diff options
author | Linus Torvalds <torvalds@g5.osdl.org> | 2006-01-09 18:41:42 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@g5.osdl.org> | 2006-01-09 18:41:42 -0800 |
commit | 977127174a7dff52d17faeeb4c4949a54221881f (patch) | |
tree | b05b9d18a1256d7ed97bdfb537213a8d70ccca57 | |
parent | 80c0531514516e43ae118ddf38424e06e5c3cb3c (diff) | |
parent | 93b47684f60cf25e8cefe19a21d94aa0257fdf36 (diff) |
Merge master.kernel.org:/pub/scm/linux/kernel/git/gregkh/pci-2.6
68 files changed, 954 insertions, 442 deletions
diff --git a/Documentation/filesystems/sysfs-pci.txt b/Documentation/filesystems/sysfs-pci.txt index 988a62fae11..7ba2baa165f 100644 --- a/Documentation/filesystems/sysfs-pci.txt +++ b/Documentation/filesystems/sysfs-pci.txt @@ -1,4 +1,5 @@ Accessing PCI device resources through sysfs +-------------------------------------------- sysfs, usually mounted at /sys, provides access to PCI resources on platforms that support it. For example, a given bus might look like this: @@ -47,14 +48,21 @@ files, each with their own function. binary - file contains binary data cpumask - file contains a cpumask type -The read only files are informational, writes to them will be ignored. -Writable files can be used to perform actions on the device (e.g. changing -config space, detaching a device). mmapable files are available via an -mmap of the file at offset 0 and can be used to do actual device programming -from userspace. Note that some platforms don't support mmapping of certain -resources, so be sure to check the return value from any attempted mmap. +The read only files are informational, writes to them will be ignored, with +the exception of the 'rom' file. Writable files can be used to perform +actions on the device (e.g. changing config space, detaching a device). +mmapable files are available via an mmap of the file at offset 0 and can be +used to do actual device programming from userspace. Note that some platforms +don't support mmapping of certain resources, so be sure to check the return +value from any attempted mmap. + +The 'rom' file is special in that it provides read-only access to the device's +ROM file, if available. It's disabled by default, however, so applications +should write the string "1" to the file to enable it before attempting a read +call, and disable it following the access by writing "0" to the file. Accessing legacy resources through sysfs +---------------------------------------- Legacy I/O port and ISA memory resources are also provided in sysfs if the underlying platform supports them. They're located in the PCI class heirarchy, @@ -75,6 +83,7 @@ simply dereference the returned pointer (after checking for errors of course) to access legacy memory space. Supporting PCI access on new platforms +-------------------------------------- In order to support PCI resource mapping as described above, Linux platform code must define HAVE_PCI_MMAP and provide a pci_mmap_page_range function. diff --git a/Documentation/pci-error-recovery.txt b/Documentation/pci-error-recovery.txt new file mode 100644 index 00000000000..d089967e494 --- /dev/null +++ b/Documentation/pci-error-recovery.txt @@ -0,0 +1,246 @@ + + PCI Error Recovery + ------------------ + May 31, 2005 + + Current document maintainer: + Linas Vepstas <linas@austin.ibm.com> + + +Some PCI bus controllers are able to detect certain "hard" PCI errors +on the bus, such as parity errors on the data and address busses, as +well as SERR and PERR errors. These chipsets are then able to disable +I/O to/from the affected device, so that, for example, a bad DMA +address doesn't end up corrupting system memory. These same chipsets +are also able to reset the affected PCI device, and return it to +working condition. This document describes a generic API form +performing error recovery. + +The core idea is that after a PCI error has been detected, there must +be a way for the kernel to coordinate with all affected device drivers +so that the pci card can be made operational again, possibly after +performing a full electrical #RST of the PCI card. The API below +provides a generic API for device drivers to be notified of PCI +errors, and to be notified of, and respond to, a reset sequence. + +Preliminary sketch of API, cut-n-pasted-n-modified email from +Ben Herrenschmidt, circa 5 april 2005 + +The error recovery API support is exposed to the driver in the form of +a structure of function pointers pointed to by a new field in struct +pci_driver. The absence of this pointer in pci_driver denotes an +"non-aware" driver, behaviour on these is platform dependant. +Platforms like ppc64 can try to simulate pci hotplug remove/add. + +The definition of "pci_error_token" is not covered here. It is based on +Seto's work on the synchronous error detection. We still need to define +functions for extracting infos out of an opaque error token. This is +separate from this API. + +This structure has the form: + +struct pci_error_handlers +{ + int (*error_detected)(struct pci_dev *dev, pci_error_token error); + int (*mmio_enabled)(struct pci_dev *dev); + int (*resume)(struct pci_dev *dev); + int (*link_reset)(struct pci_dev *dev); + int (*slot_reset)(struct pci_dev *dev); +}; + +A driver doesn't have to implement all of these callbacks. The +only mandatory one is error_detected(). If a callback is not +implemented, the corresponding feature is considered unsupported. +For example, if mmio_enabled() and resume() aren't there, then the +driver is assumed as not doing any direct recovery and requires +a reset. If link_reset() is not implemented, the card is assumed as +not caring about link resets, in which case, if recover is supported, +the core can try recover (but not slot_reset() unless it really did +reset the slot). If slot_reset() is not supported, link_reset() can +be called instead on a slot reset. + +At first, the call will always be : + + 1) error_detected() + + Error detected. This is sent once after an error has been detected. At +this point, the device might not be accessible anymore depending on the +platform (the slot will be isolated on ppc64). The driver may already +have "noticed" the error because of a failing IO, but this is the proper +"synchronisation point", that is, it gives a chance to the driver to +cleanup, waiting for pending stuff (timers, whatever, etc...) to +complete; it can take semaphores, schedule, etc... everything but touch +the device. Within this function and after it returns, the driver +shouldn't do any new IOs. Called in task context. This is sort of a +"quiesce" point. See note about interrupts at the end of this doc. + + Result codes: + - PCIERR_RESULT_CAN_RECOVER: + Driever returns this if it thinks it might be able to recover + the HW by just banging IOs or if it wants to be given + a chance to extract some diagnostic informations (see + below). + - PCIERR_RESULT_NEED_RESET: + Driver returns this if it thinks it can't recover unless the + slot is reset. + - PCIERR_RESULT_DISCONNECT: + Return this if driver thinks it won't recover at all, + (this will detach the driver ? or just leave it + dangling ? to be decided) + +So at this point, we have called error_detected() for all drivers +on the segment that had the error. On ppc64, the slot is isolated. What +happens now typically depends on the result from the drivers. If all +drivers on the segment/slot return PCIERR_RESULT_CAN_RECOVER, we would +re-enable IOs on the slot (or do nothing special if the platform doesn't +isolate slots) and call 2). If not and we can reset slots, we go to 4), +if neither, we have a dead slot. If it's an hotplug slot, we might +"simulate" reset by triggering HW unplug/replug though. + +>>> Current ppc64 implementation assumes that a device driver will +>>> *not* schedule or semaphore in this routine; the current ppc64 +>>> implementation uses one kernel thread to notify all devices; +>>> thus, of one device sleeps/schedules, all devices are affected. +>>> Doing better requires complex multi-threaded logic in the error +>>> recovery implementation (e.g. waiting for all notification threads +>>> to "join" before proceeding with recovery.) This seems excessively +>>> complex and not worth implementing. + +>>> The current ppc64 implementation doesn't much care if the device +>>> attempts i/o at this point, or not. I/O's will fail, returning +>>> a value of 0xff on read, and writes will be dropped. If the device +>>> driver attempts more than 10K I/O's to a frozen adapter, it will +>>> assume that the device driver has gone into an infinite loop, and +>>> it will panic the the kernel. + + 2) mmio_enabled() + + This is the "early recovery" call. IOs are allowed again, but DMA is +not (hrm... to be discussed, I prefer not), with some restrictions. This +is NOT a callback for the driver to start operations again, only to +peek/poke at the device, extract diagnostic information, if any, and +eventually do things like trigger a device local reset or some such, +but not restart operations. This is sent if all drivers on a segment +agree that they can try to recover and no automatic link reset was +performed by the HW. If the platform can't just re-enable IOs without +a slot reset or a link reset, it doesn't call this callback and goes +directly to 3) or 4). All IOs should be done _synchronously_ from +within this callback, errors triggered by them will be returned via +the normal pci_check_whatever() api, no new error_detected() callback +will be issued due to an error happening here. However, such an error +might cause IOs to be re-blocked for the whole segment, and thus +invalidate the recovery that other devices on the same segment might +have done, forcing the whole segment into one of the next states, +that is link reset or slot reset. + + Result codes: + - PCIERR_RESULT_RECOVERED + Driver returns this if it thinks the device is fully + functionnal and thinks it is ready to start + normal driver operations again. There is no + guarantee that the driver will actually be + allowed to proceed, as another driver on the + same segment might have failed and thus triggered a + slot reset on platforms that support it. + + - PCIERR_RESULT_NEED_RESET + Driver returns this if it thinks the device is not + recoverable in it's current state and it needs a slot + reset to proceed. + + - PCIERR_RESULT_DISCONNECT + Same as above. Total failure, no recovery even after + reset driver dead. (To be defined more precisely) + +>>> The current ppc64 implementation does not implement this callback. + + 3) link_reset() + + This is called after the link has been reset. This is typically +a PCI Express specific state at this point and is done whenever a +non-fatal error has been detected that can be "solved" by resetting +the link. This call informs the driver of the reset and the driver +should check if the device appears to be in working condition. +This function acts a bit like 2) mmio_enabled(), in that the driver +is not supposed to restart normal driver I/O operations right away. +Instead, it should just "probe" the device to check it's recoverability +status. If all is right, then the core will call resume() once all +drivers have ack'd link_reset(). + + Result codes: + (identical to mmio_enabled) + +>>> The current ppc64 implementation does not implement this callback. + + 4) slot_reset() + + This is called after the slot has been soft or hard reset by the +platform. A soft reset consists of asserting the adapter #RST line +and then restoring the PCI BARs and PCI configuration header. If the +platform supports PCI hotplug, then it might instead perform a hard +reset by toggling power on the slot off/on. This call gives drivers +the chance to re-initialize the hardware (re-download firmware, etc.), +but drivers shouldn't restart normal I/O processing operations at +this point. (See note about interrupts; interrupts aren't guaranteed +to be delivered until the resume() callback has been called). If all +device drivers report success on this callback, the patform will call +resume() to complete the error handling and let the driver restart +normal I/O processing. + +A driver can still return a critical failure for this function if +it can't get the device operational after reset. If the platform +previously tried a soft reset, it migh now try a hard reset (power +cycle) and then call slot_reset() again. It the device still can't +be recovered, there is nothing more that can be done; the platform +will typically report a "permanent failure" in such a case. The +device will be considered "dead" in this case. + + Result codes: + - PCIERR_RESULT_DISCONNECT + Same as above. + +>>> The current ppc64 implementation does not try a power-cycle reset +>>> if the driver returned PCIERR_RESULT_DISCONNECT. However, it should. + + 5) resume() + + This is called if all drivers on the segment have returned +PCIERR_RESULT_RECOVERED from one of the 3 prevous callbacks. +That basically tells the driver to restart activity, tht everything +is back and running. No result code is taken into account here. If +a new error happens, it will restart a new error handling process. + +That's it. I think this covers all the possibilities. The way those +callbacks are called is platform policy. A platform with no slot reset +capability for example may want to just "ignore" drivers that can't +recover (disconnect them) and try to let other cards on the same segment +recover. Keep in mind that in most real life cases, though, there will +be only one driver per segment. + +Now, there is a note about interrupts. If you get an interrupt and your +device is dead or has been isolated, there is a problem :) + +After much thinking, I decided to leave that to the platform. That is, +the recovery API only precies that: + + - There is no guarantee that interrupt delivery can proceed from any +device on the segment starting from the error detection and until the +restart callback is sent, at which point interrupts are expected to be +fully operational. + + - There is no guarantee that interrupt delivery is stopped, that is, ad +river that gets an interrupts after detecting an error, or that detects +and error within the interrupt handler such that it prevents proper +ack'ing of the interrupt (and thus removal of the source) should just +return IRQ_NOTHANDLED. It's up to the platform to deal with taht +condition, typically by masking the irq source during the duration of +the error handling. It is expected that the platform "knows" which +interrupts are routed to error-management capable slots and can deal +with temporarily disabling that irq number during error processing (this +isn't terribly complex). That means some IRQ latency for other devices +sharing the interrupt, but there is simply no other way. High end +platforms aren't supposed to share interrupts between many devices +anyway :) + + +Revised: 31 May 2005 Linas Vepstas <linas@austin.ibm.com> diff --git a/MAINTAINERS b/MAINTAINERS index 9b788d77947..07420161e66 100644 --- a/MAINTAINERS +++ b/MAINTAINERS @@ -1987,6 +1987,13 @@ M: hch@infradead.org L: linux-abi-devel@lists.sourceforge.net S: Maintained +PCI ERROR RECOVERY +P: Linas Vepstas +M: linas@austin.ibm.com +L: linux-kernel@vger.kernel.org +L: linux-pci@atrey.karlin.mff.cuni.cz +S: Supported + PCI SOUND DRIVERS (ES1370, ES1371 and SONICVIBES) P: Thomas Sailer M: sailer@ife.ee.ethz.ch diff --git a/arch/alpha/kernel/sys_alcor.c b/arch/alpha/kernel/sys_alcor.c index 145dcde143a..d7f0e97fe56 100644 --- a/arch/alpha/kernel/sys_alcor.c +++ b/arch/alpha/kernel/sys_alcor.c @@ -254,7 +254,7 @@ alcor_init_pci(void) * motherboard, by looking for a 21040 TULIP in slot 6, which is * built into XLT and BRET/MAVERICK, but not available on ALCOR. */ - dev = pci_find_device(PCI_VENDOR_ID_DEC, + dev = pci_get_device(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP, NULL); if (dev && dev->devfn == PCI_DEVFN(6,0)) { @@ -262,6 +262,7 @@ alcor_init_pci(void) printk(KERN_INFO "%s: Detected AS500 or XLT motherboard.\n", __FUNCTION__); } + pci_dev_put(dev); } diff --git a/arch/alpha/kernel/sys_sio.c b/arch/alpha/kernel/sys_sio.c index 47df48a6ddb..131a2d9f79d 100644 --- a/arch/alpha/kernel/sys_sio.c +++ b/arch/alpha/kernel/sys_sio.c @@ -105,7 +105,7 @@ sio_collect_irq_levels(void) struct pci_dev *dev = NULL; /* Iterate through the devices, collecting IRQ levels. */ - while ((dev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) { + for_each_pci_dev(dev) { if ((dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) && (dev->class >> 8 != PCI_CLASS_BRIDGE_PCMCIA)) continue; @@ -229,8 +229,8 @@ alphabook1_init_pci(void) */ dev = NULL; - while ((dev = pci_find_device(PCI_VENDOR_ID_NCR, PCI_ANY_ID, dev))) { - if (dev->device == PCI_DEVICE_ID_NCR_53C810 + while ((dev = pci_get_device(PCI_VENDOR_ID_NCR, PCI_ANY_ID, dev))) { + if (dev->device == PCI_DEVICE_ID_NCR_53C810 || dev->device == PCI_DEVICE_ID_NCR_53C815 || dev->device == PCI_DEVICE_ID_NCR_53C820 || dev->device == PCI_DEVICE_ID_NCR_53C825) { diff --git a/arch/frv/mb93090-mb00/pci-frv.c b/arch/frv/mb93090-mb00/pci-frv.c index 83e5489cf03..0a26bf6f1cd 100644 --- a/arch/frv/mb93090-mb00/pci-frv.c +++ b/arch/frv/mb93090-mb00/pci-frv.c @@ -142,9 +142,7 @@ static void __init pcibios_allocate_resources(int pass) u16 command; struct resource *r, *pr; - while (dev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, dev), - dev != NULL - ) { + for_each_pci_dev(dev) { pci_read_config_word(dev, PCI_COMMAND, &command); for(idx = 0; idx < 6; idx++) { r = &dev->resource[idx]; @@ -188,9 +186,7 @@ static void __init pcibios_assign_resources(void) int idx; struct resource *r; - while (dev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, dev), - dev != NULL - ) { + for_each_pci_dev(dev) { int class = dev->class >> 8; /* Don't touch classless devices and host bridges */ diff --git a/arch/frv/mb93090-mb00/pci-irq.c b/arch/frv/mb93090-mb00/pci-irq.c index 24622d89b1c..c4a1144c98b 100644 --- a/arch/frv/mb93090-mb00/pci-irq.c +++ b/arch/frv/mb93090-mb00/pci-irq.c @@ -48,9 +48,7 @@ void __init pcibios_fixup_irqs(void) struct pci_dev *dev = NULL; uint8_t line, pin; - while (dev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, dev), - dev != NULL - ) { + for_each_pci_dev(dev) { pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); if (pin) { dev->irq = pci_bus0_irq_routing[PCI_SLOT(dev->devfn)][pin - 1]; diff --git a/arch/i386/kernel/scx200.c b/arch/i386/kernel/scx200.c index 9c968ae67c4..321f5fd26e7 100644 --- a/arch/i386/kernel/scx200.c +++ b/arch/i386/kernel/scx200.c @@ -143,7 +143,7 @@ static int __init scx200_init(void) { printk(KERN_INFO NAME ": NatSemi SCx200 Driver\n"); - return pci_module_init(&scx200_pci_driver); + return pci_register_driver(&scx200_pci_driver); } static void __exit scx200_cleanup(void) diff --git a/arch/i386/pci/acpi.c b/arch/i386/pci/acpi.c index 4c4522b43be..b33aea845f5 100644 --- a/arch/i386/pci/acpi.c +++ b/arch/i386/pci/acpi.c @@ -53,7 +53,7 @@ static int __init pci_acpi_init(void) * don't use pci_enable_device(). */ printk(KERN_INFO "PCI: Routing PCI interrupts for all devices because \"pci=routeirq\" specified\n"); - while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) + for_each_pci_dev(dev) acpi_pci_irq_enable(dev); } else printk(KERN_INFO "PCI: If a device doesn't work, try \"pci=routeirq\". If it helps, post a report\n"); diff --git a/arch/i386/pci/fixup.c b/arch/i386/pci/fixup.c index eeb1b1f2d54..65f67070db6 100644 --- a/arch/i386/pci/fixup.c +++ b/arch/i386/pci/fixup.c @@ -413,6 +413,13 @@ static struct dmi_system_id __devinitdata toshiba_ohci1394_dmi_table[] = { DMI_MATCH(DMI_PRODUCT_VERSION, "PSM4"), }, }, + { |