diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/arm/vfp |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/arm/vfp')
-rw-r--r-- | arch/arm/vfp/Makefile | 12 | ||||
-rw-r--r-- | arch/arm/vfp/entry.S | 45 | ||||
-rw-r--r-- | arch/arm/vfp/vfp.h | 344 | ||||
-rw-r--r-- | arch/arm/vfp/vfpdouble.c | 1186 | ||||
-rw-r--r-- | arch/arm/vfp/vfphw.S | 215 | ||||
-rw-r--r-- | arch/arm/vfp/vfpinstr.h | 88 | ||||
-rw-r--r-- | arch/arm/vfp/vfpmodule.c | 288 | ||||
-rw-r--r-- | arch/arm/vfp/vfpsingle.c | 1224 |
8 files changed, 3402 insertions, 0 deletions
diff --git a/arch/arm/vfp/Makefile b/arch/arm/vfp/Makefile new file mode 100644 index 00000000000..afabac31dd1 --- /dev/null +++ b/arch/arm/vfp/Makefile @@ -0,0 +1,12 @@ +# +# linux/arch/arm/vfp/Makefile +# +# Copyright (C) 2001 ARM Limited +# + +# EXTRA_CFLAGS := -DDEBUG +# EXTRA_AFLAGS := -DDEBUG + +obj-y += vfp.o + +vfp-$(CONFIG_VFP) += entry.o vfpmodule.o vfphw.o vfpsingle.o vfpdouble.o diff --git a/arch/arm/vfp/entry.S b/arch/arm/vfp/entry.S new file mode 100644 index 00000000000..e73c8deca59 --- /dev/null +++ b/arch/arm/vfp/entry.S @@ -0,0 +1,45 @@ +/* + * linux/arch/arm/vfp/entry.S + * + * Copyright (C) 2004 ARM Limited. + * Written by Deep Blue Solutions Limited. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * Basic entry code, called from the kernel's undefined instruction trap. + * r0 = faulted instruction + * r5 = faulted PC+4 + * r9 = successful return + * r10 = thread_info structure + * lr = failure return + */ +#include <linux/linkage.h> +#include <linux/init.h> +#include <asm/constants.h> +#include <asm/vfpmacros.h> + + .globl do_vfp +do_vfp: + ldr r4, .LCvfp + add r10, r10, #TI_VFPSTATE @ r10 = workspace + ldr pc, [r4] @ call VFP entry point + +.LCvfp: + .word vfp_vector + +@ This code is called if the VFP does not exist. It needs to flag the +@ failure to the VFP initialisation code. + + __INIT + .globl vfp_testing_entry +vfp_testing_entry: + ldr r0, VFP_arch_address + str r5, [r0] @ known non-zero value + mov pc, r9 @ we have handled the fault + +VFP_arch_address: + .word VFP_arch + + __FINIT diff --git a/arch/arm/vfp/vfp.h b/arch/arm/vfp/vfp.h new file mode 100644 index 00000000000..55a02bc994a --- /dev/null +++ b/arch/arm/vfp/vfp.h @@ -0,0 +1,344 @@ +/* + * linux/arch/arm/vfp/vfp.h + * + * Copyright (C) 2004 ARM Limited. + * Written by Deep Blue Solutions Limited. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ + +static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift) +{ + if (shift) { + if (shift < 32) + val = val >> shift | ((val << (32 - shift)) != 0); + else + val = val != 0; + } + return val; +} + +static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift) +{ + if (shift) { + if (shift < 64) + val = val >> shift | ((val << (64 - shift)) != 0); + else + val = val != 0; + } + return val; +} + +static inline u32 vfp_hi64to32jamming(u64 val) +{ + u32 v; + + asm( + "cmp %Q1, #1 @ vfp_hi64to32jamming\n\t" + "movcc %0, %R1\n\t" + "orrcs %0, %R1, #1" + : "=r" (v) : "r" (val) : "cc"); + + return v; +} + +static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml) +{ + asm( "adds %Q0, %Q2, %Q4\n\t" + "adcs %R0, %R2, %R4\n\t" + "adcs %Q1, %Q3, %Q5\n\t" + "adc %R1, %R3, %R5" + : "=r" (nl), "=r" (nh) + : "0" (nl), "1" (nh), "r" (ml), "r" (mh) + : "cc"); + *resh = nh; + *resl = nl; +} + +static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml) +{ + asm( "subs %Q0, %Q2, %Q4\n\t" + "sbcs %R0, %R2, %R4\n\t" + "sbcs %Q1, %Q3, %Q5\n\t" + "sbc %R1, %R3, %R5\n\t" + : "=r" (nl), "=r" (nh) + : "0" (nl), "1" (nh), "r" (ml), "r" (mh) + : "cc"); + *resh = nh; + *resl = nl; +} + +static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m) +{ + u32 nh, nl, mh, ml; + u64 rh, rma, rmb, rl; + + nl = n; + ml = m; + rl = (u64)nl * ml; + + nh = n >> 32; + rma = (u64)nh * ml; + + mh = m >> 32; + rmb = (u64)nl * mh; + rma += rmb; + + rh = (u64)nh * mh; + rh += ((u64)(rma < rmb) << 32) + (rma >> 32); + + rma <<= 32; + rl += rma; + rh += (rl < rma); + + *resl = rl; + *resh = rh; +} + +static inline void shift64left(u64 *resh, u64 *resl, u64 n) +{ + *resh = n >> 63; + *resl = n << 1; +} + +static inline u64 vfp_hi64multiply64(u64 n, u64 m) +{ + u64 rh, rl; + mul64to128(&rh, &rl, n, m); + return rh | (rl != 0); +} + +static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m) +{ + u64 mh, ml, remh, reml, termh, terml, z; + + if (nh >= m) + return ~0ULL; + mh = m >> 32; + z = (mh << 32 <= nh) ? 0xffffffff00000000ULL : (nh / mh) << 32; + mul64to128(&termh, &terml, m, z); + sub128(&remh, &reml, nh, nl, termh, terml); + ml = m << 32; + while ((s64)remh < 0) { + z -= 0x100000000ULL; + add128(&remh, &reml, remh, reml, mh, ml); + } + remh = (remh << 32) | (reml >> 32); + z |= (mh << 32 <= remh) ? 0xffffffff : remh / mh; + return z; +} + +/* + * Operations on unpacked elements + */ +#define vfp_sign_negate(sign) (sign ^ 0x8000) + +/* + * Single-precision + */ +struct vfp_single { + s16 exponent; + u16 sign; + u32 significand; +}; + +extern s32 vfp_get_float(unsigned int reg); +extern void vfp_put_float(unsigned int reg, s32 val); + +/* + * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa + * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent + * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand + * which are not propagated to the float upon packing. + */ +#define VFP_SINGLE_MANTISSA_BITS (23) +#define VFP_SINGLE_EXPONENT_BITS (8) +#define VFP_SINGLE_LOW_BITS (32 - VFP_SINGLE_MANTISSA_BITS - 2) +#define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1) + +/* + * The bit in an unpacked float which indicates that it is a quiet NaN + */ +#define VFP_SINGLE_SIGNIFICAND_QNAN (1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS)) + +/* + * Operations on packed single-precision numbers + */ +#define vfp_single_packed_sign(v) ((v) & 0x80000000) +#define vfp_single_packed_negate(v) ((v) ^ 0x80000000) +#define vfp_single_packed_abs(v) ((v) & ~0x80000000) +#define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1)) +#define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1)) + +/* + * Unpack a single-precision float. Note that this returns the magnitude + * of the single-precision float mantissa with the 1. if necessary, + * aligned to bit 30. + */ +static inline void vfp_single_unpack(struct vfp_single *s, s32 val) +{ + u32 significand; + + s->sign = vfp_single_packed_sign(val) >> 16, + s->exponent = vfp_single_packed_exponent(val); + + significand = (u32) val; + significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2; + if (s->exponent && s->exponent != 255) + significand |= 0x40000000; + s->significand = significand; +} + +/* + * Re-pack a single-precision float. This assumes that the float is + * already normalised such that the MSB is bit 30, _not_ bit 31. + */ +static inline s32 vfp_single_pack(struct vfp_single *s) +{ + u32 val; + val = (s->sign << 16) + + (s->exponent << VFP_SINGLE_MANTISSA_BITS) + + (s->significand >> VFP_SINGLE_LOW_BITS); + return (s32)val; +} + +#define VFP_NUMBER (1<<0) +#define VFP_ZERO (1<<1) +#define VFP_DENORMAL (1<<2) +#define VFP_INFINITY (1<<3) +#define VFP_NAN (1<<4) +#define VFP_NAN_SIGNAL (1<<5) + +#define VFP_QNAN (VFP_NAN) +#define VFP_SNAN (VFP_NAN|VFP_NAN_SIGNAL) + +static inline int vfp_single_type(struct vfp_single *s) +{ + int type = VFP_NUMBER; + if (s->exponent == 255) { + if (s->significand == 0) + type = VFP_INFINITY; + else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN) + type = VFP_QNAN; + else + type = VFP_SNAN; + } else if (s->exponent == 0) { + if (s->significand == 0) + type |= VFP_ZERO; + else + type |= VFP_DENORMAL; + } + return type; +} + +#ifndef DEBUG +#define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except) +u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions); +#else +u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func); +#endif + +/* + * Double-precision + */ +struct vfp_double { + s16 exponent; + u16 sign; + u64 significand; +}; + +/* + * VFP_REG_ZERO is a special register number for vfp_get_double + * which returns (double)0.0. This is useful for the compare with + * zero instructions. + */ +#define VFP_REG_ZERO 16 +extern u64 vfp_get_double(unsigned int reg); +extern void vfp_put_double(unsigned int reg, u64 val); + +#define VFP_DOUBLE_MANTISSA_BITS (52) +#define VFP_DOUBLE_EXPONENT_BITS (11) +#define VFP_DOUBLE_LOW_BITS (64 - VFP_DOUBLE_MANTISSA_BITS - 2) +#define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1) + +/* + * The bit in an unpacked double which indicates that it is a quiet NaN + */ +#define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS)) + +/* + * Operations on packed single-precision numbers + */ +#define vfp_double_packed_sign(v) ((v) & (1ULL << 63)) +#define vfp_double_packed_negate(v) ((v) ^ (1ULL << 63)) +#define vfp_double_packed_abs(v) ((v) & ~(1ULL << 63)) +#define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1)) +#define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1)) + +/* + * Unpack a double-precision float. Note that this returns the magnitude + * of the double-precision float mantissa with the 1. if necessary, + * aligned to bit 62. + */ +static inline void vfp_double_unpack(struct vfp_double *s, s64 val) +{ + u64 significand; + + s->sign = vfp_double_packed_sign(val) >> 48; + s->exponent = vfp_double_packed_exponent(val); + + significand = (u64) val; + significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2; + if (s->exponent && s->exponent != 2047) + significand |= (1ULL << 62); + s->significand = significand; +} + +/* + * Re-pack a double-precision float. This assumes that the float is + * already normalised such that the MSB is bit 30, _not_ bit 31. + */ +static inline s64 vfp_double_pack(struct vfp_double *s) +{ + u64 val; + val = ((u64)s->sign << 48) + + ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) + + (s->significand >> VFP_DOUBLE_LOW_BITS); + return (s64)val; +} + +static inline int vfp_double_type(struct vfp_double *s) +{ + int type = VFP_NUMBER; + if (s->exponent == 2047) { + if (s->significand == 0) + type = VFP_INFINITY; + else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN) + type = VFP_QNAN; + else + type = VFP_SNAN; + } else if (s->exponent == 0) { + if (s->significand == 0) + type |= VFP_ZERO; + else + type |= VFP_DENORMAL; + } + return type; +} + +u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func); + +/* + * System registers + */ +extern u32 vfp_get_sys(unsigned int reg); +extern void vfp_put_sys(unsigned int reg, u32 val); + +u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand); + +/* + * A special flag to tell the normalisation code not to normalise. + */ +#define VFP_NAN_FLAG 0x100 diff --git a/arch/arm/vfp/vfpdouble.c b/arch/arm/vfp/vfpdouble.c new file mode 100644 index 00000000000..fa3053e84db --- /dev/null +++ b/arch/arm/vfp/vfpdouble.c @@ -0,0 +1,1186 @@ +/* + * linux/arch/arm/vfp/vfpdouble.c + * + * This code is derived in part from John R. Housers softfloat library, which + * carries the following notice: + * + * =========================================================================== + * This C source file is part of the SoftFloat IEC/IEEE Floating-point + * Arithmetic Package, Release 2. + * + * Written by John R. Hauser. This work was made possible in part by the + * International Computer Science Institute, located at Suite 600, 1947 Center + * Street, Berkeley, California 94704. Funding was partially provided by the + * National Science Foundation under grant MIP-9311980. The original version + * of this code was written as part of a project to build a fixed-point vector + * processor in collaboration with the University of California at Berkeley, + * overseen by Profs. Nelson Morgan and John Wawrzynek. More information + * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ + * arithmetic/softfloat.html'. + * + * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort + * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT + * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO + * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY + * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. + * + * Derivative works are acceptable, even for commercial purposes, so long as + * (1) they include prominent notice that the work is derivative, and (2) they + * include prominent notice akin to these three paragraphs for those parts of + * this code that are retained. + * =========================================================================== + */ +#include <linux/kernel.h> +#include <linux/bitops.h> +#include <asm/ptrace.h> +#include <asm/vfp.h> + +#include "vfpinstr.h" +#include "vfp.h" + +static struct vfp_double vfp_double_default_qnan = { + .exponent = 2047, + .sign = 0, + .significand = VFP_DOUBLE_SIGNIFICAND_QNAN, +}; + +static void vfp_double_dump(const char *str, struct vfp_double *d) +{ + pr_debug("VFP: %s: sign=%d exponent=%d significand=%016llx\n", + str, d->sign != 0, d->exponent, d->significand); +} + +static void vfp_double_normalise_denormal(struct vfp_double *vd) +{ + int bits = 31 - fls(vd->significand >> 32); + if (bits == 31) + bits = 62 - fls(vd->significand); + + vfp_double_dump("normalise_denormal: in", vd); + + if (bits) { + vd->exponent -= bits - 1; + vd->significand <<= bits; + } + + vfp_double_dump("normalise_denormal: out", vd); +} + +u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func) +{ + u64 significand, incr; + int exponent, shift, underflow; + u32 rmode; + + vfp_double_dump("pack: in", vd); + + /* + * Infinities and NaNs are a special case. + */ + if (vd->exponent == 2047 && (vd->significand == 0 || exceptions)) + goto pack; + + /* + * Special-case zero. + */ + if (vd->significand == 0) { + vd->exponent = 0; + goto pack; + } + + exponent = vd->exponent; + significand = vd->significand; + + shift = 32 - fls(significand >> 32); + if (shift == 32) + shift = 64 - fls(significand); + if (shift) { + exponent -= shift; + significand <<= shift; + } + +#ifdef DEBUG + vd->exponent = exponent; + vd->significand = significand; + vfp_double_dump("pack: normalised", vd); +#endif + + /* + * Tiny number? + */ + underflow = exponent < 0; + if (underflow) { + significand = vfp_shiftright64jamming(significand, -exponent); + exponent = 0; +#ifdef DEBUG + vd->exponent = exponent; + vd->significand = significand; + vfp_double_dump("pack: tiny number", vd); +#endif + if (!(significand & ((1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1))) + underflow = 0; + } + + /* + * Select rounding increment. + */ + incr = 0; + rmode = fpscr & FPSCR_RMODE_MASK; + + if (rmode == FPSCR_ROUND_NEAREST) { + incr = 1ULL << VFP_DOUBLE_LOW_BITS; + if ((significand & (1ULL << (VFP_DOUBLE_LOW_BITS + 1))) == 0) + incr -= 1; + } else if (rmode == FPSCR_ROUND_TOZERO) { + incr = 0; + } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vd->sign != 0)) + incr = (1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1; + + pr_debug("VFP: rounding increment = 0x%08llx\n", incr); + + /* + * Is our rounding going to overflow? + */ + if ((significand + incr) < significand) { + exponent += 1; + significand = (significand >> 1) | (significand & 1); + incr >>= 1; +#ifdef DEBUG + vd->exponent = exponent; + vd->significand = significand; + vfp_double_dump("pack: overflow", vd); +#endif + } + + /* + * If any of the low bits (which will be shifted out of the + * number) are non-zero, the result is inexact. + */ + if (significand & ((1 << (VFP_DOUBLE_LOW_BITS + 1)) - 1)) + exceptions |= FPSCR_IXC; + + /* + * Do our rounding. + */ + significand += incr; + + /* + * Infinity? + */ + if (exponent >= 2046) { + exceptions |= FPSCR_OFC | FPSCR_IXC; + if (incr == 0) { + vd->exponent = 2045; + vd->significand = 0x7fffffffffffffffULL; + } else { + vd->exponent = 2047; /* infinity */ + vd->significand = 0; + } + } else { + if (significand >> (VFP_DOUBLE_LOW_BITS + 1) == 0) + exponent = 0; + if (exponent || significand > 0x8000000000000000ULL) + underflow = 0; + if (underflow) + exceptions |= FPSCR_UFC; + vd->exponent = exponent; + vd->significand = significand >> 1; + } + + pack: + vfp_double_dump("pack: final", vd); + { + s64 d = vfp_double_pack(vd); + pr_debug("VFP: %s: d(d%d)=%016llx exceptions=%08x\n", func, + dd, d, exceptions); + vfp_put_double(dd, d); + } + return exceptions & ~VFP_NAN_FLAG; +} + +/* + * Propagate the NaN, setting exceptions if it is signalling. + * 'n' is always a NaN. 'm' may be a number, NaN or infinity. + */ +static u32 +vfp_propagate_nan(struct vfp_double *vdd, struct vfp_double *vdn, + struct vfp_double *vdm, u32 fpscr) +{ + struct vfp_double *nan; + int tn, tm = 0; + + tn = vfp_double_type(vdn); + + if (vdm) + tm = vfp_double_type(vdm); + + if (fpscr & FPSCR_DEFAULT_NAN) + /* + * Default NaN mode - always returns a quiet NaN + */ + nan = &vfp_double_default_qnan; + else { + /* + * Contemporary mode - select the first signalling + * NAN, or if neither are signalling, the first + * quiet NAN. + */ + if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN)) + nan = vdn; + else + nan = vdm; + /* + * Make the NaN quiet. + */ + nan->significand |= VFP_DOUBLE_SIGNIFICAND_QNAN; + } + + *vdd = *nan; + + /* + * If one was a signalling NAN, raise invalid operation. + */ + return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG; +} + +/* + * Extended operations + */ +static u32 vfp_double_fabs(int dd, int unused, int dm, u32 fpscr) +{ + vfp_put_double(dd, vfp_double_packed_abs(vfp_get_double(dm))); + return 0; +} + +static u32 vfp_double_fcpy(int dd, int unused, int dm, u32 fpscr) +{ + vfp_put_double(dd, vfp_get_double(dm)); + return 0; +} + +static u32 vfp_double_fneg(int dd, int unused, int dm, u32 fpscr) +{ + vfp_put_double(dd, vfp_double_packed_negate(vfp_get_double(dm))); + return 0; +} + +static u32 vfp_double_fsqrt(int dd, int unused, int dm, u32 fpscr) +{ + struct vfp_double vdm, vdd; + int ret, tm; + + vfp_double_unpack(&vdm, vfp_get_double(dm)); + tm = vfp_double_type(&vdm); + if (tm & (VFP_NAN|VFP_INFINITY)) { + struct vfp_double *vdp = &vdd; + + if (tm & VFP_NAN) + ret = vfp_propagate_nan(vdp, &vdm, NULL, fpscr); + else if (vdm.sign == 0) { + sqrt_copy: + vdp = &vdm; + ret = 0; + } else { + sqrt_invalid: + vdp = &vfp_double_default_qnan; + ret = FPSCR_IOC; + } + vfp_put_double(dd, vfp_double_pack(vdp)); + return ret; + } + + /* + * sqrt(+/- 0) == +/- 0 + */ + if (tm & VFP_ZERO) + goto sqrt_copy; + + /* + * Normalise a denormalised number + */ + if (tm & VFP_DENORMAL) + vfp_double_normalise_denormal(&vdm); + + /* + * sqrt(<0) = invalid + */ + if (vdm.sign) + goto sqrt_invalid; + + vfp_double_dump("sqrt", &vdm); + + /* + * Estimate the square root. + */ + vdd.sign = 0; + vdd.exponent = ((vdm.exponent - 1023) >> 1) + 1023; + vdd.significand = (u64)vfp_estimate_sqrt_significand(vdm.exponent, vdm.significand >> 32) << 31; + + vfp_double_dump("sqrt estimate1", &vdd); + + vdm.significand >>= 1 + (vdm.exponent & 1); + vdd.significand += 2 + vfp_estimate_div128to64(vdm.significand, 0, vdd.significand); + + vfp_double_dump("sqrt estimate2", &vdd); + + /* + * And now adjust. + */ + if ((vdd.significand & VFP_DOUBLE_LOW_BITS_MASK) <= 5) { + if (vdd.significand < 2) { + vdd.significand = ~0ULL; + } else { + u64 termh, terml, remh, reml; + vdm.significand <<= 2; + mul64to128(&termh, &terml, vdd.significand, vdd.significand); + sub128(&remh, &reml, vdm.significand, 0, termh, terml); + while ((s64)remh < 0) { + vdd.significand -= 1; + shift64left(&termh, &terml, vdd.significand); + terml |= 1; + add128(&remh, &reml, remh, reml, termh, terml); + } + vdd.significand |= (remh | reml) != 0; + } + } + vdd.significand = vfp_shiftright64jamming(vdd.significand, 1); + + return vfp_double_normaliseround(dd, &vdd, fpscr, 0, "fsqrt"); +} + +/* + * Equal := ZC + * Less than := N + * Greater than := C + * Unordered := CV + */ +static u32 vfp_compare(int dd, int signal_on_qnan, int dm, u32 fpscr) +{ + s64 d, m; + u32 ret = 0; + + m = vfp_get_double(dm); + if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) { + ret |= FPSCR_C | FPSCR_V; + if (signal_on_qnan || !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1)))) + /* + * Signalling NaN, or signalling on quiet NaN + */ + ret |= FPSCR_IOC; + } + + d = vfp_get_double(dd); + if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) { + ret |= FPSCR_C | FPSCR_V; + if (signal_on_qnan || !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1)))) + /* + * Signalling NaN, or signalling on quiet NaN + */ + ret |= FPSCR_IOC; + } + + if (ret == 0) { + if (d == m || vfp_double_packed_abs(d | m) == 0) { + /* + * equal + */ + ret |= FPSCR_Z | FPSCR_C; + } else if (vfp_double_packed_sign(d ^ m)) { + /* + * different signs + */ + if (vfp_double_packed_sign(d)) + /* + * d is negative, so d < m + */ + ret |= FPSCR_N; + else + /* + * d is positive, so d > m + */ + ret |= FPSCR_C; + } else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) { + /* + * d < m + */ + ret |= FPSCR_N; + } else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) { + /* + * d > m + */ + ret |= FPSCR_C; + } + } + + return ret; +} + +static u32 vfp_double_fcmp(int dd, int unused, int dm, u32 fpscr) +{ + return vfp_compare(dd, 0, dm, fpscr); +} + +static u32 vfp_double_fcmpe(int dd, int unused, int dm, u32 fpscr) +{ + return vfp_compare(dd, 1, dm, fpscr); +} + +static u32 vfp_double_fcmpz(int dd, int unused, int dm, u32 fpscr) +{ + return vfp_compare(dd, 0, VFP_REG_ZERO, fpscr); +} + +static u32 vfp_double_fcmpez(int dd, int unused, int dm, u32 fpscr) +{ + return vfp_compare(dd, 1, VFP_REG_ZERO, fpscr); +} + +static u32 vfp_double_fcvts(int sd, int unused, int dm, u32 fpscr) +{ + struct vfp_double vdm; + struct vfp_single vsd; + int tm; + u32 exceptions = 0; + + vfp_double_unpack(&vdm, vfp_get_double(dm)); + + tm = vfp_double_type(&vdm); + + /* + * If we have a signalling NaN, signal invalid operation. + */ + if (tm == VFP_SNAN) + exceptions = FPSCR_IOC; + + if (tm & VFP_DENORMAL) + vfp_double_normalise_denormal(&vdm); + + vsd.sign = vdm.sign; + vsd.significand = vfp_hi64to32jamming(vdm.significand); + + /* + * If we have an infinity or a NaN, the exponent must be 255 + */ + if (tm & (VFP_INFINITY|VFP_NAN)) { + vsd.exponent = 255; + if (tm & VFP_NAN) + vsd.significand |= VFP_SINGLE_SIGNIFICAND_QNAN; + goto pack_nan; + } else if (tm & VFP_ZERO) + vsd.exponent = 0; + else + vsd.exponent = vdm.exponent - (1023 - 127); + + return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fcvts"); + + pack_nan: + vfp_put_float(sd, vfp_single_pack(&vsd)); + return exceptions; +} + +static u32 vfp_double_fuito(int dd, int unused, int dm, u32 fpscr) +{ + struct vfp_double vdm; + u32 m = vfp_get_float(dm); + + vdm.sign = 0; + vdm.exponent = 1023 + 63 - 1; + vdm.significand = (u64)m; + + return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fuito"); +} + +static u32 vfp_double_fsito(int dd, int unused, int dm, u32 fpscr) +{ + struct vfp_double vdm; + u32 m = vfp_get_float(dm); + + vdm.sign = (m & 0x80000000) >> 16; + vdm.exponent = 1023 + 63 - 1; + vdm.significand = vdm.sign ? -m : m; + + return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fsito"); +} + +static u32 vfp_double_ftoui(int sd, int unused, int dm, u32 fpscr) +{ + struct vfp_double vdm; + u32 d, exceptions = 0; + int rmode = fpscr & FPSCR_RMODE_MASK; + int tm; + + vfp_double_unpack(&vdm, vfp_get_double(dm)); + + /* + * Do we have a denormalised number? + */ + tm = vfp_double_type(&vdm); + if (tm & VFP_DENORMAL) + exceptions |= FPSCR_IDC; + + if (tm & VFP_NAN) + vdm.sign = 0; + + if (vdm.exponent >= 1023 + 32) { + d = vdm.sign ? 0 : 0xffffffff; + exceptions = FPSCR_IOC; + } else if (vdm.exponent >= 1023 - 1) { + int shift = 1023 + 63 - vdm.exponent; + u64 rem, incr = 0; + + /* + * 2^0 <= m < 2^32-2^8 + */ + d = (vdm.significand << 1) >> shift; + rem = vdm.significand << (65 - shift); + + if (rmode == FPSCR_ROUND_NEAREST) { + incr = 0x8000000000000000ULL; + if ((d & 1) == 0) + incr -= 1; + } else if (rmode == FPSCR_ROUND_TOZERO) { + incr = 0; + } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) { + incr = ~0ULL; + } + + if ((rem + incr) < rem) { + if (d < 0xffffffff) + d += 1; + else + exceptions |= FPSCR_IOC; + } + + if (d && vdm.sign) { + d = 0; + exceptions |= FPSCR_IOC; + } else if (rem) + exceptions |= FPSCR_IXC; + } else { + d = 0; + if (vdm.exponent | vdm.significand) { + exceptions |= FPSCR_IXC; + if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0) + d = 1; + else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign) { + d = 0; + exceptions |= FPSCR_IOC; + } + } + } + + pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions); + + vfp_put_float(sd, d); + + return exceptions; +} + +static u32 vfp_double_ftouiz(int sd, int unused, int dm, u32 fpscr) +{ + return vfp_double_ftoui(sd, unused, dm, FPSCR_ROUND_TOZERO); +} + +static u32 vfp_double_ftosi(int sd, int unused, int dm, u32 fpscr) +{ + struct vfp_double vdm; + u32 d, exceptions = 0; + int rmode = fpscr & FPSCR_RMODE_MASK; + + vfp_double_unpack(&vdm, vfp_get_double(dm)); + vfp_double_dump("VDM", &vdm); + + /* + * Do we have denormalised number? + */ + if (vfp_double_type(&vdm) & VFP_DENORMAL) + exceptions |= FPSCR_IDC; + + if (vdm.exponent >= 1023 + 32) { + d = 0x7fffffff; + if (vdm.sign) + d = ~d; + exceptions |= FPSCR_IOC; + } else if (vdm.exponent >= 1023 - 1) { + int shift = 1023 + 63 - vdm.exponent; /* 58 */ + u64 rem, incr = 0; + + d = (vdm.significand << 1) >> shift; + rem = vdm.significand << (65 - shift); + + if (rmode == FPSCR_ROUND_NEAREST) { + incr = 0x8000000000000000ULL; + if ((d & 1) == 0) + incr -= 1; + } else if (rmode == FPSCR_ROUND_TOZERO) { + incr = 0; + } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) { + incr = ~0ULL; + } + + if ((rem + incr) < rem && d < 0xffffffff) + d += 1; + if (d > 0x7fffffff + (vdm.sign != 0)) { + d = 0x7fffffff + (vdm.sign != 0); + exceptions |= FPSCR_IOC; + } else if (rem) + exceptions |= FPSCR_IXC; + + if (vdm.sign) + d = -d; + } else { + d = 0; + if (vdm.exponent | vdm.significand) { + exceptions |= FPSCR_IXC; + if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0) + d = 1; + else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign) + d = -1; + } + } + + pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions); + + vfp_put_float(sd, (s32)d); + + return exceptions; +} + +static u32 vfp_double_ftosiz(int dd, int unused, int dm, u32 fpscr) +{ + return vfp_double_ftosi(dd, unused, dm, FPSCR_ROUND_TOZERO); +} + + +static u32 (* const fop_extfns[32])(int dd, int unused, int dm, u32 fpscr) = { + [FEXT_TO_IDX(FEXT_FCPY)] = vfp_double_fcpy, + [FEXT_TO_IDX(FEXT_FABS)] = vfp_double_fabs, + [FEXT_TO_IDX(FEXT_FNEG)] = vfp_double_fneg, + [FEXT_TO_IDX(FEXT_FSQRT)] = vfp_double_fsqrt, + [FEXT_TO_IDX(FEXT_FCMP)] = vfp_double_fcmp, + [FEXT_TO_IDX(FEXT_FCMPE)] = vfp_double_fcmpe, + [FEXT_TO_IDX(FEXT_FCMPZ)] = vfp_double_fcmpz, + [FEXT_TO_IDX(FEXT_FCMPEZ)] = vfp_double_fcmpez, + [FEXT_TO_IDX(FEXT_FCVT)] = vfp_double_fcvts, + [FEXT_TO_IDX(FEXT_FUITO)] = vfp_double_fuito, + [FEXT_TO_IDX(FEXT_FSITO)] = vfp_double_fsito, + [FEXT_TO_IDX(FEXT_FTOUI)] = vfp_double_ftoui, + [FEXT_TO_IDX(FEXT_FTOUIZ)] = vfp_double_ftouiz, + [FEXT_TO_IDX(FEXT_FTOSI)] = vfp_double_ftosi, + [FEXT_TO_IDX(FEXT_FTOSIZ)] = vfp_double_ftosiz, +}; + + + + +static u32 +vfp_double_fadd_nonnumber(struct vfp_double *vdd, struct vfp_double *vdn, + struct vfp_double *vdm, u32 fpscr) +{ + struct vfp_double *vdp; + u32 exceptions = 0; + int tn, tm; + + tn = vfp_double_type(vdn); + tm = vfp_double_type(vdm); + + if (tn & tm & VFP_INFINITY) { + /* + * Two infinities. Are they different signs? + */ + if (vdn->sign ^ vdm->sign) { + /* + * different signs -> invalid + */ + exceptions = FPSCR_IOC; + vdp = &vfp_double_default_qnan; + } else { + /* + * same signs -> valid + */ + vdp = vdn; + } + } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) { + /* + * One infinity and one number -> infinity + */ + vdp = vdn; + } else { + /* + * 'n' is a NaN of some type + */ + return vfp_propagate_nan(vdd, vdn, vdm, fpscr); + } + *vdd = *vdp; + return exceptions; +} + +static u32 +vfp_double_add(struct vfp_double *vdd, struct vfp_double *vdn, + struct vfp_double *vdm, u32 fpscr) +{ + u32 exp_diff; + u64 m_sig; + + if (vdn->significand & (1ULL << 63) || + vdm->significand & (1ULL << 63)) { + pr_info("VFP: bad FP values in %s\n", __func__); + vfp_double_dump("VDN", vdn); + vf |