aboutsummaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
authorPaul Mackerras <paulus@samba.org>2006-03-29 13:24:50 +1100
committerPaul Mackerras <paulus@samba.org>2006-03-29 13:24:50 +1100
commitbac30d1a78d0f11c613968fc8b351a91ed465386 (patch)
treee52f3c876522a2f6047a6ec1c27df2e8a79486b8 /Documentation
parente8222502ee6157e2713da9e0792c21f4ad458d50 (diff)
parentca9ba4471c1203bb6e759b76e83167fec54fe590 (diff)
Merge ../linux-2.6
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/DMA-mapping.txt2
-rw-r--r--Documentation/RCU/whatisRCU.txt2
-rw-r--r--Documentation/arm/SA1100/Assabet2
-rw-r--r--Documentation/arm/SA1100/LART2
-rw-r--r--Documentation/block/biodoc.txt14
-rw-r--r--Documentation/cpu-hotplug.txt4
-rw-r--r--Documentation/cputopology.txt4
-rw-r--r--Documentation/filesystems/00-INDEX54
-rw-r--r--Documentation/ioctl-number.txt2
-rw-r--r--Documentation/m68k/README.buddha2
-rw-r--r--Documentation/networking/ifenslave.c2
-rw-r--r--Documentation/pnp.txt3
-rw-r--r--Documentation/robust-futex-ABI.txt182
-rw-r--r--Documentation/robust-futexes.txt218
-rw-r--r--Documentation/rpc-cache.txt121
15 files changed, 549 insertions, 65 deletions
diff --git a/Documentation/DMA-mapping.txt b/Documentation/DMA-mapping.txt
index 684557474c1..ee4bb73683c 100644
--- a/Documentation/DMA-mapping.txt
+++ b/Documentation/DMA-mapping.txt
@@ -199,6 +199,8 @@ address during PCI bus mastering you might do something like:
"mydev: 24-bit DMA addressing not available.\n");
goto ignore_this_device;
}
+[Better use DMA_24BIT_MASK instead of 0x00ffffff.
+See linux/include/dma-mapping.h for reference.]
When pci_set_dma_mask() is successful, and returns zero, the PCI layer
saves away this mask you have provided. The PCI layer will use this
diff --git a/Documentation/RCU/whatisRCU.txt b/Documentation/RCU/whatisRCU.txt
index b4ea51ad361..07cb93b82ba 100644
--- a/Documentation/RCU/whatisRCU.txt
+++ b/Documentation/RCU/whatisRCU.txt
@@ -605,7 +605,7 @@ are the same as those shown in the preceding section, so they are omitted.
{
int cpu;
- for_each_cpu(cpu)
+ for_each_possible_cpu(cpu)
run_on(cpu);
}
diff --git a/Documentation/arm/SA1100/Assabet b/Documentation/arm/SA1100/Assabet
index cbbe5587c78..78bc1c1b04e 100644
--- a/Documentation/arm/SA1100/Assabet
+++ b/Documentation/arm/SA1100/Assabet
@@ -26,7 +26,7 @@ Installing a bootloader
A couple of bootloaders able to boot Linux on Assabet are available:
-BLOB (http://www.lart.tudelft.nl/lartware/blob/)
+BLOB (http://www.lartmaker.nl/lartware/blob/)
BLOB is a bootloader used within the LART project. Some contributed
patches were merged into BLOB to add support for Assabet.
diff --git a/Documentation/arm/SA1100/LART b/Documentation/arm/SA1100/LART
index 2f73f513e16..6d412b68559 100644
--- a/Documentation/arm/SA1100/LART
+++ b/Documentation/arm/SA1100/LART
@@ -11,4 +11,4 @@ is under development, with plenty of others in different stages of
planning.
The hardware designs for this board have been released under an open license;
-see the LART page at http://www.lart.tudelft.nl/ for more information.
+see the LART page at http://www.lartmaker.nl/ for more information.
diff --git a/Documentation/block/biodoc.txt b/Documentation/block/biodoc.txt
index 8e63831971d..f989a9e839b 100644
--- a/Documentation/block/biodoc.txt
+++ b/Documentation/block/biodoc.txt
@@ -132,8 +132,18 @@ Some new queue property settings:
limit. No highmem default.
blk_queue_max_sectors(q, max_sectors)
- Maximum size request you can handle in units of 512 byte
- sectors. 255 default.
+ Sets two variables that limit the size of the request.
+
+ - The request queue's max_sectors, which is a soft size in
+ in units of 512 byte sectors, and could be dynamically varied
+ by the core kernel.
+
+ - The request queue's max_hw_sectors, which is a hard limit
+ and reflects the maximum size request a driver can handle
+ in units of 512 byte sectors.
+
+ The default for both max_sectors and max_hw_sectors is
+ 255. The upper limit of max_sectors is 1024.
blk_queue_max_phys_segments(q, max_segments)
Maximum physical segments you can handle in a request. 128
diff --git a/Documentation/cpu-hotplug.txt b/Documentation/cpu-hotplug.txt
index 57a09f99ecb..1bcf69996c9 100644
--- a/Documentation/cpu-hotplug.txt
+++ b/Documentation/cpu-hotplug.txt
@@ -97,13 +97,13 @@ at which time hotplug is disabled.
You really dont need to manipulate any of the system cpu maps. They should
be read-only for most use. When setting up per-cpu resources almost always use
-cpu_possible_map/for_each_cpu() to iterate.
+cpu_possible_map/for_each_possible_cpu() to iterate.
Never use anything other than cpumask_t to represent bitmap of CPUs.
#include <linux/cpumask.h>
-for_each_cpu - Iterate over cpu_possible_map
+for_each_possible_cpu - Iterate over cpu_possible_map
for_each_online_cpu - Iterate over cpu_online_map
for_each_present_cpu - Iterate over cpu_present_map
for_each_cpu_mask(x,mask) - Iterate over some random collection of cpu mask.
diff --git a/Documentation/cputopology.txt b/Documentation/cputopology.txt
index ff280e2e161..2b28e9ec4e3 100644
--- a/Documentation/cputopology.txt
+++ b/Documentation/cputopology.txt
@@ -1,5 +1,5 @@
-Export cpu topology info by sysfs. Items (attributes) are similar
+Export cpu topology info via sysfs. Items (attributes) are similar
to /proc/cpuinfo.
1) /sys/devices/system/cpu/cpuX/topology/physical_package_id:
@@ -12,7 +12,7 @@ represent the thread siblings to cpu X in the same core;
represent the thread siblings to cpu X in the same physical package;
To implement it in an architecture-neutral way, a new source file,
-driver/base/topology.c, is to export the 5 attributes.
+drivers/base/topology.c, is to export the 4 attributes.
If one architecture wants to support this feature, it just needs to
implement 4 defines, typically in file include/asm-XXX/topology.h.
diff --git a/Documentation/filesystems/00-INDEX b/Documentation/filesystems/00-INDEX
index 74052d22d86..66fdc0744fe 100644
--- a/Documentation/filesystems/00-INDEX
+++ b/Documentation/filesystems/00-INDEX
@@ -1,27 +1,47 @@
00-INDEX
- this file (info on some of the filesystems supported by linux).
+Exporting
+ - explanation of how to make filesystems exportable.
Locking
- info on locking rules as they pertain to Linux VFS.
adfs.txt
- info and mount options for the Acorn Advanced Disc Filing System.
+afs.txt
+ - info and examples for the distributed AFS (Andrew File System) fs.
affs.txt
- info and mount options for the Amiga Fast File System.
+automount-support.txt
+ - information about filesystem automount support.
+befs.txt
+ - information about the BeOS filesystem for Linux.
bfs.txt
- info for the SCO UnixWare Boot Filesystem (BFS).
cifs.txt
- - description of the CIFS filesystem
+ - description of the CIFS filesystem.
coda.txt
- description of the CODA filesystem.
configfs/
- directory containing configfs documentation and example code.
cramfs.txt
- - info on the cram filesystem for small storage (ROMs etc)
+ - info on the cram filesystem for small storage (ROMs etc).
+dentry-locking.txt
+ - info on the RCU-based dcache locking model.
devfs/
- directory containing devfs documentation.
+directory-locking
+ - info about the locking scheme used for directory operations.
dlmfs.txt
- info on the userspace interface to the OCFS2 DLM.
ext2.txt
- info, mount options and specifications for the Ext2 filesystem.
+ext3.txt
+ - info, mount options and specifications for the Ext3 filesystem.
+files.txt
+ - info on file management in the Linux kernel.
+fuse.txt
+ - info on the Filesystem in User SpacE including mount options.
+hfs.txt
+ - info on the Macintosh HFS Filesystem for Linux.
hpfs.txt
- info and mount options for the OS/2 HPFS.
isofs.txt
@@ -32,23 +52,43 @@ ncpfs.txt
- info on Novell Netware(tm) filesystem using NCP protocol.
ntfs.txt
- info and mount options for the NTFS filesystem (Windows NT).
-proc.txt
- - info on Linux's /proc filesystem.
ocfs2.txt
- info and mount options for the OCFS2 clustered filesystem.
+porting
+ - various information on filesystem porting.
+proc.txt
+ - info on Linux's /proc filesystem.
+ramfs-rootfs-initramfs.txt
+ - info on the 'in memory' filesystems ramfs, rootfs and initramfs.
+reiser4.txt
+ - info on the Reiser4 filesystem based on dancing tree algorithms.
+relayfs.txt
+ - info on relayfs, for efficient streaming from kernel to user space.
romfs.txt
- - Description of the ROMFS filesystem.
+ - description of the ROMFS filesystem.
smbfs.txt
- - info on using filesystems with the SMB protocol (Windows 3.11 and NT)
+ - info on using filesystems with the SMB protocol (Win 3.11 and NT).
+spufs.txt
+ - info and mount options for the SPU filesystem used on Cell.
+sysfs-pci.txt
+ - info on accessing PCI device resources through sysfs.
+sysfs.txt
+ - info on sysfs, a ram-based filesystem for exporting kernel objects.
sysv-fs.txt
- info on the SystemV/V7/Xenix/Coherent filesystem.
+tmpfs.txt
+ - info on tmpfs, a filesystem that holds all files in virtual memory.
udf.txt
- info and mount options for the UDF filesystem.
ufs.txt
- info on the ufs filesystem.
+v9fs.txt
+ - v9fs is a Unix implementation of the Plan 9 9p remote fs protocol.
vfat.txt
- info on using the VFAT filesystem used in Windows NT and Windows 95
vfs.txt
- - Overview of the Virtual File System
+ - overview of the Virtual File System
xfs.txt
- info and mount options for the XFS filesystem.
+xip.txt
+ - info on execute-in-place for file mappings.
diff --git a/Documentation/ioctl-number.txt b/Documentation/ioctl-number.txt
index aa7ba00ec08..171a44ebd93 100644
--- a/Documentation/ioctl-number.txt
+++ b/Documentation/ioctl-number.txt
@@ -78,8 +78,6 @@ Code Seq# Include File Comments
'#' 00-3F IEEE 1394 Subsystem Block for the entire subsystem
'1' 00-1F <linux/timepps.h> PPS kit from Ulrich Windl
<ftp://ftp.de.kernel.org/pub/linux/daemons/ntp/PPS/>
-'6' 00-10 <asm-i386/processor.h> Intel IA32 microcode update driver
- <mailto:tigran@veritas.com>
'8' all SNP8023 advanced NIC card
<mailto:mcr@solidum.com>
'A' 00-1F linux/apm_bios.h
diff --git a/Documentation/m68k/README.buddha b/Documentation/m68k/README.buddha
index bf802ffc98a..ef484a719bb 100644
--- a/Documentation/m68k/README.buddha
+++ b/Documentation/m68k/README.buddha
@@ -29,7 +29,7 @@ address is written to $4a, then the whole Byte is written to
$48, while it doesn't matter how often you're writing to $4a
as long as $48 is not touched. After $48 has been written,
the whole card disappears from $e8 and is mapped to the new
-address just written. Make shure $4a is written before $48,
+address just written. Make sure $4a is written before $48,
otherwise your chance is only 1:16 to find the board :-).
The local memory-map is even active when mapped to $e8:
diff --git a/Documentation/networking/ifenslave.c b/Documentation/networking/ifenslave.c
index 545447ac503..a1205988675 100644
--- a/Documentation/networking/ifenslave.c
+++ b/Documentation/networking/ifenslave.c
@@ -87,7 +87,7 @@
* would fail and generate an error message in the system log.
* - For opt_c: slave should not be set to the master's setting
* while it is running. It was already set during enslave. To
- * simplify things, it is now handeled separately.
+ * simplify things, it is now handled separately.
*
* - 2003/12/01 - Shmulik Hen <shmulik.hen at intel dot com>
* - Code cleanup and style changes
diff --git a/Documentation/pnp.txt b/Documentation/pnp.txt
index af0f6eabfa1..9529c9c9fd5 100644
--- a/Documentation/pnp.txt
+++ b/Documentation/pnp.txt
@@ -115,6 +115,9 @@ pnp_unregister_protocol
pnp_register_driver
- adds a PnP driver to the Plug and Play Layer
- this includes driver model integration
+- returns zero for success or a negative error number for failure; count
+ calls to the .add() method if you need to know how many devices bind to
+ the driver
pnp_unregister_driver
- removes a PnP driver from the Plug and Play Layer
diff --git a/Documentation/robust-futex-ABI.txt b/Documentation/robust-futex-ABI.txt
new file mode 100644
index 00000000000..8529a17ffaa
--- /dev/null
+++ b/Documentation/robust-futex-ABI.txt
@@ -0,0 +1,182 @@
+Started by Paul Jackson <pj@sgi.com>
+
+The robust futex ABI
+--------------------
+
+Robust_futexes provide a mechanism that is used in addition to normal
+futexes, for kernel assist of cleanup of held locks on task exit.
+
+The interesting data as to what futexes a thread is holding is kept on a
+linked list in user space, where it can be updated efficiently as locks
+are taken and dropped, without kernel intervention. The only additional
+kernel intervention required for robust_futexes above and beyond what is
+required for futexes is:
+
+ 1) a one time call, per thread, to tell the kernel where its list of
+ held robust_futexes begins, and
+ 2) internal kernel code at exit, to handle any listed locks held
+ by the exiting thread.
+
+The existing normal futexes already provide a "Fast Userspace Locking"
+mechanism, which handles uncontested locking without needing a system
+call, and handles contested locking by maintaining a list of waiting
+threads in the kernel. Options on the sys_futex(2) system call support
+waiting on a particular futex, and waking up the next waiter on a
+particular futex.
+
+For robust_futexes to work, the user code (typically in a library such
+as glibc linked with the application) has to manage and place the
+necessary list elements exactly as the kernel expects them. If it fails
+to do so, then improperly listed locks will not be cleaned up on exit,
+probably causing deadlock or other such failure of the other threads
+waiting on the same locks.
+
+A thread that anticipates possibly using robust_futexes should first
+issue the system call:
+
+ asmlinkage long
+ sys_set_robust_list(struct robust_list_head __user *head, size_t len);
+
+The pointer 'head' points to a structure in the threads address space
+consisting of three words. Each word is 32 bits on 32 bit arch's, or 64
+bits on 64 bit arch's, and local byte order. Each thread should have
+its own thread private 'head'.
+
+If a thread is running in 32 bit compatibility mode on a 64 native arch
+kernel, then it can actually have two such structures - one using 32 bit
+words for 32 bit compatibility mode, and one using 64 bit words for 64
+bit native mode. The kernel, if it is a 64 bit kernel supporting 32 bit
+compatibility mode, will attempt to process both lists on each task
+exit, if the corresponding sys_set_robust_list() call has been made to
+setup that list.
+
+ The first word in the memory structure at 'head' contains a
+ pointer to a single linked list of 'lock entries', one per lock,
+ as described below. If the list is empty, the pointer will point
+ to itself, 'head'. The last 'lock entry' points back to the 'head'.
+
+ The second word, called 'offset', specifies the offset from the
+ address of the associated 'lock entry', plus or minus, of what will
+ be called the 'lock word', from that 'lock entry'. The 'lock word'
+ is always a 32 bit word, unlike the other words above. The 'lock
+ word' holds 3 flag bits in the upper 3 bits, and the thread id (TID)
+ of the thread holding the lock in the bottom 29 bits. See further
+ below for a description of the flag bits.
+
+ The third word, called 'list_op_pending', contains transient copy of
+ the address of the 'lock entry', during list insertion and removal,
+ and is needed to correctly resolve races should a thread exit while
+ in the middle of a locking or unlocking operation.
+
+Each 'lock entry' on the single linked list starting at 'head' consists
+of just a single word, pointing to the next 'lock entry', or back to
+'head' if there are no more entries. In addition, nearby to each 'lock
+entry', at an offset from the 'lock entry' specified by the 'offset'
+word, is one 'lock word'.
+
+The 'lock word' is always 32 bits, and is intended to be the same 32 bit
+lock variable used by the futex mechanism, in conjunction with
+robust_futexes. The kernel will only be able to wakeup the next thread
+waiting for a lock on a threads exit if that next thread used the futex
+mechanism to register the address of that 'lock word' with the kernel.
+
+For each futex lock currently held by a thread, if it wants this
+robust_futex support for exit cleanup of that lock, it should have one
+'lock entry' on this list, with its associated 'lock word' at the
+specified 'offset'. Should a thread die while holding any such locks,
+the kernel will walk this list, mark any such locks with a bit
+indicating their holder died, and wakeup the next thread waiting for
+that lock using the futex mechanism.
+
+When a thread has invoked the above system call to indicate it
+anticipates using robust_futexes, the kernel stores the passed in 'head'
+pointer for that task. The task may retrieve that value later on by
+using the system call:
+
+ asmlinkage long
+ sys_get_robust_list(int pid, struct robust_list_head __user **head_ptr,
+ size_t __user *len_ptr);
+
+It is anticipated that threads will use robust_futexes embedded in
+larger, user level locking structures, one per lock. The kernel
+robust_futex mechanism doesn't care what else is in that structure, so
+long as the 'offset' to the 'lock word' is the same for all
+robust_futexes used by that thread. The thread should link those locks
+it currently holds using the 'lock entry' pointers. It may also have
+other links between the locks, such as the reverse side of a double
+linked list, but that doesn't matter to the kernel.
+
+By keeping its locks linked this way, on a list starting with a 'head'
+pointer known to the kernel, the kernel can provide to a thread the
+essential service available for robust_futexes, which is to help clean
+up locks held at the time of (a perhaps unexpectedly) exit.
+
+Actual locking and unlocking, during normal operations, is handled
+entirely by user level code in the contending threads, and by the
+existing futex mechanism to wait for, and wakeup, locks. The kernels
+only essential involvement in robust_futexes is to remember where the
+list 'head' is, and to walk the list on thread exit, handling locks
+still held by the departing thread, as described below.
+
+There may exist thousands of futex lock structures in a threads shared
+memory, on various data structures, at a given point in time. Only those
+lock structures for locks currently held by that thread should be on
+that thread's robust_futex linked lock list a given time.
+
+A given futex lock structure in a user shared memory region may be held
+at different times by any of the threads with access to that region. The
+thread currently holding such a lock, if any, is marked with the threads
+TID in the lower 29 bits of the 'lock word'.
+
+When adding or removing a lock from its list of held locks, in order for
+the kernel to correctly handle lock cleanup regardless of when the task
+exits (perhaps it gets an unexpected signal 9 in the middle of
+manipulating this list), the user code must observe the following
+protocol on 'lock entry' insertion and removal:
+
+On insertion:
+ 1) set the 'list_op_pending' word to the address of the 'lock word'
+ to be inserted,
+ 2) acquire the futex lock,
+ 3) add the lock entry, with its thread id (TID) in the bottom 29 bits
+ of the 'lock word', to the linked list starting at 'head', and
+ 4) clear the 'list_op_pending' word.
+
+On removal:
+ 1) set the 'list_op_pending' word to the address of the 'lock word'
+ to be removed,
+ 2) remove the lock entry for this lock from the 'head' list,
+ 2) release the futex lock, and
+ 2) clear the 'lock_op_pending' word.
+
+On exit, the kernel will consider the address stored in
+'list_op_pending' and the address of each 'lock word' found by walking
+the list starting at 'head'. For each such address, if the bottom 29
+bits of the 'lock word' at offset 'offset' from that address equals the
+exiting threads TID, then the kernel will do two things:
+
+ 1) if bit 31 (0x80000000) is set in that word, then attempt a futex
+ wakeup on that address, which will waken the next thread that has
+ used to the futex mechanism to wait on that address, and
+ 2) atomically set bit 30 (0x40000000) in the 'lock word'.
+
+In the above, bit 31 was set by futex waiters on that lock to indicate
+they were waiting, and bit 30 is set by the kernel to indicate that the
+lock owner died holding the lock.
+
+The kernel exit code will silently stop scanning the list further if at
+any point:
+
+ 1) the 'head' pointer or an subsequent linked list pointer
+ is not a valid address of a user space word
+ 2) the calculated location of the 'lock word' (address plus
+ 'offset') is not the valud address of a 32 bit user space
+ word
+ 3) if the list contains more than 1 million (subject to
+ future kernel configuration changes) elements.
+
+When the kernel sees a list entry whose 'lock word' doesn't have the
+current threads TID in the lower 29 bits, it does nothing with that
+entry, and goes on to the next entry.
+
+Bit 29 (0x20000000) of the 'lock word' is reserved for future use.
diff --git a/Documentation/robust-futexes.txt b/Documentation/robust-futexes.txt
new file mode 100644
index 00000000000..df82d75245a
--- /dev/null
+++ b/Documentation/robust-futexes.txt
@@ -0,0 +1,218 @@
+Started by: Ingo Molnar <mingo@redhat.com>
+
+Background
+----------
+
+what are robust futexes? To answer that, we first need to understand
+what futexes are: normal futexes are special types of locks that in the
+noncontended case can be acquired/released from userspace without having
+to enter the kernel.
+
+A futex is in essence a user-space address, e.g. a 32-bit lock variable
+field. If userspace notices contention (the lock is already owned and
+someone else wants to grab it too) then the lock is marked with a value
+that says "there's a waiter pending", and the sys_futex(FUTEX_WAIT)
+syscall is used to wait for the other guy to release it. The kernel
+creates a 'futex queue' internally, so that it can later on match up the
+waiter with the waker - without them having to know about each other.
+When the owner thread releases the futex, it notices (via the variable
+value) that there were waiter(s) pending, and does the
+sys_futex(FUTEX_WAKE) syscall to wake them up. Once all waiters have
+taken and released the lock, the futex is again back to 'uncontended'
+state, and there's no in-kernel state associated with it. The kernel
+completely forgets that there ever was a futex at that address. This
+method makes futexes very lightweight and scalable.
+
+"Robustness" is about dealing with crashes while holding a lock: if a
+process exits prematurely while holding a pthread_mutex_t lock that is
+also shared with some other process (e.g. yum segfaults while holding a
+pthread_mutex_t, or yum is kill -9-ed), then waiters for that lock need
+to be notified that the last owner of the lock exited in some irregular
+way.
+
+To solve such types of problems, "robust mutex" userspace APIs were
+created: pthread_mutex_lock() returns an error value if the owner exits
+prematurely - and the new owner can decide whether the data protected by
+the lock can be recovered safely.
+
+There is a big conceptual problem with futex based mutexes though: it is
+the kernel that destroys the owner task (e.g. due to a SEGFAULT), but
+the kernel cannot help with the cleanup: if there is no 'futex queue'
+(and in most cases there is none, futexes being fast lightweight locks)
+then the kernel has no information to clean up after the held lock!
+Userspace has no chance to clean up after the lock either - userspace is
+the one that crashes, so it has no opportunity to clean up. Catch-22.
+
+In practice, when e.g. yum is kill -9-ed (or segfaults), a system reboot
+is needed to release that futex based lock. This is one of the leading
+bugreports against yum.
+
+To solve this problem, the traditional approach was to extend the vma
+(virtual memory area descriptor) concept to have a notion of 'pending
+robust futexes attached to this area'. This approach requires 3 new
+syscall variants to sys_futex(): FUTEX_REGISTER, FUTEX_DEREGISTER and
+FUTEX_RECOVER. At do_exit() time, all vmas are searched to see whether
+they have a robust_head set. This approach has two fundamental problems
+left:
+
+ - it has quite complex locking and race scenarios. The vma-based
+ approach had been pending for years, but they are still not completely
+ reliable.
+
+ - they have to scan _every_ vma at sys_exit() time, per thread!
+
+The second disadvantage is a real killer: pthread_exit() takes around 1
+microsecond on Linux, but with thousands (or tens of thousands) of vmas
+every pthread_exit() takes a millisecond or more, also totally
+destroying the CPU's L1 and L2 caches!
+
+This is very much noticeable even for normal process sys_exit_group()
+calls: the kernel has to do the vma scanning unconditionally! (this is
+because the kernel has no knowledge about how many robust futexes there
+are to be cleaned up, because a robust futex might have been registered
+in another task, and the futex variable might have been simply mmap()-ed
+into this process's address space).
+
+This huge overhead forced the creation of CONFIG_FUTEX_ROBUST so that
+normal kernels can turn it off, but worse than that: the overhead makes
+robust futexes impractical for any type of generic Linux distribution.
+
+So something had to be done.
+
+New approach to robust futexes
+------------------------------
+
+At the heart of this new approach there is a per-thread private list of
+robust locks that userspace is holding (maintained by glibc) - which
+userspace list is registered with the kernel via a new syscall [this
+registration happens at most once per thread lifetime]. At do_exit()
+time, the kernel checks this user-space list: are there any robust futex
+locks to be cleaned up?
+
+In the common case, at do_exit() time, there is no list registered, so
+the cost of robust futexes is just a simple current->robust_list != NULL
+comparison. If the thread has registered a list, then normally the list
+is empty. If the thread/process crashed or terminated in some incorrect
+way then the list might be non-empty: in this case the kernel carefully
+walks the list [not trusting it], and marks all locks that are owned by
+this thread with the FUTEX_OWNER_DEAD bit, and wakes up one waiter (if
+any).
+
+The list is guaranteed to be private and per-thread at do_exit() time,
+so it can be accessed by the kernel in a lockless way.
+
+There is one race possible though: since adding to and removing from the
+list is done after the futex is acquired by glibc, there is a few
+instructions window for the thread (or process) to die there, leaving
+the futex hung. To protect against this possibility, userspace (glibc)
+also maintains a simple per-thread 'list_op_pending' field, to allow the
+kernel to clean up if the thread dies after acquiring the lock, but just
+before it could have added itself to the list. Glibc sets this
+list_op_pending field before it tries to acquire the futex, and clears
+it after the list-add (or list-remove) has finished.
+
+That's all that is needed - all the rest of robust-futex cleanup is done
+in userspace [just like with the previous patches].
+
+Ulrich Drepper has implemented the necessary glibc support for this new
+mechanism, which fully enables robust mutexes.
+
+Key differences of this userspace-list based approach, compared to the
+vma based method:
+
+ - it's much, much faster: at thread exit time, there's no need to loop
+ over every vma (!), which the VM-based method has to do. Only a very
+ simple 'is the list empty' op is done.
+
+ - no VM changes are needed - 'struct address_space' is left alone.
+
+ - no registration of individual locks is needed: robust mutexes dont
+ need any extra per-lock syscalls. Robust mutexes thus become a very
+ lightweight primitive - so they dont force the application designer
+ to do a hard choice between performance and robustness - robust
+ mutexes are just as fast.
+
+ - no per-lock kernel allocation happens.
+
+ - no resource limits are needed.
+
+ - no kernel-space recovery call (FUTEX_RECOVER) is needed.
+
+ - the implementation and the locking is "obvious", and there are no
+ interactions with the VM.
+
+Performance
+-----------
+
+I have benchmarked the time needed for the kernel to process a list of 1
+million (!) held locks, using the new method [on a 2GHz CPU]:
+
+ - with FUTEX_WAIT set [contended mutex]: 130 msecs
+ - without FUTEX_WAIT set [uncontended mutex]: 30 msecs
+
+I have also measured an approach where glibc does the lock notification
+[which it currently does for !pshared robust mutexes], and that took 256
+msecs - clearly slower, due to the 1 million FUTEX_WAKE syscalls
+userspace had to do.
+
+(1 million held locks are unheard of - we expect at most a handful of
+locks to be held at a time. Nevertheless it's nice to know that this
+approach scales nicely.)
+
+Implementation details
+----------------------
+
+The patch adds two new syscalls: one to register the userspace list, and
+one to query the registered list pointer:
+
+ asmlinkage long
+ sys_set_robust_list(struct robust_list_head __user *head,
+ size_t len);
+
+ asmlinkage long
+ sys_get_robust_list(int pid, struct robust_list_head __user **head_ptr,
+ size_t __user *len_ptr);
+
+List registration is very fast: the pointer is simply stored in
+current->robust_list. [Note that in the future, if robust futexes become
+widespread, we could extend sys_clone() to register a robust-list head
+for new threads, without the need of another syscall.]
+
+So there is virtually zero overhead for tasks not using robust futexes,
+and even for robust futex users, there is only one extra syscall per
+thread lifetime, and the cleanup operation, if it happens, is fast and
+straightforward. The kernel doesnt have any internal distinction between
+robust and normal futexes.
+
+If a futex is found to be held at exit time, the kernel sets the
+following bit of the futex word:
+
+ #define FUTEX_OWNER_DIED 0x40000000
+
+and wakes up the next futex waiter (if any). User-space does the rest of
+the cleanup.
+
+Otherwise, robust futexes are acquired by glibc by putting the TID into
+the futex field atomically. Waiters set the FUTEX_WAITERS bit:
+
+ #define FUTEX_WAITERS 0x80000000
+
+and the remaining bits are for the TID.
+
+Testing, architecture support
+-----------------------------
+
+i've tested the new syscalls on x86 and x86_64, and have made sure the
+parsing of the userspace list is robust [ ;-) ] even if the list is
+deliberately corrupted.
+
+i386 and x86_64 syscalls are wired up at the moment, and Ulrich has
+tested the new glibc code (on x86_64 and i386), and it works for his
+robust-mutex testcases.
+
+All other architectures should build just fine too - but they wont have
+the new syscalls yet.
+
+Architectures need to implement the new futex_atomic_cmpxchg_inatomic()
+inline function before writing up the syscalls (that function returns
+-ENOSYS right now).
diff --git a/Documentation/rpc-cache.txt b/Documentation/rpc-cache.txt
index 2b5d4434fa5..5f757c8cf97 100644
--- a/Documentation/rpc-cache.txt
+++ b/Documentation/rpc-cache.txt
@@ -1,4 +1,4 @@
-This document gives a brief introduction to the caching
+ This document gives a brief introduction to the caching
mechanisms in the sunrpc layer that is used, in particular,
for NFS authentication.
@@ -25,25 +25,17 @@ The common code handles such things as:
- supporting 'NEGATIVE' as well as positive entries
- allowing an EXPIRED time on cache items, and removing
items after they expire, and are no longe in-use.
-
- Future code extensions are expect to handle
- making requests to user-space to fill in cache entries
- allowing user-space to directly set entries in the cache
- delaying RPC requests that depend on as-yet incomplete
cache entries, and replaying those requests when the cache entry
is complete.
- - maintaining last-access times on cache entries
- - clean out old entries when the caches become full
-
-The code for performing a cache lookup is also common, but in the form
-of a template. i.e. a #define.
-Each cache defines a lookup function by using the DefineCacheLookup
-macro, or the simpler DefineSimpleCacheLookup macro
+ - clean out old entries as they expire.
Creating a Cache
----------------
-1/ A cache needs a datum to cache. This is in the form of a
+1/ A cache needs a datum to store. This is in the form of a
structure definition that must contain a
struct cache_head
as an element, usually the first.
@@ -51,35 +43,69 @@ Creating a Cache
Each cache element is reference counted and contains
expiry and update times for use in cache management.
2/ A cache needs a "cache_detail" structure that
- describes the cache. This stores the hash table, and some
- parameters for cache management.
-3/ A cache needs a lookup function. This is created using
- the DefineCacheLookup macro. This lookup function is used both
- to find entries and to update entries. The normal mode for
- updating an entry is to replace the old entry with a new
- entry. However it is possible to allow update-in-place
- for those caches where it makes sense (no atomicity issues
- or indirect reference counting issue)
-4/ A cache needs to be registered using cache_register(). This
- includes in on a list of caches that will be regularly
- cleaned to discard old data. For this to work, some
- thread must periodically call cache_clean
-
+ describes the cache. This stores the hash table, some
+ parameters for cache management, and some operations detailing how
+ to work with particular cache items.
+ The operations requires are:
+ struct cache_head *alloc(void)
+ This simply allocates appropriate memory and returns
+ a pointer to the cache_detail embedded within the
+ structure
+ void cache_put(struct kref *)
+ This is called when the last reference to an item is
+ is dropped. The pointer passed is to the 'ref' field
+ in the cache_head. cache_put should release any
+ references create by 'cache_init' and, if CACHE_VALID
+ is set, any references created by cache_update.
+ It should then release the memory allocated by
+ 'alloc'.
+ int match(struct cache_head *orig, struct cache_head *new)
+ test if the keys in the two structures match. Return
+ 1 if they do, 0 if they don't.
+ void init(struct cache