diff options
author | Jean Delvare <khali@linux-fr.org> | 2005-07-02 18:52:48 +0200 |
---|---|---|
committer | Greg Kroah-Hartman <gregkh@suse.de> | 2005-07-11 14:47:41 -0700 |
commit | ede7fbdf526c314850c9f32dd8da1753bf8d0ad5 (patch) | |
tree | 2f1fefa6f6df58f5c27bf98bd7df0908e97e44ef /Documentation/i2c | |
parent | 8d5d45fb14680326f833295f2316a4ec5e357220 (diff) |
[PATCH] I2C: Move hwmon drivers (3/3)
Part 3: Move the drivers documentation, plus two general documentation
files.
Note that the patch "adds trailing whitespace", because it does move the
files as-is, and some files happen to have trailing whitespace.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Diffstat (limited to 'Documentation/i2c')
31 files changed, 0 insertions, 3215 deletions
diff --git a/Documentation/i2c/chips/adm1021 b/Documentation/i2c/chips/adm1021 deleted file mode 100644 index 03d02bfb3df..00000000000 --- a/Documentation/i2c/chips/adm1021 +++ /dev/null @@ -1,111 +0,0 @@ -Kernel driver adm1021 -===================== - -Supported chips: - * Analog Devices ADM1021 - Prefix: 'adm1021' - Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e - Datasheet: Publicly available at the Analog Devices website - * Analog Devices ADM1021A/ADM1023 - Prefix: 'adm1023' - Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e - Datasheet: Publicly available at the Analog Devices website - * Genesys Logic GL523SM - Prefix: 'gl523sm' - Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e - Datasheet: - * Intel Xeon Processor - Prefix: - any other - may require 'force_adm1021' parameter - Addresses scanned: none - Datasheet: Publicly available at Intel website - * Maxim MAX1617 - Prefix: 'max1617' - Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e - Datasheet: Publicly available at the Maxim website - * Maxim MAX1617A - Prefix: 'max1617a' - Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e - Datasheet: Publicly available at the Maxim website - * National Semiconductor LM84 - Prefix: 'lm84' - Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e - Datasheet: Publicly available at the National Semiconductor website - * Philips NE1617 - Prefix: 'max1617' (probably detected as a max1617) - Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e - Datasheet: Publicly available at the Philips website - * Philips NE1617A - Prefix: 'max1617' (probably detected as a max1617) - Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e - Datasheet: Publicly available at the Philips website - * TI THMC10 - Prefix: 'thmc10' - Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e - Datasheet: Publicly available at the TI website - * Onsemi MC1066 - Prefix: 'mc1066' - Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e - Datasheet: Publicly available at the Onsemi website - - -Authors: - Frodo Looijaard <frodol@dds.nl>, - Philip Edelbrock <phil@netroedge.com> - -Module Parameters ------------------ - -* read_only: int - Don't set any values, read only mode - - -Description ------------ - -The chips supported by this driver are very similar. The Maxim MAX1617 is -the oldest; it has the problem that it is not very well detectable. The -MAX1617A solves that. The ADM1021 is a straight clone of the MAX1617A. -Ditto for the THMC10. From here on, we will refer to all these chips as -ADM1021-clones. - -The ADM1021 and MAX1617A reports a die code, which is a sort of revision -code. This can help us pinpoint problems; it is not very useful -otherwise. - -ADM1021-clones implement two temperature sensors. One of them is internal, -and measures the temperature of the chip itself; the other is external and -is realised in the form of a transistor-like device. A special alarm -indicates whether the remote sensor is connected. - -Each sensor has its own low and high limits. When they are crossed, the -corresponding alarm is set and remains on as long as the temperature stays -out of range. Temperatures are measured in degrees Celsius. Measurements -are possible between -65 and +127 degrees, with a resolution of one degree. - -If an alarm triggers, it will remain triggered until the hardware register -is read at least once. This means that the cause for the alarm may already -have disappeared! - -This driver only updates its values each 1.5 seconds; reading it more often -will do no harm, but will return 'old' values. It is possible to make -ADM1021-clones do faster measurements, but there is really no good reason -for that. - -Xeon support ------------- - -Some Xeon processors have real max1617, adm1021, or compatible chips -within them, with two temperature sensors. - -Other Xeons have chips with only one sensor. - -If you have a Xeon, and the adm1021 module loads, and both temperatures -appear valid, then things are good. - -If the adm1021 module doesn't load, you should try this: - modprobe adm1021 force_adm1021=BUS,ADDRESS - ADDRESS can only be 0x18, 0x1a, 0x29, 0x2b, 0x4c, or 0x4e. - -If you have dual Xeons you may have appear to have two separate -adm1021-compatible chips, or two single-temperature sensors, at distinct -addresses. diff --git a/Documentation/i2c/chips/adm1025 b/Documentation/i2c/chips/adm1025 deleted file mode 100644 index 39d2b781b5d..00000000000 --- a/Documentation/i2c/chips/adm1025 +++ /dev/null @@ -1,51 +0,0 @@ -Kernel driver adm1025 -===================== - -Supported chips: - * Analog Devices ADM1025, ADM1025A - Prefix: 'adm1025' - Addresses scanned: I2C 0x2c - 0x2e - Datasheet: Publicly available at the Analog Devices website - * Philips NE1619 - Prefix: 'ne1619' - Addresses scanned: I2C 0x2c - 0x2d - Datasheet: Publicly available at the Philips website - -The NE1619 presents some differences with the original ADM1025: - * Only two possible addresses (0x2c - 0x2d). - * No temperature offset register, but we don't use it anyway. - * No INT mode for pin 16. We don't play with it anyway. - -Authors: - Chen-Yuan Wu <gwu@esoft.com>, - Jean Delvare <khali@linux-fr.org> - -Description ------------ - -(This is from Analog Devices.) The ADM1025 is a complete system hardware -monitor for microprocessor-based systems, providing measurement and limit -comparison of various system parameters. Five voltage measurement inputs -are provided, for monitoring +2.5V, +3.3V, +5V and +12V power supplies and -the processor core voltage. The ADM1025 can monitor a sixth power-supply -voltage by measuring its own VCC. One input (two pins) is dedicated to a -remote temperature-sensing diode and an on-chip temperature sensor allows -ambient temperature to be monitored. - -One specificity of this chip is that the pin 11 can be hardwired in two -different manners. It can act as the +12V power-supply voltage analog -input, or as the a fifth digital entry for the VID reading (bit 4). It's -kind of strange since both are useful, and the reason for designing the -chip that way is obscure at least to me. The bit 5 of the configuration -register can be used to define how the chip is hardwired. Please note that -it is not a choice you have to make as the user. The choice was already -made by your motherboard's maker. If the configuration bit isn't set -properly, you'll have a wrong +12V reading or a wrong VID reading. The way -the driver handles that is to preserve this bit through the initialization -process, assuming that the BIOS set it up properly beforehand. If it turns -out not to be true in some cases, we'll provide a module parameter to force -modes. - -This driver also supports the ADM1025A, which differs from the ADM1025 -only in that it has "open-drain VID inputs while the ADM1025 has on-chip -100k pull-ups on the VID inputs". It doesn't make any difference for us. diff --git a/Documentation/i2c/chips/adm1026 b/Documentation/i2c/chips/adm1026 deleted file mode 100644 index 473c689d792..00000000000 --- a/Documentation/i2c/chips/adm1026 +++ /dev/null @@ -1,93 +0,0 @@ -Kernel driver adm1026 -===================== - -Supported chips: - * Analog Devices ADM1026 - Prefix: 'adm1026' - Addresses scanned: I2C 0x2c, 0x2d, 0x2e - Datasheet: Publicly available at the Analog Devices website - http://www.analog.com/en/prod/0,,766_825_ADM1026,00.html - -Authors: - Philip Pokorny <ppokorny@penguincomputing.com> for Penguin Computing - Justin Thiessen <jthiessen@penguincomputing.com> - -Module Parameters ------------------ - -* gpio_input: int array (min = 1, max = 17) - List of GPIO pins (0-16) to program as inputs -* gpio_output: int array (min = 1, max = 17) - List of GPIO pins (0-16) to program as outputs -* gpio_inverted: int array (min = 1, max = 17) - List of GPIO pins (0-16) to program as inverted -* gpio_normal: int array (min = 1, max = 17) - List of GPIO pins (0-16) to program as normal/non-inverted -* gpio_fan: int array (min = 1, max = 8) - List of GPIO pins (0-7) to program as fan tachs - - -Description ------------ - -This driver implements support for the Analog Devices ADM1026. Analog -Devices calls it a "complete thermal system management controller." - -The ADM1026 implements three (3) temperature sensors, 17 voltage sensors, -16 general purpose digital I/O lines, eight (8) fan speed sensors (8-bit), -an analog output and a PWM output along with limit, alarm and mask bits for -all of the above. There is even 8k bytes of EEPROM memory on chip. - -Temperatures are measured in degrees Celsius. There are two external -sensor inputs and one internal sensor. Each sensor has a high and low -limit. If the limit is exceeded, an interrupt (#SMBALERT) can be -generated. The interrupts can be masked. In addition, there are over-temp -limits for each sensor. If this limit is exceeded, the #THERM output will -be asserted. The current temperature and limits have a resolution of 1 -degree. - -Fan rotation speeds are reported in RPM (rotations per minute) but measured -in counts of a 22.5kHz internal clock. Each fan has a high limit which -corresponds to a minimum fan speed. If the limit is exceeded, an interrupt -can be generated. Each fan can be programmed to divide the reference clock -by 1, 2, 4 or 8. Not all RPM values can accurately be represented, so some -rounding is done. With a divider of 8, the slowest measurable speed of a -two pulse per revolution fan is 661 RPM. - -There are 17 voltage sensors. An alarm is triggered if the voltage has -crossed a programmable minimum or maximum limit. Note that minimum in this -case always means 'closest to zero'; this is important for negative voltage -measurements. Several inputs have integrated attenuators so they can measure -higher voltages directly. 3.3V, 5V, 12V, -12V and battery voltage all have -dedicated inputs. There are several inputs scaled to 0-3V full-scale range -for SCSI terminator power. The remaining inputs are not scaled and have -a 0-2.5V full-scale range. A 2.5V or 1.82V reference voltage is provided -for negative voltage measurements. - -If an alarm triggers, it will remain triggered until the hardware register -is read at least once. This means that the cause for the alarm may already -have disappeared! Note that in the current implementation, all hardware -registers are read whenever any data is read (unless it is less than 2.0 -seconds since the last update). This means that you can easily miss -once-only alarms. - -The ADM1026 measures continuously. Analog inputs are measured about 4 -times a second. Fan speed measurement time depends on fan speed and -divisor. It can take as long as 1.5 seconds to measure all fan speeds. - -The ADM1026 has the ability to automatically control fan speed based on the -temperature sensor inputs. Both the PWM output and the DAC output can be -used to control fan speed. Usually only one of these two outputs will be -used. Write the minimum PWM or DAC value to the appropriate control -register. Then set the low temperature limit in the tmin values for each -temperature sensor. The range of control is fixed at 20 °C, and the -largest difference between current and tmin of the temperature sensors sets -the control output. See the datasheet for several example circuits for -controlling fan speed with the PWM and DAC outputs. The fan speed sensors -do not have PWM compensation, so it is probably best to control the fan -voltage from the power lead rather than on the ground lead. - -The datasheet shows an example application with VID signals attached to -GPIO lines. Unfortunately, the chip may not be connected to the VID lines -in this way. The driver assumes that the chips *is* connected this way to -get a VID voltage. diff --git a/Documentation/i2c/chips/adm1031 b/Documentation/i2c/chips/adm1031 deleted file mode 100644 index 130a38382b9..00000000000 --- a/Documentation/i2c/chips/adm1031 +++ /dev/null @@ -1,35 +0,0 @@ -Kernel driver adm1031 -===================== - -Supported chips: - * Analog Devices ADM1030 - Prefix: 'adm1030' - Addresses scanned: I2C 0x2c to 0x2e - Datasheet: Publicly available at the Analog Devices website - http://products.analog.com/products/info.asp?product=ADM1030 - - * Analog Devices ADM1031 - Prefix: 'adm1031' - Addresses scanned: I2C 0x2c to 0x2e - Datasheet: Publicly available at the Analog Devices website - http://products.analog.com/products/info.asp?product=ADM1031 - -Authors: - Alexandre d'Alton <alex@alexdalton.org> - Jean Delvare <khali@linux-fr.org> - -Description ------------ - -The ADM1030 and ADM1031 are digital temperature sensors and fan controllers. -They sense their own temperature as well as the temperature of up to one -(ADM1030) or two (ADM1031) external diodes. - -All temperature values are given in degrees Celsius. Resolution is 0.5 -degree for the local temperature, 0.125 degree for the remote temperatures. - -Each temperature channel has its own high and low limits, plus a critical -limit. - -The ADM1030 monitors a single fan speed, while the ADM1031 monitors up to -two. Each fan channel has its own low speed limit. diff --git a/Documentation/i2c/chips/adm9240 b/Documentation/i2c/chips/adm9240 deleted file mode 100644 index 35f618f3289..00000000000 --- a/Documentation/i2c/chips/adm9240 +++ /dev/null @@ -1,177 +0,0 @@ -Kernel driver adm9240 -===================== - -Supported chips: - * Analog Devices ADM9240 - Prefix: 'adm9240' - Addresses scanned: I2C 0x2c - 0x2f - Datasheet: Publicly available at the Analog Devices website - http://www.analog.com/UploadedFiles/Data_Sheets/79857778ADM9240_0.pdf - - * Dallas Semiconductor DS1780 - Prefix: 'ds1780' - Addresses scanned: I2C 0x2c - 0x2f - Datasheet: Publicly available at the Dallas Semiconductor (Maxim) website - http://pdfserv.maxim-ic.com/en/ds/DS1780.pdf - - * National Semiconductor LM81 - Prefix: 'lm81' - Addresses scanned: I2C 0x2c - 0x2f - Datasheet: Publicly available at the National Semiconductor website - http://www.national.com/ds.cgi/LM/LM81.pdf - -Authors: - Frodo Looijaard <frodol@dds.nl>, - Philip Edelbrock <phil@netroedge.com>, - Michiel Rook <michiel@grendelproject.nl>, - Grant Coady <gcoady@gmail.com> with guidance - from Jean Delvare <khali@linux-fr.org> - -Interface ---------- -The I2C addresses listed above assume BIOS has not changed the -chip MSB 5-bit address. Each chip reports a unique manufacturer -identification code as well as the chip revision/stepping level. - -Description ------------ -[From ADM9240] The ADM9240 is a complete system hardware monitor for -microprocessor-based systems, providing measurement and limit comparison -of up to four power supplies and two processor core voltages, plus -temperature, two fan speeds and chassis intrusion. Measured values can -be read out via an I2C-compatible serial System Management Bus, and values -for limit comparisons can be programmed in over the same serial bus. The -high speed successive approximation ADC allows frequent sampling of all -analog channels to ensure a fast interrupt response to any out-of-limit -measurement. - -The ADM9240, DS1780 and LM81 are register compatible, the following -details are common to the three chips. Chip differences are described -after this section. - - -Measurements ------------- -The measurement cycle - -The adm9240 driver will take a measurement reading no faster than once -each two seconds. User-space may read sysfs interface faster than the -measurement update rate and will receive cached data from the most -recent measurement. - -ADM9240 has a very fast 320us temperature and voltage measurement cycle -with independent fan speed measurement cycles counting alternating rising -edges of the fan tacho inputs. - -DS1780 measurement cycle is about once per second including fan speed. - -LM81 measurement cycle is about once per 400ms including fan speed. -The LM81 12-bit extended temperature measurement mode is not supported. - -Temperature ------------ -On chip temperature is reported as degrees Celsius as 9-bit signed data -with resolution of 0.5 degrees Celsius. High and low temperature limits -are 8-bit signed data with resolution of one degree Celsius. - -Temperature alarm is asserted once the temperature exceeds the high limit, -and is cleared when the temperature falls below the temp1_max_hyst value. - -Fan Speed ---------- -Two fan tacho inputs are provided, the ADM9240 gates an internal 22.5kHz -clock via a divider to an 8-bit counter. Fan speed (rpm) is calculated by: - -rpm = (22500 * 60) / (count * divider) - -Automatic fan clock divider - - * User sets 0 to fan_min limit - - low speed alarm is disabled - - fan clock divider not changed - - auto fan clock adjuster enabled for valid fan speed reading - - * User sets fan_min limit too low - - low speed alarm is enabled - - fan clock divider set to max - - fan_min set to register value 254 which corresponds - to 664 rpm on adm9240 - - low speed alarm will be asserted if fan speed is - less than minimum measurable speed - - auto fan clock adjuster disabled - - * User sets reasonable fan speed - - low speed alarm is enabled - - fan clock divider set to suit fan_min - - auto fan clock adjuster enabled: adjusts fan_min - - * User sets unreasonably high low fan speed limit - - resolution of the low speed limit may be reduced - - alarm will be asserted - - auto fan clock adjuster enabled: adjusts fan_min - - * fan speed may be displayed as zero until the auto fan clock divider - adjuster brings fan speed clock divider back into chip measurement - range, this will occur within a few measurement cycles. - -Analog Output -------------- -An analog output provides a 0 to 1.25 volt signal intended for an external -fan speed amplifier circuit. The analog output is set to maximum value on -power up or reset. This doesn't do much on the test Intel SE440BX-2. - -Voltage Monitor - -Voltage (IN) measurement is internally scaled: - - nr label nominal maximum resolution - mV mV mV - 0 +2.5V 2500 3320 13.0 - 1 Vccp1 2700 3600 14.1 - 2 +3.3V 3300 4380 17.2 - 3 +5V 5000 6640 26.0 - 4 +12V 12000 15940 62.5 - 5 Vccp2 2700 3600 14.1 - -The reading is an unsigned 8-bit value, nominal voltage measurement is -represented by a reading of 192, being 3/4 of the measurement range. - -An alarm is asserted for any voltage going below or above the set limits. - -The driver reports and accepts voltage limits scaled to the above table. - -VID Monitor ------------ -The chip has five inputs to read the 5-bit VID and reports the mV value -based on detected CPU type. - -Chassis Intrusion ------------------ -An alarm is asserted when the CI pin goes active high. The ADM9240 -Datasheet has an example of an external temperature sensor driving -this pin. On an Intel SE440BX-2 the Chassis Intrusion header is -connected to a normally open switch. - -The ADM9240 provides an internal open drain on this line, and may output -a 20 ms active low pulse to reset an external Chassis Intrusion latch. - -Clear the CI latch by writing value 1 to the sysfs chassis_clear file. - -Alarm flags reported as 16-bit word - - bit label comment - --- ------------- -------------------------- - 0 +2.5 V_Error high or low limit exceeded - 1 VCCP_Error high or low limit exceeded - 2 +3.3 V_Error high or low limit exceeded - 3 +5 V_Error high or low limit exceeded - 4 Temp_Error temperature error - 6 FAN1_Error fan low limit exceeded - 7 FAN2_Error fan low limit exceeded - 8 +12 V_Error high or low limit exceeded - 9 VCCP2_Error high or low limit exceeded - 12 Chassis_Error CI pin went high - -Remaining bits are reserved and thus undefined. It is important to note -that alarm bits may be cleared on read, user-space may latch alarms and -provide the end-user with a method to clear alarm memory. diff --git a/Documentation/i2c/chips/asb100 b/Documentation/i2c/chips/asb100 deleted file mode 100644 index ab7365e139b..00000000000 --- a/Documentation/i2c/chips/asb100 +++ /dev/null @@ -1,72 +0,0 @@ -Kernel driver asb100 -==================== - -Supported Chips: - * Asus ASB100 and ASB100-A "Bach" - Prefix: 'asb100' - Addresses scanned: I2C 0x2d - Datasheet: none released - -Author: Mark M. Hoffman <mhoffman@lightlink.com> - -Description ------------ - -This driver implements support for the Asus ASB100 and ASB100-A "Bach". -These are custom ASICs available only on Asus mainboards. Asus refuses to -supply a datasheet for these chips. Thanks go to many people who helped -investigate their hardware, including: - -Vitaly V. Bursov -Alexander van Kaam (author of MBM for Windows) -Bertrik Sikken - -The ASB100 implements seven voltage sensors, three fan rotation speed -sensors, four temperature sensors, VID lines and alarms. In addition to -these, the ASB100-A also implements a single PWM controller for fans 2 and -3 (i.e. one setting controls both.) If you have a plain ASB100, the PWM -controller will simply not work (or maybe it will for you... it doesn't for -me). - -Temperatures are measured and reported in degrees Celsius. - -Fan speeds are reported in RPM (rotations per minute). An alarm is -triggered if the rotation speed has dropped below a programmable limit. - -Voltage sensors (also known as IN sensors) report values in volts. - -The VID lines encode the core voltage value: the voltage level your -processor should work with. This is hardcoded by the mainboard and/or -processor itself. It is a value in volts. - -Alarms: (TODO question marks indicate may or may not work) - -0x0001 => in0 (?) -0x0002 => in1 (?) -0x0004 => in2 -0x0008 => in3 -0x0010 => temp1 (1) -0x0020 => temp2 -0x0040 => fan1 -0x0080 => fan2 -0x0100 => in4 -0x0200 => in5 (?) (2) -0x0400 => in6 (?) (2) -0x0800 => fan3 -0x1000 => chassis switch -0x2000 => temp3 - -Alarm Notes: - -(1) This alarm will only trigger if the hysteresis value is 127C. -I.e. it behaves the same as w83781d. - -(2) The min and max registers for these values appear to -be read-only or otherwise stuck at 0x00. - -TODO: -* Experiment with fan divisors > 8. -* Experiment with temp. sensor types. -* Are there really 13 voltage inputs? Probably not... -* Cleanups, no doubt... - diff --git a/Documentation/i2c/chips/ds1621 b/Documentation/i2c/chips/ds1621 deleted file mode 100644 index 1fee6f1e6bc..00000000000 --- a/Documentation/i2c/chips/ds1621 +++ /dev/null @@ -1,108 +0,0 @@ -Kernel driver ds1621 -==================== - -Supported chips: - * Dallas Semiconductor DS1621 - Prefix: 'ds1621' - Addresses scanned: I2C 0x48 - 0x4f - Datasheet: Publicly available at the Dallas Semiconductor website - http://www.dalsemi.com/ - * Dallas Semiconductor DS1625 - Prefix: 'ds1621' - Addresses scanned: I2C 0x48 - 0x4f - Datasheet: Publicly available at the Dallas Semiconductor website - http://www.dalsemi.com/ - -Authors: - Christian W. Zuckschwerdt <zany@triq.net> - valuable contributions by Jan M. Sendler <sendler@sendler.de> - ported to 2.6 by Aurelien Jarno <aurelien@aurel32.net> - with the help of Jean Delvare <khali@linux-fr.org> - -Module Parameters ------------------- - -* polarity int - Output's polarity: 0 = active high, 1 = active low - -Description ------------ - -The DS1621 is a (one instance) digital thermometer and thermostat. It has -both high and low temperature limits which can be user defined (i.e. -programmed into non-volatile on-chip registers). Temperature range is -55 -degree Celsius to +125 in 0.5 increments. You may convert this into a -Fahrenheit range of -67 to +257 degrees with 0.9 steps. If polarity -parameter is not provided, original value is used. - -As for the thermostat, behavior can also be programmed using the polarity -toggle. On the one hand ("heater"), the thermostat output of the chip, -Tout, will trigger when the low limit temperature is met or underrun and -stays high until the high limit is met or exceeded. On the other hand -("cooler"), vice versa. That way "heater" equals "active low", whereas -"conditioner" equals "active high". Please note that the DS1621 data sheet -is somewhat misleading in this point since setting the polarity bit does -not simply invert Tout. - -A second thing is that, during extensive testing, Tout showed a tolerance -of up to +/- 0.5 degrees even when compared against precise temperature -readings. Be sure to have a high vs. low temperature limit gap of al least -1.0 degree Celsius to avoid Tout "bouncing", though! - -As for alarms, you can read the alarm status of the DS1621 via the 'alarms' -/sys file interface. The result consists mainly of bit 6 and 5 of the -configuration register of the chip; bit 6 (0x40 or 64) is the high alarm -bit and bit 5 (0x20 or 32) the low one. These bits are set when the high or -low limits are met or exceeded and are reset by the module as soon as the -respective temperature ranges are left. - -The alarm registers are in no way suitable to find out about the actual -status of Tout. They will only tell you about its history, whether or not -any of the limits have ever been met or exceeded since last power-up or -reset. Be aware: When testing, it showed that the status of Tout can change -with neither of the alarms set. - -Temperature conversion of the DS1621 takes up to 1000ms; internal access to -non-volatile registers may last for 10ms or below. - -High Accuracy Temperature Reading ---------------------------------- - -As said before, the temperature issued via the 9-bit i2c-bus data is -somewhat arbitrary. Internally, the temperature conversion is of a -different kind that is explained (not so...) well in the DS1621 data sheet. -To cut the long story short: Inside the DS1621 there are two oscillators, -both of them biassed by a temperature coefficient. - -Higher resolution of the temperature reading can be achieved using the -internal projection, which means taking account of REG_COUNT and REG_SLOPE -(the driver manages them): - -Taken from Dallas Semiconductors App Note 068: 'Increasing Temperature -Resolution on the DS1620' and App Note 105: 'High Resolution Temperature -Measurement with Dallas Direct-to-Digital Temperature Sensors' - -- Read the 9-bit temperature and strip the LSB (Truncate the .5 degs) -- The resulting value is TEMP_READ. -- Then, read REG_COUNT. -- And then, REG_SLOPE. - - TEMP = TEMP_READ - 0.25 + ((REG_SLOPE - REG_COUNT) / REG_SLOPE) - -Note that this is what the DONE bit in the DS1621 configuration register is -good for: Internally, one temperature conversion takes up to 1000ms. Before -that conversion is complete you will not be able to read valid things out -of REG_COUNT and REG_SLOPE. The DONE bit, as you may have guessed by now, -tells you whether the conversion is complete ("done", in plain English) and -thus, whether the values you read are good or not. - -The DS1621 has two modes of operation: "Continuous" conversion, which can -be understood as the default stand-alone mode where the chip gets the -temperature and controls external devices via its Tout pin or tells other -i2c's about it if they care. The other mode is called "1SHOT", that means -that it only figures out about the temperature when it is explicitly told -to do so; this can be seen as power saving mode. - -Now if you want to read REG_COUNT and REG_SLOPE, you have to either stop -the continuous conversions until the contents of these registers are valid, -or, in 1SHOT mode, you have to have one conversion made. diff --git a/Documentation/i2c/chips/fscher b/Documentation/i2c/chips/fscher deleted file mode 100644 index 64031659aff..00000000000 --- a/Documentation/i2c/chips/fscher +++ /dev/null @@ -1,169 +0,0 @@ -Kernel driver fscher -==================== - -Supported chips: - * Fujitsu-Siemens Hermes chip - Prefix: 'fscher' - Addresses scanned: I2C 0x73 - -Authors: - Reinhard Nissl <rnissl@gmx.de> based on work - from Hermann Jung <hej@odn.de>, - Frodo Looijaard <frodol@dds.nl>, - Philip Edelbrock <phil@netroedge.com> - -Description ------------ - -This driver implements support for the Fujitsu-Siemens Hermes chip. It is -described in the 'Register Set Specification BMC Hermes based Systemboard' -from Fujitsu-Siemens. - -The Hermes chip implements a hardware-based system management, e.g. for -controlling fan speed and core voltage. There is also a watchdog counter on -the chip which can trigger an alarm and even shut the system down. - -The chip provides three temperature values (CPU, motherboard and -auxiliary), three voltage values (+12V, +5V and battery) and three |