diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-06-22 10:42:54 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-06-22 10:42:54 -0700 |
commit | 4e93d3e8859c834ee18dfd33051d24df8669d0c0 (patch) | |
tree | 13f5b39730857257b5040471618e9bcce30ed9cc /Documentation | |
parent | a0cd30fd26a398c0c6e50c6760610d4529f17a84 (diff) | |
parent | 0087e5ef577d0d6e664be7ab4be513b6a482e7ec (diff) |
Merge master.kernel.org:/pub/scm/linux/kernel/git/gregkh/i2c-2.6
Diffstat (limited to 'Documentation')
39 files changed, 3192 insertions, 69 deletions
diff --git a/Documentation/feature-removal-schedule.txt b/Documentation/feature-removal-schedule.txt index b9eb209318a..26414bc87c6 100644 --- a/Documentation/feature-removal-schedule.txt +++ b/Documentation/feature-removal-schedule.txt @@ -83,3 +83,13 @@ Why: Deprecated in favour of the new ioctl-based rawiso interface, which is more efficient. You should really be using libraw1394 for raw1394 access anyway. Who: Jody McIntyre <scjody@steamballoon.com> + +--------------------------- + +What: i2c sysfs name change: in1_ref, vid deprecated in favour of cpu0_vid +When: November 2005 +Files: drivers/i2c/chips/adm1025.c, drivers/i2c/chips/adm1026.c +Why: Match the other drivers' name for the same function, duplicate names + will be available until removal of old names. +Who: Grant Coady <gcoady@gmail.com> + diff --git a/Documentation/i2c/busses/i2c-sis69x b/Documentation/i2c/busses/i2c-sis69x index 5be48769f65..b88953dfd58 100644 --- a/Documentation/i2c/busses/i2c-sis69x +++ b/Documentation/i2c/busses/i2c-sis69x @@ -42,7 +42,7 @@ I suspect that this driver could be made to work for the following SiS chipsets as well: 635, and 635T. If anyone owns a board with those chips AND is willing to risk crashing & burning an otherwise well-behaved kernel in the name of progress... please contact me at <mhoffman@lightlink.com> or -via the project's mailing list: <sensors@stimpy.netroedge.com>. Please +via the project's mailing list: <lm-sensors@lm-sensors.org>. Please send bug reports and/or success stories as well. diff --git a/Documentation/i2c/chips/adm1021 b/Documentation/i2c/chips/adm1021 new file mode 100644 index 00000000000..03d02bfb3df --- /dev/null +++ b/Documentation/i2c/chips/adm1021 @@ -0,0 +1,111 @@ +Kernel driver adm1021 +===================== + +Supported chips: + * Analog Devices ADM1021 + Prefix: 'adm1021' + Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e + Datasheet: Publicly available at the Analog Devices website + * Analog Devices ADM1021A/ADM1023 + Prefix: 'adm1023' + Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e + Datasheet: Publicly available at the Analog Devices website + * Genesys Logic GL523SM + Prefix: 'gl523sm' + Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e + Datasheet: + * Intel Xeon Processor + Prefix: - any other - may require 'force_adm1021' parameter + Addresses scanned: none + Datasheet: Publicly available at Intel website + * Maxim MAX1617 + Prefix: 'max1617' + Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e + Datasheet: Publicly available at the Maxim website + * Maxim MAX1617A + Prefix: 'max1617a' + Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e + Datasheet: Publicly available at the Maxim website + * National Semiconductor LM84 + Prefix: 'lm84' + Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e + Datasheet: Publicly available at the National Semiconductor website + * Philips NE1617 + Prefix: 'max1617' (probably detected as a max1617) + Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e + Datasheet: Publicly available at the Philips website + * Philips NE1617A + Prefix: 'max1617' (probably detected as a max1617) + Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e + Datasheet: Publicly available at the Philips website + * TI THMC10 + Prefix: 'thmc10' + Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e + Datasheet: Publicly available at the TI website + * Onsemi MC1066 + Prefix: 'mc1066' + Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e + Datasheet: Publicly available at the Onsemi website + + +Authors: + Frodo Looijaard <frodol@dds.nl>, + Philip Edelbrock <phil@netroedge.com> + +Module Parameters +----------------- + +* read_only: int + Don't set any values, read only mode + + +Description +----------- + +The chips supported by this driver are very similar. The Maxim MAX1617 is +the oldest; it has the problem that it is not very well detectable. The +MAX1617A solves that. The ADM1021 is a straight clone of the MAX1617A. +Ditto for the THMC10. From here on, we will refer to all these chips as +ADM1021-clones. + +The ADM1021 and MAX1617A reports a die code, which is a sort of revision +code. This can help us pinpoint problems; it is not very useful +otherwise. + +ADM1021-clones implement two temperature sensors. One of them is internal, +and measures the temperature of the chip itself; the other is external and +is realised in the form of a transistor-like device. A special alarm +indicates whether the remote sensor is connected. + +Each sensor has its own low and high limits. When they are crossed, the +corresponding alarm is set and remains on as long as the temperature stays +out of range. Temperatures are measured in degrees Celsius. Measurements +are possible between -65 and +127 degrees, with a resolution of one degree. + +If an alarm triggers, it will remain triggered until the hardware register +is read at least once. This means that the cause for the alarm may already +have disappeared! + +This driver only updates its values each 1.5 seconds; reading it more often +will do no harm, but will return 'old' values. It is possible to make +ADM1021-clones do faster measurements, but there is really no good reason +for that. + +Xeon support +------------ + +Some Xeon processors have real max1617, adm1021, or compatible chips +within them, with two temperature sensors. + +Other Xeons have chips with only one sensor. + +If you have a Xeon, and the adm1021 module loads, and both temperatures +appear valid, then things are good. + +If the adm1021 module doesn't load, you should try this: + modprobe adm1021 force_adm1021=BUS,ADDRESS + ADDRESS can only be 0x18, 0x1a, 0x29, 0x2b, 0x4c, or 0x4e. + +If you have dual Xeons you may have appear to have two separate +adm1021-compatible chips, or two single-temperature sensors, at distinct +addresses. diff --git a/Documentation/i2c/chips/adm1025 b/Documentation/i2c/chips/adm1025 new file mode 100644 index 00000000000..39d2b781b5d --- /dev/null +++ b/Documentation/i2c/chips/adm1025 @@ -0,0 +1,51 @@ +Kernel driver adm1025 +===================== + +Supported chips: + * Analog Devices ADM1025, ADM1025A + Prefix: 'adm1025' + Addresses scanned: I2C 0x2c - 0x2e + Datasheet: Publicly available at the Analog Devices website + * Philips NE1619 + Prefix: 'ne1619' + Addresses scanned: I2C 0x2c - 0x2d + Datasheet: Publicly available at the Philips website + +The NE1619 presents some differences with the original ADM1025: + * Only two possible addresses (0x2c - 0x2d). + * No temperature offset register, but we don't use it anyway. + * No INT mode for pin 16. We don't play with it anyway. + +Authors: + Chen-Yuan Wu <gwu@esoft.com>, + Jean Delvare <khali@linux-fr.org> + +Description +----------- + +(This is from Analog Devices.) The ADM1025 is a complete system hardware +monitor for microprocessor-based systems, providing measurement and limit +comparison of various system parameters. Five voltage measurement inputs +are provided, for monitoring +2.5V, +3.3V, +5V and +12V power supplies and +the processor core voltage. The ADM1025 can monitor a sixth power-supply +voltage by measuring its own VCC. One input (two pins) is dedicated to a +remote temperature-sensing diode and an on-chip temperature sensor allows +ambient temperature to be monitored. + +One specificity of this chip is that the pin 11 can be hardwired in two +different manners. It can act as the +12V power-supply voltage analog +input, or as the a fifth digital entry for the VID reading (bit 4). It's +kind of strange since both are useful, and the reason for designing the +chip that way is obscure at least to me. The bit 5 of the configuration +register can be used to define how the chip is hardwired. Please note that +it is not a choice you have to make as the user. The choice was already +made by your motherboard's maker. If the configuration bit isn't set +properly, you'll have a wrong +12V reading or a wrong VID reading. The way +the driver handles that is to preserve this bit through the initialization +process, assuming that the BIOS set it up properly beforehand. If it turns +out not to be true in some cases, we'll provide a module parameter to force +modes. + +This driver also supports the ADM1025A, which differs from the ADM1025 +only in that it has "open-drain VID inputs while the ADM1025 has on-chip +100k pull-ups on the VID inputs". It doesn't make any difference for us. diff --git a/Documentation/i2c/chips/adm1026 b/Documentation/i2c/chips/adm1026 new file mode 100644 index 00000000000..473c689d792 --- /dev/null +++ b/Documentation/i2c/chips/adm1026 @@ -0,0 +1,93 @@ +Kernel driver adm1026 +===================== + +Supported chips: + * Analog Devices ADM1026 + Prefix: 'adm1026' + Addresses scanned: I2C 0x2c, 0x2d, 0x2e + Datasheet: Publicly available at the Analog Devices website + http://www.analog.com/en/prod/0,,766_825_ADM1026,00.html + +Authors: + Philip Pokorny <ppokorny@penguincomputing.com> for Penguin Computing + Justin Thiessen <jthiessen@penguincomputing.com> + +Module Parameters +----------------- + +* gpio_input: int array (min = 1, max = 17) + List of GPIO pins (0-16) to program as inputs +* gpio_output: int array (min = 1, max = 17) + List of GPIO pins (0-16) to program as outputs +* gpio_inverted: int array (min = 1, max = 17) + List of GPIO pins (0-16) to program as inverted +* gpio_normal: int array (min = 1, max = 17) + List of GPIO pins (0-16) to program as normal/non-inverted +* gpio_fan: int array (min = 1, max = 8) + List of GPIO pins (0-7) to program as fan tachs + + +Description +----------- + +This driver implements support for the Analog Devices ADM1026. Analog +Devices calls it a "complete thermal system management controller." + +The ADM1026 implements three (3) temperature sensors, 17 voltage sensors, +16 general purpose digital I/O lines, eight (8) fan speed sensors (8-bit), +an analog output and a PWM output along with limit, alarm and mask bits for +all of the above. There is even 8k bytes of EEPROM memory on chip. + +Temperatures are measured in degrees Celsius. There are two external +sensor inputs and one internal sensor. Each sensor has a high and low +limit. If the limit is exceeded, an interrupt (#SMBALERT) can be +generated. The interrupts can be masked. In addition, there are over-temp +limits for each sensor. If this limit is exceeded, the #THERM output will +be asserted. The current temperature and limits have a resolution of 1 +degree. + +Fan rotation speeds are reported in RPM (rotations per minute) but measured +in counts of a 22.5kHz internal clock. Each fan has a high limit which +corresponds to a minimum fan speed. If the limit is exceeded, an interrupt +can be generated. Each fan can be programmed to divide the reference clock +by 1, 2, 4 or 8. Not all RPM values can accurately be represented, so some +rounding is done. With a divider of 8, the slowest measurable speed of a +two pulse per revolution fan is 661 RPM. + +There are 17 voltage sensors. An alarm is triggered if the voltage has +crossed a programmable minimum or maximum limit. Note that minimum in this +case always means 'closest to zero'; this is important for negative voltage +measurements. Several inputs have integrated attenuators so they can measure +higher voltages directly. 3.3V, 5V, 12V, -12V and battery voltage all have +dedicated inputs. There are several inputs scaled to 0-3V full-scale range +for SCSI terminator power. The remaining inputs are not scaled and have +a 0-2.5V full-scale range. A 2.5V or 1.82V reference voltage is provided +for negative voltage measurements. + +If an alarm triggers, it will remain triggered until the hardware register +is read at least once. This means that the cause for the alarm may already +have disappeared! Note that in the current implementation, all hardware +registers are read whenever any data is read (unless it is less than 2.0 +seconds since the last update). This means that you can easily miss +once-only alarms. + +The ADM1026 measures continuously. Analog inputs are measured about 4 +times a second. Fan speed measurement time depends on fan speed and +divisor. It can take as long as 1.5 seconds to measure all fan speeds. + +The ADM1026 has the ability to automatically control fan speed based on the +temperature sensor inputs. Both the PWM output and the DAC output can be +used to control fan speed. Usually only one of these two outputs will be +used. Write the minimum PWM or DAC value to the appropriate control +register. Then set the low temperature limit in the tmin values for each +temperature sensor. The range of control is fixed at 20 °C, and the +largest difference between current and tmin of the temperature sensors sets +the control output. See the datasheet for several example circuits for +controlling fan speed with the PWM and DAC outputs. The fan speed sensors +do not have PWM compensation, so it is probably best to control the fan +voltage from the power lead rather than on the ground lead. + +The datasheet shows an example application with VID signals attached to +GPIO lines. Unfortunately, the chip may not be connected to the VID lines +in this way. The driver assumes that the chips *is* connected this way to +get a VID voltage. diff --git a/Documentation/i2c/chips/adm1031 b/Documentation/i2c/chips/adm1031 new file mode 100644 index 00000000000..130a38382b9 --- /dev/null +++ b/Documentation/i2c/chips/adm1031 @@ -0,0 +1,35 @@ +Kernel driver adm1031 +===================== + +Supported chips: + * Analog Devices ADM1030 + Prefix: 'adm1030' + Addresses scanned: I2C 0x2c to 0x2e + Datasheet: Publicly available at the Analog Devices website + http://products.analog.com/products/info.asp?product=ADM1030 + + * Analog Devices ADM1031 + Prefix: 'adm1031' + Addresses scanned: I2C 0x2c to 0x2e + Datasheet: Publicly available at the Analog Devices website + http://products.analog.com/products/info.asp?product=ADM1031 + +Authors: + Alexandre d'Alton <alex@alexdalton.org> + Jean Delvare <khali@linux-fr.org> + +Description +----------- + +The ADM1030 and ADM1031 are digital temperature sensors and fan controllers. +They sense their own temperature as well as the temperature of up to one +(ADM1030) or two (ADM1031) external diodes. + +All temperature values are given in degrees Celsius. Resolution is 0.5 +degree for the local temperature, 0.125 degree for the remote temperatures. + +Each temperature channel has its own high and low limits, plus a critical +limit. + +The ADM1030 monitors a single fan speed, while the ADM1031 monitors up to +two. Each fan channel has its own low speed limit. diff --git a/Documentation/i2c/chips/adm9240 b/Documentation/i2c/chips/adm9240 new file mode 100644 index 00000000000..35f618f3289 --- /dev/null +++ b/Documentation/i2c/chips/adm9240 @@ -0,0 +1,177 @@ +Kernel driver adm9240 +===================== + +Supported chips: + * Analog Devices ADM9240 + Prefix: 'adm9240' + Addresses scanned: I2C 0x2c - 0x2f + Datasheet: Publicly available at the Analog Devices website + http://www.analog.com/UploadedFiles/Data_Sheets/79857778ADM9240_0.pdf + + * Dallas Semiconductor DS1780 + Prefix: 'ds1780' + Addresses scanned: I2C 0x2c - 0x2f + Datasheet: Publicly available at the Dallas Semiconductor (Maxim) website + http://pdfserv.maxim-ic.com/en/ds/DS1780.pdf + + * National Semiconductor LM81 + Prefix: 'lm81' + Addresses scanned: I2C 0x2c - 0x2f + Datasheet: Publicly available at the National Semiconductor website + http://www.national.com/ds.cgi/LM/LM81.pdf + +Authors: + Frodo Looijaard <frodol@dds.nl>, + Philip Edelbrock <phil@netroedge.com>, + Michiel Rook <michiel@grendelproject.nl>, + Grant Coady <gcoady@gmail.com> with guidance + from Jean Delvare <khali@linux-fr.org> + +Interface +--------- +The I2C addresses listed above assume BIOS has not changed the +chip MSB 5-bit address. Each chip reports a unique manufacturer +identification code as well as the chip revision/stepping level. + +Description +----------- +[From ADM9240] The ADM9240 is a complete system hardware monitor for +microprocessor-based systems, providing measurement and limit comparison +of up to four power supplies and two processor core voltages, plus +temperature, two fan speeds and chassis intrusion. Measured values can +be read out via an I2C-compatible serial System Management Bus, and values +for limit comparisons can be programmed in over the same serial bus. The +high speed successive approximation ADC allows frequent sampling of all +analog channels to ensure a fast interrupt response to any out-of-limit +measurement. + +The ADM9240, DS1780 and LM81 are register compatible, the following +details are common to the three chips. Chip differences are described +after this section. + + +Measurements +------------ +The measurement cycle + +The adm9240 driver will take a measurement reading no faster than once +each two seconds. User-space may read sysfs interface faster than the +measurement update rate and will receive cached data from the most +recent measurement. + +ADM9240 has a very fast 320us temperature and voltage measurement cycle +with independent fan speed measurement cycles counting alternating rising +edges of the fan tacho inputs. + +DS1780 measurement cycle is about once per second including fan speed. + +LM81 measurement cycle is about once per 400ms including fan speed. +The LM81 12-bit extended temperature measurement mode is not supported. + +Temperature +----------- +On chip temperature is reported as degrees Celsius as 9-bit signed data +with resolution of 0.5 degrees Celsius. High and low temperature limits +are 8-bit signed data with resolution of one degree Celsius. + +Temperature alarm is asserted once the temperature exceeds the high limit, +and is cleared when the temperature falls below the temp1_max_hyst value. + +Fan Speed +--------- +Two fan tacho inputs are provided, the ADM9240 gates an internal 22.5kHz +clock via a divider to an 8-bit counter. Fan speed (rpm) is calculated by: + +rpm = (22500 * 60) / (count * divider) + +Automatic fan clock divider + + * User sets 0 to fan_min limit + - low speed alarm is disabled + - fan clock divider not changed + - auto fan clock adjuster enabled for valid fan speed reading + + * User sets fan_min limit too low + - low speed alarm is enabled + - fan clock divider set to max + - fan_min set to register value 254 which corresponds + to 664 rpm on adm9240 + - low speed alarm will be asserted if fan speed is + less than minimum measurable speed + - auto fan clock adjuster disabled + + * User sets reasonable fan speed + - low speed alarm is enabled + - fan clock divider set to suit fan_min + - auto fan clock adjuster enabled: adjusts fan_min + + * User sets unreasonably high low fan speed limit + - resolution of the low speed limit may be reduced + - alarm will be asserted + - auto fan clock adjuster enabled: adjusts fan_min + + * fan speed may be displayed as zero until the auto fan clock divider + adjuster brings fan speed clock divider back into chip measurement + range, this will occur within a few measurement cycles. + +Analog Output +------------- +An analog output provides a 0 to 1.25 volt signal intended for an external +fan speed amplifier circuit. The analog output is set to maximum value on +power up or reset. This doesn't do much on the test Intel SE440BX-2. + +Voltage Monitor + +Voltage (IN) measurement is internally scaled: + + nr label nominal maximum resolution + mV mV mV + 0 +2.5V 2500 3320 13.0 + 1 Vccp1 2700 3600 14.1 + 2 +3.3V 3300 4380 17.2 + 3 +5V 5000 6640 26.0 + 4 +12V 12000 15940 62.5 + 5 Vccp2 2700 3600 14.1 + +The reading is an unsigned 8-bit value, nominal voltage measurement is +represented by a reading of 192, being 3/4 of the measurement range. + +An alarm is asserted for any voltage going below or above the set limits. + +The driver reports and accepts voltage limits scaled to the above table. + +VID Monitor +----------- +The chip has five inputs to read the 5-bit VID and reports the mV value +based on detected CPU type. + +Chassis Intrusion +----------------- +An alarm is asserted when the CI pin goes active high. The ADM9240 +Datasheet has an example of an external temperature sensor driving +this pin. On an Intel SE440BX-2 the Chassis Intrusion header is +connected to a normally open switch. + +The ADM9240 provides an internal open drain on this line, and may output +a 20 ms active low pulse to reset an external Chassis Intrusion latch. + +Clear the CI latch by writing value 1 to the sysfs chassis_clear file. + +Alarm flags reported as 16-bit word + + bit label comment + --- ------------- -------------------------- + 0 +2.5 V_Error high or low limit exceeded + 1 VCCP_Error high or low limit exceeded + 2 +3.3 V_Error high or low limit exceeded + 3 +5 V_Error high or low limit exceeded + 4 Temp_Error temperature error + 6 FAN1_Error fan low limit exceeded + 7 FAN2_Error fan low limit exceeded + 8 +12 V_Error high or low limit exceeded + 9 VCCP2_Error high or low limit exceeded + 12 Chassis_Error CI pin went high + +Remaining bits are reserved and thus undefined. It is important to note +that alarm bits may be cleared on read, user-space may latch alarms and +provide the end-user with a method to clear alarm memory. diff --git a/Documentation/i2c/chips/asb100 b/Documentation/i2c/chips/asb100 new file mode 100644 index 00000000000..ab7365e139b --- /dev/null +++ b/Documentation/i2c/chips/asb100 @@ -0,0 +1,72 @@ +Kernel driver asb100 +==================== + +Supported Chips: + * Asus ASB100 and ASB100-A "Bach" + Prefix: 'asb100' + Addresses scanned: I2C 0x2d + Datasheet: none released + +Author: Mark M. Hoffman <mhoffman@lightlink.com> + +Description +----------- + +This driver implements support for the Asus ASB100 and ASB100-A "Bach". +These are custom ASICs available only on Asus mainboards. Asus refuses to +supply a datasheet for these chips. Thanks go to many people who helped +investigate their hardware, including: + +Vitaly V. Bursov +Alexander van Kaam (author of MBM for Windows) +Bertrik Sikken + +The ASB100 implements seven voltage sensors, three fan rotation speed +sensors, four temperature sensors, VID lines and alarms. In addition to +these, the ASB100-A also implements a single PWM controller for fans 2 and +3 (i.e. one setting controls both.) If you have a plain ASB100, the PWM +controller will simply not work (or maybe it will for you... it doesn't for +me). + +Temperatures are measured and reported in degrees Celsius. + +Fan speeds are reported in RPM (rotations per minute). An alarm is +triggered if the rotation speed has dropped below a programmable limit. + +Voltage sensors (also known as IN sensors) report values in volts. + +The VID lines encode the core voltage value: the voltage level your +processor should work with. This is hardcoded by the mainboard and/or +processor itself. It is a value in volts. + +Alarms: (TODO question marks indicate may or may not work) + +0x0001 => in0 (?) +0x0002 => in1 (?) +0x0004 => in2 +0x0008 => in3 +0x0010 => temp1 (1) +0x0020 => temp2 +0x0040 => fan1 +0x0080 => fan2 +0x0100 => in4 +0x0200 => in5 (?) (2) +0x0400 => in6 (?) (2) +0x0800 => fan3 +0x1000 => chassis switch +0x2000 => temp3 + +Alarm Notes: + +(1) This alarm will only trigger if the hysteresis value is 127C. +I.e. it behaves the same as w83781d. + +(2) The min and max registers for these values appear to +be read-only or otherwise stuck at 0x00. + +TODO: +* Experiment with fan divisors > 8. +* Experiment with temp. sensor types. +* Are there really 13 voltage inputs? Probably not... +* Cleanups, no doubt... + diff --git a/Documentation/i2c/chips/ds1621 b/Documentation/i2c/chips/ds1621 new file mode 100644 index 00000000000..1fee6f1e6bc --- /dev/null +++ b/Documentation/i2c/chips/ds1621 @@ -0,0 +1,108 @@ +Kernel driver ds1621 +==================== + +Supported chips: + * Dallas Semiconductor DS1621 + Prefix: 'ds1621' + Addresses scanned: I2C 0x48 - 0x4f + Datasheet: Publicly available at the Dallas Semiconductor website + http://www.dalsemi.com/ + * Dallas Semiconductor DS1625 + Prefix: 'ds1621' + Addresses scanned: I2C 0x48 - 0x4f + Datasheet: Publicly available at the Dallas Semiconductor website + http://www.dalsemi.com/ + +Authors: + Christian W. Zuckschwerdt <zany@triq.net> + valuable contributions by Jan M. Sendler <sendler@sendler.de> + ported to 2.6 by Aurelien Jarno <aurelien@aurel32.net> + with the help of Jean Delvare <khali@linux-fr.org> + +Module Parameters +------------------ + +* polarity int + Output's polarity: 0 = active high, 1 = active low + +Description +----------- + +The DS1621 is a (one instance) digital thermometer and thermostat. It has +both high and low temperature limits which can be user defined (i.e. +programmed into non-volatile on-chip registers). Temperature range is -55 +degree Celsius to +125 in 0.5 increments. You may convert this into a +Fahrenheit range of -67 to +257 degrees with 0.9 steps. If polarity +parameter is not provided, original value is used. + +As for the thermostat, behavior can also be programmed using the polarity +toggle. On the one hand ("heater"), the thermostat output of the chip, +Tout, will trigger when the low limit temperature is met or underrun and +stays high until the high limit is met or exceeded. On the other hand +("cooler"), vice versa. That way "heater" equals "active low", whereas +"conditioner" equals "active high". Please note that the DS1621 data sheet +is somewhat misleading in this point since setting the polarity bit does +not simply invert Tout. + +A second thing is that, during extensive testing, Tout showed a tolerance +of up to +/- 0.5 degrees even when compared against precise temperature +readings. Be sure to have a high vs. low temperature limit gap of al least +1.0 degree Celsius to avoid Tout "bouncing", though! + |