aboutsummaryrefslogtreecommitdiff
path: root/drivers/net/defxx.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/net/defxx.c
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'drivers/net/defxx.c')
-rw-r--r--drivers/net/defxx.c3463
1 files changed, 3463 insertions, 0 deletions
diff --git a/drivers/net/defxx.c b/drivers/net/defxx.c
new file mode 100644
index 00000000000..a6aa56598f2
--- /dev/null
+++ b/drivers/net/defxx.c
@@ -0,0 +1,3463 @@
+/*
+ * File Name:
+ * defxx.c
+ *
+ * Copyright Information:
+ * Copyright Digital Equipment Corporation 1996.
+ *
+ * This software may be used and distributed according to the terms of
+ * the GNU General Public License, incorporated herein by reference.
+ *
+ * Abstract:
+ * A Linux device driver supporting the Digital Equipment Corporation
+ * FDDI EISA and PCI controller families. Supported adapters include:
+ *
+ * DEC FDDIcontroller/EISA (DEFEA)
+ * DEC FDDIcontroller/PCI (DEFPA)
+ *
+ * The original author:
+ * LVS Lawrence V. Stefani <lstefani@yahoo.com>
+ *
+ * Maintainers:
+ * macro Maciej W. Rozycki <macro@linux-mips.org>
+ *
+ * Credits:
+ * I'd like to thank Patricia Cross for helping me get started with
+ * Linux, David Davies for a lot of help upgrading and configuring
+ * my development system and for answering many OS and driver
+ * development questions, and Alan Cox for recommendations and
+ * integration help on getting FDDI support into Linux. LVS
+ *
+ * Driver Architecture:
+ * The driver architecture is largely based on previous driver work
+ * for other operating systems. The upper edge interface and
+ * functions were largely taken from existing Linux device drivers
+ * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
+ * driver.
+ *
+ * Adapter Probe -
+ * The driver scans for supported EISA adapters by reading the
+ * SLOT ID register for each EISA slot and making a match
+ * against the expected value.
+ *
+ * Bus-Specific Initialization -
+ * This driver currently supports both EISA and PCI controller
+ * families. While the custom DMA chip and FDDI logic is similar
+ * or identical, the bus logic is very different. After
+ * initialization, the only bus-specific differences is in how the
+ * driver enables and disables interrupts. Other than that, the
+ * run-time critical code behaves the same on both families.
+ * It's important to note that both adapter families are configured
+ * to I/O map, rather than memory map, the adapter registers.
+ *
+ * Driver Open/Close -
+ * In the driver open routine, the driver ISR (interrupt service
+ * routine) is registered and the adapter is brought to an
+ * operational state. In the driver close routine, the opposite
+ * occurs; the driver ISR is deregistered and the adapter is
+ * brought to a safe, but closed state. Users may use consecutive
+ * commands to bring the adapter up and down as in the following
+ * example:
+ * ifconfig fddi0 up
+ * ifconfig fddi0 down
+ * ifconfig fddi0 up
+ *
+ * Driver Shutdown -
+ * Apparently, there is no shutdown or halt routine support under
+ * Linux. This routine would be called during "reboot" or
+ * "shutdown" to allow the driver to place the adapter in a safe
+ * state before a warm reboot occurs. To be really safe, the user
+ * should close the adapter before shutdown (eg. ifconfig fddi0 down)
+ * to ensure that the adapter DMA engine is taken off-line. However,
+ * the current driver code anticipates this problem and always issues
+ * a soft reset of the adapter at the beginning of driver initialization.
+ * A future driver enhancement in this area may occur in 2.1.X where
+ * Alan indicated that a shutdown handler may be implemented.
+ *
+ * Interrupt Service Routine -
+ * The driver supports shared interrupts, so the ISR is registered for
+ * each board with the appropriate flag and the pointer to that board's
+ * device structure. This provides the context during interrupt
+ * processing to support shared interrupts and multiple boards.
+ *
+ * Interrupt enabling/disabling can occur at many levels. At the host
+ * end, you can disable system interrupts, or disable interrupts at the
+ * PIC (on Intel systems). Across the bus, both EISA and PCI adapters
+ * have a bus-logic chip interrupt enable/disable as well as a DMA
+ * controller interrupt enable/disable.
+ *
+ * The driver currently enables and disables adapter interrupts at the
+ * bus-logic chip and assumes that Linux will take care of clearing or
+ * acknowledging any host-based interrupt chips.
+ *
+ * Control Functions -
+ * Control functions are those used to support functions such as adding
+ * or deleting multicast addresses, enabling or disabling packet
+ * reception filters, or other custom/proprietary commands. Presently,
+ * the driver supports the "get statistics", "set multicast list", and
+ * "set mac address" functions defined by Linux. A list of possible
+ * enhancements include:
+ *
+ * - Custom ioctl interface for executing port interface commands
+ * - Custom ioctl interface for adding unicast addresses to
+ * adapter CAM (to support bridge functions).
+ * - Custom ioctl interface for supporting firmware upgrades.
+ *
+ * Hardware (port interface) Support Routines -
+ * The driver function names that start with "dfx_hw_" represent
+ * low-level port interface routines that are called frequently. They
+ * include issuing a DMA or port control command to the adapter,
+ * resetting the adapter, or reading the adapter state. Since the
+ * driver initialization and run-time code must make calls into the
+ * port interface, these routines were written to be as generic and
+ * usable as possible.
+ *
+ * Receive Path -
+ * The adapter DMA engine supports a 256 entry receive descriptor block
+ * of which up to 255 entries can be used at any given time. The
+ * architecture is a standard producer, consumer, completion model in
+ * which the driver "produces" receive buffers to the adapter, the
+ * adapter "consumes" the receive buffers by DMAing incoming packet data,
+ * and the driver "completes" the receive buffers by servicing the
+ * incoming packet, then "produces" a new buffer and starts the cycle
+ * again. Receive buffers can be fragmented in up to 16 fragments
+ * (descriptor entries). For simplicity, this driver posts
+ * single-fragment receive buffers of 4608 bytes, then allocates a
+ * sk_buff, copies the data, then reposts the buffer. To reduce CPU
+ * utilization, a better approach would be to pass up the receive
+ * buffer (no extra copy) then allocate and post a replacement buffer.
+ * This is a performance enhancement that should be looked into at
+ * some point.
+ *
+ * Transmit Path -
+ * Like the receive path, the adapter DMA engine supports a 256 entry
+ * transmit descriptor block of which up to 255 entries can be used at
+ * any given time. Transmit buffers can be fragmented in up to 255
+ * fragments (descriptor entries). This driver always posts one
+ * fragment per transmit packet request.
+ *
+ * The fragment contains the entire packet from FC to end of data.
+ * Before posting the buffer to the adapter, the driver sets a three-byte
+ * packet request header (PRH) which is required by the Motorola MAC chip
+ * used on the adapters. The PRH tells the MAC the type of token to
+ * receive/send, whether or not to generate and append the CRC, whether
+ * synchronous or asynchronous framing is used, etc. Since the PRH
+ * definition is not necessarily consistent across all FDDI chipsets,
+ * the driver, rather than the common FDDI packet handler routines,
+ * sets these bytes.
+ *
+ * To reduce the amount of descriptor fetches needed per transmit request,
+ * the driver takes advantage of the fact that there are at least three
+ * bytes available before the skb->data field on the outgoing transmit
+ * request. This is guaranteed by having fddi_setup() in net_init.c set
+ * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest
+ * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad"
+ * bytes which we'll use to store the PRH.
+ *
+ * There's a subtle advantage to adding these pad bytes to the
+ * hard_header_len, it ensures that the data portion of the packet for
+ * an 802.2 SNAP frame is longword aligned. Other FDDI driver
+ * implementations may not need the extra padding and can start copying
+ * or DMAing directly from the FC byte which starts at skb->data. Should
+ * another driver implementation need ADDITIONAL padding, the net_init.c
+ * module should be updated and dev->hard_header_len should be increased.
+ * NOTE: To maintain the alignment on the data portion of the packet,
+ * dev->hard_header_len should always be evenly divisible by 4 and at
+ * least 24 bytes in size.
+ *
+ * Modification History:
+ * Date Name Description
+ * 16-Aug-96 LVS Created.
+ * 20-Aug-96 LVS Updated dfx_probe so that version information
+ * string is only displayed if 1 or more cards are
+ * found. Changed dfx_rcv_queue_process to copy
+ * 3 NULL bytes before FC to ensure that data is
+ * longword aligned in receive buffer.
+ * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable
+ * LLC group promiscuous mode if multicast list
+ * is too large. LLC individual/group promiscuous
+ * mode is now disabled if IFF_PROMISC flag not set.
+ * dfx_xmt_queue_pkt no longer checks for NULL skb
+ * on Alan Cox recommendation. Added node address
+ * override support.
+ * 12-Sep-96 LVS Reset current address to factory address during
+ * device open. Updated transmit path to post a
+ * single fragment which includes PRH->end of data.
+ * Mar 2000 AC Did various cleanups for 2.3.x
+ * Jun 2000 jgarzik PCI and resource alloc cleanups
+ * Jul 2000 tjeerd Much cleanup and some bug fixes
+ * Sep 2000 tjeerd Fix leak on unload, cosmetic code cleanup
+ * Feb 2001 Skb allocation fixes
+ * Feb 2001 davej PCI enable cleanups.
+ * 04 Aug 2003 macro Converted to the DMA API.
+ * 14 Aug 2004 macro Fix device names reported.
+ */
+
+/* Include files */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/string.h>
+#include <linux/errno.h>
+#include <linux/ioport.h>
+#include <linux/slab.h>
+#include <linux/interrupt.h>
+#include <linux/pci.h>
+#include <linux/delay.h>
+#include <linux/init.h>
+#include <linux/netdevice.h>
+#include <linux/fddidevice.h>
+#include <linux/skbuff.h>
+#include <linux/bitops.h>
+
+#include <asm/byteorder.h>
+#include <asm/io.h>
+
+#include "defxx.h"
+
+/* Version information string should be updated prior to each new release! */
+#define DRV_NAME "defxx"
+#define DRV_VERSION "v1.07"
+#define DRV_RELDATE "2004/08/14"
+
+static char version[] __devinitdata =
+ DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
+ " Lawrence V. Stefani and others\n";
+
+#define DYNAMIC_BUFFERS 1
+
+#define SKBUFF_RX_COPYBREAK 200
+/*
+ * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
+ * alignment for compatibility with old EISA boards.
+ */
+#define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
+
+/* Define module-wide (static) routines */
+
+static void dfx_bus_init(struct net_device *dev);
+static void dfx_bus_config_check(DFX_board_t *bp);
+
+static int dfx_driver_init(struct net_device *dev, const char *print_name);
+static int dfx_adap_init(DFX_board_t *bp, int get_buffers);
+
+static int dfx_open(struct net_device *dev);
+static int dfx_close(struct net_device *dev);
+
+static void dfx_int_pr_halt_id(DFX_board_t *bp);
+static void dfx_int_type_0_process(DFX_board_t *bp);
+static void dfx_int_common(struct net_device *dev);
+static void dfx_interrupt(int irq, void *dev_id, struct pt_regs *regs);
+
+static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
+static void dfx_ctl_set_multicast_list(struct net_device *dev);
+static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
+static int dfx_ctl_update_cam(DFX_board_t *bp);
+static int dfx_ctl_update_filters(DFX_board_t *bp);
+
+static int dfx_hw_dma_cmd_req(DFX_board_t *bp);
+static int dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
+static void dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
+static int dfx_hw_adap_state_rd(DFX_board_t *bp);
+static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
+
+static int dfx_rcv_init(DFX_board_t *bp, int get_buffers);
+static void dfx_rcv_queue_process(DFX_board_t *bp);
+static void dfx_rcv_flush(DFX_board_t *bp);
+
+static int dfx_xmt_queue_pkt(struct sk_buff *skb, struct net_device *dev);
+static int dfx_xmt_done(DFX_board_t *bp);
+static void dfx_xmt_flush(DFX_board_t *bp);
+
+/* Define module-wide (static) variables */
+
+static struct net_device *root_dfx_eisa_dev;
+
+
+/*
+ * =======================
+ * = dfx_port_write_byte =
+ * = dfx_port_read_byte =
+ * = dfx_port_write_long =
+ * = dfx_port_read_long =
+ * =======================
+ *
+ * Overview:
+ * Routines for reading and writing values from/to adapter
+ *
+ * Returns:
+ * None
+ *
+ * Arguments:
+ * bp - pointer to board information
+ * offset - register offset from base I/O address
+ * data - for dfx_port_write_byte and dfx_port_write_long, this
+ * is a value to write.
+ * for dfx_port_read_byte and dfx_port_read_byte, this
+ * is a pointer to store the read value.
+ *
+ * Functional Description:
+ * These routines perform the correct operation to read or write
+ * the adapter register.
+ *
+ * EISA port block base addresses are based on the slot number in which the
+ * controller is installed. For example, if the EISA controller is installed
+ * in slot 4, the port block base address is 0x4000. If the controller is
+ * installed in slot 2, the port block base address is 0x2000, and so on.
+ * This port block can be used to access PDQ, ESIC, and DEFEA on-board
+ * registers using the register offsets defined in DEFXX.H.
+ *
+ * PCI port block base addresses are assigned by the PCI BIOS or system
+ * firmware. There is one 128 byte port block which can be accessed. It
+ * allows for I/O mapping of both PDQ and PFI registers using the register
+ * offsets defined in DEFXX.H.
+ *
+ * Return Codes:
+ * None
+ *
+ * Assumptions:
+ * bp->base_addr is a valid base I/O address for this adapter.
+ * offset is a valid register offset for this adapter.
+ *
+ * Side Effects:
+ * Rather than produce macros for these functions, these routines
+ * are defined using "inline" to ensure that the compiler will
+ * generate inline code and not waste a procedure call and return.
+ * This provides all the benefits of macros, but with the
+ * advantage of strict data type checking.
+ */
+
+static inline void dfx_port_write_byte(
+ DFX_board_t *bp,
+ int offset,
+ u8 data
+ )
+
+ {
+ u16 port = bp->base_addr + offset;
+
+ outb(data, port);
+ }
+
+static inline void dfx_port_read_byte(
+ DFX_board_t *bp,
+ int offset,
+ u8 *data
+ )
+
+ {
+ u16 port = bp->base_addr + offset;
+
+ *data = inb(port);
+ }
+
+static inline void dfx_port_write_long(
+ DFX_board_t *bp,
+ int offset,
+ u32 data
+ )
+
+ {
+ u16 port = bp->base_addr + offset;
+
+ outl(data, port);
+ }
+
+static inline void dfx_port_read_long(
+ DFX_board_t *bp,
+ int offset,
+ u32 *data
+ )
+
+ {
+ u16 port = bp->base_addr + offset;
+
+ *data = inl(port);
+ }
+
+
+/*
+ * =============
+ * = dfx_init_one_pci_or_eisa =
+ * =============
+ *
+ * Overview:
+ * Initializes a supported FDDI EISA or PCI controller
+ *
+ * Returns:
+ * Condition code
+ *
+ * Arguments:
+ * pdev - pointer to pci device information (NULL for EISA)
+ * ioaddr - pointer to port (NULL for PCI)
+ *
+ * Functional Description:
+ *
+ * Return Codes:
+ * 0 - This device (fddi0, fddi1, etc) configured successfully
+ * -EBUSY - Failed to get resources, or dfx_driver_init failed.
+ *
+ * Assumptions:
+ * It compiles so it should work :-( (PCI cards do :-)
+ *
+ * Side Effects:
+ * Device structures for FDDI adapters (fddi0, fddi1, etc) are
+ * initialized and the board resources are read and stored in
+ * the device structure.
+ */
+static int __devinit dfx_init_one_pci_or_eisa(struct pci_dev *pdev, long ioaddr)
+{
+ static int version_disp;
+ char *print_name = DRV_NAME;
+ struct net_device *dev;
+ DFX_board_t *bp; /* board pointer */
+ int alloc_size; /* total buffer size used */
+ int err;
+
+ if (!version_disp) { /* display version info if adapter is found */
+ version_disp = 1; /* set display flag to TRUE so that */
+ printk(version); /* we only display this string ONCE */
+ }
+
+ if (pdev != NULL)
+ print_name = pci_name(pdev);
+
+ dev = alloc_fddidev(sizeof(*bp));
+ if (!dev) {
+ printk(KERN_ERR "%s: unable to allocate fddidev, aborting\n",
+ print_name);
+ return -ENOMEM;
+ }
+
+ /* Enable PCI device. */
+ if (pdev != NULL) {
+ err = pci_enable_device (pdev);
+ if (err) goto err_out;
+ ioaddr = pci_resource_start (pdev, 1);
+ }
+
+ SET_MODULE_OWNER(dev);
+ SET_NETDEV_DEV(dev, &pdev->dev);
+
+ bp = dev->priv;
+
+ if (!request_region(ioaddr,
+ pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN,
+ print_name)) {
+ printk(KERN_ERR "%s: Cannot reserve I/O resource "
+ "0x%x @ 0x%lx, aborting\n", print_name,
+ pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN, ioaddr);
+ err = -EBUSY;
+ goto err_out;
+ }
+
+ /* Initialize new device structure */
+
+ dev->base_addr = ioaddr; /* save port (I/O) base address */
+
+ dev->get_stats = dfx_ctl_get_stats;
+ dev->open = dfx_open;
+ dev->stop = dfx_close;
+ dev->hard_start_xmit = dfx_xmt_queue_pkt;
+ dev->set_multicast_list = dfx_ctl_set_multicast_list;
+ dev->set_mac_address = dfx_ctl_set_mac_address;
+
+ if (pdev == NULL) {
+ /* EISA board */
+ bp->bus_type = DFX_BUS_TYPE_EISA;
+ bp->next = root_dfx_eisa_dev;
+ root_dfx_eisa_dev = dev;
+ } else {
+ /* PCI board */
+ bp->bus_type = DFX_BUS_TYPE_PCI;
+ bp->pci_dev = pdev;
+ pci_set_drvdata (pdev, dev);
+ pci_set_master (pdev);
+ }
+
+ if (dfx_driver_init(dev, print_name) != DFX_K_SUCCESS) {
+ err = -ENODEV;
+ goto err_out_region;
+ }
+
+ err = register_netdev(dev);
+ if (err)
+ goto err_out_kfree;
+
+ printk("%s: registered as %s\n", print_name, dev->name);
+ return 0;
+
+err_out_kfree:
+ alloc_size = sizeof(PI_DESCR_BLOCK) +
+ PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
+#ifndef DYNAMIC_BUFFERS
+ (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
+#endif
+ sizeof(PI_CONSUMER_BLOCK) +
+ (PI_ALIGN_K_DESC_BLK - 1);
+ if (bp->kmalloced)
+ pci_free_consistent(pdev, alloc_size,
+ bp->kmalloced, bp->kmalloced_dma);
+err_out_region:
+ release_region(ioaddr, pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN);
+err_out:
+ free_netdev(dev);
+ return err;
+}
+
+static int __devinit dfx_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
+{
+ return dfx_init_one_pci_or_eisa(pdev, 0);
+}
+
+static int __init dfx_eisa_init(void)
+{
+ int rc = -ENODEV;
+ int i; /* used in for loops */
+ u16 port; /* temporary I/O (port) address */
+ u32 slot_id; /* EISA hardware (slot) ID read from adapter */
+
+ DBG_printk("In dfx_eisa_init...\n");
+
+ /* Scan for FDDI EISA controllers */
+
+ for (i=0; i < DFX_MAX_EISA_SLOTS; i++) /* only scan for up to 16 EISA slots */
+ {
+ port = (i << 12) + PI_ESIC_K_SLOT_ID; /* port = I/O address for reading slot ID */
+ slot_id = inl(port); /* read EISA HW (slot) ID */
+ if ((slot_id & 0xF0FFFFFF) == DEFEA_PRODUCT_ID)
+ {
+ port = (i << 12); /* recalc base addr */
+
+ if (dfx_init_one_pci_or_eisa(NULL, port) == 0) rc = 0;
+ }
+ }
+ return rc;
+}
+
+/*
+ * ================
+ * = dfx_bus_init =
+ * ================
+ *
+ * Overview:
+ * Initializes EISA and PCI controller bus-specific logic.
+ *
+ * Returns:
+ * None
+ *
+ * Arguments:
+ * dev - pointer to device information
+ *
+ * Functional Description:
+ * Determine and save adapter IRQ in device table,
+ * then perform bus-specific logic initialization.
+ *
+ * Return Codes:
+ * None
+ *
+ * Assumptions:
+ * dev->base_addr has already been set with the proper
+ * base I/O address for this device.
+ *
+ * Side Effects:
+ * Interrupts are enabled at the adapter bus-specific logic.
+ * Note: Interrupts at the DMA engine (PDQ chip) are not
+ * enabled yet.
+ */
+
+static void __devinit dfx_bus_init(struct net_device *dev)
+{
+ DFX_board_t *bp = dev->priv;
+ u8 val; /* used for I/O read/writes */
+
+ DBG_printk("In dfx_bus_init...\n");
+
+ /*
+ * Initialize base I/O address field in bp structure
+ *
+ * Note: bp->base_addr is the same as dev->base_addr.
+ * It's useful because often we'll need to read
+ * or write registers where we already have the
+ * bp pointer instead of the dev pointer. Having
+ * the base address in the bp structure will
+ * save a pointer dereference.
+ *
+ * IMPORTANT!! This field must be defined before
+ * any of the dfx_port_* inline functions are
+ * called.
+ */
+
+ bp->base_addr = dev->base_addr;
+
+ /* And a pointer back to the net_device struct */
+ bp->dev = dev;
+
+ /* Initialize adapter based on bus type */
+
+ if (bp->bus_type == DFX_BUS_TYPE_EISA)
+ {
+ /* Get the interrupt level from the ESIC chip */
+
+ dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &val);
+ switch ((val & PI_CONFIG_STAT_0_M_IRQ) >> PI_CONFIG_STAT_0_V_IRQ)
+ {
+ case PI_CONFIG_STAT_0_IRQ_K_9:
+ dev->irq = 9;
+ break;
+
+ case PI_CONFIG_STAT_0_IRQ_K_10:
+ dev->irq = 10;
+ break;
+
+ case PI_CONFIG_STAT_0_IRQ_K_11:
+ dev->irq = 11;
+ break;
+
+ case PI_CONFIG_STAT_0_IRQ_K_15:
+ dev->irq = 15;
+ break;
+ }
+
+ /* Enable access to I/O on the board by writing 0x03 to Function Control Register */
+
+ dfx_port_write_byte(bp, PI_ESIC_K_FUNCTION_CNTRL, PI_ESIC_K_FUNCTION_CNTRL_IO_ENB);
+
+ /* Set the I/O decode range of the board */
+
+ val = ((dev->base_addr >> 12) << PI_IO_CMP_V_SLOT);
+ dfx_port_write_byte(bp, PI_ESIC_K_IO_CMP_0_1, val);
+ dfx_port_write_byte(bp, PI_ESIC_K_IO_CMP_1_1, val);
+
+ /* Enable access to rest of module (including PDQ and packet memory) */
+
+ dfx_port_write_byte(bp, PI_ESIC_K_SLOT_CNTRL, PI_SLOT_CNTRL_M_ENB);
+
+ /*
+ * Map PDQ registers into I/O space. This is done by clearing a bit
+ * in Burst Holdoff register.
+ */
+
+ dfx_port_read_byte(bp, PI_ESIC_K_BURST_HOLDOFF, &val);
+ dfx_port_write_byte(bp, PI_ESIC_K_BURST_HOLDOFF, (val & ~PI_BURST_HOLDOFF_M_MEM_MAP));
+
+ /* Enable interrupts at EISA bus interface chip (ESIC) */
+
+ dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &val);
+ dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, (val | PI_CONFIG_STAT_0_M_INT_ENB));
+ }
+ else
+ {
+ struct pci_dev *pdev = bp->pci_dev;
+
+ /* Get the interrupt level from the PCI Configuration Table */
+
+ dev->irq = pdev->irq;
+
+ /* Check Latency Timer and set if less than minimal */
+
+ pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
+ if (val < PFI_K_LAT_TIMER_MIN) /* if less than min, override with default */
+ {
+ val = PFI_K_LAT_TIMER_DEF;
+ pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
+ }
+
+ /* Enable interrupts at PCI bus interface chip (PFI) */
+
+ dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, (PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB));
+ }
+ }
+
+
+/*
+ * ========================
+ * = dfx_bus_config_check =
+ * ========================
+ *
+ * Overview:
+ * Checks the configuration (burst size, full-duplex, etc.) If any parameters
+ * are illegal, then this routine will set new defaults.
+ *
+ * Returns:
+ * None
+ *
+ * Arguments:
+ * bp - pointer to board information
+ *
+ * Functional Description:
+ * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
+ * PDQ, and all FDDI PCI controllers, all values are legal.
+ *
+ * Return Codes:
+ * None
+ *
+ * Assumptions:
+ * dfx_adap_init has NOT been called yet so burst size and other items have
+ * not been set.
+ *
+ * Side Effects:
+ * None
+ */
+
+static void __devinit dfx_bus_config_check(DFX_board_t *bp)
+{
+ int status; /* return code from adapter port control call */
+ u32 slot_id; /* EISA-bus hardware id (DEC3001, DEC3002,...) */
+ u32 host_data; /* LW data returned from port control call */
+
+ DBG_printk("In dfx_bus_config_check...\n");
+
+ /* Configuration check only valid for EISA adapter */
+
+ if (bp->bus_type == DFX_BUS_TYPE_EISA)
+ {
+ dfx_port_read_long(bp, PI_ESIC_K_SLOT_ID, &slot_id);
+
+ /*
+ * First check if revision 2 EISA controller. Rev. 1 cards used
+ * PDQ revision B, so no workaround needed in this case. Rev. 3
+ * cards used PDQ revision E, so no workaround needed in this
+ * case, either. Only Rev. 2 cards used either Rev. D or E
+ * chips, so we must verify the chip revision on Rev. 2 cards.
+ */
+
+ if (slot_id == DEFEA_PROD_ID_2)
+ {
+ /*
+ * Revision 2 FDDI EISA controller found, so let's check PDQ
+ * revision of adapter.
+ */
+
+ status = dfx_hw_port_ctrl_req(bp,
+ PI_PCTRL_M_SUB_CMD,
+ PI_SUB_CMD_K_PDQ_REV_GET,
+ 0,
+ &host_data);
+ if ((status != DFX_K_SUCCESS) || (host_data == 2))
+ {
+ /*
+ * Either we couldn't determine the PDQ revision, or
+ * we determined that it is at revision D. In either case,
+ * we need to implement the workaround.
+ */
+
+ /* Ensure that the burst size is set to 8 longwords or less */
+
+ switch (bp->burst_size)
+ {
+ case PI_PDATA_B_DMA_BURST_SIZE_32:
+ case PI_PDATA_B_DMA_BURST_SIZE_16:
+ bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
+ break;
+
+ default:
+ break;
+ }
+
+ /* Ensure that full-duplex mode is not enabled */
+
+ bp->full_duplex_enb = PI_SNMP_K_FALSE;
+ }
+ }
+ }
+ }
+
+
+/*
+ * ===================
+ * = dfx_driver_init =
+ * ===================
+ *
+ * Overview:
+ * Initializes remaining adapter board structure information
+ * and makes sure adapter is in a safe state prior to dfx_open().
+ *
+ * Returns:
+ * Condition code
+ *
+ * Arguments:
+ * dev - pointer to device information
+ * print_name - printable device name
+ *
+ * Functional Description:
+ * This function allocates additional resources such as the host memory
+ * blocks needed by the adapter (eg. descriptor and consumer blocks).
+ * Remaining bus initialization steps are also completed. The adapter
+ * is also reset so that it is in the DMA_UNAVAILABLE state. The OS
+ * must call dfx_open() to open the adapter and bring it on-line.
+ *
+ * Return Codes:
+ * DFX_K_SUCCESS - initialization succeeded
+ * DFX_K_FAILURE - initialization failed - could not allocate memory
+ * or read adapter MAC address
+ *
+ * Assumptions:
+ * Memory allocated from pci_alloc_consistent() call is physically
+ * contiguous, locked memory.
+ *
+ * Side Effects:
+ * Adapter is reset and should be in DMA_UNAVAILABLE state before
+ * returning from this routine.
+ */
+
+static int __devinit dfx_driver_init(struct net_device *dev,
+ const char *print_name)
+{
+ DFX_board_t *bp = dev->priv;
+ int alloc_size; /* total buffer size needed */
+ char *top_v, *curr_v; /* virtual addrs into memory block */
+ dma_addr_t top_p, curr_p; /* physical addrs into memory block */
+ u32 data; /* host data register value */
+
+ DBG_printk("In dfx_driver_init...\n");
+
+ /* Initialize bus-specific hardware registers */
+
+ dfx_bus_init(dev);
+
+ /*
+ * Initialize default values for configurable parameters
+ *
+ * Note: All of these parameters are ones that a user may
+ * want to customize. It'd be nice to break these
+ * out into Space.c or someplace else that's more
+ * accessible/understandable than this file.
+ */
+
+ bp->full_duplex_enb = PI_SNMP_K_FALSE;
+ bp->req_ttrt = 8 * 12500; /* 8ms in 80 nanosec units */
+ bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_DEF;
+ bp->rcv_bufs_to_post = RCV_BUFS_DEF;
+
+ /*
+ * Ensure that HW configuration is OK
+ *
+ * Note: Depending on the hardware revision, we may need to modify
+ * some of the configurable parameters to workaround hardware
+ * limitations. We'll perform this configuration check AFTER
+ * setting the parameters to their default values.
+ */
+
+ dfx_bus_config_check(bp);
+
+ /* Disable PDQ interrupts first */
+
+ dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
+
+ /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
+
+ (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
+
+ /* Read the factory MAC address from the adapter then save it */
+
+ if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
+ &data) != DFX_K_SUCCESS) {
+ printk("%s: Could not read adapter factory MAC address!\n",
+ print_name);
+ return(DFX_K_FAILURE);
+ }
+ memcpy(&bp->factory_mac_addr[0], &data, sizeof(u32));
+
+ if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
+ &data) != DFX_K_SUCCESS) {
+ printk("%s: Could not read adapter factory MAC address!\n",
+ print_name);
+ return(DFX_K_FAILURE);
+ }
+ memcpy(&bp->factory_mac_addr[4], &data, sizeof(u16));
+
+ /*
+ * Set current address to factory address
+ *
+ * Note: Node address override support is handled through
+ * dfx_ctl_set_mac_address.
+ */
+
+ memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
+ if (bp->bus_type == DFX_BUS_TYPE_EISA)
+ printk("%s: DEFEA at I/O addr = 0x%lX, IRQ = %d, "
+ "Hardware addr = %02X-%02X-%02X-%02X-%02X-%02X\n",
+ print_name, dev->base_addr, dev->irq,
+ dev->dev_addr[0], dev->dev_addr[1],
+ dev->dev_addr[2], dev->dev_addr[3],
+ dev->dev_addr[4], dev->dev_addr[5]);
+ else
+ printk("%s: DEFPA at I/O addr = 0x%lX, IRQ = %d, "
+ "Hardware addr = %02X-%02X-%02X-%02X-%02X-%02X\n",
+ print_name, dev->base_addr, dev->irq,
+ dev->dev_addr[0], dev->dev_addr[1],
+ dev->dev_addr[2], dev->dev_addr[3],
+ dev->dev_addr[4], dev->dev_addr[5]);
+
+ /*
+ * Get memory for descriptor block, consumer block, and other buffers
+ * that need to be DMA read or written to by the adapter.
+ */
+
+ alloc_size = sizeof(PI_DESCR_BLOCK) +
+ PI_CMD_REQ_K_SIZE_MAX +
+ PI_CMD_RSP_K_SIZE_MAX +
+#ifndef DYNAMIC_BUFFERS
+ (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
+#endif
+ sizeof(PI_CONSUMER_BLOCK) +
+ (PI_ALIGN_K_DESC_BLK - 1);
+ bp->kmalloced = top_v = pci_alloc_consistent(bp->pci_dev, alloc_size,
+ &bp->kmalloced_dma);
+ if (top_v == NULL) {
+ printk("%s: Could not allocate memory for host buffers "
+ "and structures!\n", print_name);
+ return(DFX_K_FAILURE);
+ }
+ memset(top_v, 0, alloc_size); /* zero out memory before continuing */
+ top_p = bp->kmalloced_dma; /* get physical address of buffer */
+
+ /*
+ * To guarantee the 8K alignment required for the descriptor block, 8K - 1
+ * plus the amount of memory needed was allocated. The physical address
+ * is now 8K aligned. By carving up the memory in a specific order,
+ * we'll guarantee the alignment requirements for all other structures.
+ *
+ * Note: If the assumptions change regarding the non-paged, non-cached,
+ * physically contiguous nature of the memory block or the address
+ * alignments, then we'll need to implement a different algorithm
+ * for allocating the needed memory.
+ */
+
+ curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
+ curr_v = top_v + (curr_p - top_p);
+
+ /* Reserve space for descriptor block */
+
+ bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
+ bp->descr_block_phys = curr_p;
+ curr_v += sizeof(PI_DESCR_BLOCK);
+ curr_p += sizeof(PI_DESCR_BLOCK);
+
+ /* Reserve space for command request buffer */
+
+ bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
+ bp->cmd_req_phys = curr_p;
+ curr_v += PI_CMD_REQ_K_SIZE_MAX;
+ curr_p += PI_CMD_REQ_K_SIZE_MAX;
+
+ /* Reserve space for command response buffer */
+
+ bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
+ bp->cmd_rsp_phys = curr_p;
+ curr_v += PI_CMD_RSP_K_SIZE_MAX;
+ curr_p += PI_CMD_RSP_K_SIZE_MAX;
+
+ /* Reserve space for the LLC host receive queue buffers */
+
+ bp->rcv_block_virt = curr_v;
+ bp->rcv_block_phys = curr_p;
+
+#ifndef DYNAMIC_BUFFERS
+ curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
+ curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
+#endif
+
+ /* Reserve space for the consumer block */
+
+ bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
+ bp->cons_block_phys = curr_p;
+
+ /* Display virtual and physical addresses if debug driver */
+
+ DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n",
+ print_name,
+ (long)bp->descr_block_virt, bp->descr_block_phys);
+ DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n",
+ print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys);
+ DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n",
+ print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys);
+ DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n",
+ print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys);
+ DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n",
+ print_name, (long)bp->cons_block_virt, bp->cons_block_phys);
+
+ return(DFX_K_SUCCESS);
+}
+
+
+/*
+ * =================
+ * = dfx_adap_init =
+ * =================
+ *
+ * Overview:
+ * Brings the adapter to the link avail/link unavailable state.
+ *
+ * Returns:
+ * Condition code
+ *
+ * Arguments:
+ * bp - pointer to board information
+ * get_buffers - non-zero if buffers to be allocated
+ *
+ * Functional Description:
+ * Issues the low-level firmware/hardware calls necessary to bring
+ * the adapter up, or to properly reset and restore adapter during
+ * run-time.
+ *
+ * Return Codes:
+ * DFX_K_SUCCESS - Adapter brought up successfully
+ * DFX_K_FAILURE - Adapter initialization failed
+ *
+ * Assumptions:
+ * bp->reset_type should be set to a valid reset type value before
+ * calling this routine.
+ *
+ * Side Effects:
+ * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
+ * upon a successful return of this routine.
+ */
+
+static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
+ {
+ DBG_printk("In dfx_adap_init...\n");
+
+ /* Disable PDQ interrupts first */
+
+ dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
+
+ /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
+
+ if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
+ {
+ printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
+ return(DFX_K_FAILURE);
+ }
+
+ /*
+ * When the PDQ is reset, some false Type 0 interrupts may be pending,
+ * so we'll acknowledge all Type 0 interrupts now before continuing.
+ */
+
+ dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
+
+ /*
+ * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
+ *
+ * Note: We only need to clear host