diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2014-04-11 16:45:59 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2014-04-11 16:45:59 -0700 |
commit | 3e8072d48b2dd0898e99698018b2045f8cd49965 (patch) | |
tree | 5710e46918d4e358f22fb6038ad81d1abdd3f1f8 | |
parent | a63b747b41d6f6c9116fb2260381a3c96fe5dc02 (diff) | |
parent | edd10d33283899fb15d99a290dcc9ceb3604ca78 (diff) |
Merge git://git.infradead.org/users/willy/linux-nvme
Pull NVMe driver updates from Matthew Wilcox:
"Various updates to the NVMe driver. The most user-visible change is
that drive hotplugging now works and CPU hotplug while an NVMe drive
is installed should also work better"
* git://git.infradead.org/users/willy/linux-nvme:
NVMe: Retry failed commands with non-fatal errors
NVMe: Add getgeo to block ops
NVMe: Start-stop nvme_thread during device add-remove.
NVMe: Make I/O timeout a module parameter
NVMe: CPU hot plug notification
NVMe: per-cpu io queues
NVMe: Replace DEFINE_PCI_DEVICE_TABLE
NVMe: Fix divide-by-zero in nvme_trans_io_get_num_cmds
NVMe: IOCTL path RCU protect queue access
NVMe: RCU protected access to io queues
NVMe: Initialize device reference count earlier
NVMe: Add CONFIG_PM_SLEEP to suspend/resume functions
-rw-r--r-- | drivers/block/nvme-core.c | 684 | ||||
-rw-r--r-- | drivers/block/nvme-scsi.c | 43 | ||||
-rw-r--r-- | include/linux/nvme.h | 21 | ||||
-rw-r--r-- | include/uapi/linux/nvme.h | 1 |
4 files changed, 504 insertions, 245 deletions
diff --git a/drivers/block/nvme-core.c b/drivers/block/nvme-core.c index da085ff10d2..7c64fa756cc 100644 --- a/drivers/block/nvme-core.c +++ b/drivers/block/nvme-core.c @@ -1,6 +1,6 @@ /* * NVM Express device driver - * Copyright (c) 2011, Intel Corporation. + * Copyright (c) 2011-2014, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, @@ -20,10 +20,12 @@ #include <linux/bio.h> #include <linux/bitops.h> #include <linux/blkdev.h> +#include <linux/cpu.h> #include <linux/delay.h> #include <linux/errno.h> #include <linux/fs.h> #include <linux/genhd.h> +#include <linux/hdreg.h> #include <linux/idr.h> #include <linux/init.h> #include <linux/interrupt.h> @@ -35,6 +37,7 @@ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/pci.h> +#include <linux/percpu.h> #include <linux/poison.h> #include <linux/ptrace.h> #include <linux/sched.h> @@ -47,6 +50,11 @@ #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) #define ADMIN_TIMEOUT (60 * HZ) +#define IOD_TIMEOUT (4 * NVME_IO_TIMEOUT) + +unsigned char io_timeout = 30; +module_param(io_timeout, byte, 0644); +MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); static int nvme_major; module_param(nvme_major, int, 0); @@ -58,6 +66,7 @@ static DEFINE_SPINLOCK(dev_list_lock); static LIST_HEAD(dev_list); static struct task_struct *nvme_thread; static struct workqueue_struct *nvme_workq; +static wait_queue_head_t nvme_kthread_wait; static void nvme_reset_failed_dev(struct work_struct *ws); @@ -74,6 +83,7 @@ struct async_cmd_info { * commands and one for I/O commands). */ struct nvme_queue { + struct rcu_head r_head; struct device *q_dmadev; struct nvme_dev *dev; char irqname[24]; /* nvme4294967295-65535\0 */ @@ -85,6 +95,7 @@ struct nvme_queue { wait_queue_head_t sq_full; wait_queue_t sq_cong_wait; struct bio_list sq_cong; + struct list_head iod_bio; u32 __iomem *q_db; u16 q_depth; u16 cq_vector; @@ -95,6 +106,7 @@ struct nvme_queue { u8 cq_phase; u8 cqe_seen; u8 q_suspended; + cpumask_var_t cpu_mask; struct async_cmd_info cmdinfo; unsigned long cmdid_data[]; }; @@ -118,7 +130,7 @@ static inline void _nvme_check_size(void) BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); } -typedef void (*nvme_completion_fn)(struct nvme_dev *, void *, +typedef void (*nvme_completion_fn)(struct nvme_queue *, void *, struct nvme_completion *); struct nvme_cmd_info { @@ -190,7 +202,7 @@ static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx, #define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE) #define CMD_CTX_ABORT (0x31C + CMD_CTX_BASE) -static void special_completion(struct nvme_dev *dev, void *ctx, +static void special_completion(struct nvme_queue *nvmeq, void *ctx, struct nvme_completion *cqe) { if (ctx == CMD_CTX_CANCELLED) @@ -198,26 +210,26 @@ static void special_completion(struct nvme_dev *dev, void *ctx, if (ctx == CMD_CTX_FLUSH) return; if (ctx == CMD_CTX_ABORT) { - ++dev->abort_limit; + ++nvmeq->dev->abort_limit; return; } if (ctx == CMD_CTX_COMPLETED) { - dev_warn(&dev->pci_dev->dev, + dev_warn(nvmeq->q_dmadev, "completed id %d twice on queue %d\n", cqe->command_id, le16_to_cpup(&cqe->sq_id)); return; } if (ctx == CMD_CTX_INVALID) { - dev_warn(&dev->pci_dev->dev, + dev_warn(nvmeq->q_dmadev, "invalid id %d completed on queue %d\n", cqe->command_id, le16_to_cpup(&cqe->sq_id)); return; } - dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx); + dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx); } -static void async_completion(struct nvme_dev *dev, void *ctx, +static void async_completion(struct nvme_queue *nvmeq, void *ctx, struct nvme_completion *cqe) { struct async_cmd_info *cmdinfo = ctx; @@ -262,14 +274,34 @@ static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid, return ctx; } -struct nvme_queue *get_nvmeq(struct nvme_dev *dev) +static struct nvme_queue *raw_nvmeq(struct nvme_dev *dev, int qid) +{ + return rcu_dereference_raw(dev->queues[qid]); +} + +static struct nvme_queue *get_nvmeq(struct nvme_dev *dev) __acquires(RCU) +{ + unsigned queue_id = get_cpu_var(*dev->io_queue); + rcu_read_lock(); + return rcu_dereference(dev->queues[queue_id]); +} + +static void put_nvmeq(struct nvme_queue *nvmeq) __releases(RCU) { - return dev->queues[get_cpu() + 1]; + rcu_read_unlock(); + put_cpu_var(nvmeq->dev->io_queue); } -void put_nvmeq(struct nvme_queue *nvmeq) +static struct nvme_queue *lock_nvmeq(struct nvme_dev *dev, int q_idx) + __acquires(RCU) { - put_cpu(); + rcu_read_lock(); + return rcu_dereference(dev->queues[q_idx]); +} + +static void unlock_nvmeq(struct nvme_queue *nvmeq) __releases(RCU) +{ + rcu_read_unlock(); } /** @@ -284,6 +316,10 @@ static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd) unsigned long flags; u16 tail; spin_lock_irqsave(&nvmeq->q_lock, flags); + if (nvmeq->q_suspended) { + spin_unlock_irqrestore(&nvmeq->q_lock, flags); + return -EBUSY; + } tail = nvmeq->sq_tail; memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); if (++tail == nvmeq->q_depth) @@ -323,6 +359,7 @@ nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp) iod->npages = -1; iod->length = nbytes; iod->nents = 0; + iod->first_dma = 0ULL; iod->start_time = jiffies; } @@ -371,19 +408,31 @@ static void nvme_end_io_acct(struct bio *bio, unsigned long start_time) part_stat_unlock(); } -static void bio_completion(struct nvme_dev *dev, void *ctx, +static void bio_completion(struct nvme_queue *nvmeq, void *ctx, struct nvme_completion *cqe) { struct nvme_iod *iod = ctx; struct bio *bio = iod->private; u16 status = le16_to_cpup(&cqe->status) >> 1; + if (unlikely(status)) { + if (!(status & NVME_SC_DNR || + bio->bi_rw & REQ_FAILFAST_MASK) && + (jiffies - iod->start_time) < IOD_TIMEOUT) { + if (!waitqueue_active(&nvmeq->sq_full)) + add_wait_queue(&nvmeq->sq_full, + &nvmeq->sq_cong_wait); + list_add_tail(&iod->node, &nvmeq->iod_bio); + wake_up(&nvmeq->sq_full); + return; + } + } if (iod->nents) { - dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents, + dma_unmap_sg(nvmeq->q_dmadev, iod->sg, iod->nents, bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); nvme_end_io_acct(bio, iod->start_time); } - nvme_free_iod(dev, iod); + nvme_free_iod(nvmeq->dev, iod); if (status) bio_endio(bio, -EIO); else @@ -391,8 +440,8 @@ static void bio_completion(struct nvme_dev *dev, void *ctx, } /* length is in bytes. gfp flags indicates whether we may sleep. */ -int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd, - struct nvme_iod *iod, int total_len, gfp_t gfp) +int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len, + gfp_t gfp) { struct dma_pool *pool; int length = total_len; @@ -405,7 +454,6 @@ int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd, dma_addr_t prp_dma; int nprps, i; - cmd->prp1 = cpu_to_le64(dma_addr); length -= (PAGE_SIZE - offset); if (length <= 0) return total_len; @@ -420,7 +468,7 @@ int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd, } if (length <= PAGE_SIZE) { - cmd->prp2 = cpu_to_le64(dma_addr); + iod->first_dma = dma_addr; return total_len; } @@ -435,13 +483,12 @@ int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd, prp_list = dma_pool_alloc(pool, gfp, &prp_dma); if (!prp_list) { - cmd->prp2 = cpu_to_le64(dma_addr); + iod->first_dma = dma_addr; iod->npages = -1; return (total_len - length) + PAGE_SIZE; } list[0] = prp_list; iod->first_dma = prp_dma; - cmd->prp2 = cpu_to_le64(prp_dma); i = 0; for (;;) { if (i == PAGE_SIZE / 8) { @@ -480,10 +527,11 @@ static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq, bio_chain(split, bio); - if (bio_list_empty(&nvmeq->sq_cong)) + if (!waitqueue_active(&nvmeq->sq_full)) add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait); bio_list_add(&nvmeq->sq_cong, split); bio_list_add(&nvmeq->sq_cong, bio); + wake_up(&nvmeq->sq_full); return 0; } @@ -536,25 +584,13 @@ static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod, return length; } -/* - * We reuse the small pool to allocate the 16-byte range here as it is not - * worth having a special pool for these or additional cases to handle freeing - * the iod. - */ static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns, struct bio *bio, struct nvme_iod *iod, int cmdid) { - struct nvme_dsm_range *range; + struct nvme_dsm_range *range = + (struct nvme_dsm_range *)iod_list(iod)[0]; struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail]; - range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC, - &iod->first_dma); - if (!range) - return -ENOMEM; - - iod_list(iod)[0] = (__le64 *)range; - iod->npages = 0; - range->cattr = cpu_to_le32(0); range->nlb = cpu_to_le32(bio->bi_iter.bi_size >> ns->lba_shift); range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_iter.bi_sector)); @@ -601,44 +637,22 @@ int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns) return nvme_submit_flush(nvmeq, ns, cmdid); } -/* - * Called with local interrupts disabled and the q_lock held. May not sleep. - */ -static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns, - struct bio *bio) +static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod) { + struct bio *bio = iod->private; + struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data; struct nvme_command *cmnd; - struct nvme_iod *iod; - enum dma_data_direction dma_dir; - int cmdid, length, result; + int cmdid; u16 control; u32 dsmgmt; - int psegs = bio_phys_segments(ns->queue, bio); - - if ((bio->bi_rw & REQ_FLUSH) && psegs) { - result = nvme_submit_flush_data(nvmeq, ns); - if (result) - return result; - } - result = -ENOMEM; - iod = nvme_alloc_iod(psegs, bio->bi_iter.bi_size, GFP_ATOMIC); - if (!iod) - goto nomem; - iod->private = bio; - - result = -EBUSY; cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT); if (unlikely(cmdid < 0)) - goto free_iod; + return cmdid; - if (bio->bi_rw & REQ_DISCARD) { - result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid); - if (result) - goto free_cmdid; - return result; - } - if ((bio->bi_rw & REQ_FLUSH) && !psegs) + if (bio->bi_rw & REQ_DISCARD) + return nvme_submit_discard(nvmeq, ns, bio, iod, cmdid); + if ((bio->bi_rw & REQ_FLUSH) && !iod->nents) return nvme_submit_flush(nvmeq, ns, cmdid); control = 0; @@ -652,42 +666,85 @@ static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns, dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail]; - memset(cmnd, 0, sizeof(*cmnd)); - if (bio_data_dir(bio)) { - cmnd->rw.opcode = nvme_cmd_write; - dma_dir = DMA_TO_DEVICE; - } else { - cmnd->rw.opcode = nvme_cmd_read; - dma_dir = DMA_FROM_DEVICE; - } - - result = nvme_map_bio(nvmeq, iod, bio, dma_dir, psegs); - if (result <= 0) - goto free_cmdid; - length = result; + cmnd->rw.opcode = bio_data_dir(bio) ? nvme_cmd_write : nvme_cmd_read; cmnd->rw.command_id = cmdid; cmnd->rw.nsid = cpu_to_le32(ns->ns_id); - length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length, - GFP_ATOMIC); + cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); + cmnd->rw.prp2 = cpu_to_le64(iod->first_dma); cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_iter.bi_sector)); - cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1); + cmnd->rw.length = + cpu_to_le16((bio->bi_iter.bi_size >> ns->lba_shift) - 1); cmnd->rw.control = cpu_to_le16(control); cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); - nvme_start_io_acct(bio); if (++nvmeq->sq_tail == nvmeq->q_depth) nvmeq->sq_tail = 0; writel(nvmeq->sq_tail, nvmeq->q_db); return 0; +} + +/* + * Called with local interrupts disabled and the q_lock held. May not sleep. + */ +static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns, + struct bio *bio) +{ + struct nvme_iod *iod; + int psegs = bio_phys_segments(ns->queue, bio); + int result; + + if ((bio->bi_rw & REQ_FLUSH) && psegs) { + result = nvme_submit_flush_data(nvmeq, ns); + if (result) + return result; + } + + iod = nvme_alloc_iod(psegs, bio->bi_iter.bi_size, GFP_ATOMIC); + if (!iod) + return -ENOMEM; + + iod->private = bio; + if (bio->bi_rw & REQ_DISCARD) { + void *range; + /* + * We reuse the small pool to allocate the 16-byte range here + * as it is not worth having a special pool for these or + * additional cases to handle freeing the iod. + */ + range = dma_pool_alloc(nvmeq->dev->prp_small_pool, + GFP_ATOMIC, + &iod->first_dma); + if (!range) { + result = -ENOMEM; + goto free_iod; + } + iod_list(iod)[0] = (__le64 *)range; + iod->npages = 0; + } else if (psegs) { + result = nvme_map_bio(nvmeq, iod, bio, + bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE, + psegs); + if (result <= 0) + goto free_iod; + if (nvme_setup_prps(nvmeq->dev, iod, result, GFP_ATOMIC) != + result) { + result = -ENOMEM; + goto free_iod; + } + nvme_start_io_acct(bio); + } + if (unlikely(nvme_submit_iod(nvmeq, iod))) { + if (!waitqueue_active(&nvmeq->sq_full)) + add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait); + list_add_tail(&iod->node, &nvmeq->iod_bio); + } + return 0; - free_cmdid: - free_cmdid(nvmeq, cmdid, NULL); free_iod: nvme_free_iod(nvmeq->dev, iod); - nomem: return result; } @@ -711,7 +768,7 @@ static int nvme_process_cq(struct nvme_queue *nvmeq) } ctx = free_cmdid(nvmeq, cqe.command_id, &fn); - fn(nvmeq->dev, ctx, &cqe); + fn(nvmeq, ctx, &cqe); } /* If the controller ignores the cq head doorbell and continuously @@ -747,7 +804,7 @@ static void nvme_make_request(struct request_queue *q, struct bio *bio) if (!nvmeq->q_suspended && bio_list_empty(&nvmeq->sq_cong)) result = nvme_submit_bio_queue(nvmeq, ns, bio); if (unlikely(result)) { - if (bio_list_empty(&nvmeq->sq_cong)) + if (!waitqueue_active(&nvmeq->sq_full)) add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait); bio_list_add(&nvmeq->sq_cong, bio); } @@ -791,7 +848,7 @@ struct sync_cmd_info { int status; }; -static void sync_completion(struct nvme_dev *dev, void *ctx, +static void sync_completion(struct nvme_queue *nvmeq, void *ctx, struct nvme_completion *cqe) { struct sync_cmd_info *cmdinfo = ctx; @@ -804,27 +861,46 @@ static void sync_completion(struct nvme_dev *dev, void *ctx, * Returns 0 on success. If the result is negative, it's a Linux error code; * if the result is positive, it's an NVM Express status code */ -int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd, +static int nvme_submit_sync_cmd(struct nvme_dev *dev, int q_idx, + struct nvme_command *cmd, u32 *result, unsigned timeout) { - int cmdid; + int cmdid, ret; struct sync_cmd_info cmdinfo; + struct nvme_queue *nvmeq; + + nvmeq = lock_nvmeq(dev, q_idx); + if (!nvmeq) { + unlock_nvmeq(nvmeq); + return -ENODEV; + } cmdinfo.task = current; cmdinfo.status = -EINTR; - cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion, - timeout); - if (cmdid < 0) + cmdid = alloc_cmdid(nvmeq, &cmdinfo, sync_completion, timeout); + if (cmdid < 0) { + unlock_nvmeq(nvmeq); return cmdid; + } cmd->common.command_id = cmdid; set_current_state(TASK_KILLABLE); - nvme_submit_cmd(nvmeq, cmd); + ret = nvme_submit_cmd(nvmeq, cmd); + if (ret) { + free_cmdid(nvmeq, cmdid, NULL); + unlock_nvmeq(nvmeq); + set_current_state(TASK_RUNNING); + return ret; + } + unlock_nvmeq(nvmeq); schedule_timeout(timeout); if (cmdinfo.status == -EINTR) { - nvme_abort_command(nvmeq, cmdid); + nvmeq = lock_nvmeq(dev, q_idx); + if (nvmeq) + nvme_abort_command(nvmeq, cmdid); + unlock_nvmeq(nvmeq); return -EINTR; } @@ -845,20 +921,26 @@ static int nvme_submit_async_cmd(struct nvme_queue *nvmeq, return cmdid; cmdinfo->status = -EINTR; cmd->common.command_id = cmdid; - nvme_submit_cmd(nvmeq, cmd); - return 0; + return nvme_submit_cmd(nvmeq, cmd); } int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd, u32 *result) { - return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT); + return nvme_submit_sync_cmd(dev, 0, cmd, result, ADMIN_TIMEOUT); +} + +int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_command *cmd, + u32 *result) +{ + return nvme_submit_sync_cmd(dev, smp_processor_id() + 1, cmd, result, + NVME_IO_TIMEOUT); } static int nvme_submit_admin_cmd_async(struct nvme_dev *dev, struct nvme_command *cmd, struct async_cmd_info *cmdinfo) { - return nvme_submit_async_cmd(dev->queues[0], cmd, cmdinfo, + return nvme_submit_async_cmd(raw_nvmeq(dev, 0), cmd, cmdinfo, ADMIN_TIMEOUT); } @@ -985,6 +1067,7 @@ static void nvme_abort_cmd(int cmdid, struct nvme_queue *nvmeq) struct nvme_command cmd; struct nvme_dev *dev = nvmeq->dev; struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); + struct nvme_queue *adminq; if (!nvmeq->qid || info[cmdid].aborted) { if (work_busy(&dev->reset_work)) @@ -1001,7 +1084,8 @@ static void nvme_abort_cmd(int cmdid, struct nvme_queue *nvmeq) if (!dev->abort_limit) return; - a_cmdid = alloc_cmdid(dev->queues[0], CMD_CTX_ABORT, special_completion, + adminq = rcu_dereference(dev->queues[0]); + a_cmdid = alloc_cmdid(adminq, CMD_CTX_ABORT, special_completion, ADMIN_TIMEOUT); if (a_cmdid < 0) return; @@ -1018,7 +1102,7 @@ static void nvme_abort_cmd(int cmdid, struct nvme_queue *nvmeq) dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", cmdid, nvmeq->qid); - nvme_submit_cmd(dev->queues[0], &cmd); + nvme_submit_cmd(adminq, &cmd); } /** @@ -1051,23 +1135,38 @@ static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout) dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n", cmdid, nvmeq->qid); ctx = cancel_cmdid(nvmeq, cmdid, &fn); - fn(nvmeq->dev, ctx, &cqe); + fn(nvmeq, ctx, &cqe); } } -static void nvme_free_queue(struct nvme_queue *nvmeq) +static void nvme_free_queue(struct rcu_head *r) { + struct nvme_queue *nvmeq = container_of(r, struct nvme_queue, r_head); + spin_lock_irq(&nvmeq->q_lock); while (bio_list_peek(&nvmeq->sq_cong)) { struct bio *bio = bio_list_pop(&nvmeq->sq_cong); bio_endio(bio, -EIO); } + while (!list_empty(&nvmeq->iod_bio)) { + static struct nvme_completion cqe = { + .status = cpu_to_le16( + (NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1), + }; + struct nvme_iod *iod = list_first_entry(&nvmeq->iod_bio, + struct nvme_iod, + node); + list_del(&iod->node); + bio_completion(nvmeq, iod, &cqe); + } spin_unlock_irq(&nvmeq->q_lock); dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes, nvmeq->cq_dma_addr); dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), nvmeq->sq_cmds, nvmeq->sq_dma_addr); + if (nvmeq->qid) + free_cpumask_var(nvmeq->cpu_mask); kfree(nvmeq); } @@ -1076,9 +1175,10 @@ static void nvme_free_queues(struct nvme_dev *dev, int lowest) int i; for (i = dev->queue_count - 1; i >= lowest; i--) { - nvme_free_queue(dev->queues[i]); + struct nvme_queue *nvmeq = raw_nvmeq(dev, i); + rcu_assign_pointer(dev->queues[i], NULL); + call_rcu(&nvmeq->r_head, nvme_free_queue); dev->queue_count--; - dev->queues[i] = NULL; } } @@ -1098,6 +1198,7 @@ static int nvme_suspend_queue(struct nvme_queue *nvmeq) return 1; } nvmeq->q_suspended = 1; + nvmeq->dev->online_queues--; spin_unlock_irq(&nvmeq->q_lock); irq_set_affinity_hint(vector, NULL); @@ -1116,7 +1217,7 @@ static void nvme_clear_queue(struct nvme_queue *nvmeq) static void nvme_disable_queue(struct nvme_dev *dev, int qid) { - struct nvme_queue *nvmeq = dev->queues[qid]; + struct nvme_queue *nvmeq = raw_nvmeq(dev, qid); if (!nvmeq) return; @@ -1152,6 +1253,9 @@ static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, if (!nvmeq->sq_cmds) goto free_cqdma; + if (qid && !zalloc_cpumask_var(&nvmeq->cpu_mask, GFP_KERNEL)) + goto free_sqdma; + nvmeq->q_dmadev = dmadev; nvmeq->dev = dev; snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d", @@ -1162,15 +1266,20 @@ static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, init_waitqueue_head(&nvmeq->sq_full); init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread); bio_list_init(&nvmeq->sq_cong); + INIT_LIST_HEAD(&nvmeq->iod_bio); nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; nvmeq->q_depth = depth; nvmeq->cq_vector = vector; nvmeq->qid = qid; nvmeq->q_suspended = 1; dev->queue_count++; + rcu_assign_pointer(dev->queues[qid], nvmeq); return nvmeq; + free_sqdma: + dma_free_coherent(dmadev, SQ_SIZE(depth), (void *)nvmeq->sq_cmds, + nvmeq->sq_dma_addr); free_cqdma: dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes, nvmeq->cq_dma_addr); @@ -1203,6 +1312,7 @@ static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); nvme_cancel_ios(nvmeq, false); nvmeq->q_suspended = 0; + dev->online_queues++; } static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) @@ -1311,12 +1421,11 @@ static int nvme_configure_admin_queue(struct nvme_dev *dev) if (result < 0) return result; - nvmeq = dev->queues[0]; + nvmeq = raw_nvmeq(dev, 0); if (!nvmeq) { nvmeq = nvme_alloc_queue(dev, 0, 64, 0); if (!nvmeq) return -ENOMEM; - dev->queues[0] = nvmeq; } aqa = nvmeq->q_depth - 1; @@ -1418,7 +1527,6 @@ void nvme_unmap_user_pages(struct nvme_dev *dev, int write, static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) { struct nvme_dev *dev = ns->dev; - struct nvme_queue *nvmeq; struct nvme_user_io io; struct nvme_command c; unsigned length, meta_len; @@ -1492,22 +1600,14 @@ static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) c.rw.metadata = cpu_to_le64(meta_dma_addr); } - length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL); + length = nvme_setup_prps(dev, iod, length, GFP_KERNEL); + c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); + c.rw.prp2 = cpu_to_le64(iod->first_dma); - nvmeq = get_nvmeq(dev); - /* - * Since nvme_submit_sync_cmd sleeps, we can't keep preemption - * disabled. We may be preempted at any point, and be rescheduled - * to a different CPU. That will cause cacheline bouncing, but no - * additional races since q_lock already protects against other CPUs. - */ - put_nvmeq(nvmeq); if (length != (io.nblocks + 1) << ns->lba_shift) status = -ENOMEM; - else if (!nvmeq || nvmeq->q_suspended) - status = -EBUSY; else - status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT); + status = nvme_submit_io_cmd(dev, &c, NULL); if (meta_len) { if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) { @@ -1572,8 +1672,9 @@ static int nvme_user_admin_cmd(struct nvme_dev *dev, length); if (IS_ERR(iod)) return PTR_ERR(iod); - length = nvme_setup_prps(dev, &c.common, iod, length, - GFP_KERNEL); + length = nvme_setup_prps(dev, iod, length, GFP_KERNEL); + c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); + c.common.prp2 = cpu_to_le64(iod->first_dma); } timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) : @@ -1581,8 +1682,7 @@ static int nvme_user_admin_cmd(struct nvme_dev *dev, if (length != cmd.data_len) status = -ENOMEM; else - status = nvme_submit_sync_cmd(dev->queues[0], &c, &cmd.result, - timeout); + status = nvme_submit_sync_cmd(dev, 0, &c, &cmd.result, timeout); if (cmd.data_len) { nvme_unmap_user_pages(dev, cmd.opcode & 1, iod); @@ -1653,25 +1753,51 @@ static void nvme_release(struct gendisk *disk, fmode_t mode) kref_put(&dev->kref, nvme_free_dev); } +static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo) +{ + /* some standard values */ + geo->heads = 1 << 6; + geo->sectors = 1 << 5; + geo->cylinders = get_capacity(bd->bd_disk) >> 11; + return 0; +} + static const struct block_device_operations nvme_fops = { .owner = THIS_MODULE, .ioctl = nvme_ioctl, .compat_ioctl = nvme_compat_ioctl, .open = nvme_open, .release = nvme_release, + .getgeo = nvme_getgeo, }; +static void nvme_resubmit_iods(struct nvme_queue *nvmeq) +{ + struct nvme_iod *iod, *next; + + list_for_each_entry_safe(iod, next, &nvmeq->iod_bio, node) { + if (unlikely(nvme_submit_iod(nvmeq, iod))) + break; + list_del(&iod->node); + if (bio_list_empty(&nvmeq->sq_cong) && + list_empty(&nvmeq->iod_bio)) + remove_wait_queue(&nvmeq->sq_full, + &nvmeq->sq_cong_wait); + } +} + static void nvme_resubmit_bios(struct nvme_queue *nvmeq) { while (bio_list_peek(&nvmeq->sq_cong)) { struct bio *bio = bio_list_pop(&nvmeq->sq_cong); struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data; - if (bio_list_empty(&nvmeq->sq_cong)) + if (bio_list_empty(&nvmeq->sq_cong) && + list_empty(&nvmeq->iod_bio)) remove_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait); if (nvme_submit_bio_queue(nvmeq, ns, bio)) { - if (bio_list_empty(&nvmeq->sq_cong)) + if (!waitqueue_active(&nvmeq->sq_full)) add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait); bio_list_add_head(&nvmeq->sq_cong, bio); @@ -1700,8 +1826,10 @@ static int nvme_kthread(void *data) queue_work(nvme_workq, &dev->reset_work); continue; } + rcu_read_lock(); for (i = 0; i < dev->queue_count; i++) { - struct nvme_queue *nvmeq = dev->queues[i]; + struct nvme_queue *nvmeq = + rcu_dereference(dev->queues[i]); if (!nvmeq) continue; spin_lock_irq(&nvmeq->q_lock); @@ -1710,9 +1838,11 @@ static int nvme_kthread(void *data) nvme_process_cq(nvmeq); nvme_cancel_ios(nvmeq, true); nvme_resubmit_bios(nvmeq); + nvme_resubmit_iods(nvmeq); unlock: spin_unlock_irq(&nvmeq->q_lock); } + rcu_read_unlock(); } spin_unlock(&dev_list_lock); schedule_timeout(round_jiffies_relative(HZ)); @@ -1787,6 +1917,143 @@ static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid, return NULL; } +static int nvme_find_closest_node(int node) +{ + int n, val, min_val = INT_MAX, best_node = node; + + for_each_online_node(n) { + if (n == node) + continue; + val = node_distance(node, n); + if (val < min_val) { + min_val = val; + best_node = n; + } + } + return best_node; +} + +static void nvme_set_queue_cpus(cpumask_t *qmask, struct nvme_queue *nvmeq, + int count) +{ + int cpu; + for_each_cpu(cpu, qmask) { + if (cpumask_weight(nvmeq->cpu_mask) >= count) + break; + if (!cpumask_test_and_set_cpu(cpu, nvmeq->cpu_mask)) + *per_cpu_ptr(nvmeq->dev->io_queue, cpu) = nvmeq->qid; + } +} + +static void nvme_add_cpus(cpumask_t *mask, const cpumask_t *unassigned_cpus, + const cpumask_t *new_mask, struct nvme_queue *nvmeq, int cpus_per_queue) +{ + int next_cpu; + for_each_cpu(next_cpu, new_mask) { + cpumask_or(mask, mask, get_cpu_mask(next_cpu)); + cpumask_or(mask, mask, topology_thread_cpumask(next_cpu)); + cpumask_and(mask, mask, unassigned_cpus); + nvme_set_queue_cpus(mask, nvmeq, cpus_per_queue); + } +} + +static void nvme_create_io_queues(struct nvme_dev *dev) +{ + unsigned i, max; + + max = min(dev->max_qid, num_online_cpus()); + for (i = dev->queue_count; i <= max; i++) + if (!nvme_alloc_queue(dev, i, dev->q_depth, i - 1)) + break; + + max = min(dev->queue_count - 1, num_online_cpus()); + for (i = dev->online_queues; i <= max; i++) + if (nvme_create_queue(raw_nvmeq(dev, i), i)) + break; +} + +/* + * If there are fewer queues than online cpus, this will try to optimally + * assign a queue to multiple cpus by grouping cpus that are "close" together: + * thread siblings, core, socket, closest node, then whatever else is + * available. + */ +static void nvme_assign_io_queues(struct nvme_dev *dev) +{ + unsigned cpu, cpus_per_queue, queues, remainder, i; + cpumask_var_t unassigned_cpus; + + nvme_create_io_queues(dev); + + queues = min(dev->online_queues - 1, num_online_cpus()); + if (!queues) + return; + + cpus_per_queue = num_online_cpus() / queues; + remainder = queues - (num_online_cpus() - queues * cpus_per_queue); + + if (!alloc_cpumask_var(&unassigned_cpus, GFP_KERNEL)) + return; + + cpumask_copy(unassigned_cpus, cpu_online_mask); + cpu = cpumask_first(unassigned_cpus); + for (i = 1; i <= queues; i++) { + struct nvme_queue *nvmeq = lock_nvmeq(dev, i); + cpumask_t mask; + + cpumask_clear(nvmeq->cpu_mask); + if (!cpumask_weight(unassigned_cpus)) { + unlock_nvmeq(nvmeq); + break; + } + + mask = *get_cpu_mask(cpu); + nvme_set_queue_cpus(&mask, nvmeq, cpus_per_queue); + if (cpus_weight(mask) < cpus_per_queue) + nvme_add_cpus(&mask, unassigned_cpus, + topology_thread_cpumask(cpu), + nvmeq, cpus_per_queue); + if (cpus_weight(mask) < cpus_per_queue) + nvme_add_cpus(&mask, unassigned_cpus, + topology_core_cpumask(cpu), + nvmeq, cpus_per_queue); + if (cpus_weight(mask) < cpus_per_queue) + nvme_add_cpus(&mask, unassigned_cpus, + cpumask_of_node(cpu_to_node(cpu)), + nvmeq, cpus_per_queue); + if (cpus_weight(mask) < cpus_per_queue) + nvme_add_cpus(&mask, unassigned_cpus, + cpumask_of_node( + nvme_find_closest_node( + cpu_to_node(cpu))), + nvmeq, cpus_per_queue); + if (cpus_weight(mask) < cpus_per_queue) + nvme_add_cpus(&mask, unassigned_cpus, + unassigned_cpus, + nvmeq, cpus_per_queue); + + WARN(cpumask_weight(nvmeq->cpu_mask) != cpus_per_queue, + "nvme%d qid:%d mis-matched queue-to-cpu assignment\n", + dev->instance, i); + + irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector, + nvmeq->cpu_mask); + cpumask_andnot(unassigned_cpus, unassigned_cpus, + nvmeq->cpu_mask); + cpu = cpumask_next(cpu, unassigned_cpus); + if (remainder && !--remainder) + cpus_per_queue++; + unlock_nvmeq(nvmeq); + } + WARN(cpumask_weight(unassigned_cpus), "nvme%d unassigned online cpus\n", + dev->instance); + i = 0; + cpumask_andnot(unassigned_cpus, cpu_possible_mask, cpu_online_mask); + for_each_cpu(cpu, unassigned_cpus) + *per_cpu_ptr(dev->io_queue, cpu) = (i++ % queues) + 1; + free_cpumask_var(unassigned_cpus); +} + static int set_queue_count(struct nvme_dev *dev, int count) { int status; @@ -1805,13 +2072,26 @@ static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride); } +static int nvme_cpu_notify(struct notifier_block *self, + unsigned long action, void *hcpu) +{ + struct nvme_dev *dev = container_of(self, struct nvme_dev, nb); + switch (action) { + case CPU_ONLINE: + case CPU_DEAD: + nvme_assign_io_queues(dev); + break; + } + return NOTIFY_OK; +} + static int nvme_setup_io_queues(struct nvme_dev *dev) { - struct nvme_queue *adminq = dev->queues[0]; + struct nvme_queue *adminq = raw_nvmeq(dev, 0); struct pci_dev *pdev = dev->pci_dev; - int result, cpu, i, vecs, nr_io_queues, size, q_depth; + int result, i, vecs, nr_io_queues, size; - nr_io_queues = num_online_cpus(); + nr_io_queues = num_possible_cpus(); result = set_queue_count(dev, nr_io_queues); if (result < 0) return result; @@ -1830,7 +2110,7 @@ static int nvme_setup_io_queues(struct nvme_dev *dev) size = db_bar_size(dev, nr_io_queues); } while (1); dev->dbs = ((void __iomem *)dev->bar) + 4096; - dev->queues[0]->q_db = dev->dbs; + adminq->q_db = dev->dbs; } /* Deregister the admin queue's interrupt */ @@ -1856,6 +2136,7 @@ static int nvme_setup_io_queues(struct nvme_dev *dev) * number of interrupts. */ nr_io_queues = vecs; + dev->max_qid = nr_io_queues; result = queue_request_irq(dev, adminq, adminq->irqname); if (result) { @@ -1864,49 +2145,13 @@ static int n |