aboutsummaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2008-07-15 23:12:58 +0200
committerIngo Molnar <mingo@elte.hu>2008-07-15 23:12:58 +0200
commit1e09481365ce248dbb4eb06dad70129bb5807037 (patch)
treec0cff5bef95c8b5e7486f144718ade9a06c284dc /Documentation
parent3e2f69fdd1b00166e7d589bce56b2d36a9e74374 (diff)
parentb9d2252c1e44fa83a4e65fdc9eb93db6297c55af (diff)
Merge branch 'linus' into core/softlockup
Conflicts: kernel/softlockup.c Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/testing/sysfs-block34
-rw-r--r--Documentation/ABI/testing/sysfs-bus-css35
-rw-r--r--Documentation/ABI/testing/sysfs-firmware-memmap71
-rw-r--r--Documentation/HOWTO2
-rw-r--r--Documentation/IRQ-affinity.txt37
-rw-r--r--Documentation/accounting/taskstats-struct.txt6
-rw-r--r--Documentation/auxdisplay/cfag12864b4
-rw-r--r--Documentation/auxdisplay/cfag12864b-example.c2
-rw-r--r--Documentation/auxdisplay/ks01084
-rw-r--r--Documentation/block/data-integrity.txt327
-rw-r--r--Documentation/cgroups.txt4
-rw-r--r--Documentation/controllers/devices.txt8
-rw-r--r--Documentation/cpusets.txt9
-rw-r--r--Documentation/cputopology.txt26
-rw-r--r--Documentation/feature-removal-schedule.txt16
-rw-r--r--Documentation/filesystems/ext4.txt125
-rw-r--r--Documentation/filesystems/gfs2-glocks.txt114
-rw-r--r--Documentation/filesystems/proc.txt29
-rw-r--r--Documentation/ftrace.txt1361
-rw-r--r--Documentation/i2c/busses/i2c-i81047
-rw-r--r--Documentation/i2c/busses/i2c-prosavage23
-rw-r--r--Documentation/i2c/busses/i2c-savage426
-rw-r--r--Documentation/i2c/fault-codes127
-rw-r--r--Documentation/i2c/smbus-protocol4
-rw-r--r--Documentation/i2c/writing-clients69
-rw-r--r--Documentation/ioctl-number.txt1
-rw-r--r--Documentation/kdump/kdump.txt2
-rw-r--r--Documentation/kernel-parameters.txt59
-rw-r--r--Documentation/networking/ip-sysctl.txt268
-rw-r--r--Documentation/networking/s2io.txt6
-rw-r--r--Documentation/nmi_watchdog.txt16
-rw-r--r--Documentation/scheduler/sched-domains.txt7
-rw-r--r--Documentation/scheduler/sched-rt-group.txt4
-rw-r--r--Documentation/sound/alsa/ALSA-Configuration.txt17
-rw-r--r--Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl4
-rw-r--r--Documentation/tracers/mmiotrace.txt164
-rw-r--r--Documentation/video4linux/CARDLIST.au08282
-rw-r--r--Documentation/vm/slabinfo.c4
-rw-r--r--Documentation/vm/slub.txt2
-rw-r--r--Documentation/x86/i386/IO-APIC.txt (renamed from Documentation/i386/IO-APIC.txt)0
-rw-r--r--Documentation/x86/i386/boot.txt (renamed from Documentation/i386/boot.txt)79
-rw-r--r--Documentation/x86/i386/usb-legacy-support.txt (renamed from Documentation/i386/usb-legacy-support.txt)0
-rw-r--r--Documentation/x86/i386/zero-page.txt (renamed from Documentation/i386/zero-page.txt)0
-rw-r--r--Documentation/x86/x86_64/00-INDEX (renamed from Documentation/x86_64/00-INDEX)0
-rw-r--r--Documentation/x86/x86_64/boot-options.txt (renamed from Documentation/x86_64/boot-options.txt)0
-rw-r--r--Documentation/x86/x86_64/cpu-hotplug-spec (renamed from Documentation/x86_64/cpu-hotplug-spec)0
-rw-r--r--Documentation/x86/x86_64/fake-numa-for-cpusets (renamed from Documentation/x86_64/fake-numa-for-cpusets)0
-rw-r--r--Documentation/x86/x86_64/kernel-stacks (renamed from Documentation/x86_64/kernel-stacks)0
-rw-r--r--Documentation/x86/x86_64/machinecheck (renamed from Documentation/x86_64/machinecheck)0
-rw-r--r--Documentation/x86/x86_64/mm.txt (renamed from Documentation/x86_64/mm.txt)5
-rw-r--r--Documentation/x86/x86_64/uefi.txt (renamed from Documentation/x86_64/uefi.txt)4
51 files changed, 2817 insertions, 337 deletions
diff --git a/Documentation/ABI/testing/sysfs-block b/Documentation/ABI/testing/sysfs-block
index 4bd9ea53912..44f52a4f590 100644
--- a/Documentation/ABI/testing/sysfs-block
+++ b/Documentation/ABI/testing/sysfs-block
@@ -26,3 +26,37 @@ Description:
I/O statistics of partition <part>. The format is the
same as the above-written /sys/block/<disk>/stat
format.
+
+
+What: /sys/block/<disk>/integrity/format
+Date: June 2008
+Contact: Martin K. Petersen <martin.petersen@oracle.com>
+Description:
+ Metadata format for integrity capable block device.
+ E.g. T10-DIF-TYPE1-CRC.
+
+
+What: /sys/block/<disk>/integrity/read_verify
+Date: June 2008
+Contact: Martin K. Petersen <martin.petersen@oracle.com>
+Description:
+ Indicates whether the block layer should verify the
+ integrity of read requests serviced by devices that
+ support sending integrity metadata.
+
+
+What: /sys/block/<disk>/integrity/tag_size
+Date: June 2008
+Contact: Martin K. Petersen <martin.petersen@oracle.com>
+Description:
+ Number of bytes of integrity tag space available per
+ 512 bytes of data.
+
+
+What: /sys/block/<disk>/integrity/write_generate
+Date: June 2008
+Contact: Martin K. Petersen <martin.petersen@oracle.com>
+Description:
+ Indicates whether the block layer should automatically
+ generate checksums for write requests bound for
+ devices that support receiving integrity metadata.
diff --git a/Documentation/ABI/testing/sysfs-bus-css b/Documentation/ABI/testing/sysfs-bus-css
new file mode 100644
index 00000000000..b585ec258a0
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-bus-css
@@ -0,0 +1,35 @@
+What: /sys/bus/css/devices/.../type
+Date: March 2008
+Contact: Cornelia Huck <cornelia.huck@de.ibm.com>
+ linux-s390@vger.kernel.org
+Description: Contains the subchannel type, as reported by the hardware.
+ This attribute is present for all subchannel types.
+
+What: /sys/bus/css/devices/.../modalias
+Date: March 2008
+Contact: Cornelia Huck <cornelia.huck@de.ibm.com>
+ linux-s390@vger.kernel.org
+Description: Contains the module alias as reported with uevents.
+ It is of the format css:t<type> and present for all
+ subchannel types.
+
+What: /sys/bus/css/drivers/io_subchannel/.../chpids
+Date: December 2002
+Contact: Cornelia Huck <cornelia.huck@de.ibm.com>
+ linux-s390@vger.kernel.org
+Description: Contains the ids of the channel paths used by this
+ subchannel, as reported by the channel subsystem
+ during subchannel recognition.
+ Note: This is an I/O-subchannel specific attribute.
+Users: s390-tools, HAL
+
+What: /sys/bus/css/drivers/io_subchannel/.../pimpampom
+Date: December 2002
+Contact: Cornelia Huck <cornelia.huck@de.ibm.com>
+ linux-s390@vger.kernel.org
+Description: Contains the PIM/PAM/POM values, as reported by the
+ channel subsystem when last queried by the common I/O
+ layer (this implies that this attribute is not neccessarily
+ in sync with the values current in the channel subsystem).
+ Note: This is an I/O-subchannel specific attribute.
+Users: s390-tools, HAL
diff --git a/Documentation/ABI/testing/sysfs-firmware-memmap b/Documentation/ABI/testing/sysfs-firmware-memmap
new file mode 100644
index 00000000000..0d99ee6ae02
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-firmware-memmap
@@ -0,0 +1,71 @@
+What: /sys/firmware/memmap/
+Date: June 2008
+Contact: Bernhard Walle <bwalle@suse.de>
+Description:
+ On all platforms, the firmware provides a memory map which the
+ kernel reads. The resources from that memory map are registered
+ in the kernel resource tree and exposed to userspace via
+ /proc/iomem (together with other resources).
+
+ However, on most architectures that firmware-provided memory
+ map is modified afterwards by the kernel itself, either because
+ the kernel merges that memory map with other information or
+ just because the user overwrites that memory map via command
+ line.
+
+ kexec needs the raw firmware-provided memory map to setup the
+ parameter segment of the kernel that should be booted with
+ kexec. Also, the raw memory map is useful for debugging. For
+ that reason, /sys/firmware/memmap is an interface that provides
+ the raw memory map to userspace.
+
+ The structure is as follows: Under /sys/firmware/memmap there
+ are subdirectories with the number of the entry as their name:
+
+ /sys/firmware/memmap/0
+ /sys/firmware/memmap/1
+ /sys/firmware/memmap/2
+ /sys/firmware/memmap/3
+ ...
+
+ The maximum depends on the number of memory map entries provided
+ by the firmware. The order is just the order that the firmware
+ provides.
+
+ Each directory contains three files:
+
+ start : The start address (as hexadecimal number with the
+ '0x' prefix).
+ end : The end address, inclusive (regardless whether the
+ firmware provides inclusive or exclusive ranges).
+ type : Type of the entry as string. See below for a list of
+ valid types.
+
+ So, for example:
+
+ /sys/firmware/memmap/0/start
+ /sys/firmware/memmap/0/end
+ /sys/firmware/memmap/0/type
+ /sys/firmware/memmap/1/start
+ ...
+
+ Currently following types exist:
+
+ - System RAM
+ - ACPI Tables
+ - ACPI Non-volatile Storage
+ - reserved
+
+ Following shell snippet can be used to display that memory
+ map in a human-readable format:
+
+ -------------------- 8< ----------------------------------------
+ #!/bin/bash
+ cd /sys/firmware/memmap
+ for dir in * ; do
+ start=$(cat $dir/start)
+ end=$(cat $dir/end)
+ type=$(cat $dir/type)
+ printf "%016x-%016x (%s)\n" $start $[ $end +1] "$type"
+ done
+ -------------------- >8 ----------------------------------------
diff --git a/Documentation/HOWTO b/Documentation/HOWTO
index 0291ade44c1..619e8caf30d 100644
--- a/Documentation/HOWTO
+++ b/Documentation/HOWTO
@@ -377,7 +377,7 @@ Bug Reporting
bugzilla.kernel.org is where the Linux kernel developers track kernel
bugs. Users are encouraged to report all bugs that they find in this
tool. For details on how to use the kernel bugzilla, please see:
- http://test.kernel.org/bugzilla/faq.html
+ http://bugzilla.kernel.org/page.cgi?id=faq.html
The file REPORTING-BUGS in the main kernel source directory has a good
template for how to report a possible kernel bug, and details what kind
diff --git a/Documentation/IRQ-affinity.txt b/Documentation/IRQ-affinity.txt
index 938d7dd0549..b4a615b7840 100644
--- a/Documentation/IRQ-affinity.txt
+++ b/Documentation/IRQ-affinity.txt
@@ -1,17 +1,26 @@
+ChangeLog:
+ Started by Ingo Molnar <mingo@redhat.com>
+ Update by Max Krasnyansky <maxk@qualcomm.com>
-SMP IRQ affinity, started by Ingo Molnar <mingo@redhat.com>
-
+SMP IRQ affinity
/proc/irq/IRQ#/smp_affinity specifies which target CPUs are permitted
for a given IRQ source. It's a bitmask of allowed CPUs. It's not allowed
to turn off all CPUs, and if an IRQ controller does not support IRQ
affinity then the value will not change from the default 0xffffffff.
+/proc/irq/default_smp_affinity specifies default affinity mask that applies
+to all non-active IRQs. Once IRQ is allocated/activated its affinity bitmask
+will be set to the default mask. It can then be changed as described above.
+Default mask is 0xffffffff.
+
Here is an example of restricting IRQ44 (eth1) to CPU0-3 then restricting
-the IRQ to CPU4-7 (this is an 8-CPU SMP box):
+it to CPU4-7 (this is an 8-CPU SMP box):
+[root@moon 44]# cd /proc/irq/44
[root@moon 44]# cat smp_affinity
ffffffff
+
[root@moon 44]# echo 0f > smp_affinity
[root@moon 44]# cat smp_affinity
0000000f
@@ -21,17 +30,27 @@ PING hell (195.4.7.3): 56 data bytes
--- hell ping statistics ---
6029 packets transmitted, 6027 packets received, 0% packet loss
round-trip min/avg/max = 0.1/0.1/0.4 ms
-[root@moon 44]# cat /proc/interrupts | grep 44:
- 44: 0 1785 1785 1783 1783 1
-1 0 IO-APIC-level eth1
+[root@moon 44]# cat /proc/interrupts | grep 'CPU\|44:'
+ CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7
+ 44: 1068 1785 1785 1783 0 0 0 0 IO-APIC-level eth1
+
+As can be seen from the line above IRQ44 was delivered only to the first four
+processors (0-3).
+Now lets restrict that IRQ to CPU(4-7).
+
[root@moon 44]# echo f0 > smp_affinity
+[root@moon 44]# cat smp_affinity
+000000f0
[root@moon 44]# ping -f h
PING hell (195.4.7.3): 56 data bytes
..
--- hell ping statistics ---
2779 packets transmitted, 2777 packets received, 0% packet loss
round-trip min/avg/max = 0.1/0.5/585.4 ms
-[root@moon 44]# cat /proc/interrupts | grep 44:
- 44: 1068 1785 1785 1784 1784 1069 1070 1069 IO-APIC-level eth1
-[root@moon 44]#
+[root@moon 44]# cat /proc/interrupts | 'CPU\|44:'
+ CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7
+ 44: 1068 1785 1785 1783 1784 1069 1070 1069 IO-APIC-level eth1
+
+This time around IRQ44 was delivered only to the last four processors.
+i.e counters for the CPU0-3 did not change.
diff --git a/Documentation/accounting/taskstats-struct.txt b/Documentation/accounting/taskstats-struct.txt
index 8aa7529f825..cd784f46bf8 100644
--- a/Documentation/accounting/taskstats-struct.txt
+++ b/Documentation/accounting/taskstats-struct.txt
@@ -24,6 +24,8 @@ There are three different groups of fields in the struct taskstats:
4) Per-task and per-thread context switch count statistics
+5) Time accounting for SMT machines
+
Future extension should add fields to the end of the taskstats struct, and
should not change the relative position of each field within the struct.
@@ -164,4 +166,8 @@ struct taskstats {
__u64 nvcsw; /* Context voluntary switch counter */
__u64 nivcsw; /* Context involuntary switch counter */
+5) Time accounting for SMT machines
+ __u64 ac_utimescaled; /* utime scaled on frequency etc */
+ __u64 ac_stimescaled; /* stime scaled on frequency etc */
+ __u64 cpu_scaled_run_real_total; /* scaled cpu_run_real_total */
}
diff --git a/Documentation/auxdisplay/cfag12864b b/Documentation/auxdisplay/cfag12864b
index b714183d412..eb7be393a51 100644
--- a/Documentation/auxdisplay/cfag12864b
+++ b/Documentation/auxdisplay/cfag12864b
@@ -3,7 +3,7 @@
===================================
License: GPLv2
-Author & Maintainer: Miguel Ojeda Sandonis <maxextreme@gmail.com>
+Author & Maintainer: Miguel Ojeda Sandonis
Date: 2006-10-27
@@ -22,7 +22,7 @@ Date: 2006-10-27
1. DRIVER INFORMATION
---------------------
-This driver support one cfag12864b display at time.
+This driver supports a cfag12864b LCD.
---------------------
diff --git a/Documentation/auxdisplay/cfag12864b-example.c b/Documentation/auxdisplay/cfag12864b-example.c
index 7bfac354d4c..2caeea5e499 100644
--- a/Documentation/auxdisplay/cfag12864b-example.c
+++ b/Documentation/auxdisplay/cfag12864b-example.c
@@ -4,7 +4,7 @@
* Description: cfag12864b LCD userspace example program
* License: GPLv2
*
- * Author: Copyright (C) Miguel Ojeda Sandonis <maxextreme@gmail.com>
+ * Author: Copyright (C) Miguel Ojeda Sandonis
* Date: 2006-10-31
*
* This program is free software; you can redistribute it and/or modify
diff --git a/Documentation/auxdisplay/ks0108 b/Documentation/auxdisplay/ks0108
index 92b03b60c61..8ddda0c8cee 100644
--- a/Documentation/auxdisplay/ks0108
+++ b/Documentation/auxdisplay/ks0108
@@ -3,7 +3,7 @@
==========================================
License: GPLv2
-Author & Maintainer: Miguel Ojeda Sandonis <maxextreme@gmail.com>
+Author & Maintainer: Miguel Ojeda Sandonis
Date: 2006-10-27
@@ -21,7 +21,7 @@ Date: 2006-10-27
1. DRIVER INFORMATION
---------------------
-This driver support the ks0108 LCD controller.
+This driver supports the ks0108 LCD controller.
---------------------
diff --git a/Documentation/block/data-integrity.txt b/Documentation/block/data-integrity.txt
new file mode 100644
index 00000000000..e9dc8d86adc
--- /dev/null
+++ b/Documentation/block/data-integrity.txt
@@ -0,0 +1,327 @@
+----------------------------------------------------------------------
+1. INTRODUCTION
+
+Modern filesystems feature checksumming of data and metadata to
+protect against data corruption. However, the detection of the
+corruption is done at read time which could potentially be months
+after the data was written. At that point the original data that the
+application tried to write is most likely lost.
+
+The solution is to ensure that the disk is actually storing what the
+application meant it to. Recent additions to both the SCSI family
+protocols (SBC Data Integrity Field, SCC protection proposal) as well
+as SATA/T13 (External Path Protection) try to remedy this by adding
+support for appending integrity metadata to an I/O. The integrity
+metadata (or protection information in SCSI terminology) includes a
+checksum for each sector as well as an incrementing counter that
+ensures the individual sectors are written in the right order. And
+for some protection schemes also that the I/O is written to the right
+place on disk.
+
+Current storage controllers and devices implement various protective
+measures, for instance checksumming and scrubbing. But these
+technologies are working in their own isolated domains or at best
+between adjacent nodes in the I/O path. The interesting thing about
+DIF and the other integrity extensions is that the protection format
+is well defined and every node in the I/O path can verify the
+integrity of the I/O and reject it if corruption is detected. This
+allows not only corruption prevention but also isolation of the point
+of failure.
+
+----------------------------------------------------------------------
+2. THE DATA INTEGRITY EXTENSIONS
+
+As written, the protocol extensions only protect the path between
+controller and storage device. However, many controllers actually
+allow the operating system to interact with the integrity metadata
+(IMD). We have been working with several FC/SAS HBA vendors to enable
+the protection information to be transferred to and from their
+controllers.
+
+The SCSI Data Integrity Field works by appending 8 bytes of protection
+information to each sector. The data + integrity metadata is stored
+in 520 byte sectors on disk. Data + IMD are interleaved when
+transferred between the controller and target. The T13 proposal is
+similar.
+
+Because it is highly inconvenient for operating systems to deal with
+520 (and 4104) byte sectors, we approached several HBA vendors and
+encouraged them to allow separation of the data and integrity metadata
+scatter-gather lists.
+
+The controller will interleave the buffers on write and split them on
+read. This means that the Linux can DMA the data buffers to and from
+host memory without changes to the page cache.
+
+Also, the 16-bit CRC checksum mandated by both the SCSI and SATA specs
+is somewhat heavy to compute in software. Benchmarks found that
+calculating this checksum had a significant impact on system
+performance for a number of workloads. Some controllers allow a
+lighter-weight checksum to be used when interfacing with the operating
+system. Emulex, for instance, supports the TCP/IP checksum instead.
+The IP checksum received from the OS is converted to the 16-bit CRC
+when writing and vice versa. This allows the integrity metadata to be
+generated by Linux or the application at very low cost (comparable to
+software RAID5).
+
+The IP checksum is weaker than the CRC in terms of detecting bit
+errors. However, the strength is really in the separation of the data
+buffers and the integrity metadata. These two distinct buffers much
+match up for an I/O to complete.
+
+The separation of the data and integrity metadata buffers as well as
+the choice in checksums is referred to as the Data Integrity
+Extensions. As these extensions are outside the scope of the protocol
+bodies (T10, T13), Oracle and its partners are trying to standardize
+them within the Storage Networking Industry Association.
+
+----------------------------------------------------------------------
+3. KERNEL CHANGES
+
+The data integrity framework in Linux enables protection information
+to be pinned to I/Os and sent to/received from controllers that
+support it.
+
+The advantage to the integrity extensions in SCSI and SATA is that
+they enable us to protect the entire path from application to storage
+device. However, at the same time this is also the biggest
+disadvantage. It means that the protection information must be in a
+format that can be understood by the disk.
+
+Generally Linux/POSIX applications are agnostic to the intricacies of
+the storage devices they are accessing. The virtual filesystem switch
+and the block layer make things like hardware sector size and
+transport protocols completely transparent to the application.
+
+However, this level of detail is required when preparing the
+protection information to send to a disk. Consequently, the very
+concept of an end-to-end protection scheme is a layering violation.
+It is completely unreasonable for an application to be aware whether
+it is accessing a SCSI or SATA disk.
+
+The data integrity support implemented in Linux attempts to hide this
+from the application. As far as the application (and to some extent
+the kernel) is concerned, the integrity metadata is opaque information
+that's attached to the I/O.
+
+The current implementation allows the block layer to automatically
+generate the protection information for any I/O. Eventually the
+intent is to move the integrity metadata calculation to userspace for
+user data. Metadata and other I/O that originates within the kernel
+will still use the automatic generation interface.
+
+Some storage devices allow each hardware sector to be tagged with a
+16-bit value. The owner of this tag space is the owner of the block
+device. I.e. the filesystem in most cases. The filesystem can use
+this extra space to tag sectors as they see fit. Because the tag
+space is limited, the block interface allows tagging bigger chunks by
+way of interleaving. This way, 8*16 bits of information can be
+attached to a typical 4KB filesystem block.
+
+This also means that applications such as fsck and mkfs will need
+access to manipulate the tags from user space. A passthrough
+interface for this is being worked on.
+
+
+----------------------------------------------------------------------
+4. BLOCK LAYER IMPLEMENTATION DETAILS
+
+4.1 BIO
+
+The data integrity patches add a new field to struct bio when
+CONFIG_BLK_DEV_INTEGRITY is enabled. bio->bi_integrity is a pointer
+to a struct bip which contains the bio integrity payload. Essentially
+a bip is a trimmed down struct bio which holds a bio_vec containing
+the integrity metadata and the required housekeeping information (bvec
+pool, vector count, etc.)
+
+A kernel subsystem can enable data integrity protection on a bio by
+calling bio_integrity_alloc(bio). This will allocate and attach the
+bip to the bio.
+
+Individual pages containing integrity metadata can subsequently be
+attached using bio_integrity_add_page().
+
+bio_free() will automatically free the bip.
+
+
+4.2 BLOCK DEVICE
+
+Because the format of the protection data is tied to the physical
+disk, each block device has been extended with a block integrity
+profile (struct blk_integrity). This optional profile is registered
+with the block layer using blk_integrity_register().
+
+The profile contains callback functions for generating and verifying
+the protection data, as well as getting and setting application tags.
+The profile also contains a few constants to aid in completing,
+merging and splitting the integrity metadata.
+
+Layered block devices will need to pick a profile that's appropriate
+for all subdevices. blk_integrity_compare() can help with that. DM
+and MD linear, RAID0 and RAID1 are currently supported. RAID4/5/6
+will require extra work due to the application tag.
+
+
+----------------------------------------------------------------------
+5.0 BLOCK LAYER INTEGRITY API
+
+5.1 NORMAL FILESYSTEM
+
+ The normal filesystem is unaware that the underlying block device
+ is capable of sending/receiving integrity metadata. The IMD will
+ be automatically generated by the block layer at submit_bio() time
+ in case of a WRITE. A READ request will cause the I/O integrity
+ to be verified upon completion.
+
+ IMD generation and verification can be toggled using the
+
+ /sys/block/<bdev>/integrity/write_generate
+
+ and
+
+ /sys/block/<bdev>/integrity/read_verify
+
+ flags.
+
+
+5.2 INTEGRITY-AWARE FILESYSTEM
+
+ A filesystem that is integrity-aware can prepare I/Os with IMD
+ attached. It can also use the application tag space if this is
+ supported by the block device.
+
+
+ int bdev_integrity_enabled(block_device, int rw);
+
+ bdev_integrity_enabled() will return 1 if the block device
+ supports integrity metadata transfer for the data direction
+ specified in 'rw'.
+
+ bdev_integrity_enabled() honors the write_generate and
+ read_verify flags in sysfs and will respond accordingly.
+
+
+ int bio_integrity_prep(bio);
+
+ To generate IMD for WRITE and to set up buffers for READ, the
+ filesystem must call bio_integrity_prep(bio).
+
+ Prior to calling this function, the bio data direction and start
+ sector must be set, and the bio should have all data pages
+ added. It is up to the caller to ensure that the bio does not
+ change while I/O is in progress.
+
+ bio_integrity_prep() should only be called if
+ bio_integrity_enabled() returned 1.
+
+
+ int bio_integrity_tag_size(bio);
+
+ If the filesystem wants to use the application tag space it will
+ first have to find out how much storage space is available.
+ Because tag space is generally limited (usually 2 bytes per
+ sector regardless of sector size), the integrity framework
+ supports interleaving the information bet