+ * Code specific to Coldfire 5272 setup.
+ */
+static void __inline__ fec_request_intrs(struct net_device *dev)
+{
+ volatile unsigned long *icrp;
+
+ /* Setup interrupt handlers. */
+ if (request_irq(86, fec_enet_interrupt, 0, "fec(RX)", dev) != 0)
+ printk("FEC: Could not allocate FEC(RC) IRQ(86)!\n");
+ if (request_irq(87, fec_enet_interrupt, 0, "fec(TX)", dev) != 0)
+ printk("FEC: Could not allocate FEC(RC) IRQ(87)!\n");
+ if (request_irq(88, fec_enet_interrupt, 0, "fec(OTHER)", dev) != 0)
+ printk("FEC: Could not allocate FEC(OTHER) IRQ(88)!\n");
+ if (request_irq(66, mii_link_interrupt, 0, "fec(MII)", dev) != 0)
+ printk("FEC: Could not allocate MII IRQ(66)!\n");
+
+ /* Unmask interrupt at ColdFire 5272 SIM */
+ icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
+ *icrp = 0x00000ddd;
+ icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
+ *icrp = (*icrp & 0x70777777) | 0x0d000000;
+}
+
+static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
+{
+ volatile fec_t *fecp;
+
+ fecp = fep->hwp;
+ fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
+ fecp->fec_x_cntrl = 0x00;
+
+ /*
+ * Set MII speed to 2.5 MHz
+ * See 5272 manual section 11.5.8: MSCR
+ */
+ fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
+ fecp->fec_mii_speed = fep->phy_speed;
+
+ fec_restart(dev, 0);
+}
+
+static void __inline__ fec_get_mac(struct net_device *dev)
+{
+ struct fec_enet_private *fep = netdev_priv(dev);
+ volatile fec_t *fecp;
+ unsigned char *iap, tmpaddr[6];
+ int i;
+
+ fecp = fep->hwp;
+
+ if (fec_flashmac) {
+ /*
+ * Get MAC address from FLASH.
+ * If it is all 1's or 0's, use the default.
+ */
+ iap = fec_flashmac;
+ if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
+ (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
+ iap = fec_mac_default;
+ if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
+ (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
+ iap = fec_mac_default;
+ } else {
+ *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
+ *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
+ iap = &tmpaddr[0];
+ }
+
+ for (i=0; i<ETH_ALEN; i++)
+ dev->dev_addr[i] = fep->mac_addr[i] = *iap++;
+
+ /* Adjust MAC if using default MAC address */
+ if (iap == fec_mac_default) {
+ dev->dev_addr[ETH_ALEN-1] = fep->mac_addr[ETH_ALEN-1] =
+ iap[ETH_ALEN-1] + fep->index;
+ }
+}
+
+static void __inline__ fec_enable_phy_intr(void)
+{
+}
+
+static void __inline__ fec_disable_phy_intr(void)
+{
+ volatile unsigned long *icrp;
+ icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
+ *icrp = (*icrp & 0x70777777) | 0x08000000;
+}
+
+static void __inline__ fec_phy_ack_intr(void)
+{
+ volatile unsigned long *icrp;
+ /* Acknowledge the interrupt */
+ icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
+ *icrp = (*icrp & 0x77777777) | 0x08000000;
+}
+
+static void __inline__ fec_localhw_setup(void)
+{
+}
+
+/*
+ * Do not need to make region uncached on 5272.
+ */
+static void __inline__ fec_uncache(unsigned long addr)
+{
+}
+
+/* ------------------------------------------------------------------------- */
+
+#elif defined(CONFIG_M527x) || defined(CONFIG_M528x)
+
+/*
+ * Code specific to Coldfire 5270/5271/5274/5275 and 5280/5282 setups.
+ */
+static void __inline__ fec_request_intrs(struct net_device *dev)
+{
+ struct fec_enet_private *fep;
+ int b;
+
+ fep = netdev_priv(dev);
+ b = (fep->index) ? 128 : 64;
+
+ /* Setup interrupt handlers. */
+ if (request_irq(b+23, fec_enet_interrupt, 0, "fec(TXF)", dev) != 0)
+ printk("FEC: Could not allocate FEC(TXF) IRQ(%d+23)!\n", b);
+ if (request_irq(b+24, fec_enet_interrupt, 0, "fec(TXB)", dev) != 0)
+ printk("FEC: Could not allocate FEC(TXB) IRQ(%d+24)!\n", b);
+ if (request_irq(b+25, fec_enet_interrupt, 0, "fec(TXFIFO)", dev) != 0)
+ printk("FEC: Could not allocate FEC(TXFIFO) IRQ(%d+25)!\n", b);
+ if (request_irq(b+26, fec_enet_interrupt, 0, "fec(TXCR)", dev) != 0)
+ printk("FEC: Could not allocate FEC(TXCR) IRQ(%d+26)!\n", b);
+
+ if (request_irq(b+27, fec_enet_interrupt, 0, "fec(RXF)", dev) != 0)
+ printk("FEC: Could not allocate FEC(RXF) IRQ(%d+27)!\n", b);
+ if (request_irq(b+28, fec_enet_interrupt, 0, "fec(RXB)", dev) != 0)
+ printk("FEC: Could not allocate FEC(RXB) IRQ(%d+28)!\n", b);
+
+ if (request_irq(b+29, fec_enet_interrupt, 0, "fec(MII)", dev) != 0)
+ printk("FEC: Could not allocate FEC(MII) IRQ(%d+29)!\n", b);
+ if (request_irq(b+30, fec_enet_interrupt, 0, "fec(LC)", dev) != 0)
+ printk("FEC: Could not allocate FEC(LC) IRQ(%d+30)!\n", b);
+ if (request_irq(b+31, fec_enet_interrupt, 0, "fec(HBERR)", dev) != 0)
+ printk("FEC: Could not allocate FEC(HBERR) IRQ(%d+31)!\n", b);
+ if (request_irq(b+32, fec_enet_interrupt, 0, "fec(GRA)", dev) != 0)
+ printk("FEC: Could not allocate FEC(GRA) IRQ(%d+32)!\n", b);
+ if (request_irq(b+33, fec_enet_interrupt, 0, "fec(EBERR)", dev) != 0)
+ printk("FEC: Could not allocate FEC(EBERR) IRQ(%d+33)!\n", b);
+ if (request_irq(b+34, fec_enet_interrupt, 0, "fec(BABT)", dev) != 0)
+ printk("FEC: Could not allocate FEC(BABT) IRQ(%d+34)!\n", b);
+ if (request_irq(b+35, fec_enet_interrupt, 0, "fec(BABR)", dev) != 0)
+ printk("FEC: Could not allocate FEC(BABR) IRQ(%d+35)!\n", b);
+
+ /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
+ {
+ volatile unsigned char *icrp;
+ volatile unsigned long *imrp;
+ int i;
+
+ b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
+ icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
+ MCFINTC_ICR0);
+ for (i = 23; (i < 36); i++)
+ icrp[i] = 0x23;
+
+ imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
+ MCFINTC_IMRH);
+ *imrp &= ~0x0000000f;
+ imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
+ MCFINTC_IMRL);
+ *imrp &= ~0xff800001;
+ }
+
+#if defined(CONFIG_M528x)
+ /* Set up gpio outputs for MII lines */
+ {
+ volatile unsigned short *gpio_paspar;
+
+ gpio_paspar = (volatile unsigned short *) (MCF_IPSBAR +
+ 0x100056);
+ *gpio_paspar = 0x0f00;
+ }
+#endif
+}
+
+static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
+{
+ volatile fec_t *fecp;
+
+ fecp = fep->hwp;
+ fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
+ fecp->fec_x_cntrl = 0x00;
+
+ /*
+ * Set MII speed to 2.5 MHz
+ * See 5282 manual section 17.5.4.7: MSCR
+ */
+ fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
+ fecp->fec_mii_speed = fep->phy_speed;
+
+ fec_restart(dev, 0);
+}
+
+static void __inline__ fec_get_mac(struct net_device *dev)
+{
+ struct fec_enet_private *fep = netdev_priv(dev);
+ volatile fec_t *fecp;
+ unsigned char *iap, tmpaddr[6];
+ int i;
+
+ fecp = fep->hwp;
+
+ if (fec_flashmac) {
+ /*
+ * Get MAC address from FLASH.
+ * If it is all 1's or 0's, use the default.
+ */
+ iap = fec_flashmac;
+ if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
+ (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
+ iap = fec_mac_default;
+ if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
+ (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
+ iap = fec_mac_default;
+ } else {
+ *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
+ *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
+ iap = &tmpaddr[0];
+ }
+
+ for (i=0; i<ETH_ALEN; i++)
+ dev->dev_addr[i] = fep->mac_addr[i] = *iap++;
+
+ /* Adjust MAC if using default MAC address */
+ if (iap == fec_mac_default) {
+ dev->dev_addr[ETH_ALEN-1] = fep->mac_addr[ETH_ALEN-1] =
+ iap[ETH_ALEN-1] + fep->index;
+ }
+}
+
+static void __inline__ fec_enable_phy_intr(void)
+{
+}
+
+static void __inline__ fec_disable_phy_intr(void)
+{
+}
+
+static void __inline__ fec_phy_ack_intr(void)
+{
+}
+
+static void __inline__ fec_localhw_setup(void)
+{
+}
+
+/*
+ * Do not need to make region uncached on 5272.
+ */
+static void __inline__ fec_uncache(unsigned long addr)
+{
+}
+
+/* ------------------------------------------------------------------------- */
+
+#else
+
+/*
+ * Code sepcific to the MPC860T setup.
+ */
+static void __inline__ fec_request_intrs(struct net_device *dev)
+{
+ volatile immap_t *immap;
+
+ immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
+
+ if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
+ panic("Could not allocate FEC IRQ!");
+
+#ifdef CONFIG_RPXCLASSIC
+ /* Make Port C, bit 15 an input that causes interrupts.
+ */
+ immap->im_ioport.iop_pcpar &= ~0x0001;
+ immap->im_ioport.iop_pcdir &= ~0x0001;
+ immap->im_ioport.iop_pcso &= ~0x0001;
+ immap->im_ioport.iop_pcint |= 0x0001;
+ cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev);
+
+ /* Make LEDS reflect Link status.
+ */
+ *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE;
+#endif
+#ifdef CONFIG_FADS
+ if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0)
+ panic("Could not allocate MII IRQ!");
+#endif
+}
+
+static void __inline__ fec_get_mac(struct net_device *dev)
+{
+ struct fec_enet_private *fep = netdev_priv(dev);
+ unsigned char *iap, tmpaddr[6];
+ bd_t *bd;
+ int i;
+
+ iap = bd->bi_enetaddr;
+ bd = (bd_t *)__res;
+
+#ifdef CONFIG_RPXCLASSIC
+ /* The Embedded Planet boards have only one MAC address in
+ * the EEPROM, but can have two Ethernet ports. For the
+ * FEC port, we create another address by setting one of
+ * the address bits above something that would have (up to
+ * now) been allocated.
+ */
+ for (i=0; i<6; i++)
+ tmpaddr[i] = *iap++;
+ tmpaddr[3] |= 0x80;
+ iap = tmpaddr;
+#endif
+
+ for (i=0; i<6; i++)
+ dev->dev_addr[i] = fep->mac_addr[i] = *iap++;
+}
+
+static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
+{
+ extern uint _get_IMMR(void);
+ volatile immap_t *immap;
+ volatile fec_t *fecp;
+
+ fecp = fep->hwp;
+ immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
+
+ /* Configure all of port D for MII.
+ */
+ immap->im_ioport.iop_pdpar = 0x1fff;
+
+ /* Bits moved from Rev. D onward.
+ */
+ if ((_get_IMMR() & 0xffff) < 0x0501)
+ immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */
+ else
+ immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */
+
+ /* Set MII speed to 2.5 MHz
+ */
+ fecp->fec_mii_speed = fep->phy_speed =
+ ((bd->bi_busfreq * 1000000) / 2500000) & 0x7e;
+}
+
+static void __inline__ fec_enable_phy_intr(void)
+{
+ volatile fec_t *fecp;
+
+ fecp = fep->hwp;
+
+ /* Enable MII command finished interrupt
+ */
+ fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
+}
+
+static void __inline__ fec_disable_phy_intr(void)
+{
+}
+
+static void __inline__ fec_phy_ack_intr(void)
+{
+}
+
+static void __inline__ fec_localhw_setup(void)
+{
+ volatile fec_t *fecp;
+
+ fecp = fep->hwp;
+ fecp->fec_r_hash = PKT_MAXBUF_SIZE;
+ /* Enable big endian and don't care about SDMA FC.
+ */
+ fecp->fec_fun_code = 0x78000000;
+}
+
+static void __inline__ fec_uncache(unsigned long addr)
+{
+ pte_t *pte;
+ pte = va_to_pte(mem_addr);
+ pte_val(*pte) |= _PAGE_NO_CACHE;
+ flush_tlb_page(init_mm.mmap, mem_addr);
+}
+
+#endif
+
+/* ------------------------------------------------------------------------- */
+
+static void mii_display_status(struct net_device *dev)
+{
+ struct fec_enet_private *fep = netdev_priv(dev);
+ volatile uint *s = &(fep->phy_status);
+
+ if (!fep->link && !fep->old_link) {
+ /* Link is still down - don't print anything */
+ return;
+ }
+
+ printk("%s: status: ", dev->name);
+
+ if (!fep->link) {
+ printk("link down");
+ } else {
+ printk("link up");
+
+ switch(*s & PHY_STAT_SPMASK) {
+ case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
+ case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
+ case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
+ case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
+ default:
+ printk(", Unknown speed/duplex");
+ }
+
+ if (*s & PHY_STAT_ANC)
+ printk(", auto-negotiation complete");
+ }
+
+ if (*s & PHY_STAT_FAULT)
+ printk(", remote fault");
+
+ printk(".\n");
+}
+
+static void mii_display_config(struct net_device *dev)
+{
+ struct fec_enet_private *fep = netdev_priv(dev);
+ volatile uint *s = &(fep->phy_status);
+
+ /*
+ ** When we get here, phy_task is already removed from
+ ** the workqueue. It is thus safe to allow to reuse it.
+ */
+ fep->mii_phy_task_queued = 0;
+ printk("%s: config: auto-negotiation ", dev->name);
+
+ if (*s & PHY_CONF_ANE)
+ printk("on");
+ else
+ printk("off");
+
+ if (*s & PHY_CONF_100FDX)
+ printk(", 100FDX");
+ if (*s & PHY_CONF_100HDX)
+ printk(", 100HDX");
+ if (*s & PHY_CONF_10FDX)
+ printk(", 10FDX");
+ if (*s & PHY_CONF_10HDX)
+ printk(", 10HDX");
+ if (!(*s & PHY_CONF_SPMASK))
+ printk(", No speed/duplex selected?");
+
+ if (*s & PHY_CONF_LOOP)
+ printk(", loopback enabled");
+
+ printk(".\n");
+
+ fep->sequence_done = 1;
+}
+
+static void mii_relink(struct net_device *dev)
+{
+ struct fec_enet_private *fep = netdev_priv(dev);
+ int duplex;
+
+ /*
+ ** When we get here, phy_task is already removed from
+ ** the workqueue. It is thus safe to allow to reuse it.
+ */
+ fep->mii_phy_task_queued = 0;
+ fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
+ mii_display_status(dev);
+ fep->old_link = fep->link;
+
+ if (fep->link) {
+ duplex = 0;
+ if (fep->phy_status
+ & (PHY_STAT_100FDX | PHY_STAT_10FDX))
+ duplex = 1;
+ fec_restart(dev, duplex);
+ }
+ else
+ fec_stop(dev);
+
+#if 0
+ enable_irq(fep->mii_irq);
+#endif
+
+}
+
+/* mii_queue_relink is called in interrupt context from mii_link_interrupt */
+static void mii_queue_relink(uint mii_reg, struct net_device *dev)
+{
+ struct fec_enet_private *fep = netdev_priv(dev);
+
+ /*
+ ** We cannot queue phy_task twice in the workqueue. It
+ ** would cause an endless loop in the workqueue.
+ ** Fortunately, if the last mii_relink entry has not yet been
+ ** executed now, it will do the job for the current interrupt,
+ ** which is just what we want.
+ */
+ if (fep->mii_phy_task_queued)
+ return;
+
+ fep->mii_phy_task_queued = 1;
+ INIT_WORK(&fep->phy_task, (void*)mii_relink, dev);
+ schedule_work(&fep->phy_task);
+}
+
+/* mii_queue_config is called in user context from fec_enet_open */
+static void mii_queue_config(uint mii_reg, struct net_device *dev)
+{
+ struct fec_enet_private *fep = netdev_priv(dev);
+
+ if (fep->mii_phy_task_queued)
+ return;
+
+ fep->mii_phy_task_queued = 1;
+ INIT_WORK(&fep->phy_task, (void*)mii_display_config, dev);
+ schedule_work(&fep->phy_task);
+}
+
+
+
+phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_REG_CR), mii_queue_relink },
+ { mk_mii_end, } };
+phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_REG_CR), mii_queue_config },
+ { mk_mii_end, } };
+
+
+
+/* Read remainder of PHY ID.
+*/
+static void
+mii_discover_phy3(uint mii_reg, struct net_device *dev)
+{
+ struct fec_enet_private *fep;
+ int i;
+
+ fep = netdev_priv(dev);
+ fep->phy_id |= (mii_reg & 0xffff);
+ printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
+
+ for(i = 0; phy_info[i]; i++) {
+ if(phy_info[i]->id == (fep->phy_id >> 4))
+ break;
+ }
+
+ if (phy_info[i])
+ printk(" -- %s\n", phy_info[i]->name);
+ else
+ printk(" -- unknown PHY!\n");
+
+ fep->phy = phy_info[i];
+ fep->phy_id_done = 1;
+}
+
+/* Scan all of the MII PHY addresses looking for someone to respond
+ * with a valid ID. This usually happens quickly.
+ */
+static void
+mii_discover_phy(uint mii_reg, struct net_device *dev)
+{
+ struct fec_enet_private *fep;
+ volatile fec_t *fecp;
+ uint phytype;
+
+ fep = netdev_priv(dev);
+ fecp = fep->hwp;
+
+ if (fep->phy_addr < 32) {
+ if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
+
+ /* Got first part of ID, now get remainder.
+ */
+ fep->phy_id = phytype << 16;
+ mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
+ mii_discover_phy3);
+ }
+ else {
+ fep->phy_addr++;
+ mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
+ mii_discover_phy);
+ }
+ } else {
+ printk("FEC: No PHY device found.\n");
+ /* Disable external MII interface */
+ fecp->fec_mii_speed = fep->phy_speed = 0;
+ fec_disable_phy_intr();
+ }
+}
+
+/* This interrupt occurs when the PHY detects a link change.
+*/
+#ifdef CONFIG_RPXCLASSIC
+static void
+mii_link_interrupt(void *dev_id)
+#else
+static irqreturn_t
+mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs)
+#endif
+{
+ struct net_device *dev = dev_id;
+ struct fec_enet_private *fep = netdev_priv(dev);
+
+ fec_phy_ack_intr();
+
+#if 0
+ disable_irq(fep->mii_irq); /* disable now, enable later */
+#endif
+
+ mii_do_cmd(dev, fep->phy->ack_int);
+ mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
+
+ return IRQ_HANDLED;
+}
+
+static int
+fec_enet_open(struct net_device *dev)
+{
+ struct fec_enet_private *fep = netdev_priv(dev);
+
+ /* I should reset the ring buffers here, but I don't yet know
+ * a simple way to do that.
+ */
+ fec_set_mac_address(dev);
+
+ fep->sequence_done = 0;
+ fep->link = 0;
+
+ if (fep->phy) {
+ mii_do_cmd(dev, fep->phy->ack_int);
+ mii_do_cmd(dev, fep->phy->config);
+ mii_do_cmd(dev, phy_cmd_config); /* display configuration */
+
+ /* FIXME: use netif_carrier_{on,off} ; this polls
+ * until link is up which is wrong... could be
+ * 30 seconds or more we are trapped in here. -jgarzik
+ */
+ while(!fep->sequence_done)
+ schedule();
+
+ mii_do_cmd(dev, fep->phy->startup);
+
+ /* Set the initial link state to true. A lot of hardware
+ * based on this device does not implement a PHY interrupt,
+ * so we are never notified of link change.
+ */
+ fep->link = 1;
+ } else {
+ fep->link = 1; /* lets just try it and see */
+ /* no phy, go full duplex, it's most likely a hub chip */
+ fec_restart(dev, 1);
+ }
+
+ netif_start_queue(dev);
+ fep->opened = 1;
+ return 0; /* Success */
+}
+
+static int
+fec_enet_close(struct net_device *dev)
+{
+ struct fec_enet_private *fep = netdev_priv(dev);
+
+ /* Don't know what to do yet.
+ */
+ fep->opened = 0;
+ netif_stop_queue(dev);
+ fec_stop(dev);
+
+ return 0;
+}
+
+static struct net_device_stats *fec_enet_get_stats(struct net_device *dev)
+{
+ struct fec_enet_private *fep = netdev_priv(dev);
+
+ return &fep->stats;
+}
+
+/* Set or clear the multicast filter for this adaptor.
+ * Skeleton taken from sunlance driver.
+ * The CPM Ethernet implementation allows Multicast as well as individual
+ * MAC address filtering. Some of the drivers check to make sure it is
+ * a group multicast address, and discard those that are not. I guess I
+ * will do the same for now, but just remove the test if you want
+ * individual filtering as well (do the upper net layers want or support
+ * this kind of feature?).
+ */
+
+#define HASH_BITS 6 /* #bits in hash */
+#define CRC32_POLY 0xEDB88320
+
+static void set_multicast_list(struct net_device *dev)
+{
+ struct fec_enet_private *fep;
+ volatile fec_t *ep;
+ struct dev_mc_list *dmi;
+ unsigned int i, j, bit, data, crc;
+ unsigned char hash;
+
+ fep = netdev_priv(dev);
+ ep = fep->hwp;
+
+ if (dev->flags&IFF_PROMISC) {
+ /* Log any net taps. */
+ printk("%s: Promiscuous mode enabled.\n", dev->name);
+ ep->fec_r_cntrl |= 0x0008;
+ } else {
+
+ ep->fec_r_cntrl &= ~0x0008;
+
+ if (dev->flags & IFF_ALLMULTI) {
+ /* Catch all multicast addresses, so set the
+ * filter to all 1's.
+ */
+ ep->fec_hash_table_high = 0xffffffff;
+ ep->fec_hash_table_low = 0xffffffff;
+ } else {
+ /* Clear filter and add the addresses in hash register.
+ */
+ ep->fec_hash_table_high = 0;
+ ep->fec_hash_table_low = 0;
+
+ dmi = dev->mc_list;
+
+ for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
+ {
+ /* Only support group multicast for now.
+ */
+ if (!(dmi->dmi_addr[0] & 1))
+ continue;
+
+ /* calculate crc32 value of mac address
+ */
+ crc = 0xffffffff;
+
+ for (i = 0; i < dmi->dmi_addrlen; i++)
+ {
+ data = dmi->dmi_addr[i];
+ for (bit = 0; bit < 8; bit++, data >>= 1)
+ {
+ crc = (crc >> 1) ^
+ (((crc ^ data) & 1) ? CRC32_POLY : 0);
+ }
+ }
+
+ /* only upper 6 bits (HASH_BITS) are used
+ which point to specific bit in he hash registers
+ */
+ hash = (crc >> (32 - HASH_BITS)) & 0x3f;
+
+ if (hash > 31)
+ ep->fec_hash_table_high |= 1 << (hash - 32);
+ else
+ ep->fec_hash_table_low |= 1 << hash;
+ }
+ }
+ }
+}
+
+/* Set a MAC change in hardware.
+ */
+static void
+fec_set_mac_address(struct net_device *dev)
+{
+ struct fec_enet_private *fep;
+ volatile fec_t *fecp;
+
+ fep = netdev_priv(dev);
+ fecp = fep->hwp;
+
+ /* Set station address. */
+ fecp->fec_addr_low = fep->mac_addr[3] | (fep->mac_addr[2] << 8) |
+ (fep->mac_addr[1] << 16) | (fep->mac_addr[0] << 24);
+ fecp->fec_addr_high = (fep->mac_addr[5] << 16) |
+ (fep->mac_addr[4] << 24);
+
+}
+
+/* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
+ */
+ /*
+ * XXX: We need to clean up on failure exits here.
+ */
+int __init fec_enet_init(struct net_device *dev)
+{
+ struct fec_enet_private *fep = netdev_priv(dev);
+ unsigned long mem_addr;
+ volatile cbd_t *bdp;
+ cbd_t *cbd_base;
+ volatile fec_t *fecp;
+ int i, j;
+ static int index = 0;
+
+ /* Only allow us to be probed once. */
+ if (index >= FEC_MAX_PORTS)
+ return -ENXIO;
+
+ /* Create an Ethernet device instance.
+ */
+ fecp = (volatile fec_t *) fec_hw[index];
+
+ fep->index = index;
+ fep->hwp = fecp;
+
+ /* Whack a reset. We should wait for this.
+ */
+ fecp->fec_ecntrl = 1;
+ udelay(10);
+
+ /* Clear and enable interrupts */
+ fecp->fec_ievent = 0xffc0;
+ fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
+ FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
+ fecp->fec_hash_table_high = 0;
+ fecp->fec_hash_table_low = 0;
+ fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
+ fecp->fec_ecntrl = 2;
+ fecp->fec_r_des_active = 0x01000000;
+
+ /* Set the Ethernet address. If using multiple Enets on the 8xx,
+ * this needs some work to get unique addresses.
+ *
+ * This is our default MAC address unless the user changes
+ * it via eth_mac_addr (our dev->set_mac_addr handler).
+ */
+ fec_get_mac(dev);
+
+ /* Allocate memory for buffer descriptors.
+ */
+ if (((RX_RING_SIZE + TX_RING_SIZE) * sizeof(cbd_t)) > PAGE_SIZE) {
+ printk("FEC init error. Need more space.\n");
+ printk("FEC initialization failed.\n");
+ return 1;
+ }
+ mem_addr = __get_free_page(GFP_KERNEL);
+ cbd_base = (cbd_t *)mem_addr;
+ /* XXX: missing check for allocation failure */
+
+ fec_uncache(mem_addr);
+
+ /* Set receive and transmit descriptor base.
+ */
+ fep->rx_bd_base = cbd_base;
+ fep->tx_bd_base = cbd_base + RX_RING_SIZE;
+
+ fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
+ fep->cur_rx = fep->rx_bd_base;
+
+ fep->skb_cur = fep->skb_dirty = 0;
+
+ /* Initialize the receive buffer descriptors.
+ */
+ bdp = fep->rx_bd_base;
+ for (i=0; i<FEC_ENET_RX_PAGES; i++) {
+
+ /* Allocate a page.
+ */
+ mem_addr = __get_free_page(GFP_KERNEL);
+ /* XXX: missing check for allocation failure */
+
+ fec_uncache(mem_addr);
+
+ /* Initialize the BD for every fragment in the page.
+ */
+ for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
+ bdp->cbd_sc = BD_ENET_RX_EMPTY;
+ bdp->cbd_bufaddr = __pa(mem_addr);
+ mem_addr += FEC_ENET_RX_FRSIZE;
+ bdp++;
+ }
+ }
+
+ /* Set the last buffer to wrap.
+ */
+ bdp--;
+ bdp->cbd_sc |= BD_SC_WRAP;
+
+ /* ...and the same for transmmit.
+ */
+ bdp = fep->tx_bd_base;
+ for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
+ if (j >= FEC_ENET_TX_FRPPG) {
+ mem_addr = __get_free_page(GFP_KERNEL);
+ j = 1;
+ } else {
+ mem_addr += FEC_ENET_TX_FRSIZE;
+ j++;
+ }
+ fep->tx_bounce[i] = (unsigned char *) mem_addr;
+
+ /* Initialize the BD for every fragment in the page.
+ */
+ bdp->cbd_sc = 0;
+ bdp->cbd_bufaddr = 0;
+ bdp++;
+ }
+
+ /* Set the last buffer to wrap.
+ */
+ bdp--;
+ bdp->cbd_sc |= BD_SC_WRAP;
+
+ /* Set receive and transmit descriptor base.
+ */
+ fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
+ fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
+
+ /* Install our interrupt handlers. This varies depending on
+ * the architecture.
+ */
+ fec_request_intrs(dev);
+
+ dev->base_addr = (unsigned long)fecp;
+
+ /* The FEC Ethernet specific entries in the device structure. */
+ dev->open = fec_enet_open;
+ dev->hard_start_xmit = fec_enet_start_xmit;
+ dev->tx_timeout = fec_timeout;
+ dev->watchdog_timeo = TX_TIMEOUT;
+ dev->stop = fec_enet_close;
+ dev->get_stats = fec_enet_get_stats;
+ dev->set_multicast_list = set_multicast_list;
+
+ for (i=0; i<NMII-1; i++)
+ mii_cmds[i].mii_next = &mii_cmds[i+1];
+ mii_free = mii_cmds;
+
+ /* setup MII interface */
+ fec_set_mii(dev, fep);
+
+ printk("%s: FEC ENET Version 0.2, ", dev->name);
+ for (i=0; i<5; i++)
+ printk("%02x:", dev->dev_addr[i]);
+ printk("%02x\n", dev->dev_addr[5]);
+
+ /* Queue up command to detect the PHY and initialize the
+ * remainder of the interface.
+ */
+ fep->phy_id_done = 0;
+ fep->phy_addr = 0;
+ mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
+
+ index++;
+ return 0;
+}
+
+/* This function is called to start or restart the FEC during a link
+ * change. This only happens when switching between half and full
+ * duplex.
+ */
+static void
+fec_restart(struct net_device *dev, int duplex)
+{
+ struct fec_enet_private *fep;
+ volatile cbd_t *bdp;
+ volatile fec_t *fecp;
+ int i;
+
+ fep = netdev_priv(dev);
+ fecp = fep->hwp;
+
+ /* Whack a reset. We should wait for this.
+ */
+ fecp->fec_ecntrl = 1;
+ udelay(10);
+
+ /* Enable interrupts we wish to service.
+ */
+ fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
+ FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
+
+ /* Clear any outstanding interrupt.
+ */
+ fecp->fec_ievent = 0xffc0;
+ fec_enable_phy_intr();
+
+ /* Set station address.
+ */
+ fecp->fec_addr_low = fep->mac_addr[3] | (fep->mac_addr[2] << 8) |
+ (fep->mac_addr[1] << 16) | (fep->mac_addr[0] << 24);
+ fecp->fec_addr_high = (fep->mac_addr[5] << 16) |
+ (fep->mac_addr[4] << 24);
+
+ for (i=0; i<ETH_ALEN; i++)
+ dev->dev_addr[i] = fep->mac_addr[i];
+
+ /* Reset all multicast.
+ */
+ fecp->fec_hash_table_high = 0;
+ fecp->fec_hash_table_low = 0;
+
+ /* Set maximum receive buffer size.
+ */
+ fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
+
+ fec_localhw_setup();
+
+ /* Set receive and transmit descriptor base.
+ */
+ fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
+ fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
+
+ fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
+ fep->cur_rx = fep->rx_bd_base;
+
+ /* Reset SKB transmit buffers.
+ */
+ fep->skb_cur = fep->skb_dirty = 0;
+ for (i=0; i<=TX_RING_MOD_MASK; i++) {
+ if (fep->tx_skbuff[i] != NULL) {
+ dev_kfree_skb_any(fep->tx_skbuff[i]);
+ fep->tx_skbuff[i] = NULL;
+ }
+ }
+
+ /* Initialize the receive buffer descriptors.
+ */
+ bdp = fep->rx_bd_base;
+ for (i=0; i<RX_RING_SIZE; i++) {
+
+ /* Initialize the BD for every fragment in the page.
+ */
+ bdp->cbd_sc = BD_ENET_RX_EMPTY;
+ bdp++;
+ }
+
+ /* Set the last buffer to wrap.
+ */
+ bdp--;
+ bdp->cbd_sc |= BD_SC_WRAP;
+
+ /* ...and the same for transmmit.
+ */
+ bdp = fep->tx_bd_base;
+ for (i=0; i<TX_RING_SIZE; i++) {
+
+ /* Initialize the BD for every fragment in the page.
+ */
+ bdp->cbd_sc = 0;
+ bdp->cbd_bufaddr = 0;
+ bdp++;
+ }
+
+ /* Set the last buffer to wrap.
+ */
+ bdp--;
+ bdp->cbd_sc |= BD_SC_WRAP;
+
+ /* Enable MII mode.
+ */
+ if (duplex) {
+ fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
+ fecp->fec_x_cntrl = 0x04; /* FD enable */
+ }
+ else {
+ /* MII enable|No Rcv on Xmit */
+ fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
+ fecp->fec_x_cntrl = 0x00;
+ }
+ fep->full_duplex = duplex;
+
+ /* Set MII speed.
+ */
+ fecp->fec_mii_speed = fep->phy_speed;
+
+ /* And last, enable the transmit and receive processing.
+ */
+ fecp->fec_ecntrl = 2;
+ fecp->fec_r_des_active = 0x01000000;
+}
+
+static void
+fec_stop(struct net_device *dev)
+{
+ volatile fec_t *fecp;
+ struct fec_enet_private *fep;
+
+ fep = netdev_priv(dev);
+ fecp = fep->hwp;
+
+ fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
+
+ while(!(fecp->fec_ievent & 0x10000000));
+
+ /* Whack a reset. We should wait for this.
+ */
+ fecp->fec_ecntrl = 1;
+ udelay(10);
+
+ /* Clear outstanding MII command interrupts.
+ */
+ fecp->fec_ievent = FEC_ENET_MII;
+ fec_enable_phy_intr();
+
+ fecp->fec_imask = FEC_ENET_MII;
+ fecp->fec_mii_speed = fep->phy_speed;
+}
+
+static int __init fec_enet_module_init(void)
+{
+ struct net_device *dev;
+ int i, err;
+
+ for (i = 0; (i < FEC_MAX_PORTS); i++) {
+ dev = alloc_etherdev(sizeof(struct fec_enet_private));
+ if (!dev)
+ return -ENOMEM;
+ err = fec_enet_init(dev);
+ if (err) {
+ free_netdev(dev);
+ continue;
+ }
+ if (register_netdev(dev) != 0) {
+ /* XXX: missing cleanup here */
+ free_netdev(dev);
+ return -EIO;
+ }
+ }
+ return 0;
+}
+
+module_init(fec_enet_module_init);
+
+MODULE_LICENSE("GPL");