aboutsummaryrefslogtreecommitdiff
path: root/drivers/lguest/interrupts_and_traps.c
diff options
context:
space:
mode:
authorRusty Russell <rusty@rustcorp.com.au>2007-07-26 10:41:04 -0700
committerLinus Torvalds <torvalds@woody.linux-foundation.org>2007-07-26 11:35:17 -0700
commitbff672e630a015d5b54c8bfb16160b7edc39a57c (patch)
tree3af06baacb76809234a3e71033d14b7ed769dbd8 /drivers/lguest/interrupts_and_traps.c
parentdde797899ac17ebb812b7566044124d785e98dc7 (diff)
lguest: documentation V: Host
Documentation: The Host Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'drivers/lguest/interrupts_and_traps.c')
-rw-r--r--drivers/lguest/interrupts_and_traps.c176
1 files changed, 157 insertions, 19 deletions
diff --git a/drivers/lguest/interrupts_and_traps.c b/drivers/lguest/interrupts_and_traps.c
index b2647974e1a..3d983032264 100644
--- a/drivers/lguest/interrupts_and_traps.c
+++ b/drivers/lguest/interrupts_and_traps.c
@@ -14,100 +14,147 @@
#include <linux/uaccess.h>
#include "lg.h"
+/* The address of the interrupt handler is split into two bits: */
static unsigned long idt_address(u32 lo, u32 hi)
{
return (lo & 0x0000FFFF) | (hi & 0xFFFF0000);
}
+/* The "type" of the interrupt handler is a 4 bit field: we only support a
+ * couple of types. */
static int idt_type(u32 lo, u32 hi)
{
return (hi >> 8) & 0xF;
}
+/* An IDT entry can't be used unless the "present" bit is set. */
static int idt_present(u32 lo, u32 hi)
{
return (hi & 0x8000);
}
+/* We need a helper to "push" a value onto the Guest's stack, since that's a
+ * big part of what delivering an interrupt does. */
static void push_guest_stack(struct lguest *lg, unsigned long *gstack, u32 val)
{
+ /* Stack grows upwards: move stack then write value. */
*gstack -= 4;
lgwrite_u32(lg, *gstack, val);
}
+/*H:210 The set_guest_interrupt() routine actually delivers the interrupt or
+ * trap. The mechanics of delivering traps and interrupts to the Guest are the
+ * same, except some traps have an "error code" which gets pushed onto the
+ * stack as well: the caller tells us if this is one.
+ *
+ * "lo" and "hi" are the two parts of the Interrupt Descriptor Table for this
+ * interrupt or trap. It's split into two parts for traditional reasons: gcc
+ * on i386 used to be frightened by 64 bit numbers.
+ *
+ * We set up the stack just like the CPU does for a real interrupt, so it's
+ * identical for the Guest (and the standard "iret" instruction will undo
+ * it). */
static void set_guest_interrupt(struct lguest *lg, u32 lo, u32 hi, int has_err)
{
unsigned long gstack;
u32 eflags, ss, irq_enable;
- /* If they want a ring change, we use new stack and push old ss/esp */
+ /* There are two cases for interrupts: one where the Guest is already
+ * in the kernel, and a more complex one where the Guest is in
+ * userspace. We check the privilege level to find out. */
if ((lg->regs->ss&0x3) != GUEST_PL) {
+ /* The Guest told us their kernel stack with the SET_STACK
+ * hypercall: both the virtual address and the segment */
gstack = guest_pa(lg, lg->esp1);
ss = lg->ss1;
+ /* We push the old stack segment and pointer onto the new
+ * stack: when the Guest does an "iret" back from the interrupt
+ * handler the CPU will notice they're dropping privilege
+ * levels and expect these here. */
push_guest_stack(lg, &gstack, lg->regs->ss);
push_guest_stack(lg, &gstack, lg->regs->esp);
} else {
+ /* We're staying on the same Guest (kernel) stack. */
gstack = guest_pa(lg, lg->regs->esp);
ss = lg->regs->ss;
}
- /* We use IF bit in eflags to indicate whether irqs were enabled
- (it's always 1, since irqs are enabled when guest is running). */
+ /* Remember that we never let the Guest actually disable interrupts, so
+ * the "Interrupt Flag" bit is always set. We copy that bit from the
+ * Guest's "irq_enabled" field into the eflags word: the Guest copies
+ * it back in "lguest_iret". */
eflags = lg->regs->eflags;
if (get_user(irq_enable, &lg->lguest_data->irq_enabled) == 0
&& !(irq_enable & X86_EFLAGS_IF))
eflags &= ~X86_EFLAGS_IF;
+ /* An interrupt is expected to push three things on the stack: the old
+ * "eflags" word, the old code segment, and the old instruction
+ * pointer. */
push_guest_stack(lg, &gstack, eflags);
push_guest_stack(lg, &gstack, lg->regs->cs);
push_guest_stack(lg, &gstack, lg->regs->eip);
+ /* For the six traps which supply an error code, we push that, too. */
if (has_err)
push_guest_stack(lg, &gstack, lg->regs->errcode);
- /* Change the real stack so switcher returns to trap handler */
+ /* Now we've pushed all the old state, we change the stack, the code
+ * segment and the address to execute. */
lg->regs->ss = ss;
lg->regs->esp = gstack + lg->page_offset;
lg->regs->cs = (__KERNEL_CS|GUEST_PL);
lg->regs->eip = idt_address(lo, hi);
- /* Disable interrupts for an interrupt gate. */
+ /* There are two kinds of interrupt handlers: 0xE is an "interrupt
+ * gate" which expects interrupts to be disabled on entry. */
if (idt_type(lo, hi) == 0xE)
if (put_user(0, &lg->lguest_data->irq_enabled))
kill_guest(lg, "Disabling interrupts");
}
+/*H:200
+ * Virtual Interrupts.
+ *
+ * maybe_do_interrupt() gets called before every entry to the Guest, to see if
+ * we should divert the Guest to running an interrupt handler. */
void maybe_do_interrupt(struct lguest *lg)
{
unsigned int irq;
DECLARE_BITMAP(blk, LGUEST_IRQS);
struct desc_struct *idt;
+ /* If the Guest hasn't even initialized yet, we can do nothing. */
if (!lg->lguest_data)
return;
- /* Mask out any interrupts they have blocked. */
+ /* Take our "irqs_pending" array and remove any interrupts the Guest
+ * wants blocked: the result ends up in "blk". */
if (copy_from_user(&blk, lg->lguest_data->blocked_interrupts,
sizeof(blk)))
return;
bitmap_andnot(blk, lg->irqs_pending, blk, LGUEST_IRQS);
+ /* Find the first interrupt. */
irq = find_first_bit(blk, LGUEST_IRQS);
+ /* None? Nothing to do */
if (irq >= LGUEST_IRQS)
return;
+ /* They may be in the middle of an iret, where they asked us never to
+ * deliver interrupts. */
if (lg->regs->eip >= lg->noirq_start && lg->regs->eip < lg->noirq_end)
return;
- /* If they're halted, we re-enable interrupts. */
+ /* If they're halted, interrupts restart them. */
if (lg->halted) {
/* Re-enable interrupts. */
if (put_user(X86_EFLAGS_IF, &lg->lguest_data->irq_enabled))
kill_guest(lg, "Re-enabling interrupts");
lg->halted = 0;
} else {
- /* Maybe they have interrupts disabled? */
+ /* Otherwise we check if they have interrupts disabled. */
u32 irq_enabled;
if (get_user(irq_enabled, &lg->lguest_data->irq_enabled))
irq_enabled = 0;
@@ -115,112 +162,197 @@ void maybe_do_interrupt(struct lguest *lg)
return;
}
+ /* Look at the IDT entry the Guest gave us for this interrupt. The
+ * first 32 (FIRST_EXTERNAL_VECTOR) entries are for traps, so we skip
+ * over them. */
idt = &lg->idt[FIRST_EXTERNAL_VECTOR+irq];
+ /* If they don't have a handler (yet?), we just ignore it */
if (idt_present(idt->a, idt->b)) {
+ /* OK, mark it no longer pending and deliver it. */
clear_bit(irq, lg->irqs_pending);
+ /* set_guest_interrupt() takes the interrupt descriptor and a
+ * flag to say whether this interrupt pushes an error code onto
+ * the stack as well: virtual interrupts never do. */
set_guest_interrupt(lg, idt->a, idt->b, 0);
}
}
+/*H:220 Now we've got the routines to deliver interrupts, delivering traps
+ * like page fault is easy. The only trick is that Intel decided that some
+ * traps should have error codes: */
static int has_err(unsigned int trap)
{
return (trap == 8 || (trap >= 10 && trap <= 14) || trap == 17);
}
+/* deliver_trap() returns true if it could deliver the trap. */
int deliver_trap(struct lguest *lg, unsigned int num)
{
u32 lo = lg->idt[num].a, hi = lg->idt[num].b;
+ /* Early on the Guest hasn't set the IDT entries (or maybe it put a
+ * bogus one in): if we fail here, the Guest will be killed. */
if (!idt_present(lo, hi))
return 0;
set_guest_interrupt(lg, lo, hi, has_err(num));
return 1;
}
+/*H:250 Here's the hard part: returning to the Host every time a trap happens
+ * and then calling deliver_trap() and re-entering the Guest is slow.
+ * Particularly because Guest userspace system calls are traps (trap 128).
+ *
+ * So we'd like to set up the IDT to tell the CPU to deliver traps directly
+ * into the Guest. This is possible, but the complexities cause the size of
+ * this file to double! However, 150 lines of code is worth writing for taking
+ * system calls down from 1750ns to 270ns. Plus, if lguest didn't do it, all
+ * the other hypervisors would tease it.
+ *
+ * This routine determines if a trap can be delivered directly. */
static int direct_trap(const struct lguest *lg,
const struct desc_struct *trap,
unsigned int num)
{
- /* Hardware interrupts don't go to guest (except syscall). */
+ /* Hardware interrupts don't go to the Guest at all (except system
+ * call). */
if (num >= FIRST_EXTERNAL_VECTOR && num != SYSCALL_VECTOR)
return 0;
- /* We intercept page fault (demand shadow paging & cr2 saving)
- protection fault (in/out emulation) and device not
- available (TS handling), and hypercall */
+ /* The Host needs to see page faults (for shadow paging and to save the
+ * fault address), general protection faults (in/out emulation) and
+ * device not available (TS handling), and of course, the hypercall
+ * trap. */
if (num == 14 || num == 13 || num == 7 || num == LGUEST_TRAP_ENTRY)
return 0;
- /* Interrupt gates (0xE) or not present (0x0) can't go direct. */
+ /* Only trap gates (type 15) can go direct to the Guest. Interrupt
+ * gates (type 14) disable interrupts as they are entered, which we
+ * never let the Guest do. Not present entries (type 0x0) also can't
+ * go direct, of course 8) */
return idt_type(trap->a, trap->b) == 0xF;
}
+/*H:260 When we make traps go directly into the Guest, we need to make sure
+ * the kernel stack is valid (ie. mapped in the page tables). Otherwise, the
+ * CPU trying to deliver the trap will fault while trying to push the interrupt
+ * words on the stack: this is called a double fault, and it forces us to kill
+ * the Guest.
+ *
+ * Which is deeply unfair, because (literally!) it wasn't the Guests' fault. */
void pin_stack_pages(struct lguest *lg)
{
unsigned int i;
+ /* Depending on the CONFIG_4KSTACKS option, the Guest can have one or
+ * two pages of stack space. */
for (i = 0; i < lg->stack_pages; i++)
+ /* The stack grows *upwards*, hence the subtraction */
pin_page(lg, lg->esp1 - i * PAGE_SIZE);
}
+/* Direct traps also mean that we need to know whenever the Guest wants to use
+ * a different kernel stack, so we can change the IDT entries to use that
+ * stack. The IDT entries expect a virtual address, so unlike most addresses
+ * the Guest gives us, the "esp" (stack pointer) value here is virtual, not
+ * physical.
+ *
+ * In Linux each process has its own kernel stack, so this happens a lot: we
+ * change stacks on each context switch. */
void guest_set_stack(struct lguest *lg, u32 seg, u32 esp, unsigned int pages)
{
- /* You cannot have a stack segment with priv level 0. */
+ /* You are not allowd have a stack segment with privilege level 0: bad
+ * Guest! */
if ((seg & 0x3) != GUEST_PL)
kill_guest(lg, "bad stack segment %i", seg);
+ /* We only expect one or two stack pages. */
if (pages > 2)
kill_guest(lg, "bad stack pages %u", pages);
+ /* Save where the stack is, and how many pages */
lg->ss1 = seg;
lg->esp1 = esp;
lg->stack_pages = pages;
+ /* Make sure the new stack pages are mapped */
pin_stack_pages(lg);
}
-/* Set up trap in IDT. */
+/* All this reference to mapping stacks leads us neatly into the other complex
+ * part of the Host: page table handling. */
+
+/*H:235 This is the routine which actually checks the Guest's IDT entry and
+ * transfers it into our entry in "struct lguest": */
static void set_trap(struct lguest *lg, struct desc_struct *trap,
unsigned int num, u32 lo, u32 hi)
{
u8 type = idt_type(lo, hi);
+ /* We zero-out a not-present entry */
if (!idt_present(lo, hi)) {
trap->a = trap->b = 0;
return;
}
+ /* We only support interrupt and trap gates. */
if (type != 0xE && type != 0xF)
kill_guest(lg, "bad IDT type %i", type);
+ /* We only copy the handler address, present bit, privilege level and
+ * type. The privilege level controls where the trap can be triggered
+ * manually with an "int" instruction. This is usually GUEST_PL,
+ * except for system calls which userspace can use. */
trap->a = ((__KERNEL_CS|GUEST_PL)<<16) | (lo&0x0000FFFF);
trap->b = (hi&0xFFFFEF00);
}
+/*H:230 While we're here, dealing with delivering traps and interrupts to the
+ * Guest, we might as well complete the picture: how the Guest tells us where
+ * it wants them to go. This would be simple, except making traps fast
+ * requires some tricks.
+ *
+ * We saw the Guest setting Interrupt Descriptor Table (IDT) entries with the
+ * LHCALL_LOAD_IDT_ENTRY hypercall before: that comes here. */
void load_guest_idt_entry(struct lguest *lg, unsigned int num, u32 lo, u32 hi)
{
- /* Guest never handles: NMI, doublefault, hypercall, spurious irq. */
+ /* Guest never handles: NMI, doublefault, spurious interrupt or
+ * hypercall. We ignore when it tries to set them. */
if (num == 2 || num == 8 || num == 15 || num == LGUEST_TRAP_ENTRY)
return;
+ /* Mark the IDT as changed: next time the Guest runs we'll know we have
+ * to copy this again. */
lg->changed |= CHANGED_IDT;
+
+ /* The IDT which we keep in "struct lguest" only contains 32 entries
+ * for the traps and LGUEST_IRQS (32) entries for interrupts. We
+ * ignore attempts to set handlers for higher interrupt numbers, except
+ * for the system call "interrupt" at 128: we have a special IDT entry
+ * for that. */
if (num < ARRAY_SIZE(lg->idt))
set_trap(lg, &lg->idt[num], num, lo, hi);
else if (num == SYSCALL_VECTOR)
set_trap(lg, &lg->syscall_idt, num, lo, hi);
}
+/* The default entry for each interrupt points into the Switcher routines which
+ * simply return to the Host. The run_guest() loop will then call
+ * deliver_trap() to bounce it back into the Guest. */
static void default_idt_entry(struct desc_struct *idt,
int trap,
const unsigned long handler)
{
+ /* A present interrupt gate. */
u32 flags = 0x8e00;
- /* They can't "int" into any of them except hypercall. */
+ /* Set the privilege level on the entry for the hypercall: this allows
+ * the Guest to use the "int" instruction to trigger it. */
if (trap == LGUEST_TRAP_ENTRY)
flags |= (GUEST_PL << 13);
+ /* Now pack it into the IDT entry in its weird format. */
idt->a = (LGUEST_CS<<16) | (handler&0x0000FFFF);
idt->b = (handler&0xFFFF0000) | flags;
}
+/* When the Guest first starts, we put default entries into the IDT. */
void setup_default_idt_entries(struct lguest_ro_state *state,
const unsigned long *def)
{
@@ -230,19 +362,25 @@ void setup_default_idt_entries(struct lguest_ro_state *state,
default_idt_entry(&state->guest_idt[i], i, def[i]);
}
+/*H:240 We don't use the IDT entries in the "struct lguest" directly, instead
+ * we copy them into the IDT which we've set up for Guests on this CPU, just
+ * before we run the Guest. This routine does that copy. */
void copy_traps(const struct lguest *lg, struct desc_struct *idt,
const unsigned long *def)
{
unsigned int i;
- /* All hardware interrupts are same whatever the guest: only the
- * traps might be different. */
+ /* We can simply copy the direct traps, otherwise we use the default
+ * ones in the Switcher: they will return to the Host. */
for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++) {
if (direct_trap(lg, &lg->idt[i], i))
idt[i] = lg->idt[i];
else
default_idt_entry(&idt[i], i, def[i]);
}
+
+ /* Don't forget the system call trap! The IDT entries for other
+ * interupts never change, so no need to copy them. */
i = SYSCALL_VECTOR;
if (direct_trap(lg, &lg->syscall_idt, i))
idt[i] = lg->syscall_idt;