aboutsummaryrefslogtreecommitdiff
path: root/Documentation/powerpc
diff options
context:
space:
mode:
authorGrant Likely <grant.likely@secretlab.ca>2011-01-26 10:10:40 -0700
committerGrant Likely <grant.likely@secretlab.ca>2011-01-31 00:09:01 -0700
commitd524dac9279b6a41ffdf7ff7958c577f2e387db6 (patch)
tree294166d18a1c89c4cebb2571ea7b124876fb01ef /Documentation/powerpc
parent1bae4ce27c9c90344f23c65ea6966c50ffeae2f5 (diff)
dt: Move device tree documentation out of powerpc directory
The device tree is used by more than just PowerPC. Make the documentation directory available to all. v2: reorganized files while moving to create arch and driver specific directories. Signed-off-by: Grant Likely <grant.likely@secretlab.ca> Acked-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
Diffstat (limited to 'Documentation/powerpc')
-rw-r--r--Documentation/powerpc/booting-without-of.txt1447
-rw-r--r--Documentation/powerpc/dts-bindings/4xx/cpm.txt52
-rw-r--r--Documentation/powerpc/dts-bindings/4xx/emac.txt148
-rw-r--r--Documentation/powerpc/dts-bindings/4xx/ndfc.txt39
-rw-r--r--Documentation/powerpc/dts-bindings/4xx/ppc440spe-adma.txt93
-rw-r--r--Documentation/powerpc/dts-bindings/4xx/reboot.txt18
-rw-r--r--Documentation/powerpc/dts-bindings/can/sja1000.txt53
-rw-r--r--Documentation/powerpc/dts-bindings/ecm.txt64
-rw-r--r--Documentation/powerpc/dts-bindings/eeprom.txt28
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/83xx-512x-pci.txt40
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/8xxx_gpio.txt60
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/board.txt63
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/can.txt53
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm.txt67
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/brg.txt21
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/i2c.txt41
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/pic.txt18
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/usb.txt15
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/cpm_qe/gpio.txt38
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/cpm_qe/network.txt45
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe.txt115
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/firmware.txt24
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/par_io.txt51
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/pincfg.txt60
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/ucc.txt70
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/usb.txt37
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/cpm_qe/serial.txt32
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/diu.txt34
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/dma.txt144
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/esdhc.txt29
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/gtm.txt31
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/guts.txt25
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/i2c.txt64
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/lbc.txt35
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/mcm.txt64
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/mcu-mpc8349emitx.txt17
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/mpc5121-psc.txt70
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/mpc5200.txt198
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/mpic.txt42
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/msi-pic.txt36
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/pmc.txt63
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/sata.txt29
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/sec.txt68
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/spi.txt53
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/ssi.txt73
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/tsec.txt76
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/upm-nand.txt63
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/usb.txt81
-rw-r--r--Documentation/powerpc/dts-bindings/gpio/gpio.txt50
-rw-r--r--Documentation/powerpc/dts-bindings/gpio/led.txt58
-rw-r--r--Documentation/powerpc/dts-bindings/gpio/mdio.txt19
-rw-r--r--Documentation/powerpc/dts-bindings/marvell.txt521
-rw-r--r--Documentation/powerpc/dts-bindings/mmc-spi-slot.txt23
-rw-r--r--Documentation/powerpc/dts-bindings/mtd-physmap.txt90
-rw-r--r--Documentation/powerpc/dts-bindings/nintendo/gamecube.txt109
-rw-r--r--Documentation/powerpc/dts-bindings/nintendo/wii.txt184
-rw-r--r--Documentation/powerpc/dts-bindings/phy.txt25
-rw-r--r--Documentation/powerpc/dts-bindings/spi-bus.txt57
-rw-r--r--Documentation/powerpc/dts-bindings/usb-ehci.txt25
-rw-r--r--Documentation/powerpc/dts-bindings/xilinx.txt306
60 files changed, 0 insertions, 5554 deletions
diff --git a/Documentation/powerpc/booting-without-of.txt b/Documentation/powerpc/booting-without-of.txt
deleted file mode 100644
index 7400d7555dc..00000000000
--- a/Documentation/powerpc/booting-without-of.txt
+++ /dev/null
@@ -1,1447 +0,0 @@
- Booting the Linux/ppc kernel without Open Firmware
- --------------------------------------------------
-
-(c) 2005 Benjamin Herrenschmidt <benh at kernel.crashing.org>,
- IBM Corp.
-(c) 2005 Becky Bruce <becky.bruce at freescale.com>,
- Freescale Semiconductor, FSL SOC and 32-bit additions
-(c) 2006 MontaVista Software, Inc.
- Flash chip node definition
-
-Table of Contents
-=================
-
- I - Introduction
- 1) Entry point for arch/powerpc
- 2) Board support
-
- II - The DT block format
- 1) Header
- 2) Device tree generalities
- 3) Device tree "structure" block
- 4) Device tree "strings" block
-
- III - Required content of the device tree
- 1) Note about cells and address representation
- 2) Note about "compatible" properties
- 3) Note about "name" properties
- 4) Note about node and property names and character set
- 5) Required nodes and properties
- a) The root node
- b) The /cpus node
- c) The /cpus/* nodes
- d) the /memory node(s)
- e) The /chosen node
- f) the /soc<SOCname> node
-
- IV - "dtc", the device tree compiler
-
- V - Recommendations for a bootloader
-
- VI - System-on-a-chip devices and nodes
- 1) Defining child nodes of an SOC
- 2) Representing devices without a current OF specification
- a) PHY nodes
- b) Interrupt controllers
- c) 4xx/Axon EMAC ethernet nodes
- d) Xilinx IP cores
- e) USB EHCI controllers
- f) MDIO on GPIOs
- g) SPI busses
-
- VII - Specifying interrupt information for devices
- 1) interrupts property
- 2) interrupt-parent property
- 3) OpenPIC Interrupt Controllers
- 4) ISA Interrupt Controllers
-
- VIII - Specifying device power management information (sleep property)
-
- Appendix A - Sample SOC node for MPC8540
-
-
-Revision Information
-====================
-
- May 18, 2005: Rev 0.1 - Initial draft, no chapter III yet.
-
- May 19, 2005: Rev 0.2 - Add chapter III and bits & pieces here or
- clarifies the fact that a lot of things are
- optional, the kernel only requires a very
- small device tree, though it is encouraged
- to provide an as complete one as possible.
-
- May 24, 2005: Rev 0.3 - Precise that DT block has to be in RAM
- - Misc fixes
- - Define version 3 and new format version 16
- for the DT block (version 16 needs kernel
- patches, will be fwd separately).
- String block now has a size, and full path
- is replaced by unit name for more
- compactness.
- linux,phandle is made optional, only nodes
- that are referenced by other nodes need it.
- "name" property is now automatically
- deduced from the unit name
-
- June 1, 2005: Rev 0.4 - Correct confusion between OF_DT_END and
- OF_DT_END_NODE in structure definition.
- - Change version 16 format to always align
- property data to 4 bytes. Since tokens are
- already aligned, that means no specific
- required alignment between property size
- and property data. The old style variable
- alignment would make it impossible to do
- "simple" insertion of properties using
- memmove (thanks Milton for
- noticing). Updated kernel patch as well
- - Correct a few more alignment constraints
- - Add a chapter about the device-tree
- compiler and the textural representation of
- the tree that can be "compiled" by dtc.
-
- November 21, 2005: Rev 0.5
- - Additions/generalizations for 32-bit
- - Changed to reflect the new arch/powerpc
- structure
- - Added chapter VI
-
-
- ToDo:
- - Add some definitions of interrupt tree (simple/complex)
- - Add some definitions for PCI host bridges
- - Add some common address format examples
- - Add definitions for standard properties and "compatible"
- names for cells that are not already defined by the existing
- OF spec.
- - Compare FSL SOC use of PCI to standard and make sure no new
- node definition required.
- - Add more information about node definitions for SOC devices
- that currently have no standard, like the FSL CPM.
-
-
-I - Introduction
-================
-
-During the recent development of the Linux/ppc64 kernel, and more
-specifically, the addition of new platform types outside of the old
-IBM pSeries/iSeries pair, it was decided to enforce some strict rules
-regarding the kernel entry and bootloader <-> kernel interfaces, in
-order to avoid the degeneration that had become the ppc32 kernel entry
-point and the way a new platform should be added to the kernel. The
-legacy iSeries platform breaks those rules as it predates this scheme,
-but no new board support will be accepted in the main tree that
-doesn't follow them properly. In addition, since the advent of the
-arch/powerpc merged architecture for ppc32 and ppc64, new 32-bit
-platforms and 32-bit platforms which move into arch/powerpc will be
-required to use these rules as well.
-
-The main requirement that will be defined in more detail below is
-the presence of a device-tree whose format is defined after Open
-Firmware specification. However, in order to make life easier
-to embedded board vendors, the kernel doesn't require the device-tree
-to represent every device in the system and only requires some nodes
-and properties to be present. This will be described in detail in
-section III, but, for example, the kernel does not require you to
-create a node for every PCI device in the system. It is a requirement
-to have a node for PCI host bridges in order to provide interrupt
-routing informations and memory/IO ranges, among others. It is also
-recommended to define nodes for on chip devices and other busses that
-don't specifically fit in an existing OF specification. This creates a
-great flexibility in the way the kernel can then probe those and match
-drivers to device, without having to hard code all sorts of tables. It
-also makes it more flexible for board vendors to do minor hardware
-upgrades without significantly impacting the kernel code or cluttering
-it with special cases.
-
-
-1) Entry point for arch/powerpc
--------------------------------
-
- There is one and one single entry point to the kernel, at the start
- of the kernel image. That entry point supports two calling
- conventions:
-
- a) Boot from Open Firmware. If your firmware is compatible
- with Open Firmware (IEEE 1275) or provides an OF compatible
- client interface API (support for "interpret" callback of
- forth words isn't required), you can enter the kernel with:
-
- r5 : OF callback pointer as defined by IEEE 1275
- bindings to powerpc. Only the 32-bit client interface
- is currently supported
-
- r3, r4 : address & length of an initrd if any or 0
-
- The MMU is either on or off; the kernel will run the
- trampoline located in arch/powerpc/kernel/prom_init.c to
- extract the device-tree and other information from open
- firmware and build a flattened device-tree as described
- in b). prom_init() will then re-enter the kernel using
- the second method. This trampoline code runs in the
- context of the firmware, which is supposed to handle all
- exceptions during that time.
-
- b) Direct entry with a flattened device-tree block. This entry
- point is called by a) after the OF trampoline and can also be
- called directly by a bootloader that does not support the Open
- Firmware client interface. It is also used by "kexec" to
- implement "hot" booting of a new kernel from a previous
- running one. This method is what I will describe in more
- details in this document, as method a) is simply standard Open
- Firmware, and thus should be implemented according to the
- various standard documents defining it and its binding to the
- PowerPC platform. The entry point definition then becomes:
-
- r3 : physical pointer to the device-tree block
- (defined in chapter II) in RAM
-
- r4 : physical pointer to the kernel itself. This is
- used by the assembly code to properly disable the MMU
- in case you are entering the kernel with MMU enabled
- and a non-1:1 mapping.
-
- r5 : NULL (as to differentiate with method a)
-
- Note about SMP entry: Either your firmware puts your other
- CPUs in some sleep loop or spin loop in ROM where you can get
- them out via a soft reset or some other means, in which case
- you don't need to care, or you'll have to enter the kernel
- with all CPUs. The way to do that with method b) will be
- described in a later revision of this document.
-
-
-2) Board support
-----------------
-
-64-bit kernels:
-
- Board supports (platforms) are not exclusive config options. An
- arbitrary set of board supports can be built in a single kernel
- image. The kernel will "know" what set of functions to use for a
- given platform based on the content of the device-tree. Thus, you
- should:
-
- a) add your platform support as a _boolean_ option in
- arch/powerpc/Kconfig, following the example of PPC_PSERIES,
- PPC_PMAC and PPC_MAPLE. The later is probably a good
- example of a board support to start from.
-
- b) create your main platform file as
- "arch/powerpc/platforms/myplatform/myboard_setup.c" and add it
- to the Makefile under the condition of your CONFIG_
- option. This file will define a structure of type "ppc_md"
- containing the various callbacks that the generic code will
- use to get to your platform specific code
-
- c) Add a reference to your "ppc_md" structure in the
- "machines" table in arch/powerpc/kernel/setup_64.c if you are
- a 64-bit platform.
-
- d) request and get assigned a platform number (see PLATFORM_*
- constants in arch/powerpc/include/asm/processor.h
-
-32-bit embedded kernels:
-
- Currently, board support is essentially an exclusive config option.
- The kernel is configured for a single platform. Part of the reason
- for this is to keep kernels on embedded systems small and efficient;
- part of this is due to the fact the code is already that way. In the
- future, a kernel may support multiple platforms, but only if the
- platforms feature the same core architecture. A single kernel build
- cannot support both configurations with Book E and configurations
- with classic Powerpc architectures.
-
- 32-bit embedded platforms that are moved into arch/powerpc using a
- flattened device tree should adopt the merged tree practice of
- setting ppc_md up dynamically, even though the kernel is currently
- built with support for only a single platform at a time. This allows
- unification of the setup code, and will make it easier to go to a
- multiple-platform-support model in the future.
-
-NOTE: I believe the above will be true once Ben's done with the merge
-of the boot sequences.... someone speak up if this is wrong!
-
- To add a 32-bit embedded platform support, follow the instructions
- for 64-bit platforms above, with the exception that the Kconfig
- option should be set up such that the kernel builds exclusively for
- the platform selected. The processor type for the platform should
- enable another config option to select the specific board
- supported.
-
-NOTE: If Ben doesn't merge the setup files, may need to change this to
-point to setup_32.c
-
-
- I will describe later the boot process and various callbacks that
- your platform should implement.
-
-
-II - The DT block format
-========================
-
-
-This chapter defines the actual format of the flattened device-tree
-passed to the kernel. The actual content of it and kernel requirements
-are described later. You can find example of code manipulating that
-format in various places, including arch/powerpc/kernel/prom_init.c
-which will generate a flattened device-tree from the Open Firmware
-representation, or the fs2dt utility which is part of the kexec tools
-which will generate one from a filesystem representation. It is
-expected that a bootloader like uboot provides a bit more support,
-that will be discussed later as well.
-
-Note: The block has to be in main memory. It has to be accessible in
-both real mode and virtual mode with no mapping other than main
-memory. If you are writing a simple flash bootloader, it should copy
-the block to RAM before passing it to the kernel.
-
-
-1) Header
----------
-
- The kernel is entered with r3 pointing to an area of memory that is
- roughly described in arch/powerpc/include/asm/prom.h by the structure
- boot_param_header:
-
-struct boot_param_header {
- u32 magic; /* magic word OF_DT_HEADER */
- u32 totalsize; /* total size of DT block */
- u32 off_dt_struct; /* offset to structure */
- u32 off_dt_strings; /* offset to strings */
- u32 off_mem_rsvmap; /* offset to memory reserve map
- */
- u32 version; /* format version */
- u32 last_comp_version; /* last compatible version */
-
- /* version 2 fields below */
- u32 boot_cpuid_phys; /* Which physical CPU id we're
- booting on */
- /* version 3 fields below */
- u32 size_dt_strings; /* size of the strings block */
-
- /* version 17 fields below */
- u32 size_dt_struct; /* size of the DT structure block */
-};
-
- Along with the constants:
-
-/* Definitions used by the flattened device tree */
-#define OF_DT_HEADER 0xd00dfeed /* 4: version,
- 4: total size */
-#define OF_DT_BEGIN_NODE 0x1 /* Start node: full name
- */
-#define OF_DT_END_NODE 0x2 /* End node */
-#define OF_DT_PROP 0x3 /* Property: name off,
- size, content */
-#define OF_DT_END 0x9
-
- All values in this header are in big endian format, the various
- fields in this header are defined more precisely below. All
- "offset" values are in bytes from the start of the header; that is
- from the value of r3.
-
- - magic
-
- This is a magic value that "marks" the beginning of the
- device-tree block header. It contains the value 0xd00dfeed and is
- defined by the constant OF_DT_HEADER
-
- - totalsize
-
- This is the total size of the DT block including the header. The
- "DT" block should enclose all data structures defined in this
- chapter (who are pointed to by offsets in this header). That is,
- the device-tree structure, strings, and the memory reserve map.
-
- - off_dt_struct
-
- This is an offset from the beginning of the header to the start
- of the "structure" part the device tree. (see 2) device tree)
-
- - off_dt_strings
-
- This is an offset from the beginning of the header to the start
- of the "strings" part of the device-tree
-
- - off_mem_rsvmap
-
- This is an offset from the beginning of the header to the start
- of the reserved memory map. This map is a list of pairs of 64-
- bit integers. Each pair is a physical address and a size. The
- list is terminated by an entry of size 0. This map provides the
- kernel with a list of physical memory areas that are "reserved"
- and thus not to be used for memory allocations, especially during
- early initialization. The kernel needs to allocate memory during
- boot for things like un-flattening the device-tree, allocating an
- MMU hash table, etc... Those allocations must be done in such a
- way to avoid overriding critical things like, on Open Firmware
- capable machines, the RTAS instance, or on some pSeries, the TCE
- tables used for the iommu. Typically, the reserve map should
- contain _at least_ this DT block itself (header,total_size). If
- you are passing an initrd to the kernel, you should reserve it as
- well. You do not need to reserve the kernel image itself. The map
- should be 64-bit aligned.
-
- - version
-
- This is the version of this structure. Version 1 stops
- here. Version 2 adds an additional field boot_cpuid_phys.
- Version 3 adds the size of the strings block, allowing the kernel
- to reallocate it easily at boot and free up the unused flattened
- structure after expansion. Version 16 introduces a new more
- "compact" format for the tree itself that is however not backward
- compatible. Version 17 adds an additional field, size_dt_struct,
- allowing it to be reallocated or moved more easily (this is
- particularly useful for bootloaders which need to make
- adjustments to a device tree based on probed information). You
- should always generate a structure of the highest version defined
- at the time of your implementation. Currently that is version 17,
- unless you explicitly aim at being backward compatible.
-
- - last_comp_version
-
- Last compatible version. This indicates down to what version of
- the DT block you are backward compatible. For example, version 2
- is backward compatible with version 1 (that is, a kernel build
- for version 1 will be able to boot with a version 2 format). You
- should put a 1 in this field if you generate a device tree of
- version 1 to 3, or 16 if you generate a tree of version 16 or 17
- using the new unit name format.
-
- - boot_cpuid_phys
-
- This field only exist on version 2 headers. It indicate which
- physical CPU ID is calling the kernel entry point. This is used,
- among others, by kexec. If you are on an SMP system, this value
- should match the content of the "reg" property of the CPU node in
- the device-tree corresponding to the CPU calling the kernel entry
- point (see further chapters for more informations on the required
- device-tree contents)
-
- - size_dt_strings
-
- This field only exists on version 3 and later headers. It
- gives the size of the "strings" section of the device tree (which
- starts at the offset given by off_dt_strings).
-
- - size_dt_struct
-
- This field only exists on version 17 and later headers. It gives
- the size of the "structure" section of the device tree (which
- starts at the offset given by off_dt_struct).
-
- So the typical layout of a DT block (though the various parts don't
- need to be in that order) looks like this (addresses go from top to
- bottom):
-
-
- ------------------------------
- r3 -> | struct boot_param_header |
- ------------------------------
- | (alignment gap) (*) |
- ------------------------------
- | memory reserve map |
- ------------------------------
- | (alignment gap) |
- ------------------------------
- | |
- | device-tree structure |
- | |
- ------------------------------
- | (alignment gap) |
- ------------------------------
- | |
- | device-tree strings |
- | |
- -----> ------------------------------
- |
- |
- --- (r3 + totalsize)