aboutsummaryrefslogtreecommitdiff
path: root/arch/x86/mm
diff options
context:
space:
mode:
authorThomas Gleixner <tglx@linutronix.de>2007-10-11 11:17:18 +0200
committerThomas Gleixner <tglx@linutronix.de>2007-10-11 11:17:18 +0200
commit95119fbd87aabc263746731462062af5a38c0222 (patch)
tree4a424a187fa1ddcb545b856d81b5b4880da21219 /arch/x86/mm
parent2a6c8d5a7e92a3e8db30fa0c5956a29c79d7e5a3 (diff)
x86_64: move mm
Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'arch/x86/mm')
-rw-r--r--arch/x86/mm/Makefile2
-rw-r--r--arch/x86/mm/Makefile_6410
-rw-r--r--arch/x86/mm/extable_64.c34
-rw-r--r--arch/x86/mm/fault_64.c636
-rw-r--r--arch/x86/mm/init_64.c750
-rw-r--r--arch/x86/mm/ioremap_64.c210
-rw-r--r--arch/x86/mm/k8topology_64.c182
-rw-r--r--arch/x86/mm/mmap_64.c29
-rw-r--r--arch/x86/mm/numa_64.c648
-rw-r--r--arch/x86/mm/pageattr_64.c249
-rw-r--r--arch/x86/mm/srat_64.c566
11 files changed, 3315 insertions, 1 deletions
diff --git a/arch/x86/mm/Makefile b/arch/x86/mm/Makefile
index 7317648e658..98329109684 100644
--- a/arch/x86/mm/Makefile
+++ b/arch/x86/mm/Makefile
@@ -1,5 +1,5 @@
ifeq ($(CONFIG_X86_32),y)
include ${srctree}/arch/x86/mm/Makefile_32
else
-include ${srctree}/arch/x86_64/mm/Makefile_64
+include ${srctree}/arch/x86/mm/Makefile_64
endif
diff --git a/arch/x86/mm/Makefile_64 b/arch/x86/mm/Makefile_64
new file mode 100644
index 00000000000..6bcb47945b8
--- /dev/null
+++ b/arch/x86/mm/Makefile_64
@@ -0,0 +1,10 @@
+#
+# Makefile for the linux x86_64-specific parts of the memory manager.
+#
+
+obj-y := init_64.o fault_64.o ioremap_64.o extable_64.o pageattr_64.o mmap_64.o
+obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o
+obj-$(CONFIG_NUMA) += numa_64.o
+obj-$(CONFIG_K8_NUMA) += k8topology_64.o
+obj-$(CONFIG_ACPI_NUMA) += srat_64.o
+
diff --git a/arch/x86/mm/extable_64.c b/arch/x86/mm/extable_64.c
new file mode 100644
index 00000000000..79ac6e7100a
--- /dev/null
+++ b/arch/x86/mm/extable_64.c
@@ -0,0 +1,34 @@
+/*
+ * linux/arch/x86_64/mm/extable.c
+ */
+
+#include <linux/module.h>
+#include <linux/spinlock.h>
+#include <linux/init.h>
+#include <asm/uaccess.h>
+
+/* Simple binary search */
+const struct exception_table_entry *
+search_extable(const struct exception_table_entry *first,
+ const struct exception_table_entry *last,
+ unsigned long value)
+{
+ /* Work around a B stepping K8 bug */
+ if ((value >> 32) == 0)
+ value |= 0xffffffffUL << 32;
+
+ while (first <= last) {
+ const struct exception_table_entry *mid;
+ long diff;
+
+ mid = (last - first) / 2 + first;
+ diff = mid->insn - value;
+ if (diff == 0)
+ return mid;
+ else if (diff < 0)
+ first = mid+1;
+ else
+ last = mid-1;
+ }
+ return NULL;
+}
diff --git a/arch/x86/mm/fault_64.c b/arch/x86/mm/fault_64.c
new file mode 100644
index 00000000000..54816adb8e9
--- /dev/null
+++ b/arch/x86/mm/fault_64.c
@@ -0,0 +1,636 @@
+/*
+ * linux/arch/x86-64/mm/fault.c
+ *
+ * Copyright (C) 1995 Linus Torvalds
+ * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
+ */
+
+#include <linux/signal.h>
+#include <linux/sched.h>
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/string.h>
+#include <linux/types.h>
+#include <linux/ptrace.h>
+#include <linux/mman.h>
+#include <linux/mm.h>
+#include <linux/smp.h>
+#include <linux/interrupt.h>
+#include <linux/init.h>
+#include <linux/tty.h>
+#include <linux/vt_kern.h> /* For unblank_screen() */
+#include <linux/compiler.h>
+#include <linux/vmalloc.h>
+#include <linux/module.h>
+#include <linux/kprobes.h>
+#include <linux/uaccess.h>
+#include <linux/kdebug.h>
+
+#include <asm/system.h>
+#include <asm/pgalloc.h>
+#include <asm/smp.h>
+#include <asm/tlbflush.h>
+#include <asm/proto.h>
+#include <asm-generic/sections.h>
+
+/* Page fault error code bits */
+#define PF_PROT (1<<0) /* or no page found */
+#define PF_WRITE (1<<1)
+#define PF_USER (1<<2)
+#define PF_RSVD (1<<3)
+#define PF_INSTR (1<<4)
+
+static ATOMIC_NOTIFIER_HEAD(notify_page_fault_chain);
+
+/* Hook to register for page fault notifications */
+int register_page_fault_notifier(struct notifier_block *nb)
+{
+ vmalloc_sync_all();
+ return atomic_notifier_chain_register(&notify_page_fault_chain, nb);
+}
+EXPORT_SYMBOL_GPL(register_page_fault_notifier);
+
+int unregister_page_fault_notifier(struct notifier_block *nb)
+{
+ return atomic_notifier_chain_unregister(&notify_page_fault_chain, nb);
+}
+EXPORT_SYMBOL_GPL(unregister_page_fault_notifier);
+
+static inline int notify_page_fault(struct pt_regs *regs, long err)
+{
+ struct die_args args = {
+ .regs = regs,
+ .str = "page fault",
+ .err = err,
+ .trapnr = 14,
+ .signr = SIGSEGV
+ };
+ return atomic_notifier_call_chain(&notify_page_fault_chain,
+ DIE_PAGE_FAULT, &args);
+}
+
+/* Sometimes the CPU reports invalid exceptions on prefetch.
+ Check that here and ignore.
+ Opcode checker based on code by Richard Brunner */
+static noinline int is_prefetch(struct pt_regs *regs, unsigned long addr,
+ unsigned long error_code)
+{
+ unsigned char *instr;
+ int scan_more = 1;
+ int prefetch = 0;
+ unsigned char *max_instr;
+
+ /* If it was a exec fault ignore */
+ if (error_code & PF_INSTR)
+ return 0;
+
+ instr = (unsigned char __user *)convert_rip_to_linear(current, regs);
+ max_instr = instr + 15;
+
+ if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
+ return 0;
+
+ while (scan_more && instr < max_instr) {
+ unsigned char opcode;
+ unsigned char instr_hi;
+ unsigned char instr_lo;
+
+ if (probe_kernel_address(instr, opcode))
+ break;
+
+ instr_hi = opcode & 0xf0;
+ instr_lo = opcode & 0x0f;
+ instr++;
+
+ switch (instr_hi) {
+ case 0x20:
+ case 0x30:
+ /* Values 0x26,0x2E,0x36,0x3E are valid x86
+ prefixes. In long mode, the CPU will signal
+ invalid opcode if some of these prefixes are
+ present so we will never get here anyway */
+ scan_more = ((instr_lo & 7) == 0x6);
+ break;
+
+ case 0x40:
+ /* In AMD64 long mode, 0x40 to 0x4F are valid REX prefixes
+ Need to figure out under what instruction mode the
+ instruction was issued ... */
+ /* Could check the LDT for lm, but for now it's good
+ enough to assume that long mode only uses well known
+ segments or kernel. */
+ scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
+ break;
+
+ case 0x60:
+ /* 0x64 thru 0x67 are valid prefixes in all modes. */
+ scan_more = (instr_lo & 0xC) == 0x4;
+ break;
+ case 0xF0:
+ /* 0xF0, 0xF2, and 0xF3 are valid prefixes in all modes. */
+ scan_more = !instr_lo || (instr_lo>>1) == 1;
+ break;
+ case 0x00:
+ /* Prefetch instruction is 0x0F0D or 0x0F18 */
+ scan_more = 0;
+ if (probe_kernel_address(instr, opcode))
+ break;
+ prefetch = (instr_lo == 0xF) &&
+ (opcode == 0x0D || opcode == 0x18);
+ break;
+ default:
+ scan_more = 0;
+ break;
+ }
+ }
+ return prefetch;
+}
+
+static int bad_address(void *p)
+{
+ unsigned long dummy;
+ return probe_kernel_address((unsigned long *)p, dummy);
+}
+
+void dump_pagetable(unsigned long address)
+{
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+
+ pgd = (pgd_t *)read_cr3();
+
+ pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
+ pgd += pgd_index(address);
+ if (bad_address(pgd)) goto bad;
+ printk("PGD %lx ", pgd_val(*pgd));
+ if (!pgd_present(*pgd)) goto ret;
+
+ pud = pud_offset(pgd, address);
+ if (bad_address(pud)) goto bad;
+ printk("PUD %lx ", pud_val(*pud));
+ if (!pud_present(*pud)) goto ret;
+
+ pmd = pmd_offset(pud, address);
+ if (bad_address(pmd)) goto bad;
+ printk("PMD %lx ", pmd_val(*pmd));
+ if (!pmd_present(*pmd)) goto ret;
+
+ pte = pte_offset_kernel(pmd, address);
+ if (bad_address(pte)) goto bad;
+ printk("PTE %lx", pte_val(*pte));
+ret:
+ printk("\n");
+ return;
+bad:
+ printk("BAD\n");
+}
+
+static const char errata93_warning[] =
+KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
+KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
+KERN_ERR "******* Please consider a BIOS update.\n"
+KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
+
+/* Workaround for K8 erratum #93 & buggy BIOS.
+ BIOS SMM functions are required to use a specific workaround
+ to avoid corruption of the 64bit RIP register on C stepping K8.
+ A lot of BIOS that didn't get tested properly miss this.
+ The OS sees this as a page fault with the upper 32bits of RIP cleared.
+ Try to work around it here.
+ Note we only handle faults in kernel here. */
+
+static int is_errata93(struct pt_regs *regs, unsigned long address)
+{
+ static int warned;
+ if (address != regs->rip)
+ return 0;
+ if ((address >> 32) != 0)
+ return 0;
+ address |= 0xffffffffUL << 32;
+ if ((address >= (u64)_stext && address <= (u64)_etext) ||
+ (address >= MODULES_VADDR && address <= MODULES_END)) {
+ if (!warned) {
+ printk(errata93_warning);
+ warned = 1;
+ }
+ regs->rip = address;
+ return 1;
+ }
+ return 0;
+}
+
+static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
+ unsigned long error_code)
+{
+ unsigned long flags = oops_begin();
+ struct task_struct *tsk;
+
+ printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
+ current->comm, address);
+ dump_pagetable(address);
+ tsk = current;
+ tsk->thread.cr2 = address;
+ tsk->thread.trap_no = 14;
+ tsk->thread.error_code = error_code;
+ __die("Bad pagetable", regs, error_code);
+ oops_end(flags);
+ do_exit(SIGKILL);
+}
+
+/*
+ * Handle a fault on the vmalloc area
+ *
+ * This assumes no large pages in there.
+ */
+static int vmalloc_fault(unsigned long address)
+{
+ pgd_t *pgd, *pgd_ref;
+ pud_t *pud, *pud_ref;
+ pmd_t *pmd, *pmd_ref;
+ pte_t *pte, *pte_ref;
+
+ /* Copy kernel mappings over when needed. This can also
+ happen within a race in page table update. In the later
+ case just flush. */
+
+ pgd = pgd_offset(current->mm ?: &init_mm, address);
+ pgd_ref = pgd_offset_k(address);
+ if (pgd_none(*pgd_ref))
+ return -1;
+ if (pgd_none(*pgd))
+ set_pgd(pgd, *pgd_ref);
+ else
+ BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
+
+ /* Below here mismatches are bugs because these lower tables
+ are shared */
+
+ pud = pud_offset(pgd, address);
+ pud_ref = pud_offset(pgd_ref, address);
+ if (pud_none(*pud_ref))
+ return -1;
+ if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
+ BUG();
+ pmd = pmd_offset(pud, address);
+ pmd_ref = pmd_offset(pud_ref, address);
+ if (pmd_none(*pmd_ref))
+ return -1;
+ if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
+ BUG();
+ pte_ref = pte_offset_kernel(pmd_ref, address);
+ if (!pte_present(*pte_ref))
+ return -1;
+ pte = pte_offset_kernel(pmd, address);
+ /* Don't use pte_page here, because the mappings can point
+ outside mem_map, and the NUMA hash lookup cannot handle
+ that. */
+ if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
+ BUG();
+ return 0;
+}
+
+static int page_fault_trace;
+int show_unhandled_signals = 1;
+
+/*
+ * This routine handles page faults. It determines the address,
+ * and the problem, and then passes it off to one of the appropriate
+ * routines.
+ */
+asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
+ unsigned long error_code)
+{
+ struct task_struct *tsk;
+ struct mm_struct *mm;
+ struct vm_area_struct * vma;
+ unsigned long address;
+ const struct exception_table_entry *fixup;
+ int write, fault;
+ unsigned long flags;
+ siginfo_t info;
+
+ tsk = current;
+ mm = tsk->mm;
+ prefetchw(&mm->mmap_sem);
+
+ /* get the address */
+ address = read_cr2();
+
+ info.si_code = SEGV_MAPERR;
+
+
+ /*
+ * We fault-in kernel-space virtual memory on-demand. The
+ * 'reference' page table is init_mm.pgd.
+ *
+ * NOTE! We MUST NOT take any locks for this case. We may
+ * be in an interrupt or a critical region, and should
+ * only copy the information from the master page table,
+ * nothing more.
+ *
+ * This verifies that the fault happens in kernel space
+ * (error_code & 4) == 0, and that the fault was not a
+ * protection error (error_code & 9) == 0.
+ */
+ if (unlikely(address >= TASK_SIZE64)) {
+ /*
+ * Don't check for the module range here: its PML4
+ * is always initialized because it's shared with the main
+ * kernel text. Only vmalloc may need PML4 syncups.
+ */
+ if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
+ ((address >= VMALLOC_START && address < VMALLOC_END))) {
+ if (vmalloc_fault(address) >= 0)
+ return;
+ }
+ if (notify_page_fault(regs, error_code) == NOTIFY_STOP)
+ return;
+ /*
+ * Don't take the mm semaphore here. If we fixup a prefetch
+ * fault we could otherwise deadlock.
+ */
+ goto bad_area_nosemaphore;
+ }
+
+ if (notify_page_fault(regs, error_code) == NOTIFY_STOP)
+ return;
+
+ if (likely(regs->eflags & X86_EFLAGS_IF))
+ local_irq_enable();
+
+ if (unlikely(page_fault_trace))
+ printk("pagefault rip:%lx rsp:%lx cs:%lu ss:%lu address %lx error %lx\n",
+ regs->rip,regs->rsp,regs->cs,regs->ss,address,error_code);
+
+ if (unlikely(error_code & PF_RSVD))
+ pgtable_bad(address, regs, error_code);
+
+ /*
+ * If we're in an interrupt or have no user
+ * context, we must not take the fault..
+ */
+ if (unlikely(in_atomic() || !mm))
+ goto bad_area_nosemaphore;
+
+ /*
+ * User-mode registers count as a user access even for any
+ * potential system fault or CPU buglet.
+ */
+ if (user_mode_vm(regs))
+ error_code |= PF_USER;
+
+ again:
+ /* When running in the kernel we expect faults to occur only to
+ * addresses in user space. All other faults represent errors in the
+ * kernel and should generate an OOPS. Unfortunatly, in the case of an
+ * erroneous fault occurring in a code path which already holds mmap_sem
+ * we will deadlock attempting to validate the fault against the
+ * address space. Luckily the kernel only validly references user
+ * space from well defined areas of code, which are listed in the
+ * exceptions table.
+ *
+ * As the vast majority of faults will be valid we will only perform
+ * the source reference check when there is a possibilty of a deadlock.
+ * Attempt to lock the address space, if we cannot we then validate the
+ * source. If this is invalid we can skip the address space check,
+ * thus avoiding the deadlock.
+ */
+ if (!down_read_trylock(&mm->mmap_sem)) {
+ if ((error_code & PF_USER) == 0 &&
+ !search_exception_tables(regs->rip))
+ goto bad_area_nosemaphore;
+ down_read(&mm->mmap_sem);
+ }
+
+ vma = find_vma(mm, address);
+ if (!vma)
+ goto bad_area;
+ if (likely(vma->vm_start <= address))
+ goto good_area;
+ if (!(vma->vm_flags & VM_GROWSDOWN))
+ goto bad_area;
+ if (error_code & 4) {
+ /* Allow userspace just enough access below the stack pointer
+ * to let the 'enter' instruction work.
+ */
+ if (address + 65536 + 32 * sizeof(unsigned long) < regs->rsp)
+ goto bad_area;
+ }
+ if (expand_stack(vma, address))
+ goto bad_area;
+/*
+ * Ok, we have a good vm_area for this memory access, so
+ * we can handle it..
+ */
+good_area:
+ info.si_code = SEGV_ACCERR;
+ write = 0;
+ switch (error_code & (PF_PROT|PF_WRITE)) {
+ default: /* 3: write, present */
+ /* fall through */
+ case PF_WRITE: /* write, not present */
+ if (!(vma->vm_flags & VM_WRITE))
+ goto bad_area;
+ write++;
+ break;
+ case PF_PROT: /* read, present */
+ goto bad_area;
+ case 0: /* read, not present */
+ if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
+ goto bad_area;
+ }
+
+ /*
+ * If for any reason at all we couldn't handle the fault,
+ * make sure we exit gracefully rather than endlessly redo
+ * the fault.
+ */
+ fault = handle_mm_fault(mm, vma, address, write);
+ if (unlikely(fault & VM_FAULT_ERROR)) {
+ if (fault & VM_FAULT_OOM)
+ goto out_of_memory;
+ else if (fault & VM_FAULT_SIGBUS)
+ goto do_sigbus;
+ BUG();
+ }
+ if (fault & VM_FAULT_MAJOR)
+ tsk->maj_flt++;
+ else
+ tsk->min_flt++;
+ up_read(&mm->mmap_sem);
+ return;
+
+/*
+ * Something tried to access memory that isn't in our memory map..
+ * Fix it, but check if it's kernel or user first..
+ */
+bad_area:
+ up_read(&mm->mmap_sem);
+
+bad_area_nosemaphore:
+ /* User mode accesses just cause a SIGSEGV */
+ if (error_code & PF_USER) {
+
+ /*
+ * It's possible to have interrupts off here.
+ */
+ local_irq_enable();
+
+ if (is_prefetch(regs, address, error_code))
+ return;
+
+ /* Work around K8 erratum #100 K8 in compat mode
+ occasionally jumps to illegal addresses >4GB. We
+ catch this here in the page fault handler because
+ these addresses are not reachable. Just detect this
+ case and return. Any code segment in LDT is
+ compatibility mode. */
+ if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
+ (address >> 32))
+ return;
+
+ if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
+ printk_ratelimit()) {
+ printk(
+ "%s%s[%d]: segfault at %016lx rip %016lx rsp %016lx error %lx\n",
+ tsk->pid > 1 ? KERN_INFO : KERN_EMERG,
+ tsk->comm, tsk->pid, address, regs->rip,
+ regs->rsp, error_code);
+ }
+
+ tsk->thread.cr2 = address;
+ /* Kernel addresses are always protection faults */
+ tsk->thread.error_code = error_code | (address >= TASK_SIZE);
+ tsk->thread.trap_no = 14;
+ info.si_signo = SIGSEGV;
+ info.si_errno = 0;
+ /* info.si_code has been set above */
+ info.si_addr = (void __user *)address;
+ force_sig_info(SIGSEGV, &info, tsk);
+ return;
+ }
+
+no_context:
+
+ /* Are we prepared to handle this kernel fault? */
+ fixup = search_exception_tables(regs->rip);
+ if (fixup) {
+ regs->rip = fixup->fixup;
+ return;
+ }
+
+ /*
+ * Hall of shame of CPU/BIOS bugs.
+ */
+
+ if (is_prefetch(regs, address, error_code))
+ return;
+
+ if (is_errata93(regs, address))
+ return;
+
+/*
+ * Oops. The kernel tried to access some bad page. We'll have to
+ * terminate things with extreme prejudice.
+ */
+
+ flags = oops_begin();
+
+ if (address < PAGE_SIZE)
+ printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference");
+ else
+ printk(KERN_ALERT "Unable to handle kernel paging request");
+ printk(" at %016lx RIP: \n" KERN_ALERT,address);
+ printk_address(regs->rip);
+ dump_pagetable(address);
+ tsk->thread.cr2 = address;
+ tsk->thread.trap_no = 14;
+ tsk->thread.error_code = error_code;
+ __die("Oops", regs, error_code);
+ /* Executive summary in case the body of the oops scrolled away */
+ printk(KERN_EMERG "CR2: %016lx\n", address);
+ oops_end(flags);
+ do_exit(SIGKILL);
+
+/*
+ * We ran out of memory, or some other thing happened to us that made
+ * us unable to handle the page fault gracefully.
+ */
+out_of_memory:
+ up_read(&mm->mmap_sem);
+ if (is_init(current)) {
+ yield();
+ goto again;
+ }
+ printk("VM: killing process %s\n", tsk->comm);
+ if (error_code & 4)
+ do_group_exit(SIGKILL);
+ goto no_context;
+
+do_sigbus:
+ up_read(&mm->mmap_sem);
+
+ /* Kernel mode? Handle exceptions or die */
+ if (!(error_code & PF_USER))
+ goto no_context;
+
+ tsk->thread.cr2 = address;
+ tsk->thread.error_code = error_code;
+ tsk->thread.trap_no = 14;
+ info.si_signo = SIGBUS;
+ info.si_errno = 0;
+ info.si_code = BUS_ADRERR;
+ info.si_addr = (void __user *)address;
+ force_sig_info(SIGBUS, &info, tsk);
+ return;
+}
+
+DEFINE_SPINLOCK(pgd_lock);
+LIST_HEAD(pgd_list);
+
+void vmalloc_sync_all(void)
+{
+ /* Note that races in the updates of insync and start aren't
+ problematic:
+ insync can only get set bits added, and updates to start are only
+ improving performance (without affecting correctness if undone). */
+ static DECLARE_BITMAP(insync, PTRS_PER_PGD);
+ static unsigned long start = VMALLOC_START & PGDIR_MASK;
+ unsigned long address;
+
+ for (address = start; address <= VMALLOC_END; address += PGDIR_SIZE) {
+ if (!test_bit(pgd_index(address), insync)) {
+ const pgd_t *pgd_ref = pgd_offset_k(address);
+ struct page *page;
+
+ if (pgd_none(*pgd_ref))
+ continue;
+ spin_lock(&pgd_lock);
+ list_for_each_entry(page, &pgd_list, lru) {
+ pgd_t *pgd;
+ pgd = (pgd_t *)page_address(page) + pgd_index(address);
+ if (pgd_none(*pgd))
+ set_pgd(pgd, *pgd_ref);
+ else
+ BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
+ }
+ spin_unlock(&pgd_lock);
+ set_bit(pgd_index(address), insync);
+ }
+ if (address == start)
+ start = address + PGDIR_SIZE;
+ }
+ /* Check that there is no need to do the same for the modules area. */
+ BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
+ BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
+ (__START_KERNEL & PGDIR_MASK)));
+}
+
+static int __init enable_pagefaulttrace(char *str)
+{
+ page_fault_trace = 1;
+ return 1;
+}
+__setup("pagefaulttrace", enable_pagefaulttrace);
diff --git a/arch/x86/mm/init_64.c b/arch/x86/mm/init_64.c
new file mode 100644
index 00000000000..458893b376f
--- /dev/null
+++ b/arch/x86/mm/init_64.c
@@ -0,0 +1,750 @@
+/*
+ * linux/arch/x86_64/mm/init.c
+ *
+ * Copyright (C) 1995 Linus Torvalds
+ * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
+ * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
+ */
+
+#include <linux/signal.h>
+#include <linux/sched.h>
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/string.h>
+#include <linux/types.h>
+#include <linux/ptrace.h>
+#include <linux/mman.h>
+#include <linux/mm.h>
+#include <linux/swap.h>
+#include <linux/smp.h>
+#include <linux/init.h>
+#include <linux/pagemap.h>
+#include <linux/bootmem.h>
+#include <linux/proc_fs.h>
+#include <linux/pci.h>
+#include <linux/pfn.h>
+#include <linux/poison.h>
+#include <linux/dma-mapping.h>
+#include <linux/module.h>
+#include <linux/memory_hotplug.h>
+#include <linux/nmi.h>
+
+#include <asm/processor.h>
+#include <asm/system.h>
+#include <asm/uaccess.h>
+#include <asm/pgtable.h>
+#include <asm/pgalloc.h>
+#include <asm/dma.h>
+#include <asm/fixmap.h>
+#include <asm/e820.h>
+#include <asm/apic.h>
+#include <asm/tlb.h>
+#include <asm/mmu_context.h>
+#include <asm/proto.h>
+#include <asm/smp.h>
+#include <asm/sections.h>
+
+#ifndef Dprintk
+#define Dprintk(x...)
+#endif
+
+const struct dma_mapping_ops* dma_ops;
+EXPORT_SYMBOL(dma_ops);
+
+static unsigned long dma_reserve __initdata;
+
+DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
+
+/*
+ * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
+ * physical space so we can cache the place of the first one and move
+ * around without checking the pgd every time.
+ */
+
+void show_mem(void)
+{
+ long i, total = 0, reserved = 0;
+ long shared = 0, cached = 0;
+ pg_data_t *pgdat;
+ struct page *page;
+
+ printk(KERN_INFO "Mem-info:\n");
+ show_free_areas();
+ printk(KERN_INFO "Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
+
+ for_each_online_pgdat(pgdat) {
+ for (i = 0; i < pgdat->node_spanned_pages; ++i) {
+ /* this loop can take a while with 256 GB and 4k pages
+ so update the NMI watchdog */
+ if (unlikely(i % MAX_ORDER_NR_PAGES == 0)) {
+ touch_nmi_watchdog();
+ }
+ if (!pfn_valid(pgdat->node_start_pfn + i))
+ continue;
+ page = pfn_to_page(pgdat->node_start_pfn + i);
+ total++;
+ if (PageReserved(page))
+ reserved++;
+ else if (PageSwapCache(page))
+ cached++;
+ else if (page_count(page))
+ shared += page_count(page) - 1;
+ }
+ }
+ printk(KERN_INFO "%lu pages of RAM\n", total);
+ printk(KERN_INFO "%lu reserved pages\n",reserved);
+ printk(KERN_INFO "%lu pages shared\n",shared);
+ printk(KERN_INFO "%lu pages swap cached\n",cached);
+}
+
+int after_bootmem;
+
+static __init void *spp_getpage(void)
+{
+ void *ptr;
+ if (after_bootmem)
+ ptr = (void *) get_zeroed_page(GFP_ATOMIC);
+ else
+ ptr = alloc_bootmem_pages(PAGE_SIZE);
+ if (!ptr || ((unsigned long)ptr & ~PAGE_MASK))
+ panic("set_pte_phys: cannot allocate page data %s\n", after_bootmem?"after bootmem":"");
+
+ Dprintk("spp_getpage %p\n", ptr);
+ return ptr;
+}
+
+static __init void set_pte_phys(unsigned long vaddr,
+ unsigned long phys, pgprot_t prot)
+{
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte, new_pte;
+
+ Dprintk("set_pte_phys %lx to %lx\n", vaddr, phys);
+
+ pgd = pgd_offset_k(vaddr);
+ if (pgd_none(*pgd)) {
+ printk("PGD FIXMAP MISSING, it should be setup in head.S!\n");
+ return;
+ }
+ pud = pud_offset(pgd, vaddr);
+ if (pud_none(*pud)) {
+ pmd = (pmd_t *) spp_getpage();
+ set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
+ if (pmd != pmd_offset(pud, 0)) {
+ printk("PAGETABLE BUG #01! %p <-> %p\n", pmd, pmd_offset(pud,0));
+ return;
+ }
+ }
+ pmd = pmd_offset(pud, vaddr);
+ if (pmd_none(*pmd)) {
+ pte = (pte_t *) spp_getpage();
+ set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
+ if (pte != pte_offset_kernel(pmd, 0)) {
+ printk("PAGETABLE BUG #02!\n");
+ return;
+ }
+ }
+ new_pte = pfn_pte(phys >> PAGE_SHIFT, prot);
+
+ pte = pte_offset_kernel(pmd, vaddr);
+ if (!pte_none(*pte) &&
+ pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
+ pte_ERROR(*pte);
+ set_pte(pte, new_pte);
+
+ /*
+ * It's enough to flush this one mapping.
+ * (PGE mappings get flushed as well)
+ */
+ __flush_tlb_one(vaddr);
+}
+
+/* NOTE: this is meant to be run only at boot */
+void __init
+__set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
+{
+ unsigned long address = __fix_to_virt(idx);
+
+ if (idx >= __end_of_fixed_addresses) {
+ printk("Invalid __set_fixmap\n");
+ return;
+ }
+ set_pte_phys(address, phys, prot);
+}
+
+unsigned long __meminitdata table_start, table_end;
+
+static __meminit void *alloc_low_page(unsigned long *phys)
+{
+ unsigned long pfn = table_end++;
+ void *adr;
+
+ if (after_bootmem) {
+ adr = (void *)get_zeroed_page(GFP_ATOMIC);
+ *phys = __pa(adr);
+ return adr;
+ }
+
+ if (pfn >= end_pfn)
+ panic("alloc_low_page: ran out of memory");
+
+ adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
+ memset(adr, 0, PAGE_SIZE);
+ *phys = pfn * PAGE_SIZE;
+ return adr;
+}
+
+static __meminit void unmap_low_page(void *adr)
+{
+
+ if (after_bootmem)
+ return;
+
+ early_iounmap(adr, PAGE_SIZE);
+}
+
+/* Must run before zap_low_mappings */
+__meminit void *early_ioremap(unsigned long addr, unsigned long size)
+{
+ unsigned long vaddr;
+ pmd_t *pmd, *last_pmd;
+ int i, pmds;
+
+ pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
+ vaddr = __START_KERNEL_map;
+ pmd = level2_kernel_pgt;
+ last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
+ for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
+ for (i = 0; i < pmds; i++) {
+ if (pmd_present(pmd[i]))
+ goto next;
+ }
+ vaddr += addr & ~PMD_MASK;
+ addr &= PMD_MASK;
+ for (i = 0; i < pmds; i++, addr += PMD_SIZE)
+ set_pmd(pmd + i,__pmd(addr | _KERNPG_TABLE | _PAGE_PSE));
+ __flush_tlb();
+ return (void *)vaddr;
+ next:
+ ;
+ }
+ printk("early_ioremap(0x%lx, %lu) failed\n", addr, size);
+ return NULL;
+}
+
+/* To avoid virtual aliases later */
+__meminit void early_iounmap(void *addr, unsigned long size)
+{
+ unsigned long vaddr;
+ pmd_t *pmd;
+ int i, pmds;
+
+ vaddr = (unsigned long)addr;
+ pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
+ pmd = level2_kernel_pgt + pmd_index(vaddr);
+ for (i = 0; i < pmds; i++)
+ pmd_clear(pmd + i);
+ __flush_tlb();
+}
+
+static void __meminit
+phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
+{
+ int i = pmd_index(address);
+
+ for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
+ unsigned long entry;
+ pmd_t *pmd = pmd_page + pmd_index(address);
+
+ if (address >= end) {
+ if (!after_bootmem)
+ for (; i < PTRS_PER_PMD; i++, pmd++)
+ set_pmd(pmd, __pmd(0));
+ break;
+ }
+
+ if (pmd_val(*pmd))
+ continue;
+
+ entry = _PAGE_NX|_PAGE_PSE|_KERNPG_TABLE|_PAGE_GLOBAL|address;
+ entry &= __supported_pte_mask;
+ set_pmd(pmd, __pmd(entry));
+ }
+}
+
+static void __meminit
+phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
+{
+ pmd_t *pmd = pmd_offset(pud,0);
+ spin_lock(&init_mm.page_table_lock);
+ phys_pmd_init(pmd, address, end);
+ spin_unlock(&init_mm.page_table_lock);
+ __flush_tlb_all();
+}
+
+static void __meminit phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
+{
+ int i = pud_index(addr);
+
+
+ for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE ) {
+ unsigned long pmd_phys;
+ pud_t *pud = pud_page + pud_index(addr);
+ pmd_t *pmd;
+
+ if (addr >= end)
+ break;
+
+ if (!after_bootmem && !e820_any_mapped(addr,addr+PUD_SIZE,0)) {
+ set_pud(pud, __pud(0));
+ continue;
+ }
+
+ if (pud_val(*pud)) {
+ phys_pmd_update(pud, addr, end);
+ continue;
+ }
+
+ pmd = alloc_low_page(&pmd_phys);
+ spin_lock(&init_mm.page_table_lock);
+ set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
+ phys_pmd_init(pmd, addr, end);
+ spin_unlock(&init_mm.page_table_lock);
+ unmap_low_page(pmd);
+ }
+ __flush_tlb();
+}
+
+static void __init find_early_table_space(unsigned long end)
+{
+ unsigned long puds, pmds, tables, start;
+
+ puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
+ pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
+ tables = round_up(puds * sizeof(pud_t), PAGE_SIZE) +
+ round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
+
+ /* RED-PEN putting page tables only on node 0 could
+ cause a hotspot and fill up ZONE_DMA. The page tables
+ need roughly 0.5KB per GB. */
+ start = 0x8000;
+ table_start = find_e820_area(start, end, tables);
+ if (table_start == -1UL)
+ panic("Cannot find space for the kernel page tables");
+
+ table_start >>= PAGE_SHIFT;
+ table_end = table_start;
+
+ early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
+ end, table_start << PAGE_SHIFT,
+ (table_start << PAGE_SHIFT) + tables);
+}
+
+/* Setup the direct mapping of the physical memory at PAGE_OFFSET.
+ This runs before bootmem is initialized and gets pages directly from the
+ physical memory. To access them they are temporarily mapped. */
+void __meminit init_memory_mapping(unsigned long start, unsigned long end)
+{
+ unsigned long next;
+
+ Dprintk("init_memory_mapping\n");
+
+ /*
+ * Find space for the kernel direct mapping tables.
+ * Later we should allocate these tables in the local node of the memory
+ * mapped. Unfortunately this is done currently before the nodes are
+ * discovered.
+ */
+ if (!after_bootmem)
+ find_early_table_space(end);
+
+ start = (unsigned long)__va(start);
+ end = (unsigned long)__va(end);
+
+ for (; start < end; start = next) {
+ unsigned long pud_phys;
+ pgd_t *pgd = pgd_offset_k(start);
+ pud_t *pud;
+
+ if (after_bootmem)
+ pud = pud_offset(pgd, start & PGDIR_MASK);
+ else
+ pud = alloc_low_page(&pud_phys);
+
+ next = start + PGDIR_SIZE;
+ if (next > end)
+ next = end;
+ phys_pud_init(pud, __pa(start), __pa(next));
+ if (!after_bootmem)
+ set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
+ unmap_low_page(pud);
+ }
+
+ if (!after_bootmem)
+ mmu_cr4_features = read_cr4();
+ __flush_tlb_all();
+}
+
+#ifndef CONFIG_NUMA
+void __init paging_init(void)
+{
+ unsigned long max_zone_pfns[MAX_NR_ZONES];
+ memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
+ max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
+ max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
+ max_zone_pfns[ZONE_NORMAL] = end_pfn;
+
+ memory_present(0, 0, end_pfn);
+ sparse_init();
+ free_area_init_nodes(max_zone_pfns);
+}
+#endif
+
+/* Unmap a kernel mapping if it exists. This is useful to avoid prefetches
+ from the CPU leading to inconsistent cache lines. address and size
+ must be aligned to 2MB boundaries.
+ Does nothing when the mapping doesn't exist. */
+void __init clear_kernel_mapping(unsigned long address, unsigned long size)
+{
+ unsigned long end = address + size;
+
+ BUG_ON(address & ~LARGE_PAGE_MASK);
+ BUG_ON(size & ~LARGE_PAGE_MASK);
+
+ for (; address < end; address += LARGE_PAGE_SIZE) {
+ pgd_t *pgd = pgd_offset_k(address);
+ pud_t *pud;
+ pmd_t *pmd;
+ if (pgd_none(*pgd))
+ continue;
+ pud = pud_offset(pgd, address);
+ if (pud_none(*pud))
+ continue;
+ pmd = pmd_offset(pud, address);
+ if (!pmd || pmd_none(*pmd))
+ continue;
+ if (0 == (pmd_val(*pmd) & _PAGE_PSE)) {
+ /* Could handle this, but it should not happen currently. */
+ printk(KERN_ERR
+ "clear_kernel_mapping: mapping has been split. will leak memory\n");
+ pmd_ERROR(*pmd);
+ }
+ set_pmd(pmd, __pmd(0));
+ }
+ __flush_tlb_all();
+}
+
+/*
+ * Memory hotplug specific functions
+ */
+void online_page(struct page *page)
+{
+ ClearPageReserved(page);
+ init_page_count(page);
+ __free_page(page);
+ totalram_pages++;
+ num_physpages++;
+}
+
+#ifdef CONFIG_MEMORY_HOTPLUG
+/*
+ * Memory is added always to NORMAL zone. This means you will never get
+ * additional DMA/DMA32 memory.
+ */
+int arch_add_memory(int nid, u64 start, u64 size)
+{
+ struct pglist_data *pgdat = NODE_DATA(nid);
+ struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
+ unsigned long start_pfn = start >> PAGE_SHIFT;
+ unsigned long nr_pages = size >> PAGE_SHIFT;
+ int ret;
+
+ init_memory_mapping(start, (start + size -1));
+
+ ret = __add_pages(zone, start_pfn, nr_pages);
+ if (ret)
+ goto error;
+
+ return ret;
+error:
+ printk("%s: Problem encountered in __add_pages!\n", __func__);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(arch_add_memory);
+
+int remove_memory(u64 start, u64 size)
+{
+ return -EINVAL;
+}
+EXPORT_SYMBOL_GPL(remove_memory);
+
+#if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
+int memory_add_physaddr_to_nid(u64 start)
+{
+ return 0;
+}
+EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
+#endif
+
+#endif /* CONFIG_MEMORY_HOTPLUG */
+
+#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
+/*
+ * Memory Hotadd without sparsemem. The mem_maps have been allocated in advance,
+ * just online the pages.
+ */
+int __add_pages(struct zone *z, unsigned long start_pfn, unsigned long nr_pages)
+{
+ int err = -EIO;
+ unsigned long pfn;
+ unsigned long total = 0, mem = 0;
+ for (pfn = start_pfn; pfn < start_pfn + nr_pages; pfn++) {
+ if (pfn_valid(pfn)) {
+ online_page(pfn_to_page(pfn));
+ err = 0;
+ mem++;
+ }
+ total++;
+ }
+ if (!err) {
+ z->spanned_pages += total;
+ z->present_pages += mem;
+ z->zone_pgdat->node_spanned_pages += total;
+ z->zone_pgdat->node_present_pages += mem;
+ }
+ return err;
+}
+#endif
+
+static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel, kcore_modules,
+ kcore_vsyscall;
+
+void __init mem_init(void)
+{
+ long codesize, reservedpages, datasize, initsize;
+
+ pci_iommu_alloc();
+
+ /* clear the zero-page */
+ memset(empty_zero_page, 0, PAGE_SIZE);
+
+ reservedpages = 0;
+
+ /* this will put all low memory onto the freelists */
+#ifdef CONFIG_NUMA
+ totalram_pages = numa_free_all_bootmem();
+#else
+ totalram_pages = free_all_bootmem();
+#endif
+ reservedpages = end_pfn - totalram_pages -
+ absent_pages_in_range(0, end_pfn);
+
+ after_bootmem = 1;
+
+ codesize = (unsigned long) &_etext - (unsigned long) &_text;
+ datasize = (unsigned long) &_edata - (unsigned long) &_etext;
+ initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
+
+ /* Register memory areas for /proc/kcore */
+ kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
+ kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
+ VMALLOC_END-VMALLOC_START);
+ kclist_add(&kcore_kernel, &_stext, _end - _stext);
+ kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
+ kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
+ VSYSCALL_END - VSYSCALL_START);
+
+ printk("Memory: %luk/%luk available (%ldk kernel code, %ldk reserved, %ldk data, %ldk init)\n",
+ (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
+ end_pfn << (PAGE_SHIFT-10),
+ codesize >> 10,
+ reservedpages << (PAGE_SHIFT-10),
+ datasize >> 10,
+ initsize >> 10);
+}
+
+void free_init_pages(char *what, unsigned long begin, unsigned long end)
+{
+ unsigned long addr;
+
+ if (begin >= end)
+ return;
+
+ printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
+ for (addr = begin; addr < end; addr += PAGE_SIZE) {
+ ClearPageReserved(virt_to_page(addr));
+ init_page_count(virt_to_page(addr));
+ memset((void *)(addr & ~(PAGE_SIZE-1)),
+ POISON_FREE_INITMEM, PAGE_SIZE);
+ if (addr >= __START_KERNEL_map)
+ change_page_attr_addr(addr, 1, __pgprot(0));
+ free_page(addr);
+ totalram_pages++;
+ }
+ if (addr > __START_KERNEL_map)
+ global_flush_tlb();
+}
+
+void free_initmem(void)
+{
+ free_init_pages("unused kernel memory",
+ (unsigned long)(&__init_begin),
+ (unsigned long)(&__init_end));
+}
+
+#ifdef CONFIG_DEBUG_RODATA
+
+void mark_rodata_ro(void)
+{
+ unsigned long start = (unsigned long)_stext, end;
+
+#ifdef CONFIG_HOTPLUG_CPU
+ /* It must still be possible to apply SMP alternatives. */
+ if (num_possible_cpus() > 1)
+ start = (unsigned long)_etext;
+#endif
+
+#ifdef CONFIG_KPROBES
+ start = (unsigned long)__start_rodata;
+#endif
+
+ end = (unsigned long)__end_rodata;
+ start = (start + PAGE_SIZE - 1) & PAGE_MASK;
+ end &= PAGE_MASK;
+ if (end <= start)
+ return;
+
+ change_page_attr_addr(start, (end - start) >> PAGE_SHIFT, PAGE_KERNEL_RO);
+
+ printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
+ (end - start) >> 10);
+
+ /*
+ * change_page_attr_addr() requires a global_flush_tlb() call after it.
+ * We do this after the printk so that if something went wrong in the
+ * change, the printk gets out at least to give a better debug hint
+ * of who is the culprit.
+ */
+ global_flush_tlb();
+}
+#endif
+
+#ifdef CONFIG_BLK_DEV_INITRD
+void free_initrd_mem(unsigned long start, unsigned long end)
+{
+ free_init_pages("initrd memory", start, end);
+}
+#endif
+
+void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
+{
+#ifdef CONFIG_NUMA
+ int nid = phys_to_nid(phys);
+#endif
+ unsigned long pfn = phys >> PAGE_SHIFT;
+ if (pfn >= end_pfn) {
+ /* This can happen with kdump kernels when accessing firmware
+ tables. */
+ if (pfn < end_pfn_map)
+ return;
+ printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
+ phys, len);
+ return;
+ }
+
+ /* Should check here against the e820 map to avoid double free */
+#ifdef CONFIG_NUMA
+ reserve_bootmem_node(NODE_DATA(nid), phys, len);
+#else
+ reserve_bootmem(phys, len);
+#endif
+ if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
+ dma_reserve += len / PAGE_SIZE;
+ set_dma_reserve(dma_reserve);
+ }
+}
+
+int kern_addr_valid(unsigned long addr)
+{
+ unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+
+ if (above != 0 && above != -1UL)
+ return 0;
+
+ pgd = pgd_offset_k(addr);
+ if (pgd_none(*pgd))
+ return 0;
+
+ pud = pud_offset(pgd, addr);
+ if (pud_none(*pud))
+ return 0;
+
+ pmd = pmd_offset(pud, addr);
+ if (pmd_none(*pmd))
+ return 0;
+ if (pmd_large(*pmd))
+ return pfn_valid(pmd_pfn(*pmd));
+
+ pte = pte_offset_kernel(pmd, addr);
+ if (pte_none(*pte))
+ return 0;
+ return pfn_valid(pte_pfn(*pte));
+}
+
+/* A pseudo VMA to allow ptrace access for the vsyscall page. This only
+ covers the 64bit vsyscall page now. 32bit has a real VMA now and does
+ not need special handling anymore. */
+
+static struct vm_area_struct gate_vma = {
+ .vm_start = VSYSCALL_START,
+ .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES << PAGE_SHIFT),
+ .vm_page_prot = PAGE_READONLY_EXEC,
+ .vm_flags = VM_READ | VM_EXEC
+};
+
+struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
+{
+#ifdef CONFIG_IA32_EMULATION
+ if (test_tsk_thread_flag(tsk, TIF_IA32))
+ return NULL;
+#endif
+ return &gate_vma;
+}
+
+int in_gate_area(struct task_struct *task, unsigned long addr)
+{
+ struct vm_area_struct *vma = get_gate_vma(task);
+ if (!vma)
+ return 0;
+ return (addr >= vma->vm_start) && (addr < vma->vm_end);
+}
+
+/* Use this when you have no reliable task/vma, typically from interrupt
+ * context. It is less reliable than using the task's vma and may give
+ * false positives.
+ */
+int in_gate_area_no_task(unsigned long addr)
+{
+ return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
+}
+
+void * __init alloc_bootmem_high_node(pg_data_t *pgdat, unsigned long size)
+{
+ return __alloc_bootmem_core(pgdat->bdata, size,
+ SMP_CACHE_BYTES, (4UL*1024*1024*1024), 0);
+}
+
+const char *arch_vma_name(struct vm_area_struct *vma)
+{
+ if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
+ return "[vdso]";
+ if (vma == &gate_vma)
+ return "[vsyscall]";
+ return NULL;
+}
diff --git a/arch/x86/mm/ioremap_64.c b/arch/x86/mm/ioremap_64.c
new file mode 100644
index 00000000000..6cac90aa503
--- /dev/null
+++ b/arch/x86/mm/ioremap_64.c
@@ -0,0 +1,210 @@
+/*
+ * arch/x86_64/mm/ioremap.c
+ *
+ * Re-map IO memory to kernel address space so that we can access it.
+ * This is needed for high PCI addresses that aren't mapped in the
+ * 640k-1MB IO memory area on PC's
+ *
+ * (C) Copyright 1995 1996 Linus Torvalds
+ */
+
+#include <linux/vmalloc.h>
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/io.h>
+
+#include <asm/pgalloc.h>
+#include <asm/fixmap.h>
+#include <asm/tlbflush.h>
+#include <asm/cacheflush.h>
+#include <asm/proto.h>
+
+unsigned long __phys_addr(unsigned long x)
+{
+ if (x >= __START_KERNEL_map)
+ return x - __START_KERNEL_map + phys_base;
+ return x - PAGE_OFFSET;
+}
+EXPORT_SYMBOL(__phys_addr);
+
+#define ISA_START_ADDRESS 0xa0000
+#define ISA_END_ADDRESS 0x100000
+
+/*
+ * Fix up the linear direct mapping of the kernel to avoid cache attribute
+ * conflicts.
+ */
+static int
+ioremap_change_attr(unsigned long phys_addr, unsigned long size,
+ unsigned long flags)
+{
+ int err = 0;
+ if (phys_addr + size - 1 < (end_pfn_map << PAGE_SHIFT)) {
+ unsigned long npages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
+ unsigned long vaddr = (unsigned long) __va(phys_addr);
+
+ /*
+ * Must use a address here and not struct page because the phys addr
+ * can be a in hole between nodes and not have an memmap entry.
+ */
+ err = change_page_attr_addr(vaddr,npages,__pgprot(__PAGE_KERNEL|flags));
+ if (!err)
+ global_flush_tlb();
+ }
+ return err;
+}
+
+/*
+ * Generic mapping function
+ */
+
+/*
+ * Remap an arbitrary physical address space into the kernel virtual
+ * address space. Needed when the kernel wants to access high addresses
+ * directly.
+ *
+ * NOTE! We need to allow non-page-aligned mappings too: we will obviously
+ * have to convert them into an offset in a page-aligned mapping, but the
+ * caller shouldn't need to know that small detail.
+ */
+void __iomem * __ioremap(unsigned long phys_addr, unsigned long size, unsigned long flags)
+{
+ void * addr;
+ struct vm_struct * area;
+ unsigned long offset, last_addr;
+ pgprot_t pgprot;
+
+ /* Don't allow wraparound or zero size */
+ last_addr = phys_addr + size - 1;
+ if (!size || last_addr < phys_addr)
+ return NULL;
+
+ /*
+ * Don't remap the low PCI/ISA area, it's always mapped..
+ */
+ if (phys_addr >= ISA_START_ADDRESS && last_addr < ISA_END_ADDRESS)
+ return (__force void __iomem *)phys_to_virt(phys_addr);
+
+#ifdef CONFIG_FLATMEM
+ /*
+ * Don't allow anybody to remap normal RAM that we're using..
+ */
+ if (last_addr < virt_to_phys(high_memory)) {
+ char *t_addr, *t_end;
+ struct page *page;
+
+ t_addr = __va(phys_addr);
+ t_end = t_addr + (size - 1);
+
+ for(page = virt_to_page(t_addr); page <= virt_to_page(t_end); page++)
+ if(!PageReserved(page))
+ return NULL;
+ }
+#endif
+
+ pgprot = __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_GLOBAL
+ | _PAGE_DIRTY | _PAGE_ACCESSED | flags);
+ /*
+ * Mappings have to be page-aligned
+ */
+ offset = phys_addr & ~PAGE_MASK;
+ phys_addr &= PAGE_MASK;
+ size = PAGE_ALIGN(last_addr+1) - phys_addr;
+
+ /*
+ * Ok, go for it..
+ */
+ area = get_vm_area(size, VM_IOREMAP | (flags << 20));
+ if (!area)
+ return NULL;
+ area->phys_addr = phys_addr;
+ addr = area->addr;
+ if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size,
+ phys_addr, pgprot)) {
+ remove_vm_area((void *)(PAGE_MASK & (unsigned long) addr));
+ return NULL;
+ }
+ if (flags && ioremap_change_attr(phys_addr, size, flags) < 0) {
+ area->flags &= 0xffffff;
+ vunmap(addr);
+ return NULL;
+ }
+ return (__force void __iomem *) (offset + (char *)addr);
+}
+EXPORT_SYMBOL(__ioremap);
+
+/**
+ * ioremap_nocache - map bus memory into CPU space
+ * @offset: bus address of the memory
+ * @size: size of the resource to map
+ *
+ * ioremap_nocache performs a platform specific sequence of operations to
+ * make bus memory CPU accessible via the readb/readw/readl/writeb/
+ * writew/writel functions and the other mmio helpers. The returned
+ * address is not guaranteed to be usable directly as a virtual
+ * address.
+ *
+ * This version of ioremap ensures that the memory is marked uncachable
+ * on the CPU as well as honouring existing caching rules from things like
+ * the PCI bus. Note that there are other caches and buffers on many
+ * busses. In particular driver authors should read up on PCI writes
+ *
+ * It's useful if some control registers are in such an area and
+ * write combining or read caching is not desirable:
+ *
+ * Must be freed with iounmap.
+ */
+
+void __iomem *ioremap_nocache (unsigned long phys_addr, unsigned long size)
+{
+ return __ioremap(phys_addr, size, _PAGE_PCD);
+}
+EXPORT_SYMBOL(ioremap_nocache);
+
+/**
+ * iounmap - Free a IO remapping
+ * @addr: virtual address from ioremap_*
+ *
+ * Caller must ensure there is only one unmapping for the same pointer.
+ */
+void iounmap(volatile void __iomem *addr)
+{
+ struct vm_struct *p, *o;
+
+ if (addr <= high_memory)
+ return;
+ if (addr >= phys_to_virt(ISA_START_ADDRESS) &&
+ addr < phys_to_virt(ISA_END_ADDRESS))
+ return;
+
+ addr = (volatile void __iomem *)(PAGE_MASK & (unsigned long __force)addr);
+ /* Use the vm area unlocked, assuming the caller
+ ensures there isn't another iounmap for the same address
+ in parallel. Reuse of the virtual address is prevented by
+ leaving it in the global lists until we're done with it.
+ cpa takes care of the direct mappings. */
+ read_lock(&vmlist_lock);
+ for (p = vmlist; p; p = p->next) {
+ if (p->addr == addr)
+ break;
+ }
+ read_unlock(&vmlist_lock);
+
+ if (!p) {
+ printk("iounmap: bad address %p\n", addr);
+ dump_stack();
+ return;
+ }
+
+ /* Reset the direct mapping. Can block */
+ if (p->flags >> 20)
+ ioremap_change_attr(p->phys_addr, p->size, 0);
+
+ /* Finally remove it */
+ o = remove_vm_area((void *)addr);
+ BUG_ON(p != o || o == NULL);
+ kfree(p);
+}
+EXPORT_SYMBOL(iounmap);
+
diff --git a/arch/x86/mm/k8topology_64.c b/arch/x86/mm/k8topology_64.c
new file mode 100644
index 00000000000..a96006f7ae0
--- /dev/null
+++ b/arch/x86/mm/k8topology_64.c
@@ -0,0 +1,182 @@
+/*
+ * AMD K8 NUMA support.
+ * Discover the memory map and associated nodes.
+ *
+ * This version reads it directly from the K8 northbridge.
+ *
+ * Copyright 2002,2003 Andi Kleen, SuSE Labs.
+ */
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/string.h>
+#include <linux/module.h>
+#include <linux/nodemask.h>
+#include <asm/io.h>
+#include <linux/pci_ids.h>
+#include <asm/types.h>
+#include <asm/mmzone.h>
+#include <asm/proto.h>
+#include <asm/e820.h>
+#include <asm/pci-direct.h>
+#include <asm/numa.h>
+
+static __init int find_northbridge(void)
+{
+ int num;
+
+ for (num = 0; num < 32; num++) {
+ u32 header;
+
+ header = read_pci_config(0, num, 0, 0x00);
+ if (header != (PCI_VENDOR_ID_AMD | (0x1100<<16)))
+ continue;
+
+ header = read_pci_config(0, num, 1, 0x00);
+ if (header != (PCI_VENDOR_ID_AMD | (0x1101<<16)))
+ continue;
+ return num;
+ }
+
+ return -1;
+}
+
+int __init k8_scan_nodes(unsigned long start, unsigned long end)
+{
+ unsigned long prevbase;
+ struct bootnode nodes[8];
+ int nodeid, i, j, nb;
+ unsigned char nodeids[8];
+ int found = 0;
+ u32 reg;
+ unsigned numnodes;
+ unsigned num_cores;
+
+ if (!early_pci_allowed())
+ return -1;
+
+ nb = find_northbridge();
+ if (nb < 0)
+ return nb;
+
+ printk(KERN_INFO "Scanning NUMA topology in Northbridge %d\n", nb);
+
+ num_cores = (cpuid_ecx(0x80000008) & 0xff) + 1;
+ printk(KERN_INFO "CPU has %d num_cores\n", num_cores);
+
+ reg = read_pci_config(0, nb, 0, 0x60);
+ numnodes = ((reg >> 4) & 0xF) + 1;
+ if (numnodes <= 1)
+ return -1;
+
+ printk(KERN_INFO "Number of nodes %d\n", numnodes);
+
+ memset(&nodes,0,sizeof(nodes));
+ prevbase = 0;
+ for (i = 0; i < 8; i++) {
+ unsigned long base,limit;
+ u32 nodeid;
+
+ base = read_pci_config(0, nb, 1, 0x40 + i*8);
+ limit = read_pci_config(0, nb, 1, 0x44 + i*8);
+
+ nodeid = limit & 7;
+ nodeids[i] = nodeid;
+ if ((base & 3) == 0) {
+ if (i < numnodes)
+ printk("Skipping disabled node %d\n", i);
+ continue;
+ }
+ if (nodeid >= numnodes) {
+ printk("Ignoring excess node %d (%lx:%lx)\n", nodeid,
+ base, limit);
+ continue;
+ }
+
+ if (!limit) {
+ printk(KERN_INFO "Skipping node entry %d (base %lx)\n", i,
+ base);
+ continue;
+ }
+ if ((base >> 8) & 3 || (limit >> 8) & 3) {
+ printk(KERN_ERR "Node %d using interleaving mode %lx/%lx\n",
+ nodeid, (base>>8)&3, (limit>>8) & 3);
+ return -1;
+ }
+ if (node_isset(nodeid, node_possible_map)) {
+ printk(KERN_INFO "Node %d already present. Skipping\n",
+ nodeid);
+ continue;
+ }
+
+ limit >>= 16;
+ limit <<= 24;
+ limit |= (1<<24)-1;
+ limit++;
+
+ if (limit > end_pfn << PAGE_SHIFT)
+ limit = end_pfn << PAGE_SHIFT;
+ if (limit <= base)
+ continue;
+
+ base >>= 16;
+ base <<= 24;
+
+ if (base < start)
+ base = start;
+ if (limit > end)
+ limit = end;
+ if (limit == base) {
+ printk(KERN_ERR "Empty node %d\n", nodeid);
+ continue;
+ }
+ if (limit < base) {
+ printk(KERN_ERR "Node %d bogus settings %lx-%lx.\n",
+ nodeid, base, limit);
+ continue;
+ }
+
+ /* Could sort here, but pun for now. Should not happen anyroads. */
+ if (prevbase > base) {
+ printk(KERN_ERR "Node map not sorted %lx,%lx\n",
+ prevbase,base);
+ return -1;
+ }
+
+ printk(KERN_INFO "Node %d MemBase %016lx Limit %016lx\n",
+ nodeid, base, limit);
+
+ found++;
+
+ nodes[nodeid].start = base;
+ nodes[nodeid].end = limit;
+ e820_register_active_regions(nodeid,
+ nodes[nodeid].start >> PAGE_SHIFT,
+ nodes[nodeid].end >> PAGE_SHIFT);
+
+ prevbase = base;
+
+ node_set(nodeid, node_possible_map);
+ }
+
+ if (!found)
+ return -1;
+
+ memnode_shift = compute_hash_shift(nodes, 8);
+ if (memnode_shift < 0) {
+ printk(KERN_ERR "No NUMA node hash function found. Contact maintainer\n");
+ return -1;
+ }
+ printk(KERN_INFO "Using node hash shift of %d\n", memnode_shift);
+
+ for (i = 0; i < 8; i++) {
+ if (nodes[i].start != nodes[i].end) {
+ nodeid = nodeids[i];
+ for (j = 0; j < num_cores; j++)
+ apicid_to_node[(nodeid * num_cores) + j] = i;
+ setup_node_bootmem(i, nodes[i].start, nodes[i].end);
+ }
+ }
+
+ numa_init_array();
+ return 0;
+}
diff --git a/arch/x86/mm/mmap_64.c b/arch/x86/mm/mmap_64.c
new file mode 100644
index 00000000000..80bba0dc000
--- /dev/null
+++ b/arch/x86/mm/mmap_64.c
@@ -0,0 +1,29 @@
+/* Copyright 2005 Andi Kleen, SuSE Labs.
+ * Licensed under GPL, v.2
+ */
+#include <linux/mm.h>
+#include <linux/sched.h>
+#include <linux/random.h>
+#include <asm/ia32.h>
+
+/* Notebook: move the mmap code from sys_x86_64.c over here. */
+
+void arch_pick_mmap_layout(struct mm_struct *mm)
+{
+#ifdef CONFIG_IA32_EMULATION
+ if (current_thread_info()->flags & _TIF_IA32)
+ return ia32_pick_mmap_layout(mm);
+#endif
+ mm->mmap_base = TASK_UNMAPPED_BASE;
+ if (current->flags & PF_RANDOMIZE) {
+ /* Add 28bit randomness which is about 40bits of address space
+ because mmap base has to be page aligned.
+ or ~1/128 of the total user VM
+ (total user address space is 47bits) */
+ unsigned rnd = get_random_int() & 0xfffffff;
+ mm->mmap_base += ((unsigned long)rnd) << PAGE_SHIFT;
+ }
+ mm->get_unmapped_area = arch_get_unmapped_area;
+ mm->unmap_area = arch_unmap_area;
+}
+
diff --git a/arch/x86/mm/numa_64.c b/arch/x86/mm/numa_64.c
new file mode 100644
index 00000000000..6da23552226
--- /dev/null
+++ b/arch/x86/mm/numa_64.c
@@ -0,0 +1,648 @@
+/*
+ * Generic VM initialization for x86-64 NUMA setups.
+ * Copyright 2002,2003 Andi Kleen, SuSE Labs.
+ */
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/string.h>
+#include <linux/init.h>
+#include <linux/bootmem.h>
+#include <linux/mmzone.h>
+#include <linux/ctype.h>
+#include <linux/module.h>
+#include <linux/nodemask.h>
+
+#include <asm/e820.h>
+#include <asm/proto.h>
+#include <asm/dma.h>
+#include <asm/numa.h>
+#include <asm/acpi.h>
+
+#ifndef Dprintk
+#define Dprintk(x...)
+#endif
+
+struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
+bootmem_data_t plat_node_bdata[MAX_NUMNODES];
+
+struct memnode memnode;
+
+unsigned char cpu_to_node[NR_CPUS] __read_mostly = {
+ [0 ... NR_CPUS-1] = NUMA_NO_NODE
+};
+unsigned char apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
+ [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
+};
+cpumask_t node_to_cpumask[MAX_NUMNODES] __read_mostly;
+
+int numa_off __initdata;
+unsigned long __initdata nodemap_addr;
+unsigned long __initdata nodemap_size;
+
+
+/*
+ * Given a shift value, try to populate memnodemap[]
+ * Returns :
+ * 1 if OK
+ * 0 if memnodmap[] too small (of shift too small)
+ * -1 if node overlap or lost ram (shift too big)
+ */
+static int __init
+populate_memnodemap(const struct bootnode *nodes, int numnodes, int shift)
+{
+ int i;
+ int res = -1;
+ unsigned long addr, end;
+
+ memset(memnodemap, 0xff, memnodemapsize);
+ for (i = 0; i < numnodes; i++) {
+ addr = nodes[i].start;
+ end = nodes[i].end;
+ if (addr >= end)
+ continue;
+ if ((end >> shift) >= memnodemapsize)
+ return 0;
+ do {
+ if (memnodemap[addr >> shift] != 0xff)
+ return -1;
+ memnodemap[addr >> shift] = i;
+ addr += (1UL << shift);
+ } while (addr < end);
+ res = 1;
+ }
+ return res;
+}
+
+static int __init allocate_cachealigned_memnodemap(void)
+{
+ unsigned long pad, pad_addr;
+
+ memnodemap = memnode.embedded_map;
+ if (memnodemapsize <= 48)
+ return 0;
+
+ pad = L1_CACHE_BYTES - 1;
+ pad_addr = 0x8000;
+ nodemap_size = pad + memnodemapsize;
+ nodemap_addr = find_e820_area(pad_addr, end_pfn<<PAGE_SHIFT,
+ nodemap_size);
+ if (nodemap_addr == -1UL) {
+ printk(KERN_ERR
+ "NUMA: Unable to allocate Memory to Node hash map\n");
+ nodemap_addr = nodemap_size = 0;
+ return -1;
+ }
+ pad_addr = (nodemap_addr + pad) & ~pad;
+ memnodemap = phys_to_virt(pad_addr);
+
+ printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
+ nodemap_addr, nodemap_addr + nodemap_size);
+ return 0;
+}
+
+/*
+ * The LSB of all start and end addresses in the node map is the value of the
+ * maximum possible shift.
+ */
+static int __init
+extract_lsb_from_nodes (const struct bootnode *nodes, int numnodes)
+{
+ int i, nodes_used = 0;
+ unsigned long start, end;
+ unsigned long bitfield = 0, memtop = 0;
+
+ for (i = 0; i < numnodes; i++) {
+ start = nodes[i].start;
+ end = nodes[i].end;
+ if (start >= end)
+ continue;
+ bitfield |= start;
+ nodes_used++;
+ if (end > memtop)
+ memtop = end;
+ }
+ if (nodes_used <= 1)
+ i = 63;
+ else
+ i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
+ memnodemapsize = (memtop >> i)+1;
+ return i;
+}
+
+int __init compute_hash_shift(struct bootnode *nodes, int numnodes)
+{
+ int shift;
+
+ shift = extract_lsb_from_nodes(nodes, numnodes);
+ if (allocate_cachealigned_memnodemap())
+ return -1;
+ printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
+ shift);
+
+ if (populate_memnodemap(nodes, numnodes, shift) != 1) {
+ printk(KERN_INFO
+ "Your memory is not aligned you need to rebuild your kernel "
+ "with a bigger NODEMAPSIZE shift=%d\n",
+ shift);
+ return -1;
+ }
+ return shift;
+}
+
+#ifdef CONFIG_SPARSEMEM
+int early_pfn_to_nid(unsigned long pfn)
+{
+ return phys_to_nid(pfn << PAGE_SHIFT);
+}
+#endif
+
+static void * __init
+early_node_mem(int nodeid, unsigned long start, unsigned long end,
+ unsigned long size)
+{
+ unsigned long mem = find_e820_area(start, end, size);
+ void *ptr;
+ if (mem != -1L)
+ return __va(mem);
+ ptr = __alloc_bootmem_nopanic(size,
+ SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS));
+ if (ptr == 0) {
+ printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
+ size, nodeid);
+ return NULL;
+ }
+ return ptr;
+}
+
+/* Initialize bootmem allocator for a node */
+void __init setup_node_bootmem(int nodeid, unsigned long start, unsigned long end)
+{
+ unsigned long start_pfn, end_pfn, bootmap_pages, bootmap_size, bootmap_start;
+ unsigned long nodedata_phys;
+ void *bootmap;
+ const int pgdat_size = round_up(sizeof(pg_data_t), PAGE_SIZE);
+
+ start = round_up(start, ZONE_ALIGN);
+
+ printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid, start, end);
+
+ start_pfn = start >> PAGE_SHIFT;
+ end_pfn = end >> PAGE_SHIFT;
+
+ node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size);
+ if (node_data[nodeid] == NULL)
+ return;
+ nodedata_phys = __pa(node_data[nodeid]);
+
+ memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
+ NODE_DATA(nodeid)->bdata = &plat_node_bdata[nodeid];
+ NODE_DATA(nodeid)->node_start_pfn = start_pfn;
+ NODE_DATA(nodeid)->node_spanned_pages = end_pfn - start_pfn;
+
+ /* Find a place for the bootmem map */
+ bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
+ bootmap_start = round_up(nodedata_phys + pgdat_size, PAGE_SIZE);
+ bootmap = early_node_mem(nodeid, bootmap_start, end,
+ bootmap_pages<<PAGE_SHIFT);
+ if (bootmap == NULL) {
+ if (nodedata_phys < start || nodedata_phys >= end)
+ free_bootmem((unsigned long)node_data[nodeid],pgdat_size);
+ node_data[nodeid] = NULL;
+ return;
+ }
+ bootmap_start = __pa(bootmap);
+ Dprintk("bootmap start %lu pages %lu\n", bootmap_start, bootmap_pages);
+
+ bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
+ bootmap_start >> PAGE_SHIFT,
+ start_pfn, end_pfn);
+
+ free_bootmem_with_active_regions(nodeid, end);
+
+ reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys, pgdat_size);
+ reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start, bootmap_pages<<PAGE_SHIFT);
+#ifdef CONFIG_ACPI_NUMA
+ srat_reserve_add_area(nodeid);
+#endif
+ node_set_online(nodeid);
+}
+
+/* Initialize final allocator for a zone */
+void __init setup_node_zones(int nodeid)
+{
+ unsigned long start_pfn, end_pfn, memmapsize, limit;
+
+ start_pfn = node_start_pfn(nodeid);
+ end_pfn = node_end_pfn(nodeid);
+
+ Dprintk(KERN_INFO "Setting up memmap for node %d %lx-%lx\n",
+ nodeid, start_pfn, end_pfn);
+
+ /* Try to allocate mem_map at end to not fill up precious <4GB
+ memory. */
+ memmapsize = sizeof(struct page) * (end_pfn-start_pfn);
+ limit = end_pfn << PAGE_SHIFT;
+#ifdef CONFIG_FLAT_NODE_MEM_MAP
+ NODE_DATA(nodeid)->node_mem_map =
+ __alloc_bootmem_core(NODE_DATA(nodeid)->bdata,
+ memmapsize, SMP_CACHE_BYTES,
+ round_down(limit - memmapsize, PAGE_SIZE),
+ limit);
+#endif
+}
+
+void __init numa_init_array(void)
+{
+ int rr, i;
+ /* There are unfortunately some poorly designed mainboards around
+ that only connect memory to a single CPU. This breaks the 1:1 cpu->node
+ mapping. To avoid this fill in the mapping for all possible
+ CPUs, as the number of CPUs is not known yet.
+ We round robin the existing nodes. */
+ rr = first_node(node_online_map);
+ for (i = 0; i < NR_CPUS; i++) {
+ if (cpu_to_node[i] != NUMA_NO_NODE)
+ continue;
+ numa_set_node(i, rr);
+ rr = next_node(rr, node_online_map);
+ if (rr == MAX_NUMNODES)
+ rr = first_node(node_online_map);
+ }
+
+}
+
+#ifdef CONFIG_NUMA_EMU
+/* Numa emulation */
+char *cmdline __initdata;
+
+/*
+ * Setups up nid to range from addr to addr + size. If the end boundary is
+ * greater than max_addr, then max_addr is used instead. The return value is 0
+ * if there is additional memory left for allocation past addr and -1 otherwise.
+ * addr is adjusted to be at the end of the node.
+ */
+static int __init setup_node_range(int nid, struct bootnode *nodes, u64 *addr,
+ u64 size, u64 max_addr)
+{
+ int ret = 0;
+ nodes[nid].start = *addr;
+ *addr += size;
+ if (*addr >= max_addr) {
+ *addr = max_addr;
+ ret = -1;
+ }
+ nodes[nid].end = *addr;
+ node_set(nid, node_possible_map);
+ printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
+ nodes[nid].start, nodes[nid].end,
+ (nodes[nid].end - nodes[nid].start) >> 20);
+ return ret;
+}
+
+/*
+ * Splits num_nodes nodes up equally starting at node_start. The return value
+ * is the number of nodes split up and addr is adjusted to be at the end of the
+ * last node allocated.
+ */
+static int __init split_nodes_equally(struct bootnode *nodes, u64 *addr,
+ u64 max_addr, int node_start,
+ int num_nodes)
+{
+ unsigned int big;
+ u64 size;
+ int i;
+
+ if (num_nodes <= 0)
+ return -1;
+ if (num_nodes > MAX_NUMNODES)
+ num_nodes = MAX_NUMNODES;
+ size = (max_addr - *addr - e820_hole_size(*addr, max_addr)) /
+ num_nodes;
+ /*
+ * Calculate the number of big nodes that can be allocated as a result
+ * of consolidating the leftovers.
+ */
+ big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) /
+ FAKE_NODE_MIN_SIZE;
+
+ /* Round down to nearest FAKE_NODE_MIN_SIZE. */
+ size &= FAKE_NODE_MIN_HASH_MASK;
+ if (!size) {
+ printk(KERN_ERR "Not enough memory for each node. "
+ "NUMA emulation disabled.\n");
+ return -1;
+ }
+
+ for (i = node_start; i < num_nodes + node_start; i++) {
+ u64 end = *addr + size;
+ if (i < big)
+ end += FAKE_NODE_MIN_SIZE;
+ /*
+ * The final node can have the remaining system RAM. Other
+ * nodes receive roughly the same amount of available pages.
+ */
+ if (i == num_nodes + node_start - 1)
+ end = max_addr;
+ else
+ while (end - *addr - e820_hole_size(*addr, end) <
+ size) {
+ end += FAKE_NODE_MIN_SIZE;
+ if (end > max_addr) {
+ end = max_addr;
+ break;
+ }
+ }
+ if (setup_node_range(i, nodes, addr, end - *addr, max_addr) < 0)
+ break;
+ }
+ return i - node_start + 1;
+}
+
+/*
+ * Splits the remaining system RAM into chunks of size. The remaining memory is
+ * always assigned to a final node and can be asymmetric. Returns the number of
+ * nodes split.
+ */
+static int __init split_nodes_by_size(struct bootnode *nodes, u64 *addr,
+ u64 max_addr, int node_start, u64 size)
+{
+ int i = node_start;
+ size = (size << 20) & FAKE_NODE_MIN_HASH_MASK;
+ while (!setup_node_range(i++, nodes, addr, size, max_addr))
+ ;
+ return i - node_start;
+}
+
+/*
+ * Sets up the system RAM area from start_pfn to end_pfn according to the
+ * numa=fake command-line option.
+ */
+static int __init numa_emulation(unsigned long start_pfn, unsigned long end_pfn)
+{
+ struct bootnode nodes[MAX_NUMNODES];
+ u64 addr = start_pfn << PAGE_SHIFT;
+ u64 max_addr = end_pfn << PAGE_SHIFT;
+ int num_nodes = 0;
+ int coeff_flag;
+ int coeff = -1;
+ int num = 0;
+ u64 size;
+ int i;
+
+ memset(&nodes, 0, sizeof(nodes));
+ /*
+ * If the numa=fake command-line is just a single number N, split the
+ * system RAM into N fake nodes.
+ */
+ if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) {
+ num_nodes = split_nodes_equally(nodes, &addr, max_addr, 0,
+ simple_strtol(cmdline, NULL, 0));
+ if (num_nodes < 0)
+ return num_nodes;
+ goto out;
+ }
+
+ /* Parse the command line. */
+ for (coeff_flag = 0; ; cmdline++) {
+ if (*cmdline && isdigit(*cmdline)) {
+ num = num * 10 + *cmdline - '0';
+ continue;
+ }
+ if (*cmdline == '*') {
+ if (num > 0)
+ coeff = num;
+ coeff_flag = 1;
+ }
+ if (!*cmdline || *cmdline == ',') {
+ if (!coeff_flag)
+ coeff = 1;
+ /*
+ * Round down to the nearest FAKE_NODE_MIN_SIZE.
+ * Command-line coefficients are in megabytes.
+ */
+ size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK;
+ if (size)
+ for (i = 0; i < coeff; i++, num_nodes++)
+ if (setup_node_range(num_nodes, nodes,
+ &addr, size, max_addr) < 0)
+ goto done;
+ if (!*cmdline)
+ break;
+ coeff_flag = 0;
+ coeff = -1;
+ }
+ num = 0;
+ }
+done:
+ if (!num_nodes)
+ return -1;
+ /* Fill remainder of system RAM, if appropriate. */
+ if (addr < max_addr) {
+ if (coeff_flag && coeff < 0) {
+ /* Split remaining nodes into num-sized chunks */
+ num_nodes += split_nodes_by_size(nodes, &addr, max_addr,
+ num_nodes, num);
+ goto out;
+ }
+ switch (*(cmdline - 1)) {
+ case '*':
+ /* Split remaining nodes into coeff chunks */
+ if (coeff <= 0)
+ break;
+ num_nodes += split_nodes_equally(nodes, &addr, max_addr,
+ num_nodes, coeff);
+ break;
+ case ',':
+ /* Do not allocate remaining system RAM */
+ break;
+ default:
+ /* Give one final node */
+ setup_node_range(num_nodes, nodes, &addr,
+ max_addr - addr, max_addr);
+ num_nodes++;
+ }
+ }
+out:
+ memnode_shift = compute_hash_shift(nodes, num_nodes);
+ if (memnode_shift < 0) {
+ memnode_shift = 0;
+ printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
+ "disabled.\n");
+ return -1;
+ }
+
+ /*
+ * We need to vacate all active ranges that may have been registered by
+ * SRAT and set acpi_numa to -1 so that srat_disabled() always returns
+ * true. NUMA emulation has succeeded so we will not scan ACPI nodes.
+ */
+ remove_all_active_ranges();
+#ifdef CONFIG_ACPI_NUMA
+ acpi_numa = -1;
+#endif
+ for_each_node_mask(i, node_possible_map) {
+ e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
+ nodes[i].end >> PAGE_SHIFT);
+ setup_node_bootmem(i, nodes[i].start, nodes[i].end);
+ }
+ acpi_fake_nodes(nodes, num_nodes);
+ numa_init_array();
+ return 0;
+}
+#endif /* CONFIG_NUMA_EMU */
+
+void __init numa_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
+{
+ int i;
+
+ nodes_clear(node_possible_map);
+
+#ifdef CONFIG_NUMA_EMU
+ if (cmdline && !numa_emulation(start_pfn, end_pfn))
+ return;
+ nodes_clear(node_possible_map);
+#endif
+
+#ifdef CONFIG_ACPI_NUMA
+ if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
+ end_pfn << PAGE_SHIFT))
+ return;
+ nodes_clear(node_possible_map);
+#endif
+
+#ifdef CONFIG_K8_NUMA
+ if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT))
+ return;
+ nodes_clear(node_possible_map);
+#endif
+ printk(KERN_INFO "%s\n",
+ numa_off ? "NUMA turned off" : "No NUMA configuration found");
+
+ printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
+ start_pfn << PAGE_SHIFT,
+ end_pfn << PAGE_SHIFT);
+ /* setup dummy node covering all memory */
+ memnode_shift = 63;
+ memnodemap = memnode.embedded_map;
+ memnodemap[0] = 0;
+ nodes_clear(node_online_map);
+ node_set_online(0);
+ node_set(0, node_possible_map);
+ for (i = 0; i < NR_CPUS; i++)
+ numa_set_node(i, 0);
+ node_to_cpumask[0] = cpumask_of_cpu(0);
+ e820_register_active_regions(0, start_pfn, end_pfn);
+ setup_node_bootmem(0, start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
+}
+
+__cpuinit void numa_add_cpu(int cpu)
+{
+ set_bit(cpu, &node_to_cpumask[cpu_to_node(cpu)]);
+}
+
+void __cpuinit numa_set_node(int cpu, int node)
+{
+ cpu_pda(cpu)->nodenumber = node;
+ cpu_to_node[cpu] = node;
+}
+
+unsigned long __init numa_free_all_bootmem(void)
+{
+ int i;
+ unsigned long pages = 0;
+ for_each_online_node(i) {
+ pages += free_all_bootmem_node(NODE_DATA(i));
+ }
+ return pages;
+}
+
+void __init paging_init(void)
+{
+ int i;
+ unsigned long max_zone_pfns[MAX_NR_ZONES];
+ memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
+ max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
+ max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
+ max_zone_pfns[ZONE_NORMAL] = end_pfn;
+
+ sparse_memory_present_with_active_regions(MAX_NUMNODES);
+ sparse_init();
+
+ for_each_online_node(i) {
+ setup_node_zones(i);
+ }
+
+ free_area_init_nodes(max_zone_pfns);
+}
+
+static __init int numa_setup(char *opt)
+{
+ if (!opt)
+ return -EINVAL;
+ if (!strncmp(opt,"off",3))
+ numa_off = 1;
+#ifdef CONFIG_NUMA_EMU
+ if (!strncmp(opt, "fake=", 5))
+ cmdline = opt + 5;
+#endif
+#ifdef CONFIG_ACPI_NUMA
+ if (!strncmp(opt,"noacpi",6))
+ acpi_numa = -1;
+ if (!strncmp(opt,"hotadd=", 7))
+ hotadd_percent = simple_strtoul(opt+7, NULL, 10);
+#endif
+ return 0;
+}
+
+early_param("numa", numa_setup);
+
+/*
+ * Setup early cpu_to_node.
+ *
+ * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
+ * and apicid_to_node[] tables have valid entries for a CPU.
+ * This means we skip cpu_to_node[] initialisation for NUMA
+ * emulation and faking node case (when running a kernel compiled
+ * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
+ * is already initialized in a round robin manner at numa_init_array,
+ * prior to this call, and this initialization is good enough
+ * for the fake NUMA cases.
+ */
+void __init init_cpu_to_node(void)
+{
+ int i;
+ for (i = 0; i < NR_CPUS; i++) {
+ u8 apicid = x86_cpu_to_apicid[i];
+ if (apicid == BAD_APICID)
+ continue;
+ if (apicid_to_node[apicid] == NUMA_NO_NODE)
+ continue;
+ numa_set_node(i,apicid_to_node[apicid]);
+ }
+}
+
+EXPORT_SYMBOL(cpu_to_node);
+EXPORT_SYMBOL(node_to_cpumask);
+EXPORT_SYMBOL(memnode);
+EXPORT_SYMBOL(node_data);
+
+#ifdef CONFIG_DISCONTIGMEM
+/*
+ * Functions to convert PFNs from/to per node page addresses.
+ * These are out of line because they are quite big.
+ * They could be all tuned by pre caching more state.
+ * Should do that.
+ */
+
+int pfn_valid(unsigned long pfn)
+{
+ unsigned nid;
+ if (pfn >= num_physpages)
+ return 0;
+ nid = pfn_to_nid(pfn);
+ if (nid == 0xff)
+ return 0;
+ return pfn >= node_start_pfn(nid) && (pfn) < node_end_pfn(nid);
+}
+EXPORT_SYMBOL(pfn_valid);
+#endif
diff --git a/arch/x86/mm/pageattr_64.c b/arch/x86/mm/pageattr_64.c
new file mode 100644
index 00000000000..10b9809ce82
--- /dev/null
+++ b/arch/x86/mm/pageattr_64.c
@@ -0,0 +1,249 @@
+/*
+ * Copyright 2002 Andi Kleen, SuSE Labs.
+ * Thanks to Ben LaHaise for precious feedback.
+ */
+
+#include <linux/mm.h>
+#include <linux/sched.h>
+#include <linux/highmem.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <asm/uaccess.h>
+#include <asm/processor.h>
+#include <asm/tlbflush.h>
+#include <asm/io.h>
+
+pte_t *lookup_address(unsigned long address)
+{
+ pgd_t *pgd = pgd_offset_k(address);
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+ if (pgd_none(*pgd))
+ return NULL;
+ pud = pud_offset(pgd, address);
+ if (!pud_present(*pud))
+ return NULL;
+ pmd = pmd_offset(pud, address);
+ if (!pmd_present(*pmd))
+ return NULL;
+ if (pmd_large(*pmd))
+ return (pte_t *)pmd;
+ pte = pte_offset_kernel(pmd, address);
+ if (pte && !pte_present(*pte))
+ pte = NULL;
+ return pte;
+}
+
+static struct page *split_large_page(unsigned long address, pgprot_t prot,
+ pgprot_t ref_prot)
+{
+ int i;
+ unsigned long addr;
+ struct page *base = alloc_pages(GFP_KERNEL, 0);
+ pte_t *pbase;
+ if (!base)
+ return NULL;
+ /*
+ * page_private is used to track the number of entries in
+ * the page table page have non standard attributes.
+ */
+ SetPagePrivate(base);
+ page_private(base) = 0;
+
+ address = __pa(address);
+ addr = address & LARGE_PAGE_MASK;
+ pbase = (pte_t *)page_address(base);
+ for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
+ pbase[i] = pfn_pte(addr >> PAGE_SHIFT,
+ addr == address ? prot : ref_prot);
+ }
+ return base;
+}
+
+static void cache_flush_page(void *adr)
+{
+ int i;
+ for (i = 0; i < PAGE_SIZE; i += boot_cpu_data.x86_clflush_size)
+ asm volatile("clflush (%0)" :: "r" (adr + i));
+}
+
+static void flush_kernel_map(void *arg)
+{
+ struct list_head *l = (struct list_head *)arg;
+ struct page *pg;
+
+ /* When clflush is available always use it because it is
+ much cheaper than WBINVD. */
+ /* clflush is still broken. Disable for now. */
+ if (1 || !cpu_has_clflush)
+ asm volatile("wbinvd" ::: "memory");
+ else list_for_each_entry(pg, l, lru) {
+ void *adr = page_address(pg);
+ cache_flush_page(adr);
+ }
+ __flush_tlb_all();
+}
+
+static inline void flush_map(struct list_head *l)
+{
+ on_each_cpu(flush_kernel_map, l, 1, 1);
+}
+
+static LIST_HEAD(deferred_pages); /* protected by init_mm.mmap_sem */
+
+static inline void save_page(struct page *fpage)
+{
+ if (!test_and_set_bit(PG_arch_1, &fpage->flags))
+ list_add(&fpage->lru, &deferred_pages);
+}
+
+/*
+ * No more special protections in this 2/4MB area - revert to a
+ * large page again.
+ */
+static void revert_page(unsigned long address, pgprot_t ref_prot)
+{
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t large_pte;
+ unsigned long pfn;
+
+ pgd = pgd_offset_k(address);
+ BUG_ON(pgd_none(*pgd));
+ pud = pud_offset(pgd,address);
+ BUG_ON(pud_none(*pud));
+ pmd = pmd_offset(pud, address);
+ BUG_ON(pmd_val(*pmd) & _PAGE_PSE);
+ pfn = (__pa(address) & LARGE_PAGE_MASK) >> PAGE_SHIFT;
+ large_pte = pfn_pte(pfn, ref_prot);
+ large_pte = pte_mkhuge(large_pte);
+ set_pte((pte_t *)pmd, large_pte);
+}
+
+static int
+__change_page_attr(unsigned long address, unsigned long pfn, pgprot_t prot,
+ pgprot_t ref_prot)
+{
+ pte_t *kpte;
+ struct page *kpte_page;
+ pgprot_t ref_prot2;
+
+ kpte = lookup_address(address);
+ if (!kpte) return 0;
+ kpte_page = virt_to_page(((unsigned long)kpte) & PAGE_MASK);
+ BUG_ON(PageLRU(kpte_page));
+ BUG_ON(PageCompound(kpte_page));
+ if (pgprot_val(prot) != pgprot_val(ref_prot)) {
+ if (!pte_huge(*kpte)) {
+ set_pte(kpte, pfn_pte(pfn, prot));
+ } else {
+ /*
+ * split_large_page will take the reference for this
+ * change_page_attr on the split page.
+ */
+ struct page *split;
+ ref_prot2 = pte_pgprot(pte_clrhuge(*kpte));
+ split = split_large_page(address, prot, ref_prot2);
+ if (!split)
+ return -ENOMEM;
+ set_pte(kpte, mk_pte(split, ref_prot2));
+ kpte_page = split;
+ }
+ page_private(kpte_page)++;
+ } else if (!pte_huge(*kpte)) {
+ set_pte(kpte, pfn_pte(pfn, ref_prot));
+ BUG_ON(page_private(kpte_page) == 0);
+ page_private(kpte_page)--;
+ } else
+ BUG();
+
+ /* on x86-64 the direct mapping set at boot is not using 4k pages */
+ BUG_ON(PageReserved(kpte_page));
+
+ save_page(kpte_page);
+ if (page_private(kpte_page) == 0)
+ revert_page(address, ref_prot);
+ return 0;
+}
+
+/*
+ * Change the page attributes of an page in the linear mapping.
+ *
+ * This should be used when a page is mapped with a different caching policy
+ * than write-back somewhere - some CPUs do not like it when mappings with
+ * different caching policies exist. This changes the page attributes of the
+ * in kernel linear mapping too.
+ *
+ * The caller needs to ensure that there are no conflicting mappings elsewhere.
+ * This function only deals with the kernel linear map.
+ *
+ * Caller must call global_flush_tlb() after this.
+ */
+int change_page_attr_addr(unsigned long address, int numpages, pgprot_t prot)
+{
+ int err = 0, kernel_map = 0;
+ int i;
+
+ if (address >= __START_KERNEL_map
+ && address < __START_KERNEL_map + KERNEL_TEXT_SIZE) {
+ address = (unsigned long)__va(__pa(address));
+ kernel_map = 1;
+ }
+
+ down_write(&init_mm.mmap_sem);
+ for (i = 0; i < numpages; i++, address += PAGE_SIZE) {
+ unsigned long pfn = __pa(address) >> PAGE_SHIFT;
+
+ if (!kernel_map || pte_present(pfn_pte(0, prot))) {
+ err = __change_page_attr(address, pfn, prot, PAGE_KERNEL);
+ if (err)
+ break;
+ }
+ /* Handle kernel mapping too which aliases part of the
+ * lowmem */
+ if (__pa(address) < KERNEL_TEXT_SIZE) {
+ unsigned long addr2;
+ pgprot_t prot2;
+ addr2 = __START_KERNEL_map + __pa(address);
+ /* Make sure the kernel mappings stay executable */
+ prot2 = pte_pgprot(pte_mkexec(pfn_pte(0, prot)));
+ err = __change_page_attr(addr2, pfn, prot2,
+ PAGE_KERNEL_EXEC);
+ }
+ }
+ up_write(&init_mm.mmap_sem);
+ return err;
+}
+
+/* Don't call this for MMIO areas that may not have a mem_map entry */
+int change_page_attr(struct page *page, int numpages, pgprot_t prot)
+{
+ unsigned long addr = (unsigned long)page_address(page);
+ return change_page_attr_addr(addr, numpages, prot);
+}
+
+void global_flush_tlb(void)
+{
+ struct page *pg, *next;
+ struct list_head l;
+
+ down_read(&init_mm.mmap_sem);
+ list_replace_init(&deferred_pages, &l);
+ up_read(&init_mm.mmap_sem);
+
+ flush_map(&l);
+
+ list_for_each_entry_safe(pg, next, &l, lru) {
+ list_del(&pg->lru);
+ clear_bit(PG_arch_1, &pg->flags);
+ if (page_private(pg) != 0)
+ continue;
+ ClearPagePrivate(pg);
+ __free_page(pg);
+ }
+}
+
+EXPORT_SYMBOL(change_page_attr);
+EXPORT_SYMBOL(global_flush_tlb);
diff --git a/arch/x86/mm/srat_64.c b/arch/x86/mm/srat_64.c
new file mode 100644
index 00000000000..acdf03e1914
--- /dev/null
+++ b/arch/x86/mm/srat_64.c
@@ -0,0 +1,566 @@
+/*
+ * ACPI 3.0 based NUMA setup
+ * Copyright 2004 Andi Kleen, SuSE Labs.
+ *
+ * Reads the ACPI SRAT table to figure out what memory belongs to which CPUs.
+ *
+ * Called from acpi_numa_init while reading the SRAT and SLIT tables.
+ * Assumes all memory regions belonging to a single proximity domain
+ * are in one chunk. Holes between them will be included in the node.
+ */
+
+#include <linux/kernel.h>
+#include <linux/acpi.h>
+#include <linux/mmzone.h>
+#include <linux/bitmap.h>
+#include <linux/module.h>
+#include <linux/topology.h>
+#include <linux/bootmem.h>
+#include <linux/mm.h>
+#include <asm/proto.h>
+#include <asm/numa.h>
+#include <asm/e820.h>
+
+int acpi_numa __initdata;
+
+static struct acpi_table_slit *acpi_slit;
+
+static nodemask_t nodes_parsed __initdata;
+static struct bootnode nodes[MAX_NUMNODES] __initdata;
+static struct bootnode nodes_add[MAX_NUMNODES];
+static int found_add_area __initdata;
+int hotadd_percent __initdata = 0;
+
+/* Too small nodes confuse the VM badly. Usually they result
+ from BIOS bugs. */
+#define NODE_MIN_SIZE (4*1024*1024)
+
+static __init int setup_node(int pxm)
+{
+ return acpi_map_pxm_to_node(pxm);
+}
+
+static __init int conflicting_nodes(unsigned long start, unsigned long end)
+{
+ int i;
+ for_each_node_mask(i, nodes_parsed) {
+ struct bootnode *nd = &nodes[i];
+ if (nd->start == nd->end)
+ continue;
+ if (nd->end > start && nd->start < end)
+ return i;
+ if (nd->end == end && nd->start == start)
+ return i;
+ }
+ return -1;
+}
+
+static __init void cutoff_node(int i, unsigned long start, unsigned long end)
+{
+ struct bootnode *nd = &nodes[i];
+
+ if (found_add_area)
+ return;
+
+ if (nd->start < start) {
+ nd->start = start;
+ if (nd->end < nd->start)
+ nd->start = nd->end;
+ }
+ if (nd->end > end) {
+ nd->end = end;
+ if (nd->start > nd->end)
+ nd->start = nd->end;
+ }
+}
+
+static __init void bad_srat(void)
+{
+ int i;
+ printk(KERN_ERR "SRAT: SRAT not used.\n");
+ acpi_numa = -1;
+ found_add_area = 0;
+ for (i = 0; i < MAX_LOCAL_APIC; i++)
+ apicid_to_node[i] = NUMA_NO_NODE;
+ for (i = 0; i < MAX_NUMNODES; i++)
+ nodes_add[i].start = nodes[i].end = 0;
+ remove_all_active_ranges();
+}
+
+static __init inline int srat_disabled(void)
+{
+ return numa_off || acpi_numa < 0;
+}
+
+/*
+ * A lot of BIOS fill in 10 (= no distance) everywhere. This messes
+ * up the NUMA heuristics which wants the local node to have a smaller
+ * distance than the others.
+ * Do some quick checks here and only use the SLIT if it passes.
+ */
+static __init int slit_valid(struct acpi_table_slit *slit)
+{
+ int i, j;
+ int d = slit->locality_count;
+ for (i = 0; i < d; i++) {
+ for (j = 0; j < d; j++) {
+ u8 val = slit->entry[d*i + j];
+ if (i == j) {
+ if (val != LOCAL_DISTANCE)
+ return 0;
+ } else if (val <= LOCAL_DISTANCE)
+ return 0;
+ }
+ }
+ return 1;
+}
+
+/* Callback for SLIT parsing */
+void __init acpi_numa_slit_init(struct acpi_table_slit *slit)
+{
+ if (!slit_valid(slit)) {
+ printk(KERN_INFO "ACPI: SLIT table looks invalid. Not used.\n");
+ return;
+ }
+ acpi_slit = slit;
+}
+
+/* Callback for Proximity Domain -> LAPIC mapping */
+void __init
+acpi_numa_processor_affinity_init(struct acpi_srat_cpu_affinity *pa)
+{
+ int pxm, node;
+ if (srat_disabled())
+ return;
+ if (pa->header.length != sizeof(struct acpi_srat_cpu_affinity)) {
+ bad_srat();
+ return;
+ }
+ if ((pa->flags & ACPI_SRAT_CPU_ENABLED) == 0)
+ return;
+ pxm = pa->proximity_domain_lo;
+ node = setup_node(pxm);
+ if (node < 0) {
+ printk(KERN_ERR "SRAT: Too many proximity domains %x\n", pxm);
+ bad_srat();
+ return;
+ }
+ apicid_to_node[pa->apic_id] = node;
+ acpi_numa = 1;
+ printk(KERN_INFO "SRAT: PXM %u -> APIC %u -> Node %u\n",
+ pxm, pa->apic_id, node);
+}
+
+#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
+/*
+ * Protect against too large hotadd areas that would fill up memory.
+ */
+static int hotadd_enough_memory(struct bootnode *nd)
+{
+ static unsigned long allocated;
+ static unsigned long last_area_end;
+ unsigned long pages = (nd->end - nd->start) >> PAGE_SHIFT;
+ long mem = pages * sizeof(struct page);
+ unsigned long addr;
+ unsigned long allowed;
+ unsigned long oldpages = pages;
+
+ if (mem < 0)
+ return 0;
+ allowed = (end_pfn - absent_pages_in_range(0, end_pfn)) * PAGE_SIZE;
+ allowed = (allowed / 100) * hotadd_percent;
+ if (allocated + mem > allowed) {
+ unsigned long range;
+ /* Give them at least part of their hotadd memory upto hotadd_percent
+ It would be better to spread the limit out
+ over multiple hotplug areas, but that is too complicated
+ right now */
+ if (allocated >= allowed)
+ return 0;
+ range = allowed - allocated;
+ pages = (range / PAGE_SIZE);
+ mem = pages * sizeof(struct page);
+ nd->end = nd->start + range;
+ }
+ /* Not completely fool proof, but a good sanity check */
+ addr = find_e820_area(last_area_end, end_pfn<<PAGE_SHIFT, mem);
+ if (addr == -1UL)
+ return 0;
+ if (pages != oldpages)
+ printk(KERN_NOTICE "SRAT: Hotadd area limited to %lu bytes\n",
+ pages << PAGE_SHIFT);
+ last_area_end = addr + mem;
+ allocated += mem;
+ return 1;
+}
+
+static int update_end_of_memory(unsigned long end)
+{
+ found_add_area = 1;
+ if ((end >> PAGE_SHIFT) > end_pfn)
+ end_pfn = end >> PAGE_SHIFT;
+ return 1;
+}
+
+static inline int save_add_info(void)
+{
+ return hotadd_percent > 0;
+}
+#else
+int update_end_of_memory(unsigned long end) {return -1;}
+static int hotadd_enough_memory(struct bootnode *nd) {return 1;}
+#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
+static inline int save_add_info(void) {return 1;}
+#else
+static inline int save_add_info(void) {return 0;}
+#endif
+#endif
+/*
+ * Update nodes_add and decide if to include add are in the zone.
+ * Both SPARSE and RESERVE need nodes_add infomation.
+ * This code supports one contigious hot add area per node.
+ */
+static int reserve_hotadd(int node, unsigned long start, unsigned long end)
+{
+ unsigned long s_pfn = start >> PAGE_SHIFT;
+ unsigned long e_pfn = end >> PAGE_SHIFT;
+ int ret = 0, changed = 0;
+ struct bootnode *nd = &nodes_add[node];
+
+ /* I had some trouble with strange memory hotadd regions breaking
+ the boot. Be very strict here and reject anything unexpected.
+ If you want working memory hotadd write correct SRATs.
+
+ The node size check is a basic sanity check to guard against
+ mistakes */
+ if ((signed long)(end - start) < NODE_MIN_SIZE) {
+ printk(KERN_ERR "SRAT: Hotplug area too small\n");
+ return -1;
+ }
+
+ /* This check might be a bit too strict, but I'm keeping it for now. */
+ if (absent_pages_in_range(s_pfn, e_pfn) != e_pfn - s_pfn) {
+ printk(KERN_ERR
+ "SRAT: Hotplug area %lu -> %lu has existing memory\n",
+ s_pfn, e_pfn);
+ return -1;
+ }
+
+ if (!hotadd_enough_memory(&nodes_add[node])) {
+ printk(KERN_ERR "SRAT: Hotplug area too large\n");
+ return -1;
+ }
+
+ /* Looks good */
+
+ if (nd->start == nd->end) {
+ nd->start = start;
+ nd->end = end;
+ changed = 1;
+ } else {
+ if (nd->start == end) {
+ nd->start = start;
+ changed = 1;
+ }
+ if (nd->end == start) {
+ nd->end = end;
+ changed = 1;
+ }
+ if (!changed)
+ printk(KERN_ERR "SRAT: Hotplug zone not continuous. Partly ignored\n");
+ }
+
+ ret = update_end_of_memory(nd->end);
+
+ if (changed)
+ printk(KERN_INFO "SRAT: hot plug zone found %Lx - %Lx\n", nd->start, nd->end);
+ return ret;
+}
+
+/* Callback for parsing of the Proximity Domain <-> Memory Area mappings */
+void __init
+acpi_numa_memory_affinity_init(struct acpi_srat_mem_affinity *ma)
+{
+ struct bootnode *nd, oldnode;
+ unsigned long start, end;
+ int node, pxm;
+ int i;
+
+ if (srat_disabled())
+ return;
+ if (ma->header.length != sizeof(struct acpi_srat_mem_affinity)) {
+ bad_srat();
+ return;
+ }
+ if ((ma->flags & ACPI_SRAT_MEM_ENABLED) == 0)
+ return;
+
+ if ((ma->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) && !save_add_info())
+ return;
+ start = ma->base_address;
+ end = start + ma->length;
+ pxm = ma->proximity_domain;
+ node = setup_node(pxm);
+ if (node < 0) {
+ printk(KERN_ERR "SRAT: Too many proximity domains.\n");
+ bad_srat();
+ return;
+ }
+ i = conflicting_nodes(start, end);
+ if (i == node) {
+ printk(KERN_WARNING
+ "SRAT: Warning: PXM %d (%lx-%lx) overlaps with itself (%Lx-%Lx)\n",
+ pxm, start, end, nodes[i].start, nodes[i].end);
+ } else if (i >= 0) {
+ printk(KERN_ERR
+ "SRAT: PXM %d (%lx-%lx) overlaps with PXM %d (%Lx-%Lx)\n",
+ pxm, start, end, node_to_pxm(i),
+ nodes[i].start, nodes[i].end);
+ bad_srat();
+ return;
+ }
+ nd = &nodes[node];
+ oldnode = *nd;
+ if (!node_test_and_set(node, nodes_parsed)) {
+ nd->start = start;
+ nd->end = end;
+ } else {
+ if (start < nd->start)
+ nd->start = start;
+ if (nd->end < end)
+ nd->end = end;
+ }
+
+ printk(KERN_INFO "SRAT: Node %u PXM %u %Lx-%Lx\n", node, pxm,
+ nd->start, nd->end);
+ e820_register_active_regions(node, nd->start >> PAGE_SHIFT,
+ nd->end >> PAGE_SHIFT);
+ push_node_boundaries(node, nd->start >> PAGE_SHIFT,
+ nd->end >> PAGE_SHIFT);
+
+ if ((ma->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) &&
+ (reserve_hotadd(node, start, end) < 0)) {
+ /* Ignore hotadd region. Undo damage */
+ printk(KERN_NOTICE "SRAT: Hotplug region ignored\n");
+ *nd = oldnode;
+ if ((nd->start | nd->end) == 0)
+ node_clear(node, nodes_parsed);
+ }
+}
+
+/* Sanity check to catch more bad SRATs (they are amazingly common).
+ Make sure the PXMs cover all memory. */
+static int __init nodes_cover_memory(const struct bootnode *nodes)
+{
+ int i;
+ unsigned long pxmram, e820ram;
+
+ pxmram = 0;
+ for_each_node_mask(i, nodes_parsed) {
+ unsigned long s = nodes[i].start >> PAGE_SHIFT;
+ unsigned long e = nodes[i].end >> PAGE_SHIFT;
+ pxmram += e - s;
+ pxmram -= absent_pages_in_range(s, e);
+ if ((long)pxmram < 0)
+ pxmram = 0;
+ }
+
+ e820ram = end_pfn - absent_pages_in_range(0, end_pfn);
+ /* We seem to lose 3 pages somewhere. Allow a bit of slack. */
+ if ((long)(e820ram - pxmram) >= 1*1024*1024) {
+ printk(KERN_ERR
+ "SRAT: PXMs only cover %luMB of your %luMB e820 RAM. Not used.\n",
+ (pxmram << PAGE_SHIFT) >> 20,
+ (e820ram << PAGE_SHIFT) >> 20);
+ return 0;
+ }
+ return 1;
+}
+
+static void unparse_node(int node)
+{
+ int i;
+ node_clear(node, nodes_parsed);
+ for (i = 0; i < MAX_LOCAL_APIC; i++) {
+ if (apicid_to_node[i] == node)
+ apicid_to_node[i] = NUMA_NO_NODE;
+ }
+}
+
+void __init acpi_numa_arch_fixup(void) {}
+
+/* Use the information discovered above to actually set up the nodes. */
+int __init acpi_scan_nodes(unsigned long start, unsigned long end)
+{
+ int i;
+
+ if (acpi_numa <= 0)
+ return -1;
+
+ /* First clean up the node list */
+ for (i = 0; i < MAX_NUMNODES; i++) {
+ cutoff_node(i, start, end);
+ if ((nodes[i].end - nodes[i].start) < NODE_MIN_SIZE) {
+ unparse_node(i);
+ node_set_offline(i);
+ }
+ }
+
+ if (!nodes_cover_memory(nodes)) {
+ bad_srat();
+ return -1;
+ }
+
+ memnode_shift = compute_hash_shift(nodes, MAX_NUMNODES);
+ if (memnode_shift < 0) {
+ printk(KERN_ERR
+ "SRAT: No NUMA node hash function found. Contact maintainer\n");
+ bad_srat();
+ return -1;
+ }
+
+ node_possible_map = nodes_parsed;
+
+ /* Finally register nodes */
+ for_each_node_mask(i, node_possible_map)
+ setup_node_bootmem(i, nodes[i].start, nodes[i].end);
+ /* Try again in case setup_node_bootmem missed one due
+ to missing bootmem */
+ for_each_node_mask(i, node_possible_map)
+ if (!node_online(i))
+ setup_node_bootmem(i, nodes[i].start, nodes[i].end);
+
+ for (i = 0; i < NR_CPUS; i++) {
+ if (cpu_to_node[i] == NUMA_NO_NODE)
+ continue;
+ if (!node_isset(cpu_to_node[i], node_possible_map))
+ numa_set_node(i, NUMA_NO_NODE);
+ }
+ numa_init_array();
+ return 0;
+}
+
+#ifdef CONFIG_NUMA_EMU
+static int __init find_node_by_addr(unsigned long addr)
+{
+ int ret = NUMA_NO_NODE;
+ int i;
+
+ for_each_node_mask(i, nodes_parsed) {
+ /*
+ * Find the real node that this emulated node appears on. For
+ * the sake of simplicity, we only use a real node's starting
+ * address to determine which emulated node it appears on.
+ */
+ if (addr >= nodes[i].start && addr < nodes[i].end) {
+ ret = i;
+ break;
+ }
+ }
+ return i;
+}
+
+/*
+ * In NUMA emulation, we need to setup proximity domain (_PXM) to node ID
+ * mappings that respect the real ACPI topology but reflect our emulated
+ * environment. For each emulated node, we find which real node it appears on
+ * and create PXM to NID mappings for those fake nodes which mirror that
+ * locality. SLIT will now represent the correct distances between emulated
+ * nodes as a result of the real topology.
+ */
+void __init acpi_fake_nodes(const struct bootnode *fake_nodes, int num_nodes)
+{
+ int i, j;
+ int fake_node_to_pxm_map[MAX_NUMNODES] = {
+ [0 ... MAX_NUMNODES-1] = PXM_INVAL
+ };
+ unsigned char fake_apicid_to_node[MAX_LOCAL_APIC] = {
+ [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
+ };
+
+ printk(KERN_INFO "Faking PXM affinity for fake nodes on real "
+ "topology.\n");
+ for (i = 0; i < num_nodes; i++) {
+ int nid, pxm;
+
+ nid = find_node_by_addr(fake_nodes[i].start);
+ if (nid == NUMA_NO_NODE)
+ continue;
+ pxm = node_to_pxm(nid);
+ if (pxm == PXM_INVAL)
+ continue;
+ fake_node_to_pxm_map[i] = pxm;
+ /*
+ * For each apicid_to_node mapping that exists for this real
+ * node, it must now point to the fake node ID.
+ */
+ for (j = 0; j < MAX_LOCAL_APIC; j++)
+ if (apicid_to_node[j] == nid)
+ fake_apicid_to_node[j] = i;
+ }
+ for (i = 0; i < num_nodes; i++)
+ __acpi_map_pxm_to_node(fake_node_to_pxm_map[i], i);
+ memcpy(apicid_to_node, fake_apicid_to_node, sizeof(apicid_to_node));
+
+ nodes_clear(nodes_parsed);
+ for (i = 0; i < num_nodes; i++)
+ if (fake_nodes[i].start != fake_nodes[i].end)
+ node_set(i, nodes_parsed);
+ WARN_ON(!nodes_cover_memory(fake_nodes));
+}
+
+static int null_slit_node_compare(int a, int b)
+{
+ return node_to_pxm(a) == node_to_pxm(b);
+}
+#else
+static int null_slit_node_compare(int a, int b)
+{
+ return a == b;
+}
+#endif /* CONFIG_NUMA_EMU */
+
+void __init srat_reserve_add_area(int nodeid)
+{
+ if (found_add_area && nodes_add[nodeid].end) {
+ u64 total_mb;
+
+ printk(KERN_INFO "SRAT: Reserving hot-add memory space "
+ "for node %d at %Lx-%Lx\n",
+ nodeid, nodes_add[nodeid].start, nodes_add[nodeid].end);
+ total_mb = (nodes_add[nodeid].end - nodes_add[nodeid].start)
+ >> PAGE_SHIFT;
+ total_mb *= sizeof(struct page);
+ total_mb >>= 20;
+ printk(KERN_INFO "SRAT: This will cost you %Lu MB of "
+ "pre-allocated memory.\n", (unsigned long long)total_mb);
+ reserve_bootmem_node(NODE_DATA(nodeid), nodes_add[nodeid].start,
+ nodes_add[nodeid].end - nodes_add[nodeid].start);
+ }
+}
+
+int __node_distance(int a, int b)
+{
+ int index;
+
+ if (!acpi_slit)
+ return null_slit_node_compare(a, b) ? LOCAL_DISTANCE :
+ REMOTE_DISTANCE;
+ index = acpi_slit->locality_count * node_to_pxm(a);
+ return acpi_slit->entry[index + node_to_pxm(b)];
+}
+
+EXPORT_SYMBOL(__node_distance);
+
+int memory_add_physaddr_to_nid(u64 start)
+{
+ int i, ret = 0;
+
+ for_each_node(i)
+ if (nodes_add[i].start <= start && nodes_add[i].end > start)
+ ret = i;
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
+