diff options
author | George Joseph <george.joseph@fairview5.com> | 2010-03-05 22:17:25 +0100 |
---|---|---|
committer | Jean Delvare <khali@linux-fr.org> | 2010-03-05 22:17:25 +0100 |
commit | d58de038728221f780e11d50b32aa40d420c1150 (patch) | |
tree | 270bbb4ca00bed94782dee9d18846edee4db2df0 /drivers/hwmon | |
parent | 232449850229deeda84194e8a3c93a49ab6a043e (diff) |
hwmon: Driver for Andigilog aSC7621 family monitoring chips
Hwmon driver for Andigilog aSC7621 family monitoring chips.
Signed-off-by: George Joseph <george.joseph@fairview5.com>
Acked-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Diffstat (limited to 'drivers/hwmon')
-rw-r--r-- | drivers/hwmon/Kconfig | 13 | ||||
-rw-r--r-- | drivers/hwmon/Makefile | 1 | ||||
-rw-r--r-- | drivers/hwmon/asc7621.c | 1255 |
3 files changed, 1269 insertions, 0 deletions
diff --git a/drivers/hwmon/Kconfig b/drivers/hwmon/Kconfig index 77d032fb813..b6d65aa2082 100644 --- a/drivers/hwmon/Kconfig +++ b/drivers/hwmon/Kconfig @@ -226,6 +226,19 @@ config SENSORS_ADT7475 This driver can also be build as a module. If so, the module will be called adt7475. +config SENSORS_ASC7621 + tristate "Andigilog aSC7621" + depends on HWMON && I2C + help + If you say yes here you get support for the aSC7621 + family of SMBus sensors chip found on most Intel X48, X38, 975, + 965 and 945 desktop boards. Currently supported chips: + aSC7621 + aSC7621a + + This driver can also be built as a module. If so, the module + will be called asc7621. + config SENSORS_K8TEMP tristate "AMD Athlon64/FX or Opteron temperature sensor" depends on X86 && PCI && EXPERIMENTAL diff --git a/drivers/hwmon/Makefile b/drivers/hwmon/Makefile index 5fe67bf961b..865da80f2b9 100644 --- a/drivers/hwmon/Makefile +++ b/drivers/hwmon/Makefile @@ -36,6 +36,7 @@ obj-$(CONFIG_SENSORS_ADT7473) += adt7473.o obj-$(CONFIG_SENSORS_ADT7475) += adt7475.o obj-$(CONFIG_SENSORS_APPLESMC) += applesmc.o obj-$(CONFIG_SENSORS_AMS) += ams/ +obj-$(CONFIG_SENSORS_ASC7621) += asc7621.o obj-$(CONFIG_SENSORS_ATXP1) += atxp1.o obj-$(CONFIG_SENSORS_CORETEMP) += coretemp.o obj-$(CONFIG_SENSORS_DME1737) += dme1737.o diff --git a/drivers/hwmon/asc7621.c b/drivers/hwmon/asc7621.c new file mode 100644 index 00000000000..7f948105d8a --- /dev/null +++ b/drivers/hwmon/asc7621.c @@ -0,0 +1,1255 @@ +/* + * asc7621.c - Part of lm_sensors, Linux kernel modules for hardware monitoring + * Copyright (c) 2007, 2010 George Joseph <george.joseph@fairview5.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + */ + +#include <linux/module.h> +#include <linux/init.h> +#include <linux/slab.h> +#include <linux/jiffies.h> +#include <linux/i2c.h> +#include <linux/hwmon.h> +#include <linux/hwmon-sysfs.h> +#include <linux/err.h> +#include <linux/mutex.h> + +/* Addresses to scan */ +static unsigned short normal_i2c[] = { + 0x2c, 0x2d, 0x2e, I2C_CLIENT_END +}; + +enum asc7621_type { + asc7621, + asc7621a +}; + +#define INTERVAL_HIGH (HZ + HZ / 2) +#define INTERVAL_LOW (1 * 60 * HZ) +#define PRI_NONE 0 +#define PRI_LOW 1 +#define PRI_HIGH 2 +#define FIRST_CHIP asc7621 +#define LAST_CHIP asc7621a + +struct asc7621_chip { + char *name; + enum asc7621_type chip_type; + u8 company_reg; + u8 company_id; + u8 verstep_reg; + u8 verstep_id; + unsigned short *addresses; +}; + +static struct asc7621_chip asc7621_chips[] = { + { + .name = "asc7621", + .chip_type = asc7621, + .company_reg = 0x3e, + .company_id = 0x61, + .verstep_reg = 0x3f, + .verstep_id = 0x6c, + .addresses = normal_i2c, + }, + { + .name = "asc7621a", + .chip_type = asc7621a, + .company_reg = 0x3e, + .company_id = 0x61, + .verstep_reg = 0x3f, + .verstep_id = 0x6d, + .addresses = normal_i2c, + }, +}; + +/* + * Defines the highest register to be used, not the count. + * The actual count will probably be smaller because of gaps + * in the implementation (unused register locations). + * This define will safely set the array size of both the parameter + * and data arrays. + * This comes from the data sheet register description table. + */ +#define LAST_REGISTER 0xff + +struct asc7621_data { + struct i2c_client client; + struct device *class_dev; + struct mutex update_lock; + int valid; /* !=0 if following fields are valid */ + unsigned long last_high_reading; /* In jiffies */ + unsigned long last_low_reading; /* In jiffies */ + /* + * Registers we care about occupy the corresponding index + * in the array. Registers we don't care about are left + * at 0. + */ + u8 reg[LAST_REGISTER + 1]; +}; + +/* + * Macro to get the parent asc7621_param structure + * from a sensor_device_attribute passed into the + * show/store functions. + */ +#define to_asc7621_param(_sda) \ + container_of(_sda, struct asc7621_param, sda) + +/* + * Each parameter to be retrieved needs an asc7621_param structure + * allocated. It contains the sensor_device_attribute structure + * and the control info needed to retrieve the value from the register map. + */ +struct asc7621_param { + struct sensor_device_attribute sda; + u8 priority; + u8 msb[3]; + u8 lsb[3]; + u8 mask[3]; + u8 shift[3]; +}; + +/* + * This is the map that ultimately indicates whether we'll be + * retrieving a register value or not, and at what frequency. + */ +static u8 asc7621_register_priorities[255]; + +static struct asc7621_data *asc7621_update_device(struct device *dev); + +static inline u8 read_byte(struct i2c_client *client, u8 reg) +{ + int res = i2c_smbus_read_byte_data(client, reg); + if (res < 0) { + dev_err(&client->dev, + "Unable to read from register 0x%02x.\n", reg); + return 0; + }; + return res & 0xff; +} + +static inline int write_byte(struct i2c_client *client, u8 reg, u8 data) +{ + int res = i2c_smbus_write_byte_data(client, reg, data); + if (res < 0) { + dev_err(&client->dev, + "Unable to write value 0x%02x to register 0x%02x.\n", + data, reg); + }; + return res; +} + +/* + * Data Handlers + * Each function handles the formatting, storage + * and retrieval of like parameters. + */ + +#define SETUP_SHOW_data_param(d, a) \ + struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \ + struct asc7621_data *data = asc7621_update_device(d); \ + struct asc7621_param *param = to_asc7621_param(sda) + +#define SETUP_STORE_data_param(d, a) \ + struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \ + struct i2c_client *client = to_i2c_client(d); \ + struct asc7621_data *data = i2c_get_clientdata(client); \ + struct asc7621_param *param = to_asc7621_param(sda) + +/* + * u8 is just what it sounds like...an unsigned byte with no + * special formatting. + */ +static ssize_t show_u8(struct device *dev, struct device_attribute *attr, + char *buf) +{ + SETUP_SHOW_data_param(dev, attr); + + return sprintf(buf, "%u\n", data->reg[param->msb[0]]); +} + +static ssize_t store_u8(struct device *dev, struct device_attribute *attr, + const char *buf, size_t count) +{ + SETUP_STORE_data_param(dev, attr); + long reqval; + + if (strict_strtol(buf, 10, &reqval)) + return -EINVAL; + + reqval = SENSORS_LIMIT(reqval, 0, 255); + + mutex_lock(&data->update_lock); + data->reg[param->msb[0]] = reqval; + write_byte(client, param->msb[0], reqval); + mutex_unlock(&data->update_lock); + return count; +} + +/* + * Many of the config values occupy only a few bits of a register. + */ +static ssize_t show_bitmask(struct device *dev, + struct device_attribute *attr, char *buf) +{ + SETUP_SHOW_data_param(dev, attr); + + return sprintf(buf, "%u\n", + (data->reg[param->msb[0]] >> param-> + shift[0]) & param->mask[0]); +} + +static ssize_t store_bitmask(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + SETUP_STORE_data_param(dev, attr); + long reqval; + u8 currval; + + if (strict_strtol(buf, 10, &reqval)) + return -EINVAL; + + reqval = SENSORS_LIMIT(reqval, 0, param->mask[0]); + + reqval = (reqval & param->mask[0]) << param->shift[0]; + + mutex_lock(&data->update_lock); + currval = read_byte(client, param->msb[0]); + reqval |= (currval & ~(param->mask[0] << param->shift[0])); + data->reg[param->msb[0]] = reqval; + write_byte(client, param->msb[0], reqval); + mutex_unlock(&data->update_lock); + return count; +} + +/* + * 16 bit fan rpm values + * reported by the device as the number of 11.111us periods (90khz) + * between full fan rotations. Therefore... + * RPM = (90000 * 60) / register value + */ +static ssize_t show_fan16(struct device *dev, + struct device_attribute *attr, char *buf) +{ + SETUP_SHOW_data_param(dev, attr); + u16 regval; + + mutex_lock(&data->update_lock); + regval = (data->reg[param->msb[0]] << 8) | data->reg[param->lsb[0]]; + mutex_unlock(&data->update_lock); + + return sprintf(buf, "%u\n", + (regval == 0 ? -1 : (regval) == + 0xffff ? 0 : 5400000 / regval)); +} + +static ssize_t store_fan16(struct device *dev, + struct device_attribute *attr, const char *buf, + size_t count) +{ + SETUP_STORE_data_param(dev, attr); + long reqval; + + if (strict_strtol(buf, 10, &reqval)) + return -EINVAL; + + reqval = + (SENSORS_LIMIT((reqval) <= 0 ? 0 : 5400000 / (reqval), 0, 65534)); + + mutex_lock(&data->update_lock); + data->reg[param->msb[0]] = (reqval >> 8) & 0xff; + data->reg[param->lsb[0]] = reqval & 0xff; + write_byte(client, param->msb[0], data->reg[param->msb[0]]); + write_byte(client, param->lsb[0], data->reg[param->lsb[0]]); + mutex_unlock(&data->update_lock); + + return count; +} + +/* + * Voltages are scaled in the device so that the nominal voltage + * is 3/4ths of the 0-255 range (i.e. 192). + * If all voltages are 'normal' then all voltage registers will + * read 0xC0. This doesn't help us if we don't have a point of refernce. + * The data sheet however provides us with the full scale value for each + * which is stored in in_scaling. The sda->index parameter value provides + * the index into in_scaling. + * + * NOTE: The chip expects the first 2 inputs be 2.5 and 2.25 volts + * respectively. That doesn't mean that's what the motherboard provides. :) + */ + +static int asc7621_in_scaling[] = { + 3320, 3000, 4380, 6640, 16000 +}; + +static ssize_t show_in10(struct device *dev, struct device_attribute *attr, + char *buf) +{ + SETUP_SHOW_data_param(dev, attr); + u16 regval; + u8 nr = sda->index; + + mutex_lock(&data->update_lock); + regval = (data->reg[param->msb[0]] * asc7621_in_scaling[nr]) / 256; + + /* The LSB value is a 2-bit scaling of the MSB's LSbit value. + * I.E. If the maximim voltage for this input is 6640 millivolts then + * a MSB register value of 0 = 0mv and 255 = 6640mv. + * A 1 step change therefore represents 25.9mv (6640 / 256). + * The extra 2-bits therefore represent increments of 6.48mv. + */ + regval += ((asc7621_in_scaling[nr] / 256) / 4) * + (data->reg[param->lsb[0]] >> 6); + + mutex_unlock(&data->update_lock); + + return sprintf(buf, "%u\n", regval); +} + +/* 8 bit voltage values (the mins and maxs) */ +static ssize_t show_in8(struct device *dev, struct device_attribute *attr, + char *buf) +{ + SETUP_SHOW_data_param(dev, attr); + u8 nr = sda->index; + + return sprintf(buf, "%u\n", + ((data->reg[param->msb[0]] * + asc7621_in_scaling[nr]) / 256)); +} + +static ssize_t store_in8(struct device *dev, struct device_attribute *attr, + const char *buf, size_t count) +{ + SETUP_STORE_data_param(dev, attr); + long reqval; + u8 nr = sda->index; + + if (strict_strtol(buf, 10, &reqval)) + return -EINVAL; + + reqval = SENSORS_LIMIT(reqval, 0, asc7621_in_scaling[nr]); + + reqval = (reqval * 255 + 128) / asc7621_in_scaling[nr]; + + mutex_lock(&data->update_lock); + data->reg[param->msb[0]] = reqval; + write_byte(client, param->msb[0], reqval); + mutex_unlock(&data->update_lock); + + return count; +} + +static ssize_t show_temp8(struct device *dev, + struct device_attribute *attr, char *buf) +{ + SETUP_SHOW_data_param(dev, attr); + + return sprintf(buf, "%d\n", ((s8) data->reg[param->msb[0]]) * 1000); +} + +static ssize_t store_temp8(struct device *dev, + struct device_attribute *attr, const char *buf, + size_t count) +{ + SETUP_STORE_data_param(dev, attr); + long reqval; + s8 temp; + + if (strict_strtol(buf, 10, &reqval)) + return -EINVAL; + + reqval = SENSORS_LIMIT(reqval, -127000, 127000); + + temp = reqval / 1000; + + mutex_lock(&data->update_lock); + data->reg[param->msb[0]] = temp; + write_byte(client, param->msb[0], temp); + mutex_unlock(&data->update_lock); + return count; +} + +/* + * Temperatures that occupy 2 bytes always have the whole + * number of degrees in the MSB with some part of the LSB + * indicating fractional degrees. + */ + +/* mmmmmmmm.llxxxxxx */ +static ssize_t show_temp10(struct device *dev, + struct device_attribute *attr, char *buf) +{ + SETUP_SHOW_data_param(dev, attr); + u8 msb, lsb; + int temp; + + mutex_lock(&data->update_lock); + msb = data->reg[param->msb[0]]; + lsb = (data->reg[param->lsb[0]] >> 6) & 0x03; + temp = (((s8) msb) * 1000) + (lsb * 250); + mutex_unlock(&data->update_lock); + + return sprintf(buf, "%d\n", temp); +} + +/* mmmmmm.ll */ +static ssize_t show_temp62(struct device *dev, + struct device_attribute *attr, char *buf) +{ + SETUP_SHOW_data_param(dev, attr); + u8 regval = data->reg[param->msb[0]]; + int temp = ((s8) (regval & 0xfc) * 1000) + ((regval & 0x03) * 250); + + return sprintf(buf, "%d\n", temp); +} + +static ssize_t store_temp62(struct device *dev, + struct device_attribute *attr, const char *buf, + size_t count) +{ + SETUP_STORE_data_param(dev, attr); + long reqval, i, f; + s8 temp; + + if (strict_strtol(buf, 10, &reqval)) + return -EINVAL; + + reqval = SENSORS_LIMIT(reqval, -32000, 31750); + i = reqval / 1000; + f = reqval - (i * 1000); + temp = i << 2; + temp |= f / 250; + + mutex_lock(&data->update_lock); + data->reg[param->msb[0]] = temp; + write_byte(client, param->msb[0], temp); + mutex_unlock(&data->update_lock); + return count; +} + +/* + * The aSC7621 doesn't provide an "auto_point2". Instead, you + * specify the auto_point1 and a range. To keep with the sysfs + * hwmon specs, we synthesize the auto_point_2 from them. + */ + +static u32 asc7621_range_map[] = { + 2000, 2500, 3330, 4000, 5000, 6670, 8000, 10000, + 13330, 16000, 20000, 26670, 32000, 40000, 53330, 80000, +}; + +static ssize_t show_ap2_temp(struct device *dev, + struct device_attribute *attr, char *buf) +{ + SETUP_SHOW_data_param(dev, attr); + long auto_point1; + u8 regval; + int temp; + + mutex_lock(&data->update_lock); + auto_point1 = ((s8) data->reg[param->msb[1]]) * 1000; + regval = + ((data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]); + temp = auto_point1 + asc7621_range_map[SENSORS_LIMIT(regval, 0, 15)]; + mutex_unlock(&data->update_lock); + + return sprintf(buf, "%d\n", temp); + +} + +static ssize_t store_ap2_temp(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + SETUP_STORE_data_param(dev, attr); + long reqval, auto_point1; + int i; + u8 currval, newval = 0; + + if (strict_strtol(buf, 10, &reqval)) + return -EINVAL; + + mutex_lock(&data->update_lock); + auto_point1 = data->reg[param->msb[1]] * 1000; + reqval = SENSORS_LIMIT(reqval, auto_point1 + 2000, auto_point1 + 80000); + + for (i = ARRAY_SIZE(asc7621_range_map) - 1; i >= 0; i--) { + if (reqval >= auto_point1 + asc7621_range_map[i]) { + newval = i; + break; + } + } + + newval = (newval & param->mask[0]) << param->shift[0]; + currval = read_byte(client, param->msb[0]); + newval |= (currval & ~(param->mask[0] << param->shift[0])); + data->reg[param->msb[0]] = newval; + write_byte(client, param->msb[0], newval); + mutex_unlock(&data->update_lock); + return count; +} + +static ssize_t show_pwm_ac(struct device *dev, + struct device_attribute *attr, char *buf) +{ + SETUP_SHOW_data_param(dev, attr); + u8 config, altbit, regval; + u8 map[] = { + 0x01, 0x02, 0x04, 0x1f, 0x00, 0x06, 0x07, 0x10, + 0x08, 0x0f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f + }; + + mutex_lock(&data->update_lock); + config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; + altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1]; + regval = config | (altbit << 3); + mutex_unlock(&data->update_lock); + + return sprintf(buf, "%u\n", map[SENSORS_LIMIT(regval, 0, 15)]); +} + +static ssize_t store_pwm_ac(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + SETUP_STORE_data_param(dev, attr); + unsigned long reqval; + u8 currval, config, altbit, newval; + u16 map[] = { + 0x04, 0x00, 0x01, 0xff, 0x02, 0xff, 0x05, 0x06, + 0x08, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x0f, + 0x07, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, + }; + + if (strict_strtoul(buf, 10, &reqval)) + return -EINVAL; + + if (reqval > 31) + return -EINVAL; + + reqval = map[reqval]; + if (reqval == 0xff) + return -EINVAL; + + config = reqval & 0x07; + altbit = (reqval >> 3) & 0x01; + + config = (config & param->mask[0]) << param->shift[0]; + altbit = (altbit & param->mask[1]) << param->shift[1]; + + mutex_lock(&data->update_lock); + currval = read_byte(client, param->msb[0]); + newval = config | (currval & ~(param->mask[0] << param->shift[0])); + newval = altbit | (newval & ~(param->mask[1] << param->shift[1])); + data->reg[param->msb[0]] = newval; + write_byte(client, param->msb[0], newval); + mutex_unlock(&data->update_lock); + return count; +} + +static ssize_t show_pwm_enable(struct device *dev, + struct device_attribute *attr, char *buf) +{ + SETUP_SHOW_data_param(dev, attr); + u8 config, altbit, minoff, val, newval; + + mutex_lock(&data->update_lock); + config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; + altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1]; + minoff = (data->reg[param->msb[2]] >> param->shift[2]) & param->mask[2]; + mutex_unlock(&data->update_lock); + + val = config | (altbit << 3); + newval = 0; + + if (val == 3 || val >= 10) + newval = 255; + else if (val == 4) + newval = 0; + else if (val == 7) + newval = 1; + else if (minoff == 1) + newval = 2; + else + newval = 3; + + return sprintf(buf, "%u\n", newval); +} + +static ssize_t store_pwm_enable(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + SETUP_STORE_data_param(dev, attr); + long reqval; + u8 currval, config, altbit, newval, minoff = 255; + + if (strict_strtol(buf, 10, &reqval)) + return -EINVAL; + + switch (reqval) { + case 0: + newval = 0x04; + break; + case 1: + newval = 0x07; + break; + case 2: + newval = 0x00; + minoff = 1; + break; + case 3: + newval = 0x00; + minoff = 0; + break; + case 255: + newval = 0x03; + break; + default: + return -EINVAL; + } + + config = newval & 0x07; + altbit = (newval >> 3) & 0x01; + + mutex_lock(&data->update_lock); + config = (config & param->mask[0]) << param->shift[0]; + altbit = (altbit & param->mask[1]) << param->shift[1]; + currval = read_byte(client, param->msb[0]); + newval = config | (currval & ~(param->mask[0] << param->shift[0])); + newval = altbit | (newval & ~(param->mask[1] << param->shift[1])); + data->reg[param->msb[0]] = newval; + write_byte(client, param->msb[0], newval); + if (minoff < 255) { + minoff = (minoff & param->mask[2]) << param->shift[2]; + currval = read_byte(client, param->msb[2]); + newval = + minoff | (currval & ~(param->mask[2] << param->shift[2])); + data->reg[param->msb[2]] = newval; + write_byte(client, param->msb[2], newval); + } + mutex_unlock(&data->update_lock); + return count; +} + +static u32 asc7621_pwm_freq_map[] = { + 10, 15, 23, 30, 38, 47, 62, 94, + 23000, 24000, 25000, 26000, 27000, 28000, 29000, 30000 +}; + +static ssize_t show_pwm_freq(struct device *dev, + struct device_attribute *attr, char *buf) +{ + SETUP_SHOW_data_param(dev, attr); + u8 regval = + (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; + + regval = SENSORS_LIMIT(regval, 0, 15); + + return sprintf(buf, "%u\n", asc7621_pwm_freq_map[regval]); +} + +static ssize_t store_pwm_freq(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + SETUP_STORE_data_param(dev, attr); + unsigned long reqval; + u8 currval, newval = 255; + int i; + + if (strict_strtoul(buf, 10, &reqval)) + return -EINVAL; + + for (i = 0; i < ARRAY_SIZE(asc7621_pwm_freq_map); i++) { + if (reqval == asc7621_pwm_freq_map[i]) { + newval = i; + break; + } + } + if (newval == 255) + return -EINVAL; + + newval = (newval & param->mask[0]) << param->shift[0]; + + mutex_lock(&data->update_lock); + currval = read_byte(client, param->msb[0]); + newval |= (currval & ~(param->mask[0] << param->shift[0])); + data->reg[param->msb[0]] = newval; + write_byte(client, param->msb[0], newval); + mutex_unlock(&data->update_lock); + return count; +} + +static u32 asc7621_pwm_auto_spinup_map[] = { + 0, 100, 250, 400, 700, 1000, 2000, 4000 +}; + +static ssize_t show_pwm_ast(struct device *dev, + struct device_attribute *attr, char *buf) +{ + SETUP_SHOW_data_param(dev, attr); + u8 regval = + (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; + + regval = SENSORS_LIMIT(regval, 0, 7); + + return sprintf(buf, "%u\n", asc7621_pwm_auto_spinup_map[regval]); + +} + +static ssize_t store_pwm_ast(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + SETUP_STORE_data_param(dev, attr); + long reqval; + u8 currval, newval = 255; + u32 i; + + if (strict_strtol(buf, 10, &reqval)) + return -EINVAL; + + for (i = 0; i < ARRAY_SIZE(asc7621_pwm_auto_spinup_map); i++) { + if (reqval == asc7621_pwm_auto_spinup_map[i]) { + newval = i; + break; + } + } + if (newval == 255) + return -EINVAL; + + newval = (newval & param->mask[0]) << param->shift[0]; + + mutex_lock(&data->update_lock); + currval = read_byte(client, param->msb[0]); + newval |= (currval & ~(param->mask[0] << param->shift[0])); + data->reg[param->msb[0]] = newval; + write_byte(client, param->msb[0], newval); + mutex_unlock(&data->update_lock); + return count; +} + +static u32 asc7621_temp_smoothing_time_map[] = { + 35000, 17600, 11800, 7000, 4400, 3000, 1600, 800 +}; + +static ssize_t show_temp_st(struct device *dev, + struct device_attribute *attr, char *buf) +{ + SETUP_SHOW_data_param(dev, attr); + u8 regval = + (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; + regval = SENSORS_LIMIT(regval, 0, 7); + + return sprintf(buf, "%u\n", asc7621_temp_smoothing_time_map[regval]); +} + +static ssize_t store_temp_st(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + SETUP_STORE_data_param(dev, attr); + long reqval; + u8 currval, newval = 255; + u32 i; + + if (strict_strtol(buf, 10, &reqval)) + return -EINVAL; + + for (i = 0; i < ARRAY_SIZE(asc7621_temp_smoothing_time_map); i++) { + if (reqval == asc7621_temp_smoothing_time_map[i]) { + newval = i; + break; + } + } + + if (newval == 255) + return -EINVAL; + + newval = (newval & param->mask[0]) << param->shift[0]; + + mutex_lock(&data->update_lock); + currval = read_byte(client, param->msb[0]); + newval |= (currval & ~(param->mask[0] << param->shift[0])); + data->reg[param->msb[0]] = newval; + write_byte(client, param->msb[0], newval); + mutex_unlock(&data->update_lock); + return count; +} + +/* + * End of data handlers + * + * These defines do nothing more than make the table easier + * to read when wrapped at column 80. + */ + +/* + * Creates a variable length array inititalizer. + * VAA(1,3,5,7) would produce {1,3,5,7} + */ +#define VAA(args...) {args} + +#define PREAD(name, n, pri, rm, rl, m, s, r) \ + {.sda = SENSOR_ATTR(name, S_IRUGO, show_##r, NULL, n), \ + .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \ + .shift[0] = s,} + +#define PWRITE(name, n, pri, rm, rl, m, s, r) \ + {.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \ + .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \ + .shift[0] = s,} + +/* + * PWRITEM assumes that the initializers for the .msb, .lsb, .mask and .shift + * were created using the VAA macro. + */ +#define PWRITEM(name, n, pri, rm, rl, m, s, r) \ + {.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \ + .priority = pri, .msb = rm, .lsb = rl, .mask = m, .shift = s,} + +static struct asc7621_param asc7621_params[] = { + PREAD(in0_input, 0, PRI_HIGH, 0x20, 0x13, 0, 0, in10), + PREAD(in1_input, 1, PRI_HIGH, 0x21, 0x18, 0, 0, in10), + PREAD(in2_input, 2, PRI_HIGH, 0x22, 0x11, 0, 0, in10), + PREAD(in3_input, 3, PRI_HIGH, 0x23, 0x12, 0, 0, in10), + PREAD(in4_input, 4, PRI_HIGH, 0x24, 0x14, 0, 0, in10), + + PWRITE(in0_min, 0, PRI_LOW, 0x44, 0, 0, 0, in8), + PWRITE(in1_min, 1, PRI_LOW, 0x46, 0, 0, 0, in8), + PWRITE(in2_min, 2, PRI_LOW, 0x48, 0, 0, 0, in8), + PWRITE(in3_min, 3, PRI_LOW, 0x4a, 0, 0, 0, in8), + PWRITE(in4_min, 4, PRI_LOW, 0x4c, 0, 0, 0, in8), + + PWRITE(in0_max, 0, PRI_LOW, 0x45, 0, 0, 0, in8), + PWRITE(in1_max, 1, PRI_LOW, 0x47, 0, 0, 0, in8), + PWRITE(in2_max, 2, PRI_LOW, 0x49, 0, 0, 0, in8), + PWRITE(in3_max, 3, PRI_LOW, 0x4b, 0, 0, 0, in8), + PWRITE(in4_max, 4, PRI_LOW, 0x4d, 0, 0, 0, in8), + + PREAD(in0_alarm, 0, PRI_LOW, 0x41, 0, 0x01, 0, bitmask), + PREAD(in1_alarm, 1, PRI_LOW, 0x41, 0, 0x01, 1, bitmask), + PREAD(in2_alarm, 2, PRI_LOW, 0x41, 0, 0x01, 2, bitmask), + PREAD(in3_alarm, 3, PRI_LOW, 0x41, 0, 0x01, 3, bitmask), + PREAD(in4_alarm, 4, PRI_LOW, 0x42, 0, 0x01, 0, bitmask), + + PREAD(fan1_input, 0, PRI_HIGH, 0x29, 0x28, 0, 0, fan16), + PREAD(fan2_input, 1, PRI_HIGH, 0x2b, 0x2a, 0, 0, fan16), + PREAD(fan3_input, 2, PRI_HIGH, 0x2d, 0x2c, 0, 0, fan16), + PREAD(fan4_input, 3, PRI_HIGH, 0x2f, 0x2e, 0, 0, fan16), + + PWRITE(fan1_min, 0, PRI_LOW, 0x55, 0x54, 0, 0, fan16), + PWRITE(fan2_min, 1, PRI_LOW, 0x57, 0x56, 0, 0, fan16), + PWRITE(fan3_min, 2, PRI_LOW, 0x59, 0x58, 0, 0, fan16), + PWRITE(fan4_min, 3, PRI_LOW, 0x5b, 0x5a, 0, 0, fan16), + + PREAD(fan1_alarm, 0, PRI_LOW, 0x42, 0, 0x01, 0, bitmask), + PREAD(fan2_alarm, 1, PRI_LOW, 0x42, 0, 0x01, 1, bitmask), + PREAD(fan3_alarm, 2, PRI_LOW, 0x42, 0, 0x01, 2, bitmask), + PREAD(fan4_alarm, 3, PRI_LOW, 0x42, 0, 0x01, 3, bitmask), + + PREAD(temp1_input, 0, PRI_HIGH, 0x25, 0x10, 0, 0, temp10), + PREAD(temp2_input, 1, PRI_HIGH, 0x26, 0x15, 0, 0, temp10), + PREAD(temp3_input, 2, PRI_HIGH, 0x27, 0x16, 0, 0, temp10), + PREAD(temp4_input, 3, PRI_HIGH, 0x33, 0x17, 0, 0, temp10), + PREAD(temp5_input, 4, PRI_HIGH, 0xf7, 0xf6, 0, 0, temp10), + PREAD(temp6_input, 5, PRI_HIGH, 0xf9, 0xf8, 0, 0, temp10), + PREAD(temp7_input, 6, PRI_HIGH, 0xfb, 0xfa, 0, 0, temp10), + PREAD(temp8_input, 7, PRI_HIGH, 0xfd, 0xfc, 0, 0, temp10), + + PWRITE(temp1_min, 0, PRI_LOW, 0x4e, 0, 0, 0, temp8), + PWRITE(temp2_min, 1, PRI_LOW, 0x50, 0, 0, 0, temp8), + PWRITE(temp3_min, 2, PRI_LOW, 0x52, 0, 0, 0, temp8), + PWRITE(temp4_min, 3, PRI_LOW, 0x34, 0, 0, 0, temp8), + + PWRITE(temp1_max, 0, PRI_LOW, 0x4f, 0, 0, 0, temp8), + PWRITE(temp2_max, 1, PRI_LOW, 0x51, 0, 0, 0, temp8), + PWRITE(temp3_max, 2, PRI_LOW, 0x53, 0, 0, 0, temp8), + PWRITE(temp4_max, 3, PRI_LOW, 0x35, 0, 0, 0, temp8), + + PREAD(temp1_alarm, 0, PRI_LOW, 0x41, 0, 0x01, 4, bitmask), + PREAD(temp2_alarm, 1, PRI_LOW, 0x41, 0, 0x01, 5, bitmask), + PREAD(temp3_alarm, 2, PRI_LOW, 0x41, 0, 0x01, 6, bitmask), + PREAD(temp4_alarm, 3, PRI_LOW, 0x43, 0, 0x01, 0, bitmask), + + PWRITE(temp1_source, 0, PRI_LOW, 0x02, 0, 0x07, 4, bitmask), + PWRITE(temp2_source, 1, PRI_LOW, 0x02, 0, 0x07, 0, bitmask), + PWRITE(temp3_source, 2, PRI_LOW, 0x03, 0, 0x07, 4, bitmask), + PWRITE(temp4_source, 3, PRI_LOW, 0x03, 0, 0x07, 0, bitmask), + + PWRITE(temp1_smoothing_enable, 0, PRI_LOW, 0x62, 0, 0x01, 3, bitmask), + PWRITE(temp2_smoothing_enable, 1, PRI_LOW, 0x63, 0, 0x01, 7, bitmask), + PWRITE(temp3_smoothing_enable, 2, PRI_LOW, 0x64, 0, 0x01, 3, bitmask), + PWRITE(temp4_smoothing_enable, 3, PRI_LOW, 0x3c, 0, 0x01, 3, bitmask), + + PWRITE(temp1_smoothing_time, 0, PRI_LOW, 0x62, 0, 0x07, 0, temp_st), + PWRITE(temp2_smoothing_time, 1, PRI_LOW, 0x63, 0, 0x07, 4, temp_st), + PWRITE(temp3_smoothing_time, 2, PRI_LOW, 0x63, 0, 0x07, 0, temp_st), + PWRITE(temp4_smoothing_time, 3, PRI_LOW, 0x3c, 0, 0x07, 0, temp_st), + + PWRITE(temp1_auto_point1_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4, + bitmask), + PWRITE(temp2_auto_point1_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0, + bitmask), + PWRITE(temp3_auto_point1_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4, + bitmask), + PWRITE(temp4_auto_point1_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0, + bitmask), + + PREAD(temp1_auto_point2_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4, + bitmask), + PREAD(temp2_auto_point2_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0, + bitmask), + PREAD(temp3_auto_point2_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4, + bitmask), + PREAD(temp4_auto_point2_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0, + bitmask), + + PWRITE(temp1_auto_point1_temp, 0, PRI_LOW, 0x67, 0, 0, 0, temp8), + PWRITE(temp2_auto_point1_temp, 1, PRI_LOW, 0x68, 0, 0, 0, temp8), + PWRITE(temp3_auto_point1_temp, 2, PRI_LOW, 0x69, 0, 0, 0, temp8), + PWRITE(temp4_auto_point1_temp, 3, PRI_LOW, 0x3b, 0, 0, 0, temp8), + + PWRITEM(temp1_auto_point2_temp, 0, PRI_LOW, VAA(0x5f, 0x67), VAA(0), + VAA(0x0f), VAA(4), ap2_temp), + PWRITEM(temp2_auto_point2_temp, 1, PRI_LOW, VAA(0x60, 0x68), VAA(0), + VAA(0x0f), VAA(4), ap2_temp), + PWRITEM(temp3_auto_point2_temp, 2, PRI_LOW, VAA(0x61, 0x69), VAA(0), + VAA(0x0f), VAA(4), ap2_temp), + PWRITEM(temp4_auto_point2_temp, 3, PRI_LOW, VAA(0x3c, 0x3b), VAA(0), + VAA(0x0f), VAA(4), ap2_temp), + + PWRITE(temp1_crit, 0, PRI_LOW, 0x6a, 0, 0, 0, temp8), + PWRITE(temp2_crit, 1, PRI_LOW, 0x6b, 0, 0, 0, temp8), + PWRITE(temp3_crit, 2, PRI_LOW, 0x6c, 0, 0, 0, temp8), + PWRITE(temp4_crit, 3, PRI_LOW, 0x3d, 0, 0, 0, temp8), + + PWRITE(temp5_enable, 4, PRI_LOW, 0x0e, 0, 0x01, 0, bitmask), + PWRITE(temp6_enable, 5, PRI_LOW, 0x0e, 0, 0x01, 1, bitmask), + PWRITE(temp7_enable, 6, PRI_LOW, 0x0e, 0, 0x01, 2, bitmask), + PWRITE(temp8_enable, 7, PRI_LOW, 0x0e, 0, 0x01, 3, bitmask), + + PWRITE(remote1_offset, 0, PRI_LOW, 0x1c, 0, 0, 0, temp62), + PWRITE(remote2_offset, 1, PRI_LOW, 0x1d, 0, 0, 0, temp62), + + PWRITE(pwm1, 0, PRI_HIGH, 0x30, 0, 0, 0, u8), + PWRITE(pwm2, 1, PRI_HIGH, 0x31, 0, 0, 0, u8), + PWRITE(pwm3, 2, PRI_HIGH, 0x32, 0, 0, 0, u8), + + PWRITE(pwm1_invert, 0, PRI_LOW, 0x5c, 0, 0x01, 4, bitmask), + PWRITE(pwm2_invert, 1, PRI_LOW, 0x5d, 0, 0x01, 4, bitmask), + PWRITE(pwm3_invert, 2, PRI_LOW, 0x5e, 0, 0x01, 4, bitmask), + + PWRITEM(pwm1_enable, 0, PRI_LOW, VAA(0x5c, 0x5c, 0x62), VAA(0, 0, 0), + VAA(0x07, 0x01, 0x01), VAA(5, 3, 5), pwm_enable), + PWRITEM(pwm2_enable, 1, PRI_LOW, VAA(0x5d, 0x5d, 0x62), VAA(0, 0, 0), + VAA(0x07, 0x01, 0x01), VAA(5, 3, 6), pwm_enable), + PWRITEM(pwm3_enable, 2, PRI_LOW, VAA(0x5e, 0x5e, 0x62), VAA(0, 0, 0), + VAA(0x07, 0x01, 0x01), VAA(5, 3, 7), pwm_enable), + + PWRITEM(pwm1_auto_channels, 0, PRI_LOW, VAA(0x5c, 0x5c), VAA(0, 0), + VAA(0x07, 0x01), VAA(5, 3), pwm_ac), + PWRITEM(pwm2_auto_channels, 1, PRI_LOW, VAA(0x5d, 0x5d), VAA(0, 0), + VAA(0x07, 0x01), VAA(5, 3), pwm_ac), + PWRITEM(pwm3_auto_channels, 2, PRI_LOW, VAA(0x5e, 0x5e), VAA(0, 0), + VAA(0x07, 0x01), VAA(5, 3), pwm_ac), + + PWRITE(pwm1_auto_point1_pwm, 0, PRI_LOW, 0x64, 0, 0, 0, u8), + PWRITE(pwm2_auto_point1_pwm, 1, PRI_LOW, 0x65, 0, 0, 0, u8), + PWRITE(pwm3_auto_point1_pwm, 2, PRI_LOW, 0x66, 0, 0, 0, u8), + + PWRITE(pwm1_auto_point2_pwm, 0, PRI_LOW, 0x38, 0, 0, 0, u8), + PWRITE(pwm2_auto_point2_pwm, 1, PRI_LOW, 0x39, 0, 0, 0, u8), + PWRITE(pwm3_auto_point2_pwm, 2, PRI_LOW, 0x3a, 0, 0, 0, u8), + + PWRITE(pwm1_freq, 0, PRI_LOW, 0x5f, 0, 0x0f, 0, pwm_freq), + PWRITE(pwm2_freq, 1, PRI_LOW, 0x60, 0, 0x0f, 0, pwm_freq), + PWRITE(pwm3_freq, 2, PRI_LOW, 0x61, 0, 0x0f, 0, pwm_freq), + + PREAD(pwm1_auto_zone_assigned, 0, PRI_LOW, 0, 0, 0x03, 2, bitmask), + PREAD(pwm2_auto_zone_assigned, 1, PRI_LOW, 0, 0, 0x03, 4, bitmask), + PREAD(pwm3_auto_zone_assigned, 2, PRI_LOW, 0, 0, 0x03, 6, bitmask), + + PWRITE(pwm1_auto_spinup_time, 0, PRI_LOW, 0x5c, 0, 0x07, 0, pwm_ast), + PWRITE(pwm2_auto_spinup_time, 1, PRI_LOW, 0x5d, 0, 0x07, 0, pwm_ast), + PWRITE(pwm3_auto_spinup_time, 2, PRI_LOW, 0x5e, 0, 0x07, 0, pwm_ast), + + PWRITE(peci_enable, 0, PRI_LOW, 0x40, 0, 0x01, 4, bitmask), + PWRITE(peci_avg, 0, PRI_LOW, 0x36, 0, 0x07, 0, bitmask), + PWRITE(peci_domain, 0, PRI_LOW, 0x36, 0, 0x01, 3, bitmask), + PWRITE(peci_legacy, 0, PRI_LOW, 0x36, 0, 0x01, 4, bitmask), + PWRITE(peci_diode, 0, PRI_LOW, 0x0e, 0, 0x07, 4, bitmask), + PWRITE(peci_4domain, 0, PRI_LOW, 0x0e, 0, 0x01, 4, bitmask), + +}; + +static struct asc7621_data *asc7621_update_device(struct device *dev) +{ + struct i2c_client *client = to_i2c_client(dev); + struct asc7621_data *data = i2c_get_clientdata(client); + int i; + +/* + * The asc7621 chips guarantee consistent reads of multi-byte values + * regardless of the order of the reads. No special logic is needed + * so we can just read the registers in whatever order they appear + * in the asc7621_params array. + */ + + mutex_lo |