aboutsummaryrefslogtreecommitdiff
path: root/drivers/md/raid6main.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/md/raid6main.c
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'drivers/md/raid6main.c')
-rw-r--r--drivers/md/raid6main.c2136
1 files changed, 2136 insertions, 0 deletions
diff --git a/drivers/md/raid6main.c b/drivers/md/raid6main.c
new file mode 100644
index 00000000000..7e30ab29691
--- /dev/null
+++ b/drivers/md/raid6main.c
@@ -0,0 +1,2136 @@
+/*
+ * raid6main.c : Multiple Devices driver for Linux
+ * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
+ * Copyright (C) 1999, 2000 Ingo Molnar
+ * Copyright (C) 2002, 2003 H. Peter Anvin
+ *
+ * RAID-6 management functions. This code is derived from raid5.c.
+ * Last merge from raid5.c bkcvs version 1.79 (kernel 2.6.1).
+ *
+ * Thanks to Penguin Computing for making the RAID-6 development possible
+ * by donating a test server!
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2, or (at your option)
+ * any later version.
+ *
+ * You should have received a copy of the GNU General Public License
+ * (for example /usr/src/linux/COPYING); if not, write to the Free
+ * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+
+#include <linux/config.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/highmem.h>
+#include <linux/bitops.h>
+#include <asm/atomic.h>
+#include "raid6.h"
+
+/*
+ * Stripe cache
+ */
+
+#define NR_STRIPES 256
+#define STRIPE_SIZE PAGE_SIZE
+#define STRIPE_SHIFT (PAGE_SHIFT - 9)
+#define STRIPE_SECTORS (STRIPE_SIZE>>9)
+#define IO_THRESHOLD 1
+#define HASH_PAGES 1
+#define HASH_PAGES_ORDER 0
+#define NR_HASH (HASH_PAGES * PAGE_SIZE / sizeof(struct stripe_head *))
+#define HASH_MASK (NR_HASH - 1)
+
+#define stripe_hash(conf, sect) ((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK])
+
+/* bio's attached to a stripe+device for I/O are linked together in bi_sector
+ * order without overlap. There may be several bio's per stripe+device, and
+ * a bio could span several devices.
+ * When walking this list for a particular stripe+device, we must never proceed
+ * beyond a bio that extends past this device, as the next bio might no longer
+ * be valid.
+ * This macro is used to determine the 'next' bio in the list, given the sector
+ * of the current stripe+device
+ */
+#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
+/*
+ * The following can be used to debug the driver
+ */
+#define RAID6_DEBUG 0 /* Extremely verbose printk */
+#define RAID6_PARANOIA 1 /* Check spinlocks */
+#define RAID6_DUMPSTATE 0 /* Include stripe cache state in /proc/mdstat */
+#if RAID6_PARANOIA && defined(CONFIG_SMP)
+# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
+#else
+# define CHECK_DEVLOCK()
+#endif
+
+#define PRINTK(x...) ((void)(RAID6_DEBUG && printk(KERN_DEBUG x)))
+#if RAID6_DEBUG
+#undef inline
+#undef __inline__
+#define inline
+#define __inline__
+#endif
+
+#if !RAID6_USE_EMPTY_ZERO_PAGE
+/* In .bss so it's zeroed */
+const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
+#endif
+
+static inline int raid6_next_disk(int disk, int raid_disks)
+{
+ disk++;
+ return (disk < raid_disks) ? disk : 0;
+}
+
+static void print_raid6_conf (raid6_conf_t *conf);
+
+static inline void __release_stripe(raid6_conf_t *conf, struct stripe_head *sh)
+{
+ if (atomic_dec_and_test(&sh->count)) {
+ if (!list_empty(&sh->lru))
+ BUG();
+ if (atomic_read(&conf->active_stripes)==0)
+ BUG();
+ if (test_bit(STRIPE_HANDLE, &sh->state)) {
+ if (test_bit(STRIPE_DELAYED, &sh->state))
+ list_add_tail(&sh->lru, &conf->delayed_list);
+ else
+ list_add_tail(&sh->lru, &conf->handle_list);
+ md_wakeup_thread(conf->mddev->thread);
+ } else {
+ if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
+ atomic_dec(&conf->preread_active_stripes);
+ if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
+ md_wakeup_thread(conf->mddev->thread);
+ }
+ list_add_tail(&sh->lru, &conf->inactive_list);
+ atomic_dec(&conf->active_stripes);
+ if (!conf->inactive_blocked ||
+ atomic_read(&conf->active_stripes) < (NR_STRIPES*3/4))
+ wake_up(&conf->wait_for_stripe);
+ }
+ }
+}
+static void release_stripe(struct stripe_head *sh)
+{
+ raid6_conf_t *conf = sh->raid_conf;
+ unsigned long flags;
+
+ spin_lock_irqsave(&conf->device_lock, flags);
+ __release_stripe(conf, sh);
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+}
+
+static void remove_hash(struct stripe_head *sh)
+{
+ PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector);
+
+ if (sh->hash_pprev) {
+ if (sh->hash_next)
+ sh->hash_next->hash_pprev = sh->hash_pprev;
+ *sh->hash_pprev = sh->hash_next;
+ sh->hash_pprev = NULL;
+ }
+}
+
+static __inline__ void insert_hash(raid6_conf_t *conf, struct stripe_head *sh)
+{
+ struct stripe_head **shp = &stripe_hash(conf, sh->sector);
+
+ PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector);
+
+ CHECK_DEVLOCK();
+ if ((sh->hash_next = *shp) != NULL)
+ (*shp)->hash_pprev = &sh->hash_next;
+ *shp = sh;
+ sh->hash_pprev = shp;
+}
+
+
+/* find an idle stripe, make sure it is unhashed, and return it. */
+static struct stripe_head *get_free_stripe(raid6_conf_t *conf)
+{
+ struct stripe_head *sh = NULL;
+ struct list_head *first;
+
+ CHECK_DEVLOCK();
+ if (list_empty(&conf->inactive_list))
+ goto out;
+ first = conf->inactive_list.next;
+ sh = list_entry(first, struct stripe_head, lru);
+ list_del_init(first);
+ remove_hash(sh);
+ atomic_inc(&conf->active_stripes);
+out:
+ return sh;
+}
+
+static void shrink_buffers(struct stripe_head *sh, int num)
+{
+ struct page *p;
+ int i;
+
+ for (i=0; i<num ; i++) {
+ p = sh->dev[i].page;
+ if (!p)
+ continue;
+ sh->dev[i].page = NULL;
+ page_cache_release(p);
+ }
+}
+
+static int grow_buffers(struct stripe_head *sh, int num)
+{
+ int i;
+
+ for (i=0; i<num; i++) {
+ struct page *page;
+
+ if (!(page = alloc_page(GFP_KERNEL))) {
+ return 1;
+ }
+ sh->dev[i].page = page;
+ }
+ return 0;
+}
+
+static void raid6_build_block (struct stripe_head *sh, int i);
+
+static inline void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx)
+{
+ raid6_conf_t *conf = sh->raid_conf;
+ int disks = conf->raid_disks, i;
+
+ if (atomic_read(&sh->count) != 0)
+ BUG();
+ if (test_bit(STRIPE_HANDLE, &sh->state))
+ BUG();
+
+ CHECK_DEVLOCK();
+ PRINTK("init_stripe called, stripe %llu\n",
+ (unsigned long long)sh->sector);
+
+ remove_hash(sh);
+
+ sh->sector = sector;
+ sh->pd_idx = pd_idx;
+ sh->state = 0;
+
+ for (i=disks; i--; ) {
+ struct r5dev *dev = &sh->dev[i];
+
+ if (dev->toread || dev->towrite || dev->written ||
+ test_bit(R5_LOCKED, &dev->flags)) {
+ PRINTK("sector=%llx i=%d %p %p %p %d\n",
+ (unsigned long long)sh->sector, i, dev->toread,
+ dev->towrite, dev->written,
+ test_bit(R5_LOCKED, &dev->flags));
+ BUG();
+ }
+ dev->flags = 0;
+ raid6_build_block(sh, i);
+ }
+ insert_hash(conf, sh);
+}
+
+static struct stripe_head *__find_stripe(raid6_conf_t *conf, sector_t sector)
+{
+ struct stripe_head *sh;
+
+ CHECK_DEVLOCK();
+ PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector);
+ for (sh = stripe_hash(conf, sector); sh; sh = sh->hash_next)
+ if (sh->sector == sector)
+ return sh;
+ PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector);
+ return NULL;
+}
+
+static void unplug_slaves(mddev_t *mddev);
+
+static struct stripe_head *get_active_stripe(raid6_conf_t *conf, sector_t sector,
+ int pd_idx, int noblock)
+{
+ struct stripe_head *sh;
+
+ PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector);
+
+ spin_lock_irq(&conf->device_lock);
+
+ do {
+ sh = __find_stripe(conf, sector);
+ if (!sh) {
+ if (!conf->inactive_blocked)
+ sh = get_free_stripe(conf);
+ if (noblock && sh == NULL)
+ break;
+ if (!sh) {
+ conf->inactive_blocked = 1;
+ wait_event_lock_irq(conf->wait_for_stripe,
+ !list_empty(&conf->inactive_list) &&
+ (atomic_read(&conf->active_stripes) < (NR_STRIPES *3/4)
+ || !conf->inactive_blocked),
+ conf->device_lock,
+ unplug_slaves(conf->mddev);
+ );
+ conf->inactive_blocked = 0;
+ } else
+ init_stripe(sh, sector, pd_idx);
+ } else {
+ if (atomic_read(&sh->count)) {
+ if (!list_empty(&sh->lru))
+ BUG();
+ } else {
+ if (!test_bit(STRIPE_HANDLE, &sh->state))
+ atomic_inc(&conf->active_stripes);
+ if (list_empty(&sh->lru))
+ BUG();
+ list_del_init(&sh->lru);
+ }
+ }
+ } while (sh == NULL);
+
+ if (sh)
+ atomic_inc(&sh->count);
+
+ spin_unlock_irq(&conf->device_lock);
+ return sh;
+}
+
+static int grow_stripes(raid6_conf_t *conf, int num)
+{
+ struct stripe_head *sh;
+ kmem_cache_t *sc;
+ int devs = conf->raid_disks;
+
+ sprintf(conf->cache_name, "raid6/%s", mdname(conf->mddev));
+
+ sc = kmem_cache_create(conf->cache_name,
+ sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
+ 0, 0, NULL, NULL);
+ if (!sc)
+ return 1;
+ conf->slab_cache = sc;
+ while (num--) {
+ sh = kmem_cache_alloc(sc, GFP_KERNEL);
+ if (!sh)
+ return 1;
+ memset(sh, 0, sizeof(*sh) + (devs-1)*sizeof(struct r5dev));
+ sh->raid_conf = conf;
+ spin_lock_init(&sh->lock);
+
+ if (grow_buffers(sh, conf->raid_disks)) {
+ shrink_buffers(sh, conf->raid_disks);
+ kmem_cache_free(sc, sh);
+ return 1;
+ }
+ /* we just created an active stripe so... */
+ atomic_set(&sh->count, 1);
+ atomic_inc(&conf->active_stripes);
+ INIT_LIST_HEAD(&sh->lru);
+ release_stripe(sh);
+ }
+ return 0;
+}
+
+static void shrink_stripes(raid6_conf_t *conf)
+{
+ struct stripe_head *sh;
+
+ while (1) {
+ spin_lock_irq(&conf->device_lock);
+ sh = get_free_stripe(conf);
+ spin_unlock_irq(&conf->device_lock);
+ if (!sh)
+ break;
+ if (atomic_read(&sh->count))
+ BUG();
+ shrink_buffers(sh, conf->raid_disks);
+ kmem_cache_free(conf->slab_cache, sh);
+ atomic_dec(&conf->active_stripes);
+ }
+ kmem_cache_destroy(conf->slab_cache);
+ conf->slab_cache = NULL;
+}
+
+static int raid6_end_read_request (struct bio * bi, unsigned int bytes_done,
+ int error)
+{
+ struct stripe_head *sh = bi->bi_private;
+ raid6_conf_t *conf = sh->raid_conf;
+ int disks = conf->raid_disks, i;
+ int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
+
+ if (bi->bi_size)
+ return 1;
+
+ for (i=0 ; i<disks; i++)
+ if (bi == &sh->dev[i].req)
+ break;
+
+ PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n",
+ (unsigned long long)sh->sector, i, atomic_read(&sh->count),
+ uptodate);
+ if (i == disks) {
+ BUG();
+ return 0;
+ }
+
+ if (uptodate) {
+#if 0
+ struct bio *bio;
+ unsigned long flags;
+ spin_lock_irqsave(&conf->device_lock, flags);
+ /* we can return a buffer if we bypassed the cache or
+ * if the top buffer is not in highmem. If there are
+ * multiple buffers, leave the extra work to
+ * handle_stripe
+ */
+ buffer = sh->bh_read[i];
+ if (buffer &&
+ (!PageHighMem(buffer->b_page)
+ || buffer->b_page == bh->b_page )
+ ) {
+ sh->bh_read[i] = buffer->b_reqnext;
+ buffer->b_reqnext = NULL;
+ } else
+ buffer = NULL;
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+ if (sh->bh_page[i]==bh->b_page)
+ set_buffer_uptodate(bh);
+ if (buffer) {
+ if (buffer->b_page != bh->b_page)
+ memcpy(buffer->b_data, bh->b_data, bh->b_size);
+ buffer->b_end_io(buffer, 1);
+ }
+#else
+ set_bit(R5_UPTODATE, &sh->dev[i].flags);
+#endif
+ } else {
+ md_error(conf->mddev, conf->disks[i].rdev);
+ clear_bit(R5_UPTODATE, &sh->dev[i].flags);
+ }
+ rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
+#if 0
+ /* must restore b_page before unlocking buffer... */
+ if (sh->bh_page[i] != bh->b_page) {
+ bh->b_page = sh->bh_page[i];
+ bh->b_data = page_address(bh->b_page);
+ clear_buffer_uptodate(bh);
+ }
+#endif
+ clear_bit(R5_LOCKED, &sh->dev[i].flags);
+ set_bit(STRIPE_HANDLE, &sh->state);
+ release_stripe(sh);
+ return 0;
+}
+
+static int raid6_end_write_request (struct bio *bi, unsigned int bytes_done,
+ int error)
+{
+ struct stripe_head *sh = bi->bi_private;
+ raid6_conf_t *conf = sh->raid_conf;
+ int disks = conf->raid_disks, i;
+ unsigned long flags;
+ int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
+
+ if (bi->bi_size)
+ return 1;
+
+ for (i=0 ; i<disks; i++)
+ if (bi == &sh->dev[i].req)
+ break;
+
+ PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n",
+ (unsigned long long)sh->sector, i, atomic_read(&sh->count),
+ uptodate);
+ if (i == disks) {
+ BUG();
+ return 0;
+ }
+
+ spin_lock_irqsave(&conf->device_lock, flags);
+ if (!uptodate)
+ md_error(conf->mddev, conf->disks[i].rdev);
+
+ rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
+
+ clear_bit(R5_LOCKED, &sh->dev[i].flags);
+ set_bit(STRIPE_HANDLE, &sh->state);
+ __release_stripe(conf, sh);
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+ return 0;
+}
+
+
+static sector_t compute_blocknr(struct stripe_head *sh, int i);
+
+static void raid6_build_block (struct stripe_head *sh, int i)
+{
+ struct r5dev *dev = &sh->dev[i];
+ int pd_idx = sh->pd_idx;
+ int qd_idx = raid6_next_disk(pd_idx, sh->raid_conf->raid_disks);
+
+ bio_init(&dev->req);
+ dev->req.bi_io_vec = &dev->vec;
+ dev->req.bi_vcnt++;
+ dev->req.bi_max_vecs++;
+ dev->vec.bv_page = dev->page;
+ dev->vec.bv_len = STRIPE_SIZE;
+ dev->vec.bv_offset = 0;
+
+ dev->req.bi_sector = sh->sector;
+ dev->req.bi_private = sh;
+
+ dev->flags = 0;
+ if (i != pd_idx && i != qd_idx)
+ dev->sector = compute_blocknr(sh, i);
+}
+
+static void error(mddev_t *mddev, mdk_rdev_t *rdev)
+{
+ char b[BDEVNAME_SIZE];
+ raid6_conf_t *conf = (raid6_conf_t *) mddev->private;
+ PRINTK("raid6: error called\n");
+
+ if (!rdev->faulty) {
+ mddev->sb_dirty = 1;
+ if (rdev->in_sync) {
+ conf->working_disks--;
+ mddev->degraded++;
+ conf->failed_disks++;
+ rdev->in_sync = 0;
+ /*
+ * if recovery was running, make sure it aborts.
+ */
+ set_bit(MD_RECOVERY_ERR, &mddev->recovery);
+ }
+ rdev->faulty = 1;
+ printk (KERN_ALERT
+ "raid6: Disk failure on %s, disabling device."
+ " Operation continuing on %d devices\n",
+ bdevname(rdev->bdev,b), conf->working_disks);
+ }
+}
+
+/*
+ * Input: a 'big' sector number,
+ * Output: index of the data and parity disk, and the sector # in them.
+ */
+static sector_t raid6_compute_sector(sector_t r_sector, unsigned int raid_disks,
+ unsigned int data_disks, unsigned int * dd_idx,
+ unsigned int * pd_idx, raid6_conf_t *conf)
+{
+ long stripe;
+ unsigned long chunk_number;
+ unsigned int chunk_offset;
+ sector_t new_sector;
+ int sectors_per_chunk = conf->chunk_size >> 9;
+
+ /* First compute the information on this sector */
+
+ /*
+ * Compute the chunk number and the sector offset inside the chunk
+ */
+ chunk_offset = sector_div(r_sector, sectors_per_chunk);
+ chunk_number = r_sector;
+ if ( r_sector != chunk_number ) {
+ printk(KERN_CRIT "raid6: ERROR: r_sector = %llu, chunk_number = %lu\n",
+ (unsigned long long)r_sector, (unsigned long)chunk_number);
+ BUG();
+ }
+
+ /*
+ * Compute the stripe number
+ */
+ stripe = chunk_number / data_disks;
+
+ /*
+ * Compute the data disk and parity disk indexes inside the stripe
+ */
+ *dd_idx = chunk_number % data_disks;
+
+ /*
+ * Select the parity disk based on the user selected algorithm.
+ */
+
+ /**** FIX THIS ****/
+ switch (conf->algorithm) {
+ case ALGORITHM_LEFT_ASYMMETRIC:
+ *pd_idx = raid_disks - 1 - (stripe % raid_disks);
+ if (*pd_idx == raid_disks-1)
+ (*dd_idx)++; /* Q D D D P */
+ else if (*dd_idx >= *pd_idx)
+ (*dd_idx) += 2; /* D D P Q D */
+ break;
+ case ALGORITHM_RIGHT_ASYMMETRIC:
+ *pd_idx = stripe % raid_disks;
+ if (*pd_idx == raid_disks-1)
+ (*dd_idx)++; /* Q D D D P */
+ else if (*dd_idx >= *pd_idx)
+ (*dd_idx) += 2; /* D D P Q D */
+ break;
+ case ALGORITHM_LEFT_SYMMETRIC:
+ *pd_idx = raid_disks - 1 - (stripe % raid_disks);
+ *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
+ break;
+ case ALGORITHM_RIGHT_SYMMETRIC:
+ *pd_idx = stripe % raid_disks;
+ *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
+ break;
+ default:
+ printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
+ conf->algorithm);
+ }
+
+ PRINTK("raid6: chunk_number = %lu, pd_idx = %u, dd_idx = %u\n",
+ chunk_number, *pd_idx, *dd_idx);
+
+ /*
+ * Finally, compute the new sector number
+ */
+ new_sector = (sector_t) stripe * sectors_per_chunk + chunk_offset;
+ return new_sector;
+}
+
+
+static sector_t compute_blocknr(struct stripe_head *sh, int i)
+{
+ raid6_conf_t *conf = sh->raid_conf;
+ int raid_disks = conf->raid_disks, data_disks = raid_disks - 2;
+ sector_t new_sector = sh->sector, check;
+ int sectors_per_chunk = conf->chunk_size >> 9;
+ sector_t stripe;
+ int chunk_offset;
+ int chunk_number, dummy1, dummy2, dd_idx = i;
+ sector_t r_sector;
+ int i0 = i;
+
+ chunk_offset = sector_div(new_sector, sectors_per_chunk);
+ stripe = new_sector;
+ if ( new_sector != stripe ) {
+ printk(KERN_CRIT "raid6: ERROR: new_sector = %llu, stripe = %lu\n",
+ (unsigned long long)new_sector, (unsigned long)stripe);
+ BUG();
+ }
+
+ switch (conf->algorithm) {
+ case ALGORITHM_LEFT_ASYMMETRIC:
+ case ALGORITHM_RIGHT_ASYMMETRIC:
+ if (sh->pd_idx == raid_disks-1)
+ i--; /* Q D D D P */
+ else if (i > sh->pd_idx)
+ i -= 2; /* D D P Q D */
+ break;
+ case ALGORITHM_LEFT_SYMMETRIC:
+ case ALGORITHM_RIGHT_SYMMETRIC:
+ if (sh->pd_idx == raid_disks-1)
+ i--; /* Q D D D P */
+ else {
+ /* D D P Q D */
+ if (i < sh->pd_idx)
+ i += raid_disks;
+ i -= (sh->pd_idx + 2);
+ }
+ break;
+ default:
+ printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
+ conf->algorithm);
+ }
+
+ PRINTK("raid6: compute_blocknr: pd_idx = %u, i0 = %u, i = %u\n", sh->pd_idx, i0, i);
+
+ chunk_number = stripe * data_disks + i;
+ r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
+
+ check = raid6_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
+ if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
+ printk(KERN_CRIT "raid6: compute_blocknr: map not correct\n");
+ return 0;
+ }
+ return r_sector;
+}
+
+
+
+/*
+ * Copy data between a page in the stripe cache, and one or more bion
+ * The page could align with the middle of the bio, or there could be
+ * several bion, each with several bio_vecs, which cover part of the page
+ * Multiple bion are linked together on bi_next. There may be extras
+ * at the end of this list. We ignore them.
+ */
+static void copy_data(int frombio, struct bio *bio,
+ struct page *page,
+ sector_t sector)
+{
+ char *pa = page_address(page);
+ struct bio_vec *bvl;
+ int i;
+ int page_offset;
+
+ if (bio->bi_sector >= sector)
+ page_offset = (signed)(bio->bi_sector - sector) * 512;
+ else
+ page_offset = (signed)(sector - bio->bi_sector) * -512;
+ bio_for_each_segment(bvl, bio, i) {
+ int len = bio_iovec_idx(bio,i)->bv_len;
+ int clen;
+ int b_offset = 0;
+
+ if (page_offset < 0) {
+ b_offset = -page_offset;
+ page_offset += b_offset;
+ len -= b_offset;
+ }
+
+ if (len > 0 && page_offset + len > STRIPE_SIZE)
+ clen = STRIPE_SIZE - page_offset;
+ else clen = len;
+
+ if (clen > 0) {
+ char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
+ if (frombio)
+ memcpy(pa+page_offset, ba+b_offset, clen);
+ else
+ memcpy(ba+b_offset, pa+page_offset, clen);
+ __bio_kunmap_atomic(ba, KM_USER0);
+ }
+ if (clen < len) /* hit end of page */
+ break;
+ page_offset += len;
+ }
+}
+
+#define check_xor() do { \
+ if (count == MAX_XOR_BLOCKS) { \
+ xor_block(count, STRIPE_SIZE, ptr); \
+ count = 1; \
+ } \
+ } while(0)
+
+/* Compute P and Q syndromes */
+static void compute_parity(struct stripe_head *sh, int method)
+{
+ raid6_conf_t *conf = sh->raid_conf;
+ int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = conf->raid_disks, count;
+ struct bio *chosen;
+ /**** FIX THIS: This could be very bad if disks is close to 256 ****/
+ void *ptrs[disks];
+
+ qd_idx = raid6_next_disk(pd_idx, disks);
+ d0_idx = raid6_next_disk(qd_idx, disks);
+
+ PRINTK("compute_parity, stripe %llu, method %d\n",
+ (unsigned long long)sh->sector, method);
+
+ switch(method) {
+ case READ_MODIFY_WRITE:
+ BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
+ case RECONSTRUCT_WRITE:
+ for (i= disks; i-- ;)
+ if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
+ chosen = sh->dev[i].towrite;
+ sh->dev[i].towrite = NULL;
+
+ if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
+ wake_up(&conf->wait_for_overlap);
+
+ if (sh->dev[i].written) BUG();
+ sh->dev[i].written = chosen;
+ }
+ break;
+ case CHECK_PARITY:
+ BUG(); /* Not implemented yet */
+ }
+
+ for (i = disks; i--;)
+ if (sh->dev[i].written) {
+ sector_t sector = sh->dev[i].sector;
+ struct bio *wbi = sh->dev[i].written;
+ while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
+ copy_data(1, wbi, sh->dev[i].page, sector);
+ wbi = r5_next_bio(wbi, sector);
+ }
+
+ set_bit(R5_LOCKED, &sh->dev[i].flags);
+ set_bit(R5_UPTODATE, &sh->dev[i].flags);
+ }
+
+// switch(method) {
+// case RECONSTRUCT_WRITE:
+// case CHECK_PARITY:
+// case UPDATE_PARITY:
+ /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
+ /* FIX: Is this ordering of drives even remotely optimal? */
+ count = 0;
+ i = d0_idx;
+ do {
+ ptrs[count++] = page_address(sh->dev[i].page);
+ if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
+ printk("block %d/%d not uptodate on parity calc\n", i,count);
+ i = raid6_next_disk(i, disks);
+ } while ( i != d0_idx );
+// break;
+// }
+
+ raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
+
+ switch(method) {
+ case RECONSTRUCT_WRITE:
+ set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
+ set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
+ set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
+ set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
+ break;
+ case UPDATE_PARITY:
+ set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
+ set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
+ break;
+ }
+}
+
+/* Compute one missing block */
+static void compute_block_1(struct stripe_head *sh, int dd_idx)
+{
+ raid6_conf_t *conf = sh->raid_conf;
+ int i, count, disks = conf->raid_disks;
+ void *ptr[MAX_XOR_BLOCKS], *p;
+ int pd_idx = sh->pd_idx;
+ int qd_idx = raid6_next_disk(pd_idx, disks);
+
+ PRINTK("compute_block_1, stripe %llu, idx %d\n",
+ (unsigned long long)sh->sector, dd_idx);
+
+ if ( dd_idx == qd_idx ) {
+ /* We're actually computing the Q drive */
+ compute_parity(sh, UPDATE_PARITY);
+ } else {
+ ptr[0] = page_address(sh->dev[dd_idx].page);
+ memset(ptr[0], 0, STRIPE_SIZE);
+ count = 1;
+ for (i = disks ; i--; ) {
+ if (i == dd_idx || i == qd_idx)
+ continue;
+ p = page_address(sh->dev[i].page);
+ if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
+ ptr[count++] = p;
+ else
+ printk("compute_block() %d, stripe %llu, %d"
+ " not present\n", dd_idx,
+ (unsigned long long)sh->sector, i);
+
+ check_xor();
+ }
+ if (count != 1)
+ xor_block(count, STRIPE_SIZE, ptr);
+ set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
+ }
+}
+
+/* Compute two missing blocks */
+static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
+{
+ raid6_conf_t *conf = sh->raid_conf;
+ int i, count, disks = conf->raid_disks;
+ int pd_idx = sh->pd_idx;
+ int qd_idx = raid6_next_disk(pd_idx, disks);
+ int d0_idx = raid6_next_disk(qd_idx, disks);
+ int faila, failb;
+
+ /* faila and failb are disk numbers relative to d0_idx */
+ /* pd_idx become disks-2 and qd_idx become disks-1 */
+ faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
+ failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
+
+ BUG_ON(faila == failb);
+ if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
+
+ PRINTK("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
+ (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
+
+ if ( failb == disks-1 ) {
+ /* Q disk is one of the missing disks */
+ if ( faila == disks-2 ) {
+ /* Missing P+Q, just recompute */
+ compute_parity(sh, UPDATE_PARITY);
+ return;
+ } else {
+ /* We're missing D+Q; recompute D from P */
+ compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1);
+ compute_parity(sh, UPDATE_PARITY); /* Is this necessary? */
+ return;
+ }
+ }
+
+ /* We're missing D+P or D+D; build pointer table */
+ {
+ /**** FIX THIS: This could be very bad if disks is close to 256 ****/
+ void *ptrs[disks];
+
+ count = 0;
+ i = d0_idx;
+ do {
+ ptrs[count++] = page_address(sh->dev[i].page);
+ i = raid6_next_disk(i, disks);
+ if (i != dd_idx1 && i != dd_idx2 &&
+ !test_bit(R5_UPTODATE, &sh->dev[i].flags))
+ printk("compute_2 with missing block %d/%d\n", count, i);
+ } while ( i != d0_idx );
+
+ if ( failb == disks-2 ) {
+ /* We're missing D+P. */
+ raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
+ } else {
+ /* We're missing D+D. */
+ raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
+ }
+
+ /* Both the above update both missing blocks */
+ set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
+ set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
+ }
+}
+
+
+/*
+ * Each stripe/dev can have one or more bion attached.
+ * toread/towrite point to the first in a chain.
+ * The bi_next chain must be in order.
+ */
+static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
+{
+ struct bio **bip;
+ raid6_conf_t *conf = sh->raid_conf;
+
+ PRINTK("adding bh b#%llu to stripe s#%llu\n",
+ (unsigned long long)bi->bi_sector,
+ (unsigned long long)sh->sector);
+
+
+ spin_lock(&sh->lock);
+ spin_lock_irq(&conf->device_lock);
+ if (forwrite)
+ bip = &sh->dev[dd_idx].towrite;
+ else
+ bip = &sh->dev[dd_idx].toread;
+ while (*bip && (*bip)->bi_sector < bi->bi_sector) {
+ if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
+ goto overlap;
+ bip = &(*bip)->bi_next;
+ }
+ if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
+ goto overlap;
+
+ if (*bip && bi->bi_next && (*bip) != bi->bi_next)
+ BUG();
+ if (*bip)
+ bi->bi_next = *bip;
+ *bip = bi;
+ bi->bi_phys_segments ++;
+ spin_unlock_irq(&conf->device_lock);
+ spin_unlock(&sh->lock);
+
+ PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
+ (unsigned long long)bi->bi_sector,
+ (unsigned long long)sh->sector, dd_idx);
+
+ if (forwrite) {
+ /* check if page is covered */
+ sector_t sector = sh->dev[dd_idx].sector;
+ for (bi=sh->dev[dd_idx].towrite;
+ sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
+ bi && bi->bi_sector <= sector;
+ bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
+ if (bi->bi_sector + (bi->bi_size>>9) >= sector)
+ sector = bi->bi_sector + (bi->bi_size>>9);
+ }
+ if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
+ set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
+ }
+ return 1;
+
+ overlap:
+ set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
+ spin_unlock_irq(&conf->device_lock);
+ spin_unlock(&sh->lock);
+ return 0;
+}
+
+
+/*
+ * handle_stripe - do things to a stripe.
+ *
+ * We lock the stripe and then examine the state of various bits
+ * to see what needs to be done.
+ * Possible results:
+ * return some read request which now have data
+ * return some write requests which are safely on disc
+ * schedule a read on some buffers
+ * schedule a write of some buffers
+ * return confirmation of parity correctness
+ *
+ * Parity calculations are done inside the stripe lock
+ * buffers are taken off read_list or write_list, and bh_cache buffers
+ * get BH_Lock set before the stripe lock is released.
+ *
+ */
+
+static void handle_stripe(struct stripe_head *sh)
+{
+ raid6_conf_t *conf = sh->raid_conf;
+ int disks = conf->raid_disks;
+ struct bio *return_bi= NULL;
+ struct bio *bi;
+ int i;
+ int syncing;
+ int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
+ int non_overwrite = 0;
+ int failed_num[2] = {0, 0};
+ struct r5dev *dev, *pdev, *qdev;
+ int pd_idx = sh->pd_idx;
+ int qd_idx = raid6_next_disk(pd_idx, disks);
+ int p_failed, q_failed;
+
+ PRINTK("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n",
+ (unsigned long long)sh->sector, sh->state, atomic_read(&sh->count),
+ pd_idx, qd_idx);
+
+ spin_lock(&sh->lock);
+ clear_bit(STRIPE_HANDLE, &sh->state);
+ clear_bit(STRIPE_DELAYED, &sh->state);
+
+ syncing = test_bit(STRIPE_SYNCING, &sh->state);
+ /* Now to look around and see what can be done */
+
+ for (i=disks; i--; ) {
+ mdk_rdev_t *rdev;
+ dev = &sh->dev[i];
+ clear_bit(R5_Insync, &dev->flags);
+ clear_bit(R5_Syncio, &dev->flags);
+
+ PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
+ i, dev->flags, dev->toread, dev->towrite, dev->written);
+ /* maybe we can reply to a read */
+ if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
+ struct bio *rbi, *rbi2;
+ PRINTK("Return read for disc %d\n", i);
+ spin_lock_irq(&conf->device_lock);
+ rbi = dev->toread;
+ dev->toread = NULL;
+ if (test_and_clear_bit(R5_Overlap, &dev->flags))
+ wake_up(&conf->wait_for_overlap);
+ spin_unlock_irq(&conf->device_lock);
+ while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
+ copy_data(0, rbi, dev->page, dev->sector);
+ rbi2 = r5_next_bio(rbi, dev->sector);
+ spin_lock_irq(&conf->device_lock);
+ if (--rbi->bi_phys_segments == 0) {
+ rbi->bi_next = return_bi;
+ return_bi = rbi;
+ }
+ spin_unlock_irq(&conf->device_lock);
+ rbi = rbi2;
+ }
+ }
+
+ /* now count some things */
+ if (test_bit(R5_LOCKED, &dev->flags)) locked++;
+ if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
+
+
+ if (dev->toread) to_read++;
+ if (dev->towrite) {
+ to_write++;
+ if (!test_bit(R5_OVERWRITE, &dev->flags))
+ non_overwrite++;
+ }
+ if (dev->written) written++;
+ rdev = conf->disks[i].rdev; /* FIXME, should I be looking rdev */
+ if (!rdev || !rdev->in_sync) {
+ if ( failed < 2 )
+ failed_num[failed] = i;
+ failed++;
+ } else
+ set_bit(R5_Insync, &dev->flags);
+ }
+ PRINTK("locked=%d uptodate=%d to_read=%d"
+ " to_write=%d failed=%d failed_num=%d,%d\n",
+ locked, uptodate, to_read, to_write, failed,
+ failed_num[0], failed_num[1]);
+ /* check if the array has lost >2 devices and, if so, some requests might
+ * need to be failed
+ */
+ if (failed > 2 && to_read+to_write+written) {
+ spin_lock_irq(&conf->device_lock);
+ for (i=disks; i--; ) {
+ /* fail all writes first */
+ bi = sh->dev[i].towrite;
+ sh->dev[i].towrite = NULL;
+ if (bi) to_write--;
+
+ if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
+ wake_up(&conf->wait_for_overlap);
+
+ while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
+ struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
+ clear_bit(BIO_UPTODATE, &bi->bi_flags);
+ if (--bi->bi_phys_segments == 0) {
+ md_write_end(conf->mddev);
+ bi->bi_next = return_bi;
+ return_bi = bi;
+ }
+ bi = nextbi;
+ }
+ /* and fail all 'written' */
+ bi = sh->dev[i].written;
+ sh->dev[i].written = NULL;
+ while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
+ struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
+ clear_bit(BIO_UPTODATE, &bi->bi_flags);
+ if (--bi->bi_phys_segments == 0) {
+ md_write_end(conf->mddev);
+ bi->bi_next = return_bi;
+ return_bi = bi;
+ }
+ bi = bi2;
+ }
+
+ /* fail any reads if this device is non-operational */
+ if (!test_bit(R5_Insync, &sh->dev[i].flags)) {
+ bi = sh->dev[i].toread;
+ sh->dev[i].toread = NULL;
+ if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
+ wake_up(&conf->wait_for_overlap);
+ if (bi) to_read--;
+ while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
+ struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
+ clear_bit(BIO_UPTODATE, &bi->bi_flags);
+ if (--bi->bi_phys_segments == 0) {
+ bi->b