diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/md/raid6main.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'drivers/md/raid6main.c')
-rw-r--r-- | drivers/md/raid6main.c | 2136 |
1 files changed, 2136 insertions, 0 deletions
diff --git a/drivers/md/raid6main.c b/drivers/md/raid6main.c new file mode 100644 index 00000000000..7e30ab29691 --- /dev/null +++ b/drivers/md/raid6main.c @@ -0,0 +1,2136 @@ +/* + * raid6main.c : Multiple Devices driver for Linux + * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman + * Copyright (C) 1999, 2000 Ingo Molnar + * Copyright (C) 2002, 2003 H. Peter Anvin + * + * RAID-6 management functions. This code is derived from raid5.c. + * Last merge from raid5.c bkcvs version 1.79 (kernel 2.6.1). + * + * Thanks to Penguin Computing for making the RAID-6 development possible + * by donating a test server! + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2, or (at your option) + * any later version. + * + * You should have received a copy of the GNU General Public License + * (for example /usr/src/linux/COPYING); if not, write to the Free + * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + */ + + +#include <linux/config.h> +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/highmem.h> +#include <linux/bitops.h> +#include <asm/atomic.h> +#include "raid6.h" + +/* + * Stripe cache + */ + +#define NR_STRIPES 256 +#define STRIPE_SIZE PAGE_SIZE +#define STRIPE_SHIFT (PAGE_SHIFT - 9) +#define STRIPE_SECTORS (STRIPE_SIZE>>9) +#define IO_THRESHOLD 1 +#define HASH_PAGES 1 +#define HASH_PAGES_ORDER 0 +#define NR_HASH (HASH_PAGES * PAGE_SIZE / sizeof(struct stripe_head *)) +#define HASH_MASK (NR_HASH - 1) + +#define stripe_hash(conf, sect) ((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]) + +/* bio's attached to a stripe+device for I/O are linked together in bi_sector + * order without overlap. There may be several bio's per stripe+device, and + * a bio could span several devices. + * When walking this list for a particular stripe+device, we must never proceed + * beyond a bio that extends past this device, as the next bio might no longer + * be valid. + * This macro is used to determine the 'next' bio in the list, given the sector + * of the current stripe+device + */ +#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL) +/* + * The following can be used to debug the driver + */ +#define RAID6_DEBUG 0 /* Extremely verbose printk */ +#define RAID6_PARANOIA 1 /* Check spinlocks */ +#define RAID6_DUMPSTATE 0 /* Include stripe cache state in /proc/mdstat */ +#if RAID6_PARANOIA && defined(CONFIG_SMP) +# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock) +#else +# define CHECK_DEVLOCK() +#endif + +#define PRINTK(x...) ((void)(RAID6_DEBUG && printk(KERN_DEBUG x))) +#if RAID6_DEBUG +#undef inline +#undef __inline__ +#define inline +#define __inline__ +#endif + +#if !RAID6_USE_EMPTY_ZERO_PAGE +/* In .bss so it's zeroed */ +const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256))); +#endif + +static inline int raid6_next_disk(int disk, int raid_disks) +{ + disk++; + return (disk < raid_disks) ? disk : 0; +} + +static void print_raid6_conf (raid6_conf_t *conf); + +static inline void __release_stripe(raid6_conf_t *conf, struct stripe_head *sh) +{ + if (atomic_dec_and_test(&sh->count)) { + if (!list_empty(&sh->lru)) + BUG(); + if (atomic_read(&conf->active_stripes)==0) + BUG(); + if (test_bit(STRIPE_HANDLE, &sh->state)) { + if (test_bit(STRIPE_DELAYED, &sh->state)) + list_add_tail(&sh->lru, &conf->delayed_list); + else + list_add_tail(&sh->lru, &conf->handle_list); + md_wakeup_thread(conf->mddev->thread); + } else { + if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { + atomic_dec(&conf->preread_active_stripes); + if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) + md_wakeup_thread(conf->mddev->thread); + } + list_add_tail(&sh->lru, &conf->inactive_list); + atomic_dec(&conf->active_stripes); + if (!conf->inactive_blocked || + atomic_read(&conf->active_stripes) < (NR_STRIPES*3/4)) + wake_up(&conf->wait_for_stripe); + } + } +} +static void release_stripe(struct stripe_head *sh) +{ + raid6_conf_t *conf = sh->raid_conf; + unsigned long flags; + + spin_lock_irqsave(&conf->device_lock, flags); + __release_stripe(conf, sh); + spin_unlock_irqrestore(&conf->device_lock, flags); +} + +static void remove_hash(struct stripe_head *sh) +{ + PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector); + + if (sh->hash_pprev) { + if (sh->hash_next) + sh->hash_next->hash_pprev = sh->hash_pprev; + *sh->hash_pprev = sh->hash_next; + sh->hash_pprev = NULL; + } +} + +static __inline__ void insert_hash(raid6_conf_t *conf, struct stripe_head *sh) +{ + struct stripe_head **shp = &stripe_hash(conf, sh->sector); + + PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector); + + CHECK_DEVLOCK(); + if ((sh->hash_next = *shp) != NULL) + (*shp)->hash_pprev = &sh->hash_next; + *shp = sh; + sh->hash_pprev = shp; +} + + +/* find an idle stripe, make sure it is unhashed, and return it. */ +static struct stripe_head *get_free_stripe(raid6_conf_t *conf) +{ + struct stripe_head *sh = NULL; + struct list_head *first; + + CHECK_DEVLOCK(); + if (list_empty(&conf->inactive_list)) + goto out; + first = conf->inactive_list.next; + sh = list_entry(first, struct stripe_head, lru); + list_del_init(first); + remove_hash(sh); + atomic_inc(&conf->active_stripes); +out: + return sh; +} + +static void shrink_buffers(struct stripe_head *sh, int num) +{ + struct page *p; + int i; + + for (i=0; i<num ; i++) { + p = sh->dev[i].page; + if (!p) + continue; + sh->dev[i].page = NULL; + page_cache_release(p); + } +} + +static int grow_buffers(struct stripe_head *sh, int num) +{ + int i; + + for (i=0; i<num; i++) { + struct page *page; + + if (!(page = alloc_page(GFP_KERNEL))) { + return 1; + } + sh->dev[i].page = page; + } + return 0; +} + +static void raid6_build_block (struct stripe_head *sh, int i); + +static inline void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx) +{ + raid6_conf_t *conf = sh->raid_conf; + int disks = conf->raid_disks, i; + + if (atomic_read(&sh->count) != 0) + BUG(); + if (test_bit(STRIPE_HANDLE, &sh->state)) + BUG(); + + CHECK_DEVLOCK(); + PRINTK("init_stripe called, stripe %llu\n", + (unsigned long long)sh->sector); + + remove_hash(sh); + + sh->sector = sector; + sh->pd_idx = pd_idx; + sh->state = 0; + + for (i=disks; i--; ) { + struct r5dev *dev = &sh->dev[i]; + + if (dev->toread || dev->towrite || dev->written || + test_bit(R5_LOCKED, &dev->flags)) { + PRINTK("sector=%llx i=%d %p %p %p %d\n", + (unsigned long long)sh->sector, i, dev->toread, + dev->towrite, dev->written, + test_bit(R5_LOCKED, &dev->flags)); + BUG(); + } + dev->flags = 0; + raid6_build_block(sh, i); + } + insert_hash(conf, sh); +} + +static struct stripe_head *__find_stripe(raid6_conf_t *conf, sector_t sector) +{ + struct stripe_head *sh; + + CHECK_DEVLOCK(); + PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector); + for (sh = stripe_hash(conf, sector); sh; sh = sh->hash_next) + if (sh->sector == sector) + return sh; + PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector); + return NULL; +} + +static void unplug_slaves(mddev_t *mddev); + +static struct stripe_head *get_active_stripe(raid6_conf_t *conf, sector_t sector, + int pd_idx, int noblock) +{ + struct stripe_head *sh; + + PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector); + + spin_lock_irq(&conf->device_lock); + + do { + sh = __find_stripe(conf, sector); + if (!sh) { + if (!conf->inactive_blocked) + sh = get_free_stripe(conf); + if (noblock && sh == NULL) + break; + if (!sh) { + conf->inactive_blocked = 1; + wait_event_lock_irq(conf->wait_for_stripe, + !list_empty(&conf->inactive_list) && + (atomic_read(&conf->active_stripes) < (NR_STRIPES *3/4) + || !conf->inactive_blocked), + conf->device_lock, + unplug_slaves(conf->mddev); + ); + conf->inactive_blocked = 0; + } else + init_stripe(sh, sector, pd_idx); + } else { + if (atomic_read(&sh->count)) { + if (!list_empty(&sh->lru)) + BUG(); + } else { + if (!test_bit(STRIPE_HANDLE, &sh->state)) + atomic_inc(&conf->active_stripes); + if (list_empty(&sh->lru)) + BUG(); + list_del_init(&sh->lru); + } + } + } while (sh == NULL); + + if (sh) + atomic_inc(&sh->count); + + spin_unlock_irq(&conf->device_lock); + return sh; +} + +static int grow_stripes(raid6_conf_t *conf, int num) +{ + struct stripe_head *sh; + kmem_cache_t *sc; + int devs = conf->raid_disks; + + sprintf(conf->cache_name, "raid6/%s", mdname(conf->mddev)); + + sc = kmem_cache_create(conf->cache_name, + sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), + 0, 0, NULL, NULL); + if (!sc) + return 1; + conf->slab_cache = sc; + while (num--) { + sh = kmem_cache_alloc(sc, GFP_KERNEL); + if (!sh) + return 1; + memset(sh, 0, sizeof(*sh) + (devs-1)*sizeof(struct r5dev)); + sh->raid_conf = conf; + spin_lock_init(&sh->lock); + + if (grow_buffers(sh, conf->raid_disks)) { + shrink_buffers(sh, conf->raid_disks); + kmem_cache_free(sc, sh); + return 1; + } + /* we just created an active stripe so... */ + atomic_set(&sh->count, 1); + atomic_inc(&conf->active_stripes); + INIT_LIST_HEAD(&sh->lru); + release_stripe(sh); + } + return 0; +} + +static void shrink_stripes(raid6_conf_t *conf) +{ + struct stripe_head *sh; + + while (1) { + spin_lock_irq(&conf->device_lock); + sh = get_free_stripe(conf); + spin_unlock_irq(&conf->device_lock); + if (!sh) + break; + if (atomic_read(&sh->count)) + BUG(); + shrink_buffers(sh, conf->raid_disks); + kmem_cache_free(conf->slab_cache, sh); + atomic_dec(&conf->active_stripes); + } + kmem_cache_destroy(conf->slab_cache); + conf->slab_cache = NULL; +} + +static int raid6_end_read_request (struct bio * bi, unsigned int bytes_done, + int error) +{ + struct stripe_head *sh = bi->bi_private; + raid6_conf_t *conf = sh->raid_conf; + int disks = conf->raid_disks, i; + int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); + + if (bi->bi_size) + return 1; + + for (i=0 ; i<disks; i++) + if (bi == &sh->dev[i].req) + break; + + PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n", + (unsigned long long)sh->sector, i, atomic_read(&sh->count), + uptodate); + if (i == disks) { + BUG(); + return 0; + } + + if (uptodate) { +#if 0 + struct bio *bio; + unsigned long flags; + spin_lock_irqsave(&conf->device_lock, flags); + /* we can return a buffer if we bypassed the cache or + * if the top buffer is not in highmem. If there are + * multiple buffers, leave the extra work to + * handle_stripe + */ + buffer = sh->bh_read[i]; + if (buffer && + (!PageHighMem(buffer->b_page) + || buffer->b_page == bh->b_page ) + ) { + sh->bh_read[i] = buffer->b_reqnext; + buffer->b_reqnext = NULL; + } else + buffer = NULL; + spin_unlock_irqrestore(&conf->device_lock, flags); + if (sh->bh_page[i]==bh->b_page) + set_buffer_uptodate(bh); + if (buffer) { + if (buffer->b_page != bh->b_page) + memcpy(buffer->b_data, bh->b_data, bh->b_size); + buffer->b_end_io(buffer, 1); + } +#else + set_bit(R5_UPTODATE, &sh->dev[i].flags); +#endif + } else { + md_error(conf->mddev, conf->disks[i].rdev); + clear_bit(R5_UPTODATE, &sh->dev[i].flags); + } + rdev_dec_pending(conf->disks[i].rdev, conf->mddev); +#if 0 + /* must restore b_page before unlocking buffer... */ + if (sh->bh_page[i] != bh->b_page) { + bh->b_page = sh->bh_page[i]; + bh->b_data = page_address(bh->b_page); + clear_buffer_uptodate(bh); + } +#endif + clear_bit(R5_LOCKED, &sh->dev[i].flags); + set_bit(STRIPE_HANDLE, &sh->state); + release_stripe(sh); + return 0; +} + +static int raid6_end_write_request (struct bio *bi, unsigned int bytes_done, + int error) +{ + struct stripe_head *sh = bi->bi_private; + raid6_conf_t *conf = sh->raid_conf; + int disks = conf->raid_disks, i; + unsigned long flags; + int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); + + if (bi->bi_size) + return 1; + + for (i=0 ; i<disks; i++) + if (bi == &sh->dev[i].req) + break; + + PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n", + (unsigned long long)sh->sector, i, atomic_read(&sh->count), + uptodate); + if (i == disks) { + BUG(); + return 0; + } + + spin_lock_irqsave(&conf->device_lock, flags); + if (!uptodate) + md_error(conf->mddev, conf->disks[i].rdev); + + rdev_dec_pending(conf->disks[i].rdev, conf->mddev); + + clear_bit(R5_LOCKED, &sh->dev[i].flags); + set_bit(STRIPE_HANDLE, &sh->state); + __release_stripe(conf, sh); + spin_unlock_irqrestore(&conf->device_lock, flags); + return 0; +} + + +static sector_t compute_blocknr(struct stripe_head *sh, int i); + +static void raid6_build_block (struct stripe_head *sh, int i) +{ + struct r5dev *dev = &sh->dev[i]; + int pd_idx = sh->pd_idx; + int qd_idx = raid6_next_disk(pd_idx, sh->raid_conf->raid_disks); + + bio_init(&dev->req); + dev->req.bi_io_vec = &dev->vec; + dev->req.bi_vcnt++; + dev->req.bi_max_vecs++; + dev->vec.bv_page = dev->page; + dev->vec.bv_len = STRIPE_SIZE; + dev->vec.bv_offset = 0; + + dev->req.bi_sector = sh->sector; + dev->req.bi_private = sh; + + dev->flags = 0; + if (i != pd_idx && i != qd_idx) + dev->sector = compute_blocknr(sh, i); +} + +static void error(mddev_t *mddev, mdk_rdev_t *rdev) +{ + char b[BDEVNAME_SIZE]; + raid6_conf_t *conf = (raid6_conf_t *) mddev->private; + PRINTK("raid6: error called\n"); + + if (!rdev->faulty) { + mddev->sb_dirty = 1; + if (rdev->in_sync) { + conf->working_disks--; + mddev->degraded++; + conf->failed_disks++; + rdev->in_sync = 0; + /* + * if recovery was running, make sure it aborts. + */ + set_bit(MD_RECOVERY_ERR, &mddev->recovery); + } + rdev->faulty = 1; + printk (KERN_ALERT + "raid6: Disk failure on %s, disabling device." + " Operation continuing on %d devices\n", + bdevname(rdev->bdev,b), conf->working_disks); + } +} + +/* + * Input: a 'big' sector number, + * Output: index of the data and parity disk, and the sector # in them. + */ +static sector_t raid6_compute_sector(sector_t r_sector, unsigned int raid_disks, + unsigned int data_disks, unsigned int * dd_idx, + unsigned int * pd_idx, raid6_conf_t *conf) +{ + long stripe; + unsigned long chunk_number; + unsigned int chunk_offset; + sector_t new_sector; + int sectors_per_chunk = conf->chunk_size >> 9; + + /* First compute the information on this sector */ + + /* + * Compute the chunk number and the sector offset inside the chunk + */ + chunk_offset = sector_div(r_sector, sectors_per_chunk); + chunk_number = r_sector; + if ( r_sector != chunk_number ) { + printk(KERN_CRIT "raid6: ERROR: r_sector = %llu, chunk_number = %lu\n", + (unsigned long long)r_sector, (unsigned long)chunk_number); + BUG(); + } + + /* + * Compute the stripe number + */ + stripe = chunk_number / data_disks; + + /* + * Compute the data disk and parity disk indexes inside the stripe + */ + *dd_idx = chunk_number % data_disks; + + /* + * Select the parity disk based on the user selected algorithm. + */ + + /**** FIX THIS ****/ + switch (conf->algorithm) { + case ALGORITHM_LEFT_ASYMMETRIC: + *pd_idx = raid_disks - 1 - (stripe % raid_disks); + if (*pd_idx == raid_disks-1) + (*dd_idx)++; /* Q D D D P */ + else if (*dd_idx >= *pd_idx) + (*dd_idx) += 2; /* D D P Q D */ + break; + case ALGORITHM_RIGHT_ASYMMETRIC: + *pd_idx = stripe % raid_disks; + if (*pd_idx == raid_disks-1) + (*dd_idx)++; /* Q D D D P */ + else if (*dd_idx >= *pd_idx) + (*dd_idx) += 2; /* D D P Q D */ + break; + case ALGORITHM_LEFT_SYMMETRIC: + *pd_idx = raid_disks - 1 - (stripe % raid_disks); + *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks; + break; + case ALGORITHM_RIGHT_SYMMETRIC: + *pd_idx = stripe % raid_disks; + *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks; + break; + default: + printk (KERN_CRIT "raid6: unsupported algorithm %d\n", + conf->algorithm); + } + + PRINTK("raid6: chunk_number = %lu, pd_idx = %u, dd_idx = %u\n", + chunk_number, *pd_idx, *dd_idx); + + /* + * Finally, compute the new sector number + */ + new_sector = (sector_t) stripe * sectors_per_chunk + chunk_offset; + return new_sector; +} + + +static sector_t compute_blocknr(struct stripe_head *sh, int i) +{ + raid6_conf_t *conf = sh->raid_conf; + int raid_disks = conf->raid_disks, data_disks = raid_disks - 2; + sector_t new_sector = sh->sector, check; + int sectors_per_chunk = conf->chunk_size >> 9; + sector_t stripe; + int chunk_offset; + int chunk_number, dummy1, dummy2, dd_idx = i; + sector_t r_sector; + int i0 = i; + + chunk_offset = sector_div(new_sector, sectors_per_chunk); + stripe = new_sector; + if ( new_sector != stripe ) { + printk(KERN_CRIT "raid6: ERROR: new_sector = %llu, stripe = %lu\n", + (unsigned long long)new_sector, (unsigned long)stripe); + BUG(); + } + + switch (conf->algorithm) { + case ALGORITHM_LEFT_ASYMMETRIC: + case ALGORITHM_RIGHT_ASYMMETRIC: + if (sh->pd_idx == raid_disks-1) + i--; /* Q D D D P */ + else if (i > sh->pd_idx) + i -= 2; /* D D P Q D */ + break; + case ALGORITHM_LEFT_SYMMETRIC: + case ALGORITHM_RIGHT_SYMMETRIC: + if (sh->pd_idx == raid_disks-1) + i--; /* Q D D D P */ + else { + /* D D P Q D */ + if (i < sh->pd_idx) + i += raid_disks; + i -= (sh->pd_idx + 2); + } + break; + default: + printk (KERN_CRIT "raid6: unsupported algorithm %d\n", + conf->algorithm); + } + + PRINTK("raid6: compute_blocknr: pd_idx = %u, i0 = %u, i = %u\n", sh->pd_idx, i0, i); + + chunk_number = stripe * data_disks + i; + r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset; + + check = raid6_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf); + if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) { + printk(KERN_CRIT "raid6: compute_blocknr: map not correct\n"); + return 0; + } + return r_sector; +} + + + +/* + * Copy data between a page in the stripe cache, and one or more bion + * The page could align with the middle of the bio, or there could be + * several bion, each with several bio_vecs, which cover part of the page + * Multiple bion are linked together on bi_next. There may be extras + * at the end of this list. We ignore them. + */ +static void copy_data(int frombio, struct bio *bio, + struct page *page, + sector_t sector) +{ + char *pa = page_address(page); + struct bio_vec *bvl; + int i; + int page_offset; + + if (bio->bi_sector >= sector) + page_offset = (signed)(bio->bi_sector - sector) * 512; + else + page_offset = (signed)(sector - bio->bi_sector) * -512; + bio_for_each_segment(bvl, bio, i) { + int len = bio_iovec_idx(bio,i)->bv_len; + int clen; + int b_offset = 0; + + if (page_offset < 0) { + b_offset = -page_offset; + page_offset += b_offset; + len -= b_offset; + } + + if (len > 0 && page_offset + len > STRIPE_SIZE) + clen = STRIPE_SIZE - page_offset; + else clen = len; + + if (clen > 0) { + char *ba = __bio_kmap_atomic(bio, i, KM_USER0); + if (frombio) + memcpy(pa+page_offset, ba+b_offset, clen); + else + memcpy(ba+b_offset, pa+page_offset, clen); + __bio_kunmap_atomic(ba, KM_USER0); + } + if (clen < len) /* hit end of page */ + break; + page_offset += len; + } +} + +#define check_xor() do { \ + if (count == MAX_XOR_BLOCKS) { \ + xor_block(count, STRIPE_SIZE, ptr); \ + count = 1; \ + } \ + } while(0) + +/* Compute P and Q syndromes */ +static void compute_parity(struct stripe_head *sh, int method) +{ + raid6_conf_t *conf = sh->raid_conf; + int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = conf->raid_disks, count; + struct bio *chosen; + /**** FIX THIS: This could be very bad if disks is close to 256 ****/ + void *ptrs[disks]; + + qd_idx = raid6_next_disk(pd_idx, disks); + d0_idx = raid6_next_disk(qd_idx, disks); + + PRINTK("compute_parity, stripe %llu, method %d\n", + (unsigned long long)sh->sector, method); + + switch(method) { + case READ_MODIFY_WRITE: + BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */ + case RECONSTRUCT_WRITE: + for (i= disks; i-- ;) + if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) { + chosen = sh->dev[i].towrite; + sh->dev[i].towrite = NULL; + + if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) + wake_up(&conf->wait_for_overlap); + + if (sh->dev[i].written) BUG(); + sh->dev[i].written = chosen; + } + break; + case CHECK_PARITY: + BUG(); /* Not implemented yet */ + } + + for (i = disks; i--;) + if (sh->dev[i].written) { + sector_t sector = sh->dev[i].sector; + struct bio *wbi = sh->dev[i].written; + while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) { + copy_data(1, wbi, sh->dev[i].page, sector); + wbi = r5_next_bio(wbi, sector); + } + + set_bit(R5_LOCKED, &sh->dev[i].flags); + set_bit(R5_UPTODATE, &sh->dev[i].flags); + } + +// switch(method) { +// case RECONSTRUCT_WRITE: +// case CHECK_PARITY: +// case UPDATE_PARITY: + /* Note that unlike RAID-5, the ordering of the disks matters greatly. */ + /* FIX: Is this ordering of drives even remotely optimal? */ + count = 0; + i = d0_idx; + do { + ptrs[count++] = page_address(sh->dev[i].page); + if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags)) + printk("block %d/%d not uptodate on parity calc\n", i,count); + i = raid6_next_disk(i, disks); + } while ( i != d0_idx ); +// break; +// } + + raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs); + + switch(method) { + case RECONSTRUCT_WRITE: + set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); + set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags); + set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); + set_bit(R5_LOCKED, &sh->dev[qd_idx].flags); + break; + case UPDATE_PARITY: + set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); + set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags); + break; + } +} + +/* Compute one missing block */ +static void compute_block_1(struct stripe_head *sh, int dd_idx) +{ + raid6_conf_t *conf = sh->raid_conf; + int i, count, disks = conf->raid_disks; + void *ptr[MAX_XOR_BLOCKS], *p; + int pd_idx = sh->pd_idx; + int qd_idx = raid6_next_disk(pd_idx, disks); + + PRINTK("compute_block_1, stripe %llu, idx %d\n", + (unsigned long long)sh->sector, dd_idx); + + if ( dd_idx == qd_idx ) { + /* We're actually computing the Q drive */ + compute_parity(sh, UPDATE_PARITY); + } else { + ptr[0] = page_address(sh->dev[dd_idx].page); + memset(ptr[0], 0, STRIPE_SIZE); + count = 1; + for (i = disks ; i--; ) { + if (i == dd_idx || i == qd_idx) + continue; + p = page_address(sh->dev[i].page); + if (test_bit(R5_UPTODATE, &sh->dev[i].flags)) + ptr[count++] = p; + else + printk("compute_block() %d, stripe %llu, %d" + " not present\n", dd_idx, + (unsigned long long)sh->sector, i); + + check_xor(); + } + if (count != 1) + xor_block(count, STRIPE_SIZE, ptr); + set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags); + } +} + +/* Compute two missing blocks */ +static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2) +{ + raid6_conf_t *conf = sh->raid_conf; + int i, count, disks = conf->raid_disks; + int pd_idx = sh->pd_idx; + int qd_idx = raid6_next_disk(pd_idx, disks); + int d0_idx = raid6_next_disk(qd_idx, disks); + int faila, failb; + + /* faila and failb are disk numbers relative to d0_idx */ + /* pd_idx become disks-2 and qd_idx become disks-1 */ + faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx; + failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx; + + BUG_ON(faila == failb); + if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; } + + PRINTK("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n", + (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb); + + if ( failb == disks-1 ) { + /* Q disk is one of the missing disks */ + if ( faila == disks-2 ) { + /* Missing P+Q, just recompute */ + compute_parity(sh, UPDATE_PARITY); + return; + } else { + /* We're missing D+Q; recompute D from P */ + compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1); + compute_parity(sh, UPDATE_PARITY); /* Is this necessary? */ + return; + } + } + + /* We're missing D+P or D+D; build pointer table */ + { + /**** FIX THIS: This could be very bad if disks is close to 256 ****/ + void *ptrs[disks]; + + count = 0; + i = d0_idx; + do { + ptrs[count++] = page_address(sh->dev[i].page); + i = raid6_next_disk(i, disks); + if (i != dd_idx1 && i != dd_idx2 && + !test_bit(R5_UPTODATE, &sh->dev[i].flags)) + printk("compute_2 with missing block %d/%d\n", count, i); + } while ( i != d0_idx ); + + if ( failb == disks-2 ) { + /* We're missing D+P. */ + raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs); + } else { + /* We're missing D+D. */ + raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs); + } + + /* Both the above update both missing blocks */ + set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags); + set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags); + } +} + + +/* + * Each stripe/dev can have one or more bion attached. + * toread/towrite point to the first in a chain. + * The bi_next chain must be in order. + */ +static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite) +{ + struct bio **bip; + raid6_conf_t *conf = sh->raid_conf; + + PRINTK("adding bh b#%llu to stripe s#%llu\n", + (unsigned long long)bi->bi_sector, + (unsigned long long)sh->sector); + + + spin_lock(&sh->lock); + spin_lock_irq(&conf->device_lock); + if (forwrite) + bip = &sh->dev[dd_idx].towrite; + else + bip = &sh->dev[dd_idx].toread; + while (*bip && (*bip)->bi_sector < bi->bi_sector) { + if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector) + goto overlap; + bip = &(*bip)->bi_next; + } + if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9)) + goto overlap; + + if (*bip && bi->bi_next && (*bip) != bi->bi_next) + BUG(); + if (*bip) + bi->bi_next = *bip; + *bip = bi; + bi->bi_phys_segments ++; + spin_unlock_irq(&conf->device_lock); + spin_unlock(&sh->lock); + + PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n", + (unsigned long long)bi->bi_sector, + (unsigned long long)sh->sector, dd_idx); + + if (forwrite) { + /* check if page is covered */ + sector_t sector = sh->dev[dd_idx].sector; + for (bi=sh->dev[dd_idx].towrite; + sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && + bi && bi->bi_sector <= sector; + bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { + if (bi->bi_sector + (bi->bi_size>>9) >= sector) + sector = bi->bi_sector + (bi->bi_size>>9); + } + if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) + set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); + } + return 1; + + overlap: + set_bit(R5_Overlap, &sh->dev[dd_idx].flags); + spin_unlock_irq(&conf->device_lock); + spin_unlock(&sh->lock); + return 0; +} + + +/* + * handle_stripe - do things to a stripe. + * + * We lock the stripe and then examine the state of various bits + * to see what needs to be done. + * Possible results: + * return some read request which now have data + * return some write requests which are safely on disc + * schedule a read on some buffers + * schedule a write of some buffers + * return confirmation of parity correctness + * + * Parity calculations are done inside the stripe lock + * buffers are taken off read_list or write_list, and bh_cache buffers + * get BH_Lock set before the stripe lock is released. + * + */ + +static void handle_stripe(struct stripe_head *sh) +{ + raid6_conf_t *conf = sh->raid_conf; + int disks = conf->raid_disks; + struct bio *return_bi= NULL; + struct bio *bi; + int i; + int syncing; + int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0; + int non_overwrite = 0; + int failed_num[2] = {0, 0}; + struct r5dev *dev, *pdev, *qdev; + int pd_idx = sh->pd_idx; + int qd_idx = raid6_next_disk(pd_idx, disks); + int p_failed, q_failed; + + PRINTK("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n", + (unsigned long long)sh->sector, sh->state, atomic_read(&sh->count), + pd_idx, qd_idx); + + spin_lock(&sh->lock); + clear_bit(STRIPE_HANDLE, &sh->state); + clear_bit(STRIPE_DELAYED, &sh->state); + + syncing = test_bit(STRIPE_SYNCING, &sh->state); + /* Now to look around and see what can be done */ + + for (i=disks; i--; ) { + mdk_rdev_t *rdev; + dev = &sh->dev[i]; + clear_bit(R5_Insync, &dev->flags); + clear_bit(R5_Syncio, &dev->flags); + + PRINTK("check %d: state 0x%lx read %p write %p written %p\n", + i, dev->flags, dev->toread, dev->towrite, dev->written); + /* maybe we can reply to a read */ + if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) { + struct bio *rbi, *rbi2; + PRINTK("Return read for disc %d\n", i); + spin_lock_irq(&conf->device_lock); + rbi = dev->toread; + dev->toread = NULL; + if (test_and_clear_bit(R5_Overlap, &dev->flags)) + wake_up(&conf->wait_for_overlap); + spin_unlock_irq(&conf->device_lock); + while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) { + copy_data(0, rbi, dev->page, dev->sector); + rbi2 = r5_next_bio(rbi, dev->sector); + spin_lock_irq(&conf->device_lock); + if (--rbi->bi_phys_segments == 0) { + rbi->bi_next = return_bi; + return_bi = rbi; + } + spin_unlock_irq(&conf->device_lock); + rbi = rbi2; + } + } + + /* now count some things */ + if (test_bit(R5_LOCKED, &dev->flags)) locked++; + if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++; + + + if (dev->toread) to_read++; + if (dev->towrite) { + to_write++; + if (!test_bit(R5_OVERWRITE, &dev->flags)) + non_overwrite++; + } + if (dev->written) written++; + rdev = conf->disks[i].rdev; /* FIXME, should I be looking rdev */ + if (!rdev || !rdev->in_sync) { + if ( failed < 2 ) + failed_num[failed] = i; + failed++; + } else + set_bit(R5_Insync, &dev->flags); + } + PRINTK("locked=%d uptodate=%d to_read=%d" + " to_write=%d failed=%d failed_num=%d,%d\n", + locked, uptodate, to_read, to_write, failed, + failed_num[0], failed_num[1]); + /* check if the array has lost >2 devices and, if so, some requests might + * need to be failed + */ + if (failed > 2 && to_read+to_write+written) { + spin_lock_irq(&conf->device_lock); + for (i=disks; i--; ) { + /* fail all writes first */ + bi = sh->dev[i].towrite; + sh->dev[i].towrite = NULL; + if (bi) to_write--; + + if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) + wake_up(&conf->wait_for_overlap); + + while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){ + struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); + clear_bit(BIO_UPTODATE, &bi->bi_flags); + if (--bi->bi_phys_segments == 0) { + md_write_end(conf->mddev); + bi->bi_next = return_bi; + return_bi = bi; + } + bi = nextbi; + } + /* and fail all 'written' */ + bi = sh->dev[i].written; + sh->dev[i].written = NULL; + while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) { + struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); + clear_bit(BIO_UPTODATE, &bi->bi_flags); + if (--bi->bi_phys_segments == 0) { + md_write_end(conf->mddev); + bi->bi_next = return_bi; + return_bi = bi; + } + bi = bi2; + } + + /* fail any reads if this device is non-operational */ + if (!test_bit(R5_Insync, &sh->dev[i].flags)) { + bi = sh->dev[i].toread; + sh->dev[i].toread = NULL; + if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) + wake_up(&conf->wait_for_overlap); + if (bi) to_read--; + while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){ + struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); + clear_bit(BIO_UPTODATE, &bi->bi_flags); + if (--bi->bi_phys_segments == 0) { + bi->b |